JP2006220444A - Weather prediction system and its assimilation processing method - Google Patents

Weather prediction system and its assimilation processing method Download PDF

Info

Publication number
JP2006220444A
JP2006220444A JP2005031925A JP2005031925A JP2006220444A JP 2006220444 A JP2006220444 A JP 2006220444A JP 2005031925 A JP2005031925 A JP 2005031925A JP 2005031925 A JP2005031925 A JP 2005031925A JP 2006220444 A JP2006220444 A JP 2006220444A
Authority
JP
Japan
Prior art keywords
assimilation
amount
water vapor
data
rainwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005031925A
Other languages
Japanese (ja)
Other versions
JP4421492B2 (en
Inventor
Fumihiko Mizutani
文彦 水谷
Masakazu Wada
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005031925A priority Critical patent/JP4421492B2/en
Publication of JP2006220444A publication Critical patent/JP2006220444A/en
Application granted granted Critical
Publication of JP4421492B2 publication Critical patent/JP4421492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately correct the assimilation of data on a quantity of rain water in an unobservable region in which radar waves are shielded. <P>SOLUTION: Data on the quantity of rain water of a plurality of strata divided by altitude is acquired from results of radar observation in advance. Data on the quantity of rain water of lower strata is retrieved by the start of assimilation (S31) to determine the presence or absence of rain for every point of observation (S32). When the presence of rain is determined, water vapor assimilation is performed for all the lower strata at the points (S33). When the water vapor assimilation processing is completed or the absence of rain is determined in S32, data on the quantity of rain water of upper strata is retrieved (S34), and the quantity of rain water is compared with a threshold value again to determine the presence or absence of rain (S35). When the presence of rain is determined in S35, water vapor assimilation is performed for points at which water vapor assimilation has never been performed among lower strata at points at which rain has been observed (S36) to return to S34, and data on the quantity of rain water of the next strata is retrieved. When the absence of rain is determined in S35, data assimilation processing is assumed to be completed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気象予測モデルに各種センサ観測データ、気象レーダデータを入力して気象現象をシミュレーションし予測する気象予測システムとその同化処理方法に関する。   The present invention relates to a weather prediction system that inputs various sensor observation data and weather radar data into a weather prediction model and simulates and predicts weather phenomena, and an assimilation processing method thereof.

現在、水平領域500kmの気象予測モデルでは、水平領域が数千kmの広域気象予測モデルの予測データを初期値として計算を実行している。また、気象レーダにおいて観測される雨水量、風速ベクトルをデータ同化して将来の予測計算を行うオプションが付加されている(例えば特許文献1参照)。   Currently, in a weather prediction model with a horizontal region of 500 km, calculation is performed using prediction data of a wide-area weather prediction model with a horizontal region of several thousand km as an initial value. In addition, an option for assimilating data on the amount of rainwater and wind speed vector observed by the weather radar and performing future prediction calculation is added (for example, see Patent Document 1).

ところで、上記気象レーダの雨水量データを気象予測モデルにデータ同化して予測計算の実験を多岐に渡って行った結果、レーダデータ同化期間内での雨水量予測はアメダス(AMeDAS:Automated Meteorological Data Acquisition System地域気象観測システム)雨量データとよい一致をみせることが多い。しかしながら、レーダデータ同化を終了した後にそのまま予測計算を続けると、モデル内で現れていた雨が直ちにやんでしまい、観測との一致が見られなくなる現象が生じている。   By the way, as a result of assimilating the rainwater data of the weather radar into a weather prediction model and conducting a variety of prediction calculation experiments, the rainwater forecast within the radar data assimilation period is AMeDAS (Automated Meteorological Data Acquisition). System regional meteorological observation system) often shows good agreement with rainfall data. However, if the prediction calculation is continued as it is after the radar data assimilation is completed, the rain that appears in the model immediately stops, and a phenomenon in which the coincidence with the observation cannot be seen occurs.

この要因としていくつか考察されるが、「雨水量のみをデータ同化しており、雨を生成する水蒸気をデータ同化していない」ことがデータ同化終了後に直ちに雨が止んでしまう主要因であると考えられる。すなわち、雨水量のみをデータ同化したとしても、雨水は有意な落下速度を持ち、直ちに地表へ落ちてしまうことにより、落下後はモデル内に殆ど影響を及ぼさないと考えられ、その後もモデル内で「雨を降り続かせる」ためには、雨水を作る物質、つまり水蒸気が欠かせないと考えられる。そこで、水蒸気量同化を目的として、「気象レーダによる雨水量データを用いた水蒸気ボーカス」が提案されている(特許文献2参照)。   There are several reasons for this, but it is said that the main factor that stops rain immediately after the data assimilation is completed is that data is only assimilated for the amount of rainwater and not data for water vapor that generates rain. Conceivable. That is, even if only the amount of rainwater is assimilated, it is considered that rainwater has a significant fall speed and immediately falls to the surface of the ground, so that it has almost no effect on the model after the fall. In order to keep raining, it is thought that the substance that makes rainwater, that is, water vapor is indispensable. Therefore, for the purpose of assimilating the amount of water vapor, “a water vapor bocus using rainwater data by a weather radar” has been proposed (see Patent Document 2).

この水蒸気量同化の適用は、気象予測の精度を飛躍的に向上することができる。しかしながら、気象レーダの観測では、低高度で山陰等に入るレーダ電波の遮蔽領域で観測不能となるため、その領域を除いてレーダデータの同化を行っている。このため、同じレーダ覆域内であってもレーダ電波の遮蔽領域での予測演算精度がその周りに比して極端に落ちてしまう。
特開2003−090888号公報 特願2004−217608号
The application of this water vapor assimilation can dramatically improve the accuracy of weather prediction. However, in the observation of weather radar, since it is impossible to observe in the shielded area of the radar radio wave entering the Sanin etc. at low altitude, assimilation of the radar data is performed except for that area. For this reason, even within the same radar coverage, the prediction calculation accuracy in the shielded area of the radar radio wave is extremely reduced as compared with the surrounding area.
JP 2003-090888 A Japanese Patent Application No. 2004-217608

以上述べたように、従来の気象レーダの雨水量データを利用した気象予測モデルによる気象予測システムでは、水蒸気ボーカスの採用によって予測精度を向上させても、レーダ波遮蔽による観測不能領域の影響がモデル内に生じてしまい、地域によって観測精度にムラが生じてしまう。   As described above, in the conventional weather forecasting system based on the weather forecast model using rainwater data of the weather radar, even if the prediction accuracy is improved by adopting the water vapor bocus, the influence of the unobservable area due to the radar wave shielding is a model. And the observation accuracy varies depending on the region.

本発明は上記の問題を解決するためになされたもので、レーダ波が遮蔽される観測不能領域での雨水量データの同化を適切に補正することができ、モデル内全域の予測精度を向上させることのできる気象予測システムとその同化処理方法を提供することを目的とする。   The present invention has been made to solve the above problem, and can appropriately correct assimilation of rainwater data in an unobservable region where radar waves are shielded, thereby improving prediction accuracy in the entire model area. An object of the present invention is to provide a weather forecasting system and an assimilation processing method.

上記問題を解決するために、本発明に係る気象予測システムは、気象レーダで観測された雨水量データを気象予測モデルに同化して当該モデルで得られる予測値を定期的に観測値と比較し、その比較結果を前記モデルに内挿する気象予測システムであって、前記気象レーダを予め高度別に区分された複数の階層で走査して得られる階層別の雨水量データを取得してそれぞれ気象予測モデルに同化し、低階層側で観測されなかった地点の上層で雨水量データの同化が得られた場合には上層での同化を採用する同化手段と、前記同化手段で同化された気象予測モデルで、雨水量が既定値以上存在する地点を判定する判定手段と、前記雨水量が既定値以上存在する地点について水蒸気ボーガスを作成して前記気象予測モデル内に同化することで水蒸気ボーガス同化手段とを具備し、前記水蒸気ボーガス同化手段は、前記雨水量が既定値以上存在する地点についてデータ同化前のモデル内で表現されている水蒸気量と同点の気温と気圧で求められる飽和水蒸気量とを比較しナッシング処理して飽和水蒸気量に近づけることを特徴とする。   In order to solve the above problem, the weather prediction system according to the present invention assimilates the rainwater amount data observed by the weather radar into a weather prediction model, and periodically compares the prediction value obtained by the model with the observation value. A weather prediction system for interpolating the comparison result into the model, wherein the meteorological radar is scanned in a plurality of hierarchies previously classified by altitude to obtain storm water data for each hierarchy to obtain weather forecasts, respectively. Assimilation to the model, when assimilation of rainwater data is obtained in the upper layer of the point that was not observed on the lower hierarchy side, assimilation means adopting assimilation in the upper layer, and weather forecast model assimilated by the assimilation means The determination means for determining a point where the amount of rainwater exceeds a predetermined value, and steam bogus gas for the point where the amount of rainwater exceeds the predetermined value is created and assimilated in the weather prediction model. Bogas assimilation means, and the steam Bogas assimilation means is a saturated steam obtained by the temperature and the atmospheric pressure at the same point as the amount of water vapor represented in the model before data assimilation at a point where the amount of rainwater exceeds a predetermined value. The amount is compared to the amount of saturated water vapor by carrying out a nodding treatment.

また、本発明に係る気象予測システムの同化処理方法は、気象レーダで観測された雨水量データを気象予測モデルに同化して当該モデルで得られる予測値を定期的に観測値と比較し、その比較結果を前記モデルに内挿する気象予測システムに適用され、前記気象レーダを予め高度別に区分された複数の階層で走査して得られる階層別の雨水量データを取得する階層別データ取得ステップと、前記複数の階層それぞれで得られた雨水量データを気象予測モデルに同化する階層別同化ステップと、前記階層別同化ステップの処理結果から低階層側で観測されなかった地点の上層で雨水量データの同化が得られた場合には上層での同化を採用する同化合成ステップと、前記同化合成ステップで同化された気象予測モデルで、雨水量が既定値以上存在する地点を判定する判定ステップと、前記雨水量が既定値以上存在する地点について水蒸気ボーガスを作成して前記気象予測モデル内に同化することで水蒸気ボーガス同化ステップとを具備し、前記水蒸気ボーガス同化ステップは、前記雨水量が既定値以上存在する地点についてデータ同化前のモデル内で表現されている水蒸気量と同点の気温と気圧で求められる飽和水蒸気量とを比較しナッシング処理して飽和水蒸気量に近づけることを特徴とする。   Further, the assimilation processing method of the weather prediction system according to the present invention assimilates the rainwater amount data observed by the weather radar into the weather prediction model, and periodically compares the predicted value obtained by the model with the observed value. A hierarchical data acquisition step that is applied to a weather prediction system that interpolates a comparison result into the model, and that acquires rainwater data by hierarchical level obtained by scanning the weather radar in a plurality of hierarchical levels that have been classified according to altitude in advance. , An associative step by step that assimilates the rainwater data obtained at each of the plurality of hierarchies into a weather prediction model, and an amount of rainwater data at the upper layer of the point that was not observed on the lower level from the processing result of the assimilation by step If an assimilation is obtained, there is an assimilation synthesis step that employs assimilation in the upper layer, and a weather forecast model assimilated in the assimilation synthesis step, and the amount of rainwater exceeds a predetermined value A determination step of determining a point to be detected, and a steam bogus assimilation step by creating and assimilating the steam bogus for the point where the amount of rainwater exceeds a predetermined value in the weather prediction model, the steam bogas assimilation step Compares the water vapor amount expressed in the model before data assimilation with the saturated water vapor amount obtained from the air temperature and the atmospheric pressure at a point where the rainwater amount is greater than or equal to the predetermined value, and performs nosing processing to obtain the saturated water vapor amount. It is characterized by being close.

本発明によれば、レーダ波が遮蔽される領域であっても、上空での雨水量データで補足して同化されるため、雨水量に関して高精度な予測が可能な気象予測システム及びその同化処理方法を提供することができる。   According to the present invention, even in a region where radar waves are shielded, since it is supplemented and assimilated with rainwater amount data in the sky, a weather prediction system capable of highly accurate prediction regarding rainwater amount and assimilation processing thereof A method can be provided.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明が適用される気象予測システムの概略構成を示すブロック図である。図1において、通信処理部11は、通信インターフェース12を通じてネットワークNTに接続され、当該ネットワーク上の例えば気象庁等の気象データサーバDS0から配信される全国規模の気象観測データ(以下GPV(Grid Point Value)データと記す)と、予測対象地域及びその周辺のレーダサイト等のデータサーバDS1,DS2,…から提供される局所的な気象観測データを入手する。この通信処理部11で入手された気象観測データは観測データ格納部13に格納され、気象予測モデル演算部14からの要求に応じて選択的に演算部14に送られる。また、この演算部14で求められた気象予測データは予測データ格納部15に蓄積される。   FIG. 1 is a block diagram showing a schematic configuration of a weather prediction system to which the present invention is applied. In FIG. 1, a communication processing unit 11 is connected to a network NT through a communication interface 12 and is distributed nationwide weather observation data (hereinafter referred to as GPV (Grid Point Value)) from a weather data server DS0 such as the Japan Meteorological Agency on the network. And local weather observation data provided from data servers DS1, DS2,... Such as the prediction target area and surrounding radar sites. The meteorological observation data obtained by the communication processing unit 11 is stored in the observation data storage unit 13 and selectively sent to the calculation unit 14 in response to a request from the weather prediction model calculation unit 14. Further, the weather prediction data obtained by the calculation unit 14 is accumulated in the prediction data storage unit 15.

上記気象予測モデル演算部14は、まず観測データ格納部13からGPVデータを取り込んで初期値とし、気象予測モデルを演算した後、レーダサイト等の局所的な気象観測値を観測値格納部13から取り込んで気象予測モデルの空間格子点に内挿し、データ同化処理を行って予測値の補正を行う。補正後の予測値(予測データ)は予測データ格納部15に格納される。次に、予測データ格納部15から前回の計算された予測データを取り込み、これを初期値として気象予測モデルを演算する。以後、新たなGPVデータが得られるまで、補正後の予測値を初期値として用い、気象予測モデルを更新する。   The weather prediction model calculation unit 14 first takes GPV data from the observation data storage unit 13 as an initial value, calculates a weather prediction model, and then calculates a local weather observation value such as a radar site from the observation value storage unit 13. The data is captured and interpolated into the spatial grid points of the weather forecast model, and data assimilation is performed to correct the predicted value. The corrected predicted value (predicted data) is stored in the predicted data storage unit 15. Next, the previously calculated prediction data is fetched from the prediction data storage unit 15, and a weather prediction model is calculated using this as an initial value. Thereafter, the weather prediction model is updated using the corrected predicted value as an initial value until new GPV data is obtained.

上記気象予測モデル演算部14のデータ同化処理の流れを図2に示す。図2において、まず観測値と予測値を取り込み、品質管理処理を行う(S11)。ここでは、観測値と予測値を比較することにより、品質の悪いデータを同化から除外する。   FIG. 2 shows a flow of data assimilation processing of the weather forecast model calculation unit 14. In FIG. 2, first, an observed value and a predicted value are taken in and quality control processing is performed (S11). Here, poor quality data is excluded from assimilation by comparing observed values with predicted values.

次に、観測値と予測値の統計的な誤差特性をもとに別途計算された内挿重み算出値を用いて、品質管理後の観測値を空間的に気象予測モデルの格子点に内挿する(S12)。このとき、最初のモデル計算では、初期値にGPVデータを用い、次のモデル計算からは補正後の予測データを用いる。   Next, using the calculated interpolation weight value calculated separately based on the statistical error characteristics of the observed value and the predicted value, the observed value after quality control is spatially interpolated into the lattice points of the weather prediction model. (S12). At this time, in the first model calculation, GPV data is used as the initial value, and the corrected prediction data is used in the next model calculation.

内挿重み算出処理後、データ同化処理を行う(S13)。このデータ同化処理は、内挿した結果を数値モデルに時間的に連続して取り込む。予測値とこの内挿した観測値を比較し、予測値を補正する。   After the interpolation weight calculation process, a data assimilation process is performed (S13). In this data assimilation process, the interpolated result is taken into the numerical model continuously in time. The predicted value is compared with the observed observation value, and the predicted value is corrected.

上記システムにおいて、気象レーダの雨水量データをデータ同期して予測計算を行った場合、データ同化期間内での雨水量予測は実際の観測データとほぼ一致した値が得られるが、データ同期を終了した後にそのまま予測計算を続けると、モデル内で現れていた雨が直ちに止んでしまい、観測との一致がみられなくなってしまう。   In the above system, when the rainwater amount data of the weather radar is synchronized with the data, the rainwater amount prediction within the data assimilation period is almost the same as the actual observation data, but the data synchronization is terminated. If the prediction calculation is continued as it is, the rain that appeared in the model stops immediately, and the observation does not match.

この要因としていくつか考察されるが、「雨水量のみをデータ同化しており、雨を生成する水蒸気をデータ同化していない」ことがデータ同化終了後に直ちに雨が止んでしまう主要因であると考えられる。すなわち、雨水量のみをデータ同化したとしても、雨水は有意な落下速度を持ち、直ちに地表へ落ちてしまうことにより、落下後はモデル内に殆ど影響を及ぼさないと考えられ、その後もモデル内で「雨を降り続かせる」ためには、雨水を作る物質、つまり水蒸気が欠かせないと考えられる。   There are several reasons for this, but it is said that the main factor that stops rain immediately after the data assimilation is completed is that data is only assimilated for the amount of rainwater and not data for water vapor that generates rain. Conceivable. That is, even if only the amount of rainwater is assimilated, it is considered that rainwater has a significant fall speed and immediately falls to the surface of the ground, so that it has almost no effect on the model after the fall. In order to keep raining, it is thought that the substance that makes rainwater, that is, water vapor is indispensable.

そこで、水蒸気量同化を目的として様々な試みを行ったが、水蒸気の生の観測データを手に入れてモデルにデータ同化することは問題が多い。特に、GPS(Global Positioning System:衛星測位システム)衛星等による水蒸気データの同化手法は、データ蓄積を行っているが、実運用のためのルーチンデータを入手できないため、現状では非常に難しい。そこで、本発明者らは、先に述べた特許文献2で「気象レーダデータを用いた水蒸気ボーカス」を提案している。この「水蒸気ボーカス」とは、レーダデータから水蒸気量を推定し、モデル内にデータ同化することを意味する。以下、図3に水蒸気ボーカスを用いた水蒸気量データ同化処理のフローチャートを示してその処理内容を説明する。   Therefore, various attempts have been made to assimilate the amount of water vapor, but there are many problems in obtaining the raw observation data of water vapor and assimilating it into a model. In particular, the water vapor data assimilation method using a GPS (Global Positioning System) satellite or the like is accumulating data. However, since routine data for actual operation cannot be obtained, it is very difficult at present. In view of this, the present inventors have proposed “a water vapor bocus using meteorological radar data” in Patent Document 2 described above. This “water vapor bocus” means that the water vapor amount is estimated from the radar data and the data is assimilated into the model. Hereinafter, FIG. 3 shows a flow chart of water vapor amount data assimilation processing using a water vapor bocus, and the processing content will be described.

まず、気象レーダにおける雨水量のデータ同化を行うことで、同化される雨水量を算出する(S21)。雨水量データの同化を行った後、水蒸気量の推定計算を行う(S22)。この「水蒸気量の推定計算」は、モデル計算領域内のある定義点の周囲に同化された雨水量が既定値以上存在すれば、その点では周囲の雨水を生成した水蒸気が飽和水蒸気量を上限として豊富に存在するという考えを基本とする。   First, assimilation of rainwater data in the weather radar is performed to calculate the amount of rainwater to be assimilated (S21). After assimilation of the rain water amount data, the water vapor amount is estimated (S22). This “estimation calculation of water vapor amount” is based on the assumption that the amount of rainwater assimilated around a defined point in the model calculation area exceeds a predetermined value, and at that point, the water vapor that generated the surrounding rain water limits the saturated water vapor amount to the upper limit. Based on the idea that it exists abundantly.

水蒸気量の推定計算の結果、周囲にレーダ同化された雨水が存在するか否かを判定する(S23)。この判定で、存在しない場合にはそのまま雨水量データ同化処理を終了する。存在すると判定された場合には、水蒸気ボーガスを作成してモデル内にデータ同化する(S24)。   As a result of the estimation calculation of the water vapor amount, it is determined whether or not there is rainwater assimilated by the radar in the vicinity (S23). If the determination does not exist, the rainwater volume data assimilation process is terminated. If it is determined that it exists, a steam bogus is created and assimilated in the model (S24).

具体的には、その定義点においてデータ同化前のモデル内で表現されている水蒸気量と同点の気温と気圧で求められる飽和水蒸気量とを比較し、以下の式を用いてナッシングすることで飽和水蒸気量に近づける、つまり雲水や雨水を生成しやすくする推定方法をとる。   Specifically, at the definition point, the amount of water vapor expressed in the model before data assimilation is compared with the saturated water vapor amount obtained from the air temperature and atmospheric pressure at the same point, and saturation is achieved by using the following formula to perform nothing. An estimation method is adopted that approaches the amount of water vapor, that is, facilitates the generation of cloud water and rainwater.

qvassim = qvmod * (1-alpha) + qvsat * alpha
qvassim:同化後の水蒸気量(未知量)
qvmod :同化前の(モデルで計算される)水蒸気量(既知量)
qvsat :定義点の飽和水蒸気量(既知量)
alpha :重み付けパラメータ(0<alpha<1)
但し、上記の方法では、以下の3点をパラメータ実験によって予め決定する必要がある。
・水蒸気量同化を行う際に周囲のレーダ同化された雨水の検索範囲
・検索する雨水量のしきい値
・水蒸気量同化の際の「重み付けパラメータ」
上記の処理を実行することにより、レーダデータ同化された雨水は直ちに落下してモデル領域内に影響を残さないが、空中に漂う水蒸気をモデル領域に残すことができる。雨が降っている地点は周囲も含めて擾乱が激しく、水蒸気量を同化させることにより、その水蒸気が凝結し、雲や雨を生成することが期待される。これにより、モデル内で「雨を降り続かせる」ことが可能になると考えられる。
qvassim = qvmod * (1-alpha) + qvsat * alpha
qvassim: amount of water vapor after assimilation (unknown amount)
qvmod: Water vapor volume (calculated by model) before assimilation (known volume)
qvsat: Saturated water vapor at the defined point (known amount)
alpha: Weighting parameter (0 <alpha <1)
However, in the above method, the following three points need to be determined in advance by a parameter experiment.
・ Search range of rainwater assimilated by surrounding radar when performing water vapor assimilation
・ Rainwater threshold to search
・ "Weighting parameters" for water vapor assimilation
By executing the above processing, the rainwater assimilated with the radar data immediately falls and does not leave an influence in the model area, but can leave water vapor drifting in the air in the model area. The place where it is raining is turbulent, including the surroundings, and by assimilating the amount of water vapor, it is expected that the water vapor will condense and generate clouds and rain. This would make it possible to “continue rain” in the model.

したがって、上記構成による気象予測システムでは、雨水量のレーダデータ同化を終了した後に予測計算を継続しても、モデル内での降雨状況を模擬し続けることができ、これによって雨水量に関して高精度な予測が可能となる。   Therefore, in the weather forecasting system having the above configuration, even if the prediction calculation is continued after the assimilation of the rainwater amount radar data is completed, it is possible to continue to simulate the rainfall situation in the model. Prediction becomes possible.

上記構成による気象予測システムでは、レーダにより雨量が観測された=その場には水蒸気が豊富に存在する、と推定し、雨量データのほかに水蒸気データも補正する方式を採用している。この結果、データ同化終了後の補正有効期間が数時間程度まで延び、予測精度が改善された。しかし、レーダ観測範囲にも関わらず、図4に示すように、気象レーダAの電波発射方向に対して山B1,B2の後ろ側に存在する領域は電波が遮蔽されてしまい、レーダ観測では雨域を捉えられない。このため、従来のレーダ同化技術では、レーダ観測可能な領域のみ同化による補正を行っていた。   In the weather prediction system having the above-described configuration, it is estimated that the rainfall is observed by the radar = the water vapor is abundant on the spot, and the method of correcting the water vapor data in addition to the rainfall data is adopted. As a result, the effective correction period after completion of data assimilation has been extended to several hours, and the prediction accuracy has been improved. However, in spite of the radar observation range, as shown in FIG. 4, the radio wave is shielded in the area existing behind mountains B1 and B2 with respect to the direction of radio wave emission of weather radar A. Can't catch the area. For this reason, in the conventional radar assimilation technique, correction is performed by assimilation only in an area where radar observation is possible.

ところが、図4に示すように、レーダ観測が不能な領域であっても、その上層に雨が存在する場合は、その下層の同化不可の領域も雨であると推定することができるので、上層の雨水量で同化による補正を行えば、下層の観測不可による部分的な精度劣化を抑制可能となる。   However, as shown in FIG. 4, even if it is an area where radar observation is impossible, if there is rain in the upper layer, it can be estimated that the lower non-assimilable area is also rainy. If the correction by assimilation is performed with the amount of rainwater, it is possible to suppress partial accuracy degradation due to the inability to observe the lower layer.

本発明はこの点に着目し、遮蔽の問題を解決するには、そのさらに上空に雨滴が存在する場合、下層にも水蒸気・雨が存在すると仮定し、下層にも水蒸気量をナッジング方式により与える方法を提案するものである。   The present invention pays attention to this point, and in order to solve the shielding problem, when raindrops exist further above, it is assumed that water vapor / rain also exists in the lower layer, and the water vapor amount is given to the lower layer by a nudge method. A method is proposed.

以下、図5を参照して本発明による処理の流れを説明する。   The processing flow according to the present invention will be described below with reference to FIG.

まず、データ同化開始に際して、図1に示したレーダサイトサーバDS1,DS2から、気象レーダを予め高度別に区分された複数の階層で走査して得られる階層別の雨水量データ(空間三次元データ)を取得し、観測データ格納部13に格納しておく。その階層数は、レーダ複数の山岳部の高度に基づいて適宜選定する。ここでは説明を簡単にするため3階層を想定する。   First, at the start of data assimilation, the rain water quantity data (spatial three-dimensional data) obtained by scanning the weather radars in a plurality of hierarchies classified in advance by altitude from the radar site servers DS1 and DS2 shown in FIG. Is stored in the observation data storage unit 13. The number of hierarchies is appropriately selected based on the altitudes of the mountain parts of the radar. Here, three layers are assumed for the sake of simplicity.

同化開始が指示されると、まず下層の走査で得られた雨水量データを取り込んで(ステップS31)、観測地点毎に雨水量を閾値と比較して雨があるか判定し(ステップS32)、雨があると判定された場合には、その地点の下層全てについて図3に示した水蒸気同化を行う(ステップS33)。   When the start of assimilation is instructed, first, the rainwater amount data obtained in the lower layer scan is fetched (step S31), and the rainwater amount is compared with a threshold value for each observation point to determine whether there is rain (step S32). If it is determined that there is rain, the water vapor assimilation shown in FIG. 3 is performed for all lower layers at that point (step S33).

ステップS33の水蒸気同化処理が完了した場合、またはステップS32で雨はないと判定された場合には、上層の雨水量データを取り込んで(ステップS34)、再度、雨水量を閾値と比較して雨があるか判定する(ステップS35)。このステップS35で雨があると判定された場合には、雨が観測された地点の下層のうち、水蒸気同化を一度も行っていない地点に対して水蒸気同化を行った後(ステップS36)、ステップS34に戻り、次の階層の雨水量データを取り込む。また、ステップS35で雨はないと判定された場合には、データ同化処理は完了したものとする。   If the water vapor assimilation process in step S33 is completed, or if it is determined that there is no rain in step S32, the rainwater volume data of the upper layer is taken in (step S34), and the rainwater volume is compared with the threshold value again. It is determined whether there is any (step S35). If it is determined in step S35 that there is rain, after performing water vapor assimilation on a point below the point where rain has been observed, where water vapor assimilation has never been performed (step S36), step Returning to S34, the rainwater amount data of the next hierarchy is taken in. If it is determined in step S35 that there is no rain, the data assimilation process is completed.

上記の処理によれば、低層側から順に雨水量データから雨のある地点を判別して水蒸気同化を行い、雨がない地点ではその上層の雨水量データから雨の有無を判別して水蒸気同化を行うようにしているので、各地点ではレーダ電波の遮蔽域か否かにかかわらず、上層に雨があれば水蒸気同化が行われる。このように、遮蔽により見えなかった雨滴を仮想的に与えたことにより、気象モデル内に雨滴や水蒸気を与えることができ、データ同化による予測の補正ができ、予測精度の向上が期待できる。   According to the above process, water vapor assimilation is determined from rainwater volume data in order from the lower layer side, and water vapor assimilation is determined from rainwater volume data of the upper layer at a point where there is no rain. Therefore, water vapor assimilation is performed if there is rain in the upper layer, regardless of whether or not the radar radio wave is shielded at each point. Thus, by virtually providing raindrops that could not be seen due to shielding, raindrops and water vapor can be given in the weather model, prediction of data can be corrected by data assimilation, and improvement in prediction accuracy can be expected.

尚、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明が適用される気象予測システムの概略構成を示すブロック図。1 is a block diagram showing a schematic configuration of a weather prediction system to which the present invention is applied. 図1のシステムの気象予測モデル演算部のデータ同化処理の流れを説明するためのフローチャート。The flowchart for demonstrating the flow of the data assimilation process of the weather prediction model calculating part of the system of FIG. 図1のシステムに適用される、水蒸気量のデータ同化処理過程を説明するためのフローチャート。The flowchart for demonstrating the data assimilation process of the water vapor | steam amount applied to the system of FIG. 図1のシステムで、レーダ電波が山によって遮蔽されて観測不可領域ができる様子を示す図。The figure which shows a mode that a radar radio wave is shielded by the mountain in the system of FIG. 1, and an unobservable area | region is made. 図1のシステムに本発明に係る階層別同化処理を適用した場合の処理手順を示すフローチャート。The flowchart which shows the process sequence at the time of applying the hierarchical assimilation process which concerns on this invention to the system of FIG.

符号の説明Explanation of symbols

11…通信処理部、
12…通信インターフェース、
13…観測データ格納部、
14…気象予測モデル演算部、
15…予測データ格納部、
NT…ネットワーク、
DS0…気象データサーバ、
DS1,DS2…レーダサイトデータサーバ。
11: Communication processing unit,
12 ... Communication interface,
13: Observation data storage unit,
14 ... Weather forecast model calculation unit,
15 ... prediction data storage unit,
NT ... Network,
DS0 ... Weather data server,
DS1, DS2 ... Radar site data server.

Claims (6)

気象レーダで観測された雨水量データを気象予測モデルに同化して当該モデルで得られる予測値を定期的に観測値と比較し、その比較結果を前記モデルに内挿する気象予測システムであって、
前記気象レーダを予め高度別に区分された複数の階層で走査して得られる階層別の雨水量データを取得してそれぞれ気象予測モデルに同化し、低階層側で観測されなかった地点の上層で雨水量データの同化が得られた場合には上層での同化を採用する同化手段と、
前記同化手段で同化された気象予測モデルで、雨水量が既定値以上存在する地点を判定する判定手段と、
前記雨水量が既定値以上存在する地点について水蒸気ボーガスを作成して前記気象予測モデル内に同化することで水蒸気ボーガス同化手段とを具備し、
前記水蒸気ボーガス同化手段は、前記雨水量が既定値以上存在する地点についてデータ同化前のモデル内で表現されている水蒸気量と同点の気温と気圧で求められる飽和水蒸気量とを比較しナッシング処理して飽和水蒸気量に近づけることを特徴とする気象予測システム。
A weather prediction system that assimilates rainwater data observed by a weather radar into a weather prediction model, periodically compares the prediction value obtained by the model with the observation value, and interpolates the comparison result into the model. ,
The rain radar data obtained by scanning the meteorological radar in a plurality of hierarchies that have been classified according to altitude in advance is obtained and assimilated into a weather prediction model. An assimilation means that employs assimilation in the upper layer when the assimilation of quantity data is obtained,
In the weather forecast model assimilated by the assimilation means, a determination means for determining a point where the amount of rainwater exceeds a predetermined value;
Steam vapor bogas assimilation means by creating a steam bogus for the point where the amount of rainwater is present above a predetermined value and assimilating in the weather prediction model,
The steam bogas assimilation means compares the water vapor amount expressed in the model before data assimilation with the saturated water vapor amount obtained from the air pressure and the atmospheric pressure at a point where the rainwater amount is greater than or equal to a predetermined value, and performs a nothing processing. A weather forecasting system that is close to saturated water vapor.
前記ナッシング処理は、
qvassim = qvmod * (1-alpha) + qvsat * alpha
qvassim:同化後の水蒸気量(未知量)
qvmod :同化前の(モデルで計算される)水蒸気量(既知量)
qvsat :定義点の飽和水蒸気量(既知量)
alpha :重み付けパラメータ(0<alpha<1)
により同化後の水蒸気量をqvassim を求めることを特徴とする請求項1記載の気象予測システム。
The nothing processing
qvassim = qvmod * (1-alpha) + qvsat * alpha
qvassim: amount of water vapor after assimilation (unknown amount)
qvmod: Water vapor volume (calculated by model) before assimilation (known volume)
qvsat: Saturated water vapor at the defined point (known amount)
alpha: Weighting parameter (0 <alpha <1)
The meteorological prediction system according to claim 1, wherein qvassim is obtained from the amount of water vapor after assimilation.
前記ナッシング処理を実行するために、水蒸気量同化を行う際にレーダ同化された雨水の検索範囲、検索する雨水量のしきい値、水蒸気量同化の際の重み付けパラメータを予め決定しておくことを特徴とする請求項2記載の気象予測システム。   In order to execute the nosing process, the search range of rainwater assimilated by radar when performing water vapor amount assimilation, the threshold value of the rain water amount to be searched, and the weighting parameters for water vapor amount assimilation are determined in advance. The weather prediction system according to claim 2, wherein the system is a weather prediction system. 気象レーダで観測された雨水量データを気象予測モデルに同化して当該モデルで得られる予測値を定期的に観測値と比較し、その比較結果を前記モデルに内挿する気象予測システムに適用され、
前記気象レーダを予め高度別に区分された複数の階層で走査して得られる階層別の雨水量データを取得する階層別データ取得ステップと、
前記複数の階層それぞれで得られた雨水量データを気象予測モデルに同化する階層別同化ステップと、
前記階層別同化ステップの処理結果から低階層側で観測されなかった地点の上層で雨水量データの同化が得られた場合には上層での同化を採用する同化合成ステップと、
前記同化合成ステップで同化された気象予測モデルで、雨水量が既定値以上存在する地点を判定する判定ステップと、
前記雨水量が既定値以上存在する地点について水蒸気ボーガスを作成して前記気象予測モデル内に同化することで水蒸気ボーガス同化ステップとを具備し、
前記水蒸気ボーガス同化ステップは、前記雨水量が既定値以上存在する地点についてデータ同化前のモデル内で表現されている水蒸気量と同点の気温と気圧で求められる飽和水蒸気量とを比較しナッシング処理して飽和水蒸気量に近づけることを特徴とする気象予測システムの同化処理方法。
It is applied to a weather prediction system that assimilates rainwater data observed by a weather radar into a weather prediction model, periodically compares the prediction values obtained by the model with observation values, and interpolates the comparison results into the model. ,
Hierarchical data acquisition step for acquiring rainwater data by hierarchy obtained by scanning the weather radar in a plurality of hierarchies previously classified by altitude,
An assimilation step by layer for assimilating the rainwater data obtained in each of the plurality of layers into a weather prediction model;
If the assimilation of rainwater data is obtained in the upper layer of the point that was not observed on the lower hierarchy side from the processing result of the assimilation step by hierarchy, an assimilation synthesis step adopting assimilation in the upper layer,
In the weather prediction model assimilated in the assimilation synthesis step, a determination step for determining a point where the amount of rainwater is equal to or greater than a predetermined value;
A steam bogus assimilation step by creating a steam bogus for a point where the amount of rainwater exists above a predetermined value and assimilating it in the weather forecast model,
In the steam bogas assimilation step, the water vapor amount expressed in the model before data assimilation is compared with the saturated water vapor amount obtained from the air temperature and the atmospheric pressure at a point where the rainwater amount is greater than or equal to a predetermined value, and a nosing process is performed. An assimilation method for a weather forecasting system, characterized in that it approaches the saturated water vapor amount.
前記ナッシング処理は、
qvassim = qvmod * (1-alpha) + qvsat * alpha
qvassim:同化後の水蒸気量(未知量)
qvmod :同化前の(モデルで計算される)水蒸気量(既知量)
qvsat :定義点の飽和水蒸気量(既知量)
alpha :重み付けパラメータ(0<alpha<1)
により同化後の水蒸気量をqvassim を求めることを特徴とする請求項4記載の気象予測システムの同化処理方法。
The nothing processing
qvassim = qvmod * (1-alpha) + qvsat * alpha
qvassim: amount of water vapor after assimilation (unknown amount)
qvmod: Water vapor volume (calculated by model) before assimilation (known volume)
qvsat: Saturated water vapor at the defined point (known amount)
alpha: Weighting parameter (0 <alpha <1)
5. The assimilation method for a weather forecasting system according to claim 4, wherein qvassim is obtained from the amount of water vapor after assimilation.
前記ナッシング処理を実行するために、水蒸気量同化を行う際に周囲のレーダ同化された雨水の検索範囲、検索する雨水量のしきい値、水蒸気量同化の際の重み付けパラメータを予め決定しておくことを特徴とする請求項5記載の気象予測システムの同化処理方法。   In order to execute the nosing process, when searching for water vapor amount assimilation, the search range of rainwater assimilated by the surrounding radar, the threshold value of the rainwater amount to be searched, and the weighting parameter for water vapor amount assimilation are determined in advance. The assimilation method for a weather prediction system according to claim 5.
JP2005031925A 2005-02-08 2005-02-08 Weather prediction system and assimilation method Expired - Fee Related JP4421492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031925A JP4421492B2 (en) 2005-02-08 2005-02-08 Weather prediction system and assimilation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031925A JP4421492B2 (en) 2005-02-08 2005-02-08 Weather prediction system and assimilation method

Publications (2)

Publication Number Publication Date
JP2006220444A true JP2006220444A (en) 2006-08-24
JP4421492B2 JP4421492B2 (en) 2010-02-24

Family

ID=36982877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031925A Expired - Fee Related JP4421492B2 (en) 2005-02-08 2005-02-08 Weather prediction system and assimilation method

Country Status (1)

Country Link
JP (1) JP4421492B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060443A (en) * 2008-09-04 2010-03-18 Japan Weather Association Weather forecast device, method, and program
WO2016125399A1 (en) * 2015-02-02 2016-08-11 古野電気株式会社 Detection device and detection method
JP2018194497A (en) * 2017-05-19 2018-12-06 国立研究開発法人海洋研究開発機構 Weather forecasting system, weather forecasting method, and weather forecasting program
CN113358825A (en) * 2021-06-02 2021-09-07 重庆大学 Indoor air quality detector with assimilation algorithm
CN113378443A (en) * 2021-08-12 2021-09-10 中国地质大学(武汉) Ground wave radar data fusion assimilation method and computer equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783134B (en) * 2016-08-31 2020-01-10 中国科学院遥感与数字地球研究所 Mars atmosphere water vapor content inversion method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060443A (en) * 2008-09-04 2010-03-18 Japan Weather Association Weather forecast device, method, and program
WO2016125399A1 (en) * 2015-02-02 2016-08-11 古野電気株式会社 Detection device and detection method
JPWO2016125399A1 (en) * 2015-02-02 2017-11-24 古野電気株式会社 Detection device and detection method
US10620311B2 (en) 2015-02-02 2020-04-14 Furuno Electric Co., Ltd. Detection apparatus and detecting method
JP2018194497A (en) * 2017-05-19 2018-12-06 国立研究開発法人海洋研究開発機構 Weather forecasting system, weather forecasting method, and weather forecasting program
CN113358825A (en) * 2021-06-02 2021-09-07 重庆大学 Indoor air quality detector with assimilation algorithm
CN113378443A (en) * 2021-08-12 2021-09-10 中国地质大学(武汉) Ground wave radar data fusion assimilation method and computer equipment
CN113378443B (en) * 2021-08-12 2021-11-05 中国地质大学(武汉) Ground wave radar data fusion assimilation method and computer equipment

Also Published As

Publication number Publication date
JP4421492B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
Nipen et al. Adopting citizen observations in operational weather prediction
Jones et al. Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments
Jones et al. High-quality spatial climate data-sets for Australia
Doubrawa et al. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas
JP4421492B2 (en) Weather prediction system and assimilation method
JP2010060443A (en) Weather forecast device, method, and program
JP5394690B2 (en) Wind prediction apparatus and program
Yang et al. A case study on the impact of ensemble data assimilation with GNSS-zenith total delay and radar data on heavy rainfall prediction
Sieglaff et al. A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection
CN112379345A (en) Radar short-term and temporary extrapolation forecasting method integrating numerical mode
Gao et al. An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data
Chang et al. Radar data assimilation in the Canadian high-resolution ensemble Kalman filter system: Performance and verification with real summer cases
JP6034361B2 (en) Weather prediction device and weather prediction method
Zhang et al. Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas
Huang et al. Integrating NWP forecasts and observation data to improve nowcasting accuracy
Shean et al. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica
CN113009490A (en) Radar three-dimensional wind field inversion method based on high-resolution mode dynamic constraint
Tian et al. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts
Goormans et al. Using local weather radar data for sewer system modeling: case study in Flanders, Belgium
JP3851641B2 (en) Rainfall prediction method and rainfall prediction program
Bi et al. Simultaneous estimation of soil moisture and hydraulic parameters using residual resampling particle filter
Xu et al. A validation of passive microwave rain-rate retrievals from the Chinese FengYun-3B satellite
JP4371934B2 (en) Weather prediction system and weather prediction method
Folmer et al. Satellite tools to monitor and predict Hurricane Sandy (2012): Current and emerging products
JP4439440B2 (en) Weather prediction system and weather prediction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4421492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees