JP2006230104A - Charging equipment - Google Patents

Charging equipment Download PDF

Info

Publication number
JP2006230104A
JP2006230104A JP2005040713A JP2005040713A JP2006230104A JP 2006230104 A JP2006230104 A JP 2006230104A JP 2005040713 A JP2005040713 A JP 2005040713A JP 2005040713 A JP2005040713 A JP 2005040713A JP 2006230104 A JP2006230104 A JP 2006230104A
Authority
JP
Japan
Prior art keywords
charging
voltage
resonance
switching
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005040713A
Other languages
Japanese (ja)
Other versions
JP4211743B2 (en
Inventor
Hiroyasu Kitamura
浩康 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005040713A priority Critical patent/JP4211743B2/en
Publication of JP2006230104A publication Critical patent/JP2006230104A/en
Application granted granted Critical
Publication of JP4211743B2 publication Critical patent/JP4211743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide charging equipment constructed of a resonance inverter, capable of constant-current charging and constant-voltage charging. <P>SOLUTION: A control unit 6 has a switching means for switching between resonance mode in which switching elements FET1 and FET2 are caused to perform zero-voltage switching and non-resonance mode in which the switching elements FET1 and FET2 are not caused to perform zero-voltage switching. Constant-current charging is carried out in resonance mode, and charging voltage is gradually increased. When the charging voltage reaches a constant-voltage charging starting voltage V0, constant-voltage charging is started in resonance mode. Charging current is gradually reduced during constant-voltage charging. When the charging current becomes equal to or lower than a predetermined value, the mode is caused to transition from resonance mode to non-resonance mode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、充電装置に関するものである。   The present invention relates to a charging device.

共振型インバータを用いた充電装置は、効率がよく、低ノイズであるが、出力を制御して出力を絞ったときに、共振条件が合わなくなって逆に効率が悪くなって、ノイズが増えたり、場合によっては制御不可能になることがあった。   Charging devices using resonant inverters are efficient and low in noise, but when the output is controlled and the output is throttled, the resonance conditions are not met and the efficiency becomes worse, resulting in increased noise. In some cases, control could be impossible.

そこで、2つのスイッチング素子、共振用コンデンサ、共振用インダクタを具備して、スイッチング素子を交互にオン・オフすることによって直流入力を高周波出力に変換するプッシュプル共振回路を備えた共振型電源では、2つのスイッチング素子がともにオフになる期間(デッドタイム)およびスイッチングの最低周波数を切り換えることによって、定電圧充電において充電電流を絞ることが可能になった。(例えば、特許文献1参照)
特開2003−134817号公報
Therefore, in a resonance type power supply including a push-pull resonance circuit that includes two switching elements, a resonance capacitor, and a resonance inductor and converts a DC input into a high-frequency output by alternately turning on and off the switching elements. By switching the period during which both switching elements are turned off (dead time) and the minimum frequency of switching, the charging current can be reduced in constant voltage charging. (For example, see Patent Document 1)
JP 2003-134817 A

上記従来の充電装置は、ゼロ電圧スイッチングを行なっており、ゼロ電圧スイッチングの可能条件は、充電電流に比例して決定される。   The conventional charging device performs zero voltage switching, and the possible conditions for zero voltage switching are determined in proportion to the charging current.

例えば、フォワード結合でトランスの1次側に流れる電流を2次側から充電電流として取り出した場合、トランスの1次側巻数、2次側巻数、1次巻線最大電流、2次巻線最大電流をそれぞれN1,N2,Ip,Isとすると、
N1・Ip=N2・Is
の関係がある。
For example, when the current that flows to the primary side of the transformer with forward coupling is taken out as the charging current from the secondary side, the primary winding number of the transformer, the secondary winding number, the primary winding maximum current, the secondary winding maximum current Are N1, N2, Ip and Is, respectively.
N1 ・ Ip = N2 ・ Is
There is a relationship.

さらに共振用インダクタのインダクタンスをLr、共振用コンデンサの容量をCr、トランスの1次側電圧をVpとすると、
LrIp/2>CrVp/2
となる。上記2つの式より、トランスの2次側に流れる電流、すなわち充電電流がある値より大きければ共振条件は満足する。
Furthermore, if the inductance of the resonance inductor is Lr, the capacitance of the resonance capacitor is Cr, and the primary voltage of the transformer is Vp,
LrIp 2/2> CrVp 2/ 2
It becomes. From the above two equations, the resonance condition is satisfied if the current flowing on the secondary side of the transformer, that is, the charging current is larger than a certain value.

このゼロ電圧スイッチングの可能条件は、電池電圧には影響されず、電池電圧が20Vのときにゼロ電圧スイッチングが可能な限界充電電流値が5Aであるとすると、電池電圧が0Vのときの限界充電電流値も5Aとなる。   This possible condition for zero voltage switching is not affected by the battery voltage. If the limit charging current value at which the zero voltage switching is possible when the battery voltage is 20 V is 5 A, the limit charging when the battery voltage is 0 V is assumed. The current value is also 5A.

つまり、定電流充電を行なうときは充電電圧が上昇しても、充電初期時に共振条件を満足しておれば充電完了が近付いても共振条件は満足する。   In other words, when performing constant current charging, the resonance condition is satisfied even if the charging voltage is increased, or if the resonance condition is satisfied at the initial stage of charging, even if the completion of charging is approaching.

しかし、定電圧充電を行なうときは、充電電流値が低下してくるにつれて、スイッチング周波数が高くなって共振用インダクタに流れる電流が小さくなる。そして、充電電流が徐々に低下していくため途中で共振条件を満足しなくなり、ゼロ電圧スイッチングができなくなって損失が大きくなり、場合によってはスイッチング素子が温度上昇によって壊れる、あるいは出力を低下させることができなくなっていた。   However, when performing constant voltage charging, as the charging current value decreases, the switching frequency increases and the current flowing through the resonance inductor decreases. And since the charging current gradually decreases, resonance conditions are not satisfied midway, zero voltage switching becomes impossible, loss increases, and in some cases, the switching element breaks due to temperature rise, or the output decreases. Could not be.

本発明は、上記事由に鑑みてなされたものであり、その目的は、定電流充電、定電圧充電が可能な共振型インバータで構成された充電装置を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the charging device comprised by the resonance type inverter which can perform constant current charge and constant voltage charge.

請求項1の発明は、第1,第2のスイッチング素子、共振用コンデンサ、共振用インダクタを具備し第1,第2のスイッチング素子を交互にオン・オフすることによって直流入力を高周波出力に変換するプッシュプル共振型インバータ部と、インバータ部のスイッチング素子の動作を制御する制御部とを備えて、インバータ部の出力によって電池を定電流充電あるいは定電圧充電し、制御部は、スイッチング素子をゼロ電圧スイッチングさせる共振モードと、スイッチング素子をゼロ電圧スイッチングさせない非共振モードとの切換手段を有し、定電圧充電時に充電電流を徐々に低下させて、充電電流が所定値以下になった場合に共振モードから非共振モードに移行させることを特徴とする。   The invention of claim 1 includes a first switching element, a second switching element, a resonance capacitor, and a resonance inductor, and alternately turns on and off the first and second switching elements to convert a DC input into a high frequency output. A push-pull resonance type inverter unit and a control unit that controls the operation of the switching element of the inverter unit, and the battery charges the battery with a constant current or a constant voltage according to the output of the inverter unit. There is a switching means between the resonant mode for voltage switching and the non-resonant mode that does not switch the switching element to zero voltage, and the charging current is gradually reduced during constant voltage charging so that resonance occurs when the charging current falls below a predetermined value. It is characterized by shifting from the mode to the non-resonant mode.

この発明によれば、スイッチング損失、ノイズを低減できる共振型のインバータを用いながら、共振モードと非共振モードを切り換えることで定電流充電だけでなく定電圧充電も行なうことができる。   According to the present invention, not only constant current charging but also constant voltage charging can be performed by switching between a resonance mode and a non-resonance mode while using a resonance type inverter that can reduce switching loss and noise.

請求項2の発明は、請求項1において、前記制御部は、前記非共振モードにおいて前記第1,第2のスイッチング素子がともにオフである期間を長くすることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the control unit extends a period in which both the first and second switching elements are off in the non-resonant mode.

この発明によれば、簡単な回路構成で共振モードと非共振モードとを切り換えることができる。   According to the present invention, the resonance mode and the non-resonance mode can be switched with a simple circuit configuration.

請求項3の発明は、請求項2において、前記制御部は、前記非共振モードにおいて前記第1,第2のスイッチング素子がともにオフである期間を、前記共振用コンデンサと前記共振用インダクタとの共振周期の整数倍にすることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the control unit determines a period during which the first and second switching elements are both off in the non-resonant mode between the resonance capacitor and the resonance inductor. It is characterized by being an integral multiple of the resonance period.

この発明によれば、非共振モードにおけるスイッチング損失、ノイズを最小限に抑えることができる。したがって、低い定格のスイッチング素子を用いることができ、さらにはノイズ対策部品を小型化、あるいは省略することができる。   According to the present invention, switching loss and noise in the non-resonant mode can be minimized. Therefore, a switching element with a low rating can be used, and furthermore, noise countermeasure components can be downsized or omitted.

請求項4の発明は、請求項1乃至3いずれかにおいて、前記制御部は、前記第1,第2のスイッチング素子がともにオフである期間が互いに異なる複数の非共振モードを設定し、定電圧充電時の充電電流に応じて、いずれかの非共振モードに切り換えることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the control unit sets a plurality of non-resonant modes having different periods during which both the first and second switching elements are off, and the constant voltage Switching to any one of the non-resonant modes is performed according to the charging current at the time of charging.

この発明によれば、、制御領域を拡大し、様々な充電電圧の電池に対して定電圧充電を行なうことができ、さらにスイッチング素子のスイッチング周波数制御において、スイッチング周波数の最小値から最大値までの範囲を狭くすることができ、ノイズフィルタの小型化を図ることができる。   According to the present invention, the control region can be expanded, constant voltage charging can be performed on batteries with various charging voltages, and in switching frequency control of the switching element, from the minimum value to the maximum value of the switching frequency. The range can be narrowed, and the size of the noise filter can be reduced.

請求項5の発明は、請求項1乃至4いずれかにおいて、前記制御部は、定電圧充電を行なう充電電圧を所定の電圧値に設定したことを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the control unit sets a charging voltage for performing constant voltage charging to a predetermined voltage value.

この発明によれば、共振型インバータを用いた定電流充電器に定電圧充電機能を追加する場合に、部品追加を最小限に抑えることができる。   According to the present invention, when a constant voltage charging function is added to a constant current charger using a resonant inverter, the addition of components can be minimized.

請求項6の発明は、請求項1乃至5いずれかにおいて、前記制御部は、充電電流の検出値と基準値とを比較する比較器を備えて、該比較結果に応じて充電電流を制御し、定電圧充電時では、基準電圧を段階的に変化させることで充電電流を段階的に低下させることを特徴とする。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the control unit includes a comparator that compares a detected value of the charging current with a reference value, and controls the charging current according to the comparison result. In the constant voltage charging, the charging current is reduced stepwise by changing the reference voltage stepwise.

この発明によれば、定電流充電の制御機能を用いて、定電圧充電時の充電電流制御を行なうことができる。   According to the present invention, charge current control during constant voltage charging can be performed using the constant current charge control function.

以上説明したように、本発明では、スイッチング損失、ノイズを低減できる共振型のインバータを用いながら、共振モードと非共振モードを切り換えることで定電流充電だけでなく定電圧充電も行なうことができるという効果がある。   As described above, according to the present invention, it is possible to perform not only constant current charging but also constant voltage charging by switching between a resonance mode and a non-resonance mode while using a resonance type inverter that can reduce switching loss and noise. effective.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本発明の充電装置は、図1に示すように、交流電源ACを整流・平滑する整流・平滑回路1と、整流・平滑回路1の負電圧側出力に各ソース端子を接続したFETからなるスイッチング素子FET1,FET2、スイッチング素子FET1,FET2の各ドレイン端子間に接続し、接続点を整流・平滑回路1の正電圧側出力に接続した共振用インダクタLe1,L1,L2,Le2の直列回路及び共振用コンデンサC1,C2の直列回路、インダクタL1,L2と磁気結合したインダクタL3,L4の直列回路を備える2石プッシュプル部分共振回路からなり、整流・平滑回路1で平滑した直流出力を高周波出力に変換する共振型のインバータ部2と、インダクタL3,L4の直列回路の各端にアノードを接続し、カソード同士を接続したダイオードD1,D2からなる整流部3と、ダイオードD1,D2の接続点に一端を接続したチョークコイルL5、及びチョークコイルL5の他端とインダクタL3,L4の接続点との間に接続した平滑用のコンデンサC3からなる平滑部4と、コンデンサC3両端の直流電圧を印加されてインバータ部2の出力を供給される複数の電池の直列回路からなる電池パック5と、平滑部4の出力端間に接続して充電電圧を分圧して検出する抵抗R1,R2の直列回路と、電池パック5の負電圧側端子とコンデンサC3の負電圧側端子との間に挿入されて充電電流を検出する抵抗R3と、スイッチング素子FET1,FET2の動作を制御する制御部6とから構成される。
(Embodiment 1)
As shown in FIG. 1, the charging device of the present invention includes a rectifying / smoothing circuit 1 that rectifies and smoothes an AC power supply AC, and a switching circuit that includes FETs each having a source terminal connected to the negative voltage side output of the rectifying / smoothing circuit 1. A series circuit of resonance inductors Le1, L1, L2, Le2 connected between the drain terminals of the elements FET1, FET2 and switching elements FET1, FET2 and having a connection point connected to the positive voltage side output of the rectifying / smoothing circuit 1 and resonance This is a two-stone push-pull partial resonance circuit comprising a series circuit of capacitors C1 and C2 and a series circuit of inductors L3 and L4 magnetically coupled to inductors L1 and L2. A resonance type inverter unit 2 to be converted and a diode connected to each end of a series circuit of inductors L3 and L4 and connected to each other. Smoothing connected between the rectifying unit 3 comprising the diodes D1 and D2, the choke coil L5 having one end connected to the connection point of the diodes D1 and D2, and the connection point between the other end of the choke coil L5 and the inductors L3 and L4 Between the output of the smoothing unit 4 and the smoothing unit 4, the battery pack 5 including a series circuit of a plurality of batteries to which the output of the inverter unit 2 is supplied by applying a DC voltage across the capacitor C 3. A resistor R3 inserted between the negative voltage side terminal of the battery pack 5 and the negative voltage side terminal of the capacitor C3 and connected to the series circuit of the resistors R1 and R2 connected to divide and detect the charging voltage. And a control unit 6 that controls the operation of the switching elements FET1 and FET2.

そして、交流電源ACの出力を整流・平滑回路1で整流、平滑した直流電圧をスイッチング素子FET1,FET2が交互にオン・オフすることによって、スイッチング素子FET1がオンしている時はインダクタL1に電流を流してインダクタL3に電圧を誘起させ、スイッチング素子FET2がオンしている時はインダクタL2に電流を流してインダクタL4に電圧を誘起させる。インダクタL3,L4の誘起電圧をダイオードD1,D2で整流し、チョークコイルL5、コンデンサC3で平滑した直流電圧を電池パック5に印加する。   Then, the switching elements FET1 and FET2 alternately turn on and off the DC voltage obtained by rectifying and smoothing the output of the AC power supply AC by the rectifying / smoothing circuit 1, so that when the switching element FET1 is on, a current is passed through the inductor L1. To induce a voltage in the inductor L3, and when the switching element FET2 is on, a current is passed through the inductor L2 to induce a voltage in the inductor L4. The induced voltages of the inductors L3 and L4 are rectified by the diodes D1 and D2, and a DC voltage smoothed by the choke coil L5 and the capacitor C3 is applied to the battery pack 5.

上記図1に示す充電装置は、電動工具用急速充電器に用いられ、負荷の電池パック5の種類はNiCd電池、NiMH電池、リチウムイオン電池等があり、電池電圧は、公称電圧7.2V、9.6V、12V、15.6V、24Vのものがあり、容量も2Ah、3Ahのものがある。このように様々な電池種類、電圧、容量の各電池パック5に対して、1つの充電器で充電を行なうことができるものである。なお、リチウムイオン電池では、まず定電流充電を行ない、充電電圧(電池電圧)が規定値に達すると定電圧充電を行なう。   The charging device shown in FIG. 1 is used for a quick charger for an electric tool, and the type of the battery pack 5 of the load includes a NiCd battery, a NiMH battery, a lithium ion battery, and the like. The battery voltage is a nominal voltage of 7.2 V, There are 9.6V, 12V, 15.6V and 24V, and there are also 2Ah and 3Ah capacities. Thus, each battery pack 5 of various battery types, voltages, and capacities can be charged with a single charger. In the lithium ion battery, first, constant current charging is performed, and when the charging voltage (battery voltage) reaches a specified value, constant voltage charging is performed.

以下、本実施形態の制御部6によるスイッチング素子FET1,FET2のスイッチング制御について説明する。   Hereinafter, switching control of the switching elements FET1 and FET2 by the control unit 6 of the present embodiment will be described.

制御部6は、マイコン6a、比較器6b、コントロール回路部6c、増幅器6gを主構成として備える。マイコン6aは、抵抗R1,R2の接続点電圧を充電電圧の検出値Svとして入力されて、この充電電圧検出値Svに基づいてPWM信号Spwmを生成し、PWM信号Spwmは、マイコン6aの信号出力端間に接続された抵抗6dとコンデンサ6eとの直列回路で平滑され、抵抗6fを介して比較器6bに電流基準値Srefとして入力される。さらにマイコン6aは、デッドタイム、スイッチング周波数を切り換えるための制御信号Saを生成し、コントロール回路部6cへ出力する。   The control unit 6 includes a microcomputer 6a, a comparator 6b, a control circuit unit 6c, and an amplifier 6g as main components. The microcomputer 6a receives the voltage at the connection point between the resistors R1 and R2 as the detected value Sv of the charging voltage and generates the PWM signal Spwm based on the detected value Sv of the charging voltage. The PWM signal Spwm is the signal output of the microcomputer 6a. The signal is smoothed by a series circuit of a resistor 6d and a capacitor 6e connected between the ends, and is input as a current reference value Sref to the comparator 6b via the resistor 6f. Further, the microcomputer 6a generates a control signal Sa for switching the dead time and the switching frequency, and outputs it to the control circuit unit 6c.

また、抵抗R3の両端電圧である充電電流検出値Siを増幅器6gで増幅した充電電流検出値Si’が比較器6bに入力される。比較器6bは、充電電流検出値Si’と電流基準値Srefとを比較し、その差をフィードバック信号Sfbとしてコントロール回路部6cへ出力する。   Further, the charging current detection value Si ′ obtained by amplifying the charging current detection value Si, which is the voltage across the resistor R3, by the amplifier 6g is input to the comparator 6b. The comparator 6b compares the detected charging current value Si 'with the current reference value Sref, and outputs the difference as a feedback signal Sfb to the control circuit unit 6c.

コントロール回路部6c内では、フォトカプラの2次側にフィードバック信号Sfbに比例した電流を流すことで、充電電流補正の情報を1次側コントロールICに伝達する。そして、充電電流検出値Si’と電流基準値Srefとが一致するように、すなわちフィードバック信号Sfbがゼロになるようにスイッチング素子FET1,FET2のスイッチング動作を制御する。   In the control circuit unit 6c, by supplying a current proportional to the feedback signal Sfb to the secondary side of the photocoupler, charging current correction information is transmitted to the primary side control IC. Then, the switching operation of the switching elements FET1 and FET2 is controlled so that the charging current detection value Si ′ and the current reference value Sref match, that is, the feedback signal Sfb becomes zero.

図2は、出力制御時にコントロール回路部6cがスイッチング素子FET1,FET2に各々出力する駆動信号S1,S2の波形を示し、図2(a)は出力大時、図2(b)は出力小時の駆動信号S1,S2であり、スイッチング素子FET1,FET2がともにオフであるデッドタイムTdを一定に保ち、周波数制御を行う。出力を低下させる(絞る)ときはスイッチング周波数を高くし、出力を増加させるときはスイッチング周波数を低くしている。   FIG. 2 shows waveforms of drive signals S1 and S2 output to the switching elements FET1 and FET2 by the control circuit unit 6c during output control. FIG. 2 (a) shows when the output is large, and FIG. 2 (b) shows when the output is small. The drive signals S1 and S2 and the dead time Td during which both the switching elements FET1 and FET2 are off are kept constant, and the frequency control is performed. When the output is reduced (squeezed), the switching frequency is increased, and when the output is increased, the switching frequency is decreased.

また、コントロール回路部6cは、ゼロ電圧スイッチングを行なう共振モード(ソフトスイッチング)と、ゼロ電圧スイッチングを行なわない非共振モード(ハードスイッチング)との2モードでスイッチング素子FET1,FET2を動作させており、出力が大きいときは共振モードを用い、トリクル充電のように充電電流がかなり小さいときは非共振モードを用いる。図3(a)に共振モード時、図3(b)に非共振モード時の駆動信号S1,S2の波形を示すように、共振モード時はデッドタイムTdが短く、非共振モード時はデッドタイムTdが長くなる。なお、非共振モードでは、スイッチング素子FET1,FET2、インダクタL1〜L4に流れる電流が小さいため、出力が大きい共振モードに比べて、スイッチング損失、ノイズが十分小さくなる。   Further, the control circuit unit 6c operates the switching elements FET1 and FET2 in two modes of a resonance mode (soft switching) in which zero voltage switching is performed and a non-resonance mode (hard switching) in which zero voltage switching is not performed. The resonance mode is used when the output is large, and the non-resonance mode is used when the charging current is very small as in trickle charging. As shown in FIGS. 3A and 3B, the waveforms of the drive signals S1 and S2 in the non-resonant mode and in the non-resonant mode, the dead time Td is short, and the dead time in the non-resonant mode. Td becomes longer. In the non-resonant mode, since the current flowing through the switching elements FET1, FET2 and the inductors L1 to L4 is small, the switching loss and noise are sufficiently smaller than in the resonant mode where the output is large.

ここで、図4は、従来のNiCd電池、NiMH電池の充電装置において、定電流充電で共振モードと非共振モードとの切り換えを行なう場合の充電電圧と充電電流との関係を示す制御テーブルであり、充電電流が大きいI2〜I3では共振モードで動作する共振モード領域A0、充電電流がかなり小さい0〜I1では非共振モードで動作する非共振モード領域B0が、充電電圧0〜V1の範囲で設定されている。ここで、I2=5A、I3=10A程度であり、V1=40V程度である。   Here, FIG. 4 is a control table showing the relationship between the charging voltage and the charging current when switching between the resonance mode and the non-resonance mode in constant current charging in the conventional NiCd battery and NiMH battery charging apparatus. The resonance mode region A0 that operates in the resonance mode when the charging current is large I2 to I3, and the non-resonance mode region B0 that operates in the nonresonance mode when the charging current is 0 to I1 is set within the range of the charging voltage 0 to V1. Has been. Here, I2 = 5A, I3 = 10A, and V1 = 40V.

図5は、本実施形態で共振モードと非共振モードとの切り換えを行なう場合の充電電圧と充電電流との関係を示す制御テーブルであり、共振モード領域A1と、非共振モード領域B1とを設定している。充電電流が大きいI2〜I3では共振モードで動作する共振モード領域A1、充電電流がかなり小さい0〜I1では非共振モードで動作する非共振モード領域B1が充電電圧0〜V1の範囲で設定され、さらに充電電流I1〜I2では定電圧充電開始電圧V0近傍において共振モード領域A1、非共振モードB1が設定されており、図4の従来の制御テーブルに比べて制御領域が増えている(ここで、I1<I2<I3)。   FIG. 5 is a control table showing the relationship between the charging voltage and the charging current when switching between the resonance mode and the non-resonance mode in this embodiment, and sets the resonance mode region A1 and the non-resonance mode region B1. is doing. A resonance mode region A1 that operates in the resonance mode is set for I2 to I3 where the charging current is large, and a non-resonance mode region B1 that operates in the nonresonance mode is set in the range of the charging voltage 0 to V1 when the charging current is 0 to I1. Further, in the charging currents I1 and I2, the resonance mode region A1 and the non-resonance mode B1 are set in the vicinity of the constant voltage charging start voltage V0, and the control region is increased as compared with the conventional control table of FIG. I1 <I2 <I3).

また、図6は充電時間に対する充電電流の変化を表しており、まず、マイコン6aは、充電電圧検出値Svに基づいて充電電圧を判定し、充電電圧が定電圧充電開始電圧V0以下では、電流基準値Srefを一定にして充電電流を一定に制御する定電流充電を共振モードで行なう。(図6中の時間t0〜t1)
そして、共振モードで定電流充電を行いながら徐々に充電電圧が上昇して充電電圧が定電圧充電開始電圧V0に達すると、共振モードで定電圧充電を開始する。このとき、マイコン6aは、PWM信号Spwmを低下させて、比較器6bへの電流基準値Srefを低下させる。すると、コントロール回路部6cは、充電電流が低下するようにスイッチング素子FET1,FET2を駆動し、充電電流が低下すると、電池パック5は内部抵抗を有するために充電電圧も定電圧充電開始電圧V0から少し低下する。この低下した充電電圧でしばらく充電を継続すると、充電電圧は再び上昇し、定電圧充電開始電圧V0に達すると、再び上記処理を行って充電電流を低下させる。以降、上記処理を繰り返して、充電電流が段階的に徐々に低下する。
FIG. 6 shows the change of the charging current with respect to the charging time. First, the microcomputer 6a determines the charging voltage based on the charging voltage detection value Sv, and if the charging voltage is equal to or lower than the constant voltage charging start voltage V0, Constant current charging, in which the reference current Sref is kept constant and the charging current is kept constant, is performed in the resonance mode. (Time t0 to t1 in FIG. 6)
When the charging voltage gradually increases while performing constant current charging in the resonance mode and the charging voltage reaches the constant voltage charging start voltage V0, constant voltage charging is started in the resonance mode. At this time, the microcomputer 6a lowers the PWM signal Spwm to lower the current reference value Sref to the comparator 6b. Then, the control circuit unit 6c drives the switching elements FET1 and FET2 so that the charging current decreases. When the charging current decreases, the battery pack 5 has an internal resistance, so that the charging voltage is changed from the constant voltage charging start voltage V0. A little lower. When charging is continued for a while at this reduced charging voltage, the charging voltage rises again. When the constant voltage charging start voltage V0 is reached, the above processing is performed again to lower the charging current. Thereafter, the above process is repeated, and the charging current gradually decreases stepwise.

そして、マイコン6aはPWM信号Spwmを生成しているので、現在の充電電流の目標値がわかっており、充電電流が段階的に低下して、PWM信号Spwmの1周期の平均電圧が所定電圧以下になると、充電電流が規定の電流値I2’にまで低下したと判断して、共振モードから非共振モードへ移行させる制御信号Saをコントロール回路部6cへ出力し、コントロール回路部6cは、スイッチング素子FET1,FET2のデッドタイムを長くした非共振モードでスイッチング素子FET1,FET2を駆動する。そして、非共振モードへの移行後も充電電流を段階的に徐々に低下させながら、引き続き定電圧充電を行ない、充電電流が規定値以下になった時点で充電完了とする。(図6中の時間t1〜t2)
定電圧充電開始電圧V0は電池パック5の仕様によって決まっており、本実施形態では他の電圧での定電圧充電は行なわれないため、図5の制御テーブルにおいて、充電電流の全範囲に亘って制御領域が存在するのは、定電圧充電開始電圧V0近傍のみである。例えば、リチウムイオン電池のように、充電電圧が極めて低いときは保護充電を行ない、通常状態では定電流充電を行ない、充電電圧が高いときは定電圧充電を行なう場合は、本実施形態のように、充電電流の全範囲に亘って存在する制御領域を、定電圧充電時の充電電圧近傍にのみ確保すればよく、共振型インバータを用いた定電流充電器に本実施形態の定電圧充電機能を追加する場合に、部品追加を最小限に抑えることができる。
Since the microcomputer 6a generates the PWM signal Spwm, the target value of the current charging current is known, the charging current decreases stepwise, and the average voltage of one cycle of the PWM signal Spwm is less than or equal to the predetermined voltage. Then, it is determined that the charging current has decreased to the specified current value I2 ′, and a control signal Sa for shifting from the resonance mode to the non-resonance mode is output to the control circuit unit 6c. The control circuit unit 6c The switching elements FET1 and FET2 are driven in a non-resonant mode in which the dead times of the FET1 and FET2 are increased. Then, after the transition to the non-resonant mode, the charging current is gradually reduced step by step while the constant voltage charging is continued, and the charging is completed when the charging current becomes a specified value or less. (Times t1 to t2 in FIG. 6)
The constant voltage charging start voltage V0 is determined according to the specifications of the battery pack 5, and in this embodiment, constant voltage charging with other voltages is not performed. Therefore, in the control table of FIG. The control region exists only in the vicinity of the constant voltage charging start voltage V0. For example, when a charging voltage is very low as in a lithium ion battery, protective charging is performed, constant current charging is performed in a normal state, and constant voltage charging is performed when the charging voltage is high, as in this embodiment. The control region that exists over the entire range of the charging current only needs to be secured in the vicinity of the charging voltage at the time of constant voltage charging, and the constant voltage charging function of this embodiment is applied to the constant current charger using the resonance type inverter. When adding, the addition of parts can be minimized.

このように本実施形態では、スイッチング損失、ノイズを低減できる共振型のインバータを用いながら、定電流充電機能だけでなく定電圧充電機能も備えており、例えば、定電流充電可能な充電装置に定電圧充電機能を追加して、リチウムイオン電池を急速充電することができる。   As described above, this embodiment has a constant voltage charging function as well as a constant current charging function while using a resonance type inverter that can reduce switching loss and noise. A voltage charging function can be added to quickly charge a lithium ion battery.

次に、共振モードと非共振モードとの切り換え時に行なうデッドタイムTdの切り換えについて説明する。図7は共振モード時のスイッチング素子FET1のドレイン電圧Vds1、ドレイン電流Id1、スイッチング素子FET2のドレイン電圧Vds2、ドレイン電流Id2の各波形を示し、図8は非共振モード時のスイッチング素子FET1のドレイン電圧Vds1、ドレイン電流Id1、スイッチング素子FET2のドレイン電圧Vds2、ドレイン電流Id2の各波形を示す。   Next, switching of the dead time Td performed when switching between the resonance mode and the non-resonance mode will be described. FIG. 7 shows waveforms of the drain voltage Vds1, the drain current Id1, the drain voltage Vds2, and the drain current Id2 of the switching element FET1 in the resonance mode, and FIG. 8 shows the drain voltage of the switching element FET1 in the non-resonance mode. The waveforms of Vds1, drain current Id1, drain voltage Vds2 of the switching element FET2, and drain current Id2 are shown.

まず、共振モード時は、図7に示すようにスイッチング素子FET1のスイッチング動作とスイッチング素子FET2のスイッチング動作とが同一期間に行なわれており、デッドタイムTdは短い。   First, in the resonance mode, as shown in FIG. 7, the switching operation of the switching element FET1 and the switching operation of the switching element FET2 are performed in the same period, and the dead time Td is short.

次に、デッドタイムTdを共振モードより長くすることで共振モードから非共振モードに移行させる。デッドタイムTdでスイッチング素子FET1,FET2がともにオフになった後、共振用インダクタL1,Le1の直列回路、共振用インダクタL2,Le2の直列回路に蓄えられるエネルギーと、共振用コンデンサC1,C2に蓄えられるエネルギーとの間で共振が行なわれるが、次にオンさせるスイッチング素子は、共振電圧(スイッチング素子と共振用コンデンサとの接続点電圧)が低くなるときにオンさせる。すなわち、デッドタイムTdを共振周期の整数倍となるように設定しており、スイッチング損失、ノイズを最小限に抑えることができる。したがって、低い定格のスイッチング素子FET1,FET2を用いることができ、ノイズ対策部品を小型化、あるいは省略することができる。   Next, the dead time Td is made longer than the resonance mode to shift from the resonance mode to the non-resonance mode. After both the switching elements FET1 and FET2 are turned off at the dead time Td, the energy stored in the series circuit of the resonance inductors L1 and Le1, the series circuit of the resonance inductors L2 and Le2, and the resonance capacitors C1 and C2 The switching element to be turned on next is turned on when the resonance voltage (voltage at the connection point between the switching element and the resonance capacitor) becomes low. That is, the dead time Td is set to be an integral multiple of the resonance period, and switching loss and noise can be minimized. Therefore, low-rated switching elements FET1 and FET2 can be used, and noise countermeasure components can be downsized or omitted.

本実施形態では図8に示すように、デッドタイムTdにおいて共振電圧Vrが3回目に低くなったときに次のスイッチング素子がオンするように、デッドタイムTdを共振周期の3倍に設定している。なお、共振周期は、リーケージインダクタンスの大きさと共振用コンデンサの容量とで決定されるため、出力に関わらずに共振電圧Vrが低くなったときに次のスイッチング素子をオンすることができる。   In the present embodiment, as shown in FIG. 8, the dead time Td is set to three times the resonance period so that the next switching element is turned on when the resonance voltage Vr is lowered for the third time in the dead time Td. Yes. Since the resonance period is determined by the magnitude of the leakage inductance and the capacitance of the resonance capacitor, the next switching element can be turned on when the resonance voltage Vr becomes low regardless of the output.

図9,図10は非共振モード時におけるデッドタイムTd設定の悪い例であり、図9はドレイン電圧Vdが低くなる前(立ち下がり)に次のスイッチング素子がオンしており、図10はドレイン電圧Vdが低くなった後(立ち上がり)に次のスイッチング素子がオンしており、いずれもドレイン電流Idにパルス状の電流Ipが発生しており、スイッチング損失、ノイズが増加する。   9 and 10 are examples of poor dead time Td setting in the non-resonant mode. FIG. 9 shows that the next switching element is turned on before the drain voltage Vd becomes low (falling). After the voltage Vd becomes low (rising), the next switching element is turned on, and the pulse current Ip is generated in the drain current Id, and the switching loss and noise increase.

(実施形態2)
図11は、本実施形態の共振モードと非共振モードとの切り換えを行なう場合の充電電圧と充電電流との関係を示す制御テーブルであり、共振モード領域A1と、2つの非共振モード領域B1,B2を設定している。
(Embodiment 2)
FIG. 11 is a control table showing the relationship between the charging voltage and the charging current when switching between the resonance mode and the non-resonance mode of the present embodiment, and shows a resonance mode region A1 and two non-resonance mode regions B1, B2 is set.

充電電流が大きいI2〜I3では共振モードで動作する共振モード領域A1、充電電流がかなり小さい0〜I1では第1の非共振モードで動作する非共振モード領域B1が、実施形態1と同様に充電電圧0〜V1の範囲で設定されている。そして本実施形態では、充電電流I1〜I2において、第2の非共振モードで動作する非共振モード領域B2が充電電圧0〜V1の範囲で設定されている。   In the same manner as in the first embodiment, the resonance mode region A1 that operates in the resonance mode when the charging current is large I2 to I3, and the nonresonance mode region B1 that operates in the first nonresonance mode when the charging current is considerably small 0 to I1. The voltage is set in the range of 0 to V1. In the present embodiment, in the charging currents I1 and I2, the non-resonant mode region B2 that operates in the second non-resonant mode is set in the range of the charging voltages 0 to V1.

まず、共振モード時は、実施形態1と同様、図7に示すように、スイッチング素子FET1のスイッチング動作とスイッチング素子FET2のスイッチング動作とが同一期間に行なわれており、デッドタイムTdは短い。   First, in the resonance mode, as in the first embodiment, as shown in FIG. 7, the switching operation of the switching element FET1 and the switching operation of the switching element FET2 are performed in the same period, and the dead time Td is short.

第1の共振モード時は、実施形態1と同様、図8に示すように、デッドタイムTdにおいて共振電圧Vrが3回目に低くなったときに次のスイッチング素子がオンするように、デッドタイムTdを共振周期の3倍に設定している。   In the first resonance mode, as in the first embodiment, as shown in FIG. 8, the dead time Td is set so that the next switching element is turned on when the resonance voltage Vr is lowered for the third time at the dead time Td. Is set to three times the resonance period.

第2の共振モード時は、図12に示すように、デッドタイムTdにおいて共振電圧Vrが2回目に低くなったときに次のスイッチング素子がオンするように、共振周期の2倍にデッドタイムTdを設定している。   In the second resonance mode, as shown in FIG. 12, the dead time Td is set to twice the resonance period so that the next switching element is turned on when the resonance voltage Vr is lowered for the second time at the dead time Td. Is set.

このように、本実施形態では非共振モードを2段階に切り換えることで、制御領域を拡大し、様々な充電電圧の電池パック5に対して定電圧充電を行なうことができ、さらにスイッチング素子FET1,FET2のスイッチング周波数制御において、スイッチング周波数の最小値から最大値までの範囲を狭くすることができ、ノイズフィルタの小型化を図ることができる。   As described above, in this embodiment, by switching the non-resonant mode to two stages, the control region can be expanded, and constant voltage charging can be performed on the battery pack 5 of various charging voltages. In the switching frequency control of the FET 2, the range from the minimum value to the maximum value of the switching frequency can be narrowed, and the noise filter can be reduced in size.

なお、本実施形態の充電装置の構成は実施形態1と同様に図1に示され、説明は省略する。   In addition, the structure of the charging device of this embodiment is shown by FIG. 1 similarly to Embodiment 1, and description is abbreviate | omitted.

本発明の実施形態1の構成を示す図である。It is a figure which shows the structure of Embodiment 1 of this invention. 同上のスイッチング素子の駆動信号の波形を示し、(a)は出力大時の波形(b)は出力小時の波形である。The waveform of the drive signal of the switching element is shown. (A) is a waveform when the output is large (b) is a waveform when the output is small. 同上のスイッチング素子の駆動信号の波形を示し、(a)は共振モードの波形(b)は非共振モードの波形である。The waveform of the drive signal of the switching element is shown. (A) is the waveform of the resonance mode (b) is the waveform of the non-resonance mode. 従来の定電流充電の制御テーブルを示す図である。It is a figure which shows the control table of the conventional constant current charge. 実施形態1の制御テーブルを示す図である。It is a figure which shows the control table of Embodiment 1. FIG. 同上の充電時間に対する充電電流の変化を示す図である。It is a figure which shows the change of the charging current with respect to charging time same as the above. 同上の共振モードのデッドタイムを示す図である。It is a figure which shows the dead time of the resonance mode same as the above. 同上の非共振モードのデッドタイムを示す図である。It is a figure which shows the dead time of a nonresonant mode same as the above. 同上の非共振モードのデッドタイム設定の第1の悪い例を示す図である。It is a figure which shows the 1st bad example of the dead time setting of a nonresonant mode same as the above. 同上の非共振モードのデッドタイム設定の第2の悪い例を示す図である。It is a figure which shows the 2nd bad example of the dead time setting of a nonresonant mode same as the above. 本発明の実施形態2の制御テーブルを示す図である。It is a figure which shows the control table of Embodiment 2 of this invention. 同上の非共振モードのデッドタイムを示す図である。It is a figure which shows the dead time of a nonresonant mode same as the above.

符号の説明Explanation of symbols

AC 交流電源
1 整流・平滑回路
2 インバータ部
3 整流部
4 平滑部
5 電池パック
6 制御部
FET1,FET2 スイッチング素子
L1,L2,Le1,Le2 共振用インダクタ
C1,C2 共振用コンデンサ
L3,L4 インダクタ
AC AC power supply 1 Rectification / smoothing circuit 2 Inverter unit 3 Rectification unit 4 Smoothing unit 5 Battery pack 6 Control unit FET1, FET2 Switching element L1, L2, Le1, Le2 Resonance inductor C1, C2 Resonance capacitor L3, L4 Inductor

Claims (6)

第1,第2のスイッチング素子、共振用コンデンサ、共振用インダクタを具備し第1,第2のスイッチング素子を交互にオン・オフすることによって直流入力を高周波出力に変換するプッシュプル共振型インバータ部と、インバータ部のスイッチング素子の動作を制御する制御部とを備えて、インバータ部の出力によって電池を定電流充電あるいは定電圧充電し、
制御部は、スイッチング素子をゼロ電圧スイッチングさせる共振モードと、スイッチング素子をゼロ電圧スイッチングさせない非共振モードとの切換手段を有し、定電圧充電時に充電電流を徐々に低下させて、充電電流が所定値以下になった場合に共振モードから非共振モードに移行させることを特徴とする充電装置。
Push-pull resonance type inverter unit that includes first and second switching elements, a resonance capacitor, and a resonance inductor, and converts a DC input into a high-frequency output by alternately turning on and off the first and second switching elements. And a control unit that controls the operation of the switching element of the inverter unit, and the battery is constant current charged or constant voltage charged by the output of the inverter unit,
The control unit has a switching means between a resonance mode in which the switching element is zero-voltage switched and a non-resonance mode in which the switching element is not zero-voltage switched. The charging current is gradually reduced during constant voltage charging so that the charging current is predetermined. A charging device that shifts from a resonance mode to a non-resonance mode when the value falls below a value.
前記制御部は、前記非共振モードにおいて前記第1,第2のスイッチング素子がともにオフである期間を長くすることを特徴とする請求項1記載の充電装置。 The charging device according to claim 1, wherein the control unit lengthens a period in which both the first and second switching elements are off in the non-resonant mode. 前記制御部は、前記非共振モードにおいて前記第1,第2のスイッチング素子がともにオフである期間を、前記共振用コンデンサと前記共振用インダクタとの共振周期の整数倍にすることを特徴とする請求項2記載の充電装置。 In the non-resonant mode, the control unit sets a period during which both the first and second switching elements are off to an integral multiple of a resonance period of the resonance capacitor and the resonance inductor. The charging device according to claim 2. 前記制御部は、前記第1,第2のスイッチング素子がともにオフである期間が互いに異なる複数の非共振モードを設定し、定電圧充電時の充電電流に応じて、いずれかの非共振モードに切り換えることを特徴とする請求項1乃至3いずれか記載の充電装置。 The control unit sets a plurality of non-resonant modes in which the first and second switching elements are both off, and changes to any non-resonant mode according to a charging current during constant voltage charging. The charging device according to claim 1, wherein the charging device is switched. 前記制御部は、定電圧充電を行なう充電電圧を所定の電圧値に設定したことを特徴とする請求項1乃至4いずれか記載の充電装置。 The charging device according to claim 1, wherein the control unit sets a charging voltage for performing constant voltage charging to a predetermined voltage value. 前記制御部は、充電電流の検出値と基準値とを比較する比較器を備えて、該比較結果に応じて充電電流を制御し、定電圧充電時では、基準電圧を段階的に変化させることで充電電流を段階的に低下させることを特徴とする請求項1乃至5いずれか記載の充電装置。 The control unit includes a comparator that compares a detected value of the charging current with a reference value, controls the charging current according to the comparison result, and changes the reference voltage stepwise during constant voltage charging. The charging device according to claim 1, wherein the charging current is reduced stepwise.
JP2005040713A 2005-02-17 2005-02-17 Charger Active JP4211743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005040713A JP4211743B2 (en) 2005-02-17 2005-02-17 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005040713A JP4211743B2 (en) 2005-02-17 2005-02-17 Charger

Publications (2)

Publication Number Publication Date
JP2006230104A true JP2006230104A (en) 2006-08-31
JP4211743B2 JP4211743B2 (en) 2009-01-21

Family

ID=36990947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005040713A Active JP4211743B2 (en) 2005-02-17 2005-02-17 Charger

Country Status (1)

Country Link
JP (1) JP4211743B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295278A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Power transmitter
JP2011024363A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Power supply system
JP2012196076A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Vehicle charger
CN103107581A (en) * 2011-11-11 2013-05-15 湖南丰日电源电气股份有限公司 Multi-loop pulse charging and discharging machine with good heat dissipation
JP2013526252A (en) * 2010-04-22 2013-06-20 フレクストロニクス エーピー,リミテッド ライアビリティ カンパニー Resonant converter
JP2014128048A (en) * 2012-12-25 2014-07-07 Lequio Power Technology Corp High frequency voltage generation device, and power reception/supply system
WO2017169042A1 (en) * 2016-03-28 2017-10-05 ソニー株式会社 Power supply device, charging device, control method, electronic equipment, and electric vehicle
WO2021210848A1 (en) * 2020-04-17 2021-10-21 엘지전자 주식회사 Protection circuit of resonant converter and opeartion method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295278A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Power transmitter
JP2011024363A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Power supply system
JP2013526252A (en) * 2010-04-22 2013-06-20 フレクストロニクス エーピー,リミテッド ライアビリティ カンパニー Resonant converter
JP2012196076A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Vehicle charger
CN103107581A (en) * 2011-11-11 2013-05-15 湖南丰日电源电气股份有限公司 Multi-loop pulse charging and discharging machine with good heat dissipation
JP2014128048A (en) * 2012-12-25 2014-07-07 Lequio Power Technology Corp High frequency voltage generation device, and power reception/supply system
WO2017169042A1 (en) * 2016-03-28 2017-10-05 ソニー株式会社 Power supply device, charging device, control method, electronic equipment, and electric vehicle
US10571987B2 (en) 2016-03-28 2020-02-25 Sony Corporation Power supply device, charging device, controlling method, electronic equipment, and electrically powered vehicle
WO2021210848A1 (en) * 2020-04-17 2021-10-21 엘지전자 주식회사 Protection circuit of resonant converter and opeartion method thereof

Also Published As

Publication number Publication date
JP4211743B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP6942852B2 (en) Insulated DC / DC converter for wide output voltage range and its control method
JP4211743B2 (en) Charger
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US8988901B2 (en) Switching power supply device
CN100456613C (en) Switching power supply device
JP3531385B2 (en) Power supply
US11901826B2 (en) Isolated DC/DC converters for wide output voltage range and control methods thereof
US8242754B2 (en) Resonant power converter with half bridge and full bridge operations and method for control thereof
US20130301305A1 (en) Llc controller with programmable fractional burst frequency
CN108988643B (en) LLC converter, operation method thereof, controller and power supply
US20110267844A1 (en) Controller for a Resonant Switched-Mode Power Converter
US9142947B2 (en) Switching control circuit and switching power supply apparatus
US9312778B2 (en) Power supply device
US20170358954A1 (en) Converter
TW202203573A (en) Auto-tuned synchronous rectifier controller
KR20180004675A (en) Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof
KR102453825B1 (en) Dc-dc converter
JP6037022B2 (en) Power transmission device, wireless power transmission system, and power transmission discrimination method
US20160049858A1 (en) Lc resonant converter using phase shift switching method
WO2014054787A1 (en) Converter and bi-directional converter
CN108781039B (en) Resonance type power conversion device and abnormality determination method
JP2009027803A (en) Switching power supply
JP2004096812A (en) Switching power supply apparatus
JP4085613B2 (en) Power supply
JPH1132481A (en) Switching regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4211743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5