JP2006207475A - Straight blade type windmill and straight blade for windmill - Google Patents

Straight blade type windmill and straight blade for windmill Download PDF

Info

Publication number
JP2006207475A
JP2006207475A JP2005020642A JP2005020642A JP2006207475A JP 2006207475 A JP2006207475 A JP 2006207475A JP 2005020642 A JP2005020642 A JP 2005020642A JP 2005020642 A JP2005020642 A JP 2005020642A JP 2006207475 A JP2006207475 A JP 2006207475A
Authority
JP
Japan
Prior art keywords
blade
straight
support
wing
straight blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020642A
Other languages
Japanese (ja)
Inventor
Akira Kawahara
晃 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshimoto Pole Co Ltd
Original Assignee
Yoshimoto Pole Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshimoto Pole Co Ltd filed Critical Yoshimoto Pole Co Ltd
Priority to JP2005020642A priority Critical patent/JP2006207475A/en
Publication of JP2006207475A publication Critical patent/JP2006207475A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To improve wind power energy conversion efficiency of a windmill by constructing a highly rigid straight blade having ideal cross section shape without being formed as one unit in a straight blade type windmill constructed by arranging a plurality of straight blades around the rotary shaft. <P>SOLUTION: The straight blade is constructed by providing a ring part on a support blade tip, fitting the straight blade in the ring part and fixing an outer circumference of the straight blades on the ring part as one unit. The support blade is horizontally supported by making the end part of the support blade overlap a joint piece horizontally projecting from the rotary shaft, and an edge part joining to a support blade end part of the joint piece is provided in a shape bent in a chevron shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、風力発電装置などに用いられる垂直軸風車の直線翼の構造に関するものである。   The present invention relates to the structure of a straight blade of a vertical axis wind turbine used in a wind power generator or the like.

直線翼型風車として、図5に示されるように、鉛直に配した回転軸51から放射状に複数本の支持翼52を水平に張り出し、各支持翼52の先端に飛行機の翼と同じような断面を持つ直線翼53を回転軸51と平行に鉛直に向けて取り付けた構成のものがある(例えば特許文献1、2参照)。
この風車は、風向きに関係なく中・高風域で高い回転効率を発揮する特長を備え、直線翼53の形状がいわゆるTWT(直線翼垂直軸風車用翼型)形であれば、回転時の空気抵抗が減り、より良好な回転効率が得られることが知られている。
As shown in FIG. 5, as a straight wing type windmill, a plurality of support wings 52 are horizontally projected from a vertically arranged rotating shaft 51, and a cross section similar to that of an airplane wing is provided at the tip of each support wing 52. There is a configuration in which a straight blade 53 having a vertical axis is attached in parallel with the rotation shaft 51 (see, for example, Patent Documents 1 and 2).
This windmill has the feature of exhibiting high rotational efficiency in the middle and high wind regions regardless of the wind direction. If the shape of the straight blade 53 is a so-called TWT (straight blade vertical axis wind turbine blade type) shape, It is known that air resistance is reduced and better rotational efficiency can be obtained.

特公昭56−42751号公報Japanese Examined Patent Publication No. 56-42751 特開2003−206848号公報JP 2003-206848 A

前記構成の風車は、強風時に高速回転するために翼に大きな負荷がかかることから、直線翼53や支持翼52、これらの接合部分には、翼に働く空気力と遠心力によって生じる曲げモーメントに耐え得るに十分な曲げ強度を与える必要がある。そのため、直線翼53はその中空内部に、図6に示されるような補強リブ53aを多数突設して剛性を高め、また、両翼の接合部分や支持翼52と回転軸51の接合部分はフランジ部を介してボルトやビスで組み付け、曲げ強度を高めている。   Since the wind turbine having the above-described configuration is rotated at a high speed in a strong wind, a large load is applied to the blades. Therefore, the linear blade 53 and the support blade 52 and the joint portion thereof are subjected to a bending moment generated by aerodynamic force and centrifugal force acting on the blade. It is necessary to give sufficient bending strength to withstand. Therefore, the straight blade 53 is provided with a number of reinforcing ribs 53a as shown in FIG. 6 in the hollow to enhance rigidity, and the joint portion between both blades and the joint portion between the support blade 52 and the rotary shaft 51 are flanged. Bending strength is increased by assembling with bolts and screws through the part.

直線翼の製作は、長さが1.5m以下の小型のものはCFRPなどを用いて一体成形により、それよりも大きなものではアルミ押し出し鋼板を継ぎ合わせて翼形に一体化することにより行われることが多く、インジェクション成形が可能な小型の直線翼は理想的な断面形状で且つ所望の強度に形成することが可能であり、量産も可能である。しかし、1.5m以上の長さの中型、大型の直線翼では、湾曲した鋼板同士の継ぎ合わせを手作業で行うため製作に手間がかかってコスト高になるとともに、所定の剛性を確保して翼の断面形状に形成すること自体が難しく、前記の如く強風に耐え得る強度を確保する要請と相俟って、本来要求される翼の理想的な断面形状に形成することができず、TWT形の直線翼は利用されていないのが実状である。そのため、中型、大型の風車における風力エネルギーの変換効率は決して良好なものではない。   The straight blades are manufactured by integral molding using CFRP or the like for small ones with a length of 1.5 m or less, and by joining aluminum extruded steel sheets and integrating them into the airfoil for larger ones. In many cases, a small straight blade capable of injection molding can be formed with an ideal cross-sectional shape and a desired strength, and mass production is also possible. However, medium and large straight wings with a length of 1.5m or more are joined manually by bending the curved steel plates, making it difficult to manufacture and increasing the cost. It is difficult to form the wing in cross-sectional shape itself, and in combination with the request to ensure the strength that can withstand strong winds as described above, it is impossible to form the ideal cross-sectional shape of the wing. Actually, the shape of straight wing is not used. Therefore, the conversion efficiency of wind energy in medium-sized and large-sized windmills is never good.

また、直線翼と支持翼、支持翼と回転軸のそれぞれの接合強度を高めるために接合面積を大きくすると、接合部分が大型化・重量化して回転時の空気抵抗が増し、起動性が悪化して効率も低下する。そのため、図7に示されるように、直線翼53の内側外面に補強ロッドの接続部53aを設けておき、当該接続部と支持翼52の根元部分の間に補強ロッド54を複数本張設することにより、直線翼53と支持翼52の接合部分にかかる負荷を分散して強風に耐え得る曲げ強度を確保するなどしていた。   In addition, if the joint area is increased to increase the joint strength between the straight blade and the support blade, and the support blade and the rotating shaft, the joint portion becomes larger and heavier, resulting in increased air resistance during rotation and poor startability. Efficiency also decreases. Therefore, as shown in FIG. 7, a reinforcing rod connecting portion 53 a is provided on the inner outer surface of the straight blade 53, and a plurality of reinforcing rods 54 are stretched between the connecting portion and the root portion of the supporting blade 52. As a result, the load applied to the joint portion between the straight blade 53 and the support blade 52 is dispersed to ensure a bending strength that can withstand strong winds.

前記特許文献2では、風車の組み付け作業上及び強度上の問題点に対し、直線翼と支持翼をグラスファイバーやカーボンファイバーなどの軽量且つ高強度の繊維材を用いて一体に成形することを開示しているが、中型、大型用の直線翼は成形型で一体に成形することはできない。寸法の大きな直線翼では、その成形工程や、これを風車に組み付ける工程は手作業で行なわなければならない。   Patent Document 2 discloses that a straight blade and a support blade are integrally formed using a lightweight and high-strength fiber material such as glass fiber or carbon fiber in order to solve the problem of windmill assembly work and strength. However, the medium-sized and large-sized straight blades cannot be integrally formed with a forming die. For straight wings with large dimensions, the molding process and the process of assembling it on the wind turbine must be performed manually.

本発明は、回転軸の周りに複数枚の直線翼を配して構成される直線翼型風車において、一体成形によらずに理想的な断面形状を持つ高剛性の直線翼を構成し、風車の風力エネルギー変換効率の向上を図ることを課題とする。   The present invention relates to a straight blade type wind turbine configured by arranging a plurality of straight blades around a rotating shaft, and constitutes a high-rigidity straight blade having an ideal cross-sectional shape without being integrally formed. The objective is to improve wind energy conversion efficiency.

先に述べた通り、従来の直線翼は、その中空内部に補強リブを一体に設け、翼の内側から補強する構造のものであった。このような内部から補強した翼を理想的な断面形状に手作業で形作ることは容易ではなく、このことが風車の量産性を阻害すること、理想的な風力エネルギーの変換効率が得られないことの要因でもあった。このような問題点に鑑み、本発明は、翼の剛性を確保するために翼を内部から補強するという従来の考え方を見直し、外部から補強したとしても、それで翼の断面形状を理想的なものとなり、それによって風力エネルギーの変換効率の改善が図られ、翼の製作コストも低減するのではないかとの着想の下に鋭意研究を重ねた結果想到し、前記課題解決の実現を達成したものである。   As described above, the conventional straight wing has a structure in which reinforcing ribs are integrally provided in the hollow interior and the wing is reinforced from the inside of the wing. It is not easy to manually form wings reinforced from the inside into an ideal cross-sectional shape. This impedes the mass productivity of wind turbines and does not provide ideal wind energy conversion efficiency. It was also a factor. In view of such problems, the present invention has reviewed the conventional idea of reinforcing the wing from the inside in order to ensure the rigidity of the wing, and even if it is reinforced from the outside, the cross-sectional shape of the wing is ideal. As a result of intensive research under the idea that wind energy conversion efficiency will be improved and wing production costs will be reduced, the solution to the above problems has been achieved. is there.

すなわち、本発明は、回転軸の周面から張り出した支持翼で直線翼を支持してなる直線翼型風車において、支持翼先端にリング部を設け、このリング部内に直線翼を嵌め入れ、直線翼外周をリング部に一体に固定した構成を有することを特徴とする。   That is, the present invention provides a linear blade-type wind turbine in which a straight blade is supported by a support blade projecting from the peripheral surface of a rotating shaft, and a ring portion is provided at the tip of the support blade, and the straight blade is fitted into the ring portion. It has the structure which fixed the wing | blade outer periphery to the ring part integrally.

前記構成の風車において、回転軸から水平に突出した継ぎ片に支持翼の端部を重ね合わせ一体に固定して支持翼を水平に支持する構成を有するとともに、前記継ぎ片の支持翼端部に接合する縁部を山形に湾曲した形状に設けることが好ましい。   The wind turbine having the above-described configuration has a configuration in which the support blade is horizontally supported by overlapping and fixing the end portion of the support blade to the joint piece that protrudes horizontally from the rotation shaft, and the support blade end portion of the joint piece is supported at the end of the support blade. It is preferable to provide the edge part to join in the shape curved in the mountain shape.

また、本発明の風車用直線翼は、リング状に形成された薄い板材を外周面に嵌めて一体に固定した構成を有することを特長とする。   Further, the straight blade for a wind turbine according to the present invention is characterized in that a thin plate material formed in a ring shape is fitted to the outer peripheral surface and fixed integrally.

本発明によれば、直線翼は、その外周に支持翼先端のリング部又はリング状の板材を嵌めて周面に一体化させることで、曲げモーメントに耐え得るに十分な剛性が確保される。補強手段を翼の内側ではなく外側に施して剛性を高めているので、翼内部で強度確保のためのリブは不要であり、従来のものよりも軽量になるとともに、鋼板を継ぎ合わせて簡便な作業により形作ることができ、直線翼の作製コストを低減させることができる。また、直線翼はその外周に嵌めた支持翼先端のリング部又はリング状板材で高い剛性を維持したまま理想的な断面形状に保形され、従来形状の直線翼を用いた場合と比較して風車の風力エネルギーの変換効率が向上する。   According to the present invention, the linear blade is secured with sufficient rigidity to withstand a bending moment by fitting the ring portion at the tip of the support blade or a ring-shaped plate material on the outer periphery thereof and integrating it with the peripheral surface. Since the reinforcing means is applied to the outside rather than the inside of the wing to increase rigidity, ribs for securing the strength inside the wing are unnecessary, and it is lighter than the conventional one, and it is easy to join steel plates together It can be formed by work, and the production cost of the straight wing can be reduced. In addition, the straight blade is kept in an ideal cross-sectional shape while maintaining high rigidity by the ring part or ring-shaped plate material at the tip of the support blade fitted on the outer periphery, compared with the case of using a straight blade with a conventional shape. Wind turbine energy conversion efficiency is improved.

また、回転軸から突出した継ぎ片の縁部を山形に湾曲した形状に設け、これに支持翼の端部を接合して固定することにより、直線翼回転時に支持翼の根元部分にかかる垂直方向及び水平方向の応力を効果的に吸収し、支持翼根元部の曲げ強度を高くすることができる。   Also, the edge of the joint protruding from the rotating shaft is provided in a shape that is curved in a mountain shape, and the end of the support wing is joined and fixed to this, so that the vertical direction applied to the root of the support wing during rotation of the straight wing In addition, the stress in the horizontal direction can be effectively absorbed, and the bending strength of the support blade root portion can be increased.

本発明の好適な実施形態を図面を参照して説明する。
図1は本発明の一実施形態の風車における直線翼の外観を示しており、この直線翼1はその外周に支持翼2、2と補強板3を嵌め込み、一体に固定して構成してある。
Preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the appearance of a straight blade in a wind turbine according to an embodiment of the present invention. The straight blade 1 is constructed by fitting support blades 2 and 2 and a reinforcing plate 3 on the outer periphery thereof and fixing them integrally. .

直線翼1は、例えば長尺な1枚のステンレス板を用い、これをその長手方向に沿って翼の横断面形状に湾曲変形させるとともに、翼後端部を溶接によって接合一体化させて、理想的な翼の断面形状に沿った中空状に形成することができる。直線翼1は例えば中型の風車に用いる場合、0.5〜0.7mm程度の厚みのステンレス板を用いて、長手端部間を1000mm〜2500mm程度、幅を200〜300mm程度に設定して形成することができる。なお、直線翼1の上端には開口を閉鎖するキャップが装着される。   The straight wing 1 is, for example, a single long stainless steel plate that is curved and deformed along the longitudinal direction into the cross-sectional shape of the wing, and the wing rear end is joined and integrated by welding. It can be formed in a hollow shape along the sectional shape of a typical wing. For example, when used for a medium-sized wind turbine, the straight blade 1 is formed by using a stainless steel plate having a thickness of about 0.5 to 0.7 mm, setting a distance between the longitudinal ends of about 1000 mm to 2500 mm, and a width of about 200 to 300 mm. can do. A cap that closes the opening is attached to the upper end of the straight blade 1.

支持翼2は、直線翼1と同様にステンレス板などを用い、その先端部2aに、図2(A)に示されるように、直線翼1の断面よりも幅広な板面を直線翼1が略一杯にぴったりと嵌まる形状の開口を打ち抜いてなるリング部21を一体に設けて形成されている。直線翼1を前記寸法で形成する場合、支持翼2は、2〜5mm程度の厚みで先端部2aから回転軸に連結する元端部2bまでを500〜2000mm程度の長さに設定して形成することができる。   As in the case of the straight blade 1, the support blade 2 uses a stainless steel plate or the like, and the tip 2a has a plate surface wider than the cross section of the straight blade 1 as shown in FIG. A ring portion 21 formed by punching an opening having a shape that fits almost completely is integrally formed. When the straight blade 1 is formed with the above-mentioned dimensions, the support blade 2 is formed with a thickness of about 2 to 5 mm and a length from the tip 2 a to the base end 2 b connected to the rotating shaft set to a length of about 500 to 2000 mm. can do.

補強板3は、ステンレス板などを用い、図2(B)に示されるように、前記支持翼2のリング部21と同様に、直線翼1の断面よりも幅広な薄肉の板面を直線翼1が略一杯にぴったりと嵌まる形状の開口3aを打ち抜いて形成されている。   As shown in FIG. 2B, the reinforcing plate 3 uses a thin plate surface wider than the cross section of the straight blade 1 as shown in FIG. 2B. 1 is formed by punching an opening 3a having a shape that fits almost perfectly.

直線翼1は、その外周に支持翼2、2のリング部21、21を嵌め込むとともに、両リング部の間の外周にも補強板3を嵌め込み、これらを直線翼1の外周面に溶接などによって一体に固定して支持翼2、2の先端部2a、2aに一体に取り付けられており、外周面を取り巻くリング部21、21と補強板3とが一体に固定してあることにより、風車に取り付けて回転したときに、翼に働く空気力と遠心力によって生じる曲げモーメントに耐え得るに十分な曲げ強度を付与され、高剛性な構成となっている。   The straight blade 1 is fitted with the ring portions 21 and 21 of the support blades 2 and 2 on the outer periphery thereof, and the reinforcing plate 3 is also fitted on the outer periphery between the ring portions, and these are welded to the outer peripheral surface of the straight blade 1 or the like. Are fixed integrally with each other and attached to the tip end portions 2a and 2a of the support blades 2 and 2, and the ring portions 21 and 21 surrounding the outer peripheral surface and the reinforcing plate 3 are integrally fixed. When it is attached and rotated, it has a bending strength sufficient to withstand bending moments generated by aerodynamic force and centrifugal force acting on the blades, and has a highly rigid configuration.

図3は前記直線翼1を先端部2a一体に取り付けた支持翼2の回転軸4との連結部を風車の上方と側方から示した図であり、図示されるように、支持翼2はその元端部2bを回転軸4から水平に突出させた継ぎ片5に重ね合わせ、ビスなどの固着部材6を打ち込んで回転軸4と一体に取り付けられるようになっている。   FIG. 3 is a diagram showing a connecting portion of the support blade 2 with the straight blade 1 attached integrally with the tip 2a from the rotating shaft 4 from above and from the side of the wind turbine. The base end portion 2b is superposed on a joint piece 5 protruding horizontally from the rotating shaft 4, and a fixing member 6 such as a screw is driven in to be attached to the rotating shaft 4 integrally.

詳しくは、回転軸4の周面には水平に適宜な幅張り出した鍔部41が一体に設けてあり、この鍔部41の上面に継ぎ片5と支持翼2の元端部2bが重なって接合するようになっている。また、継ぎ片5は、図4に示されるように、その先端部5aの縁部が山形に湾曲した形状、元端部5bが前記鍔部41の上面に一体に重なる形状に設けてある。そして、前記鍔部41の上面に継ぎ片5を重ね、その上から支持翼2の元端部2bを重ね合わせた状態で、重合部に固着部材6を打ち込んで一体に固定し、これにより支持翼2が回転軸3から水平に張り出し、支持翼2のリング部21で包持された直線翼1が回転軸3と平行に、且つ回転軸3と一体に回転し得るように支持されるようになっている。   More specifically, a flange portion 41 that has an appropriate width extending horizontally is integrally provided on the peripheral surface of the rotary shaft 4, and the joint piece 5 and the base end portion 2 b of the support wing 2 overlap the upper surface of the flange portion 41. It comes to join. Further, as shown in FIG. 4, the joint piece 5 is provided in such a shape that the edge portion of the tip portion 5 a is curved in a mountain shape, and the original end portion 5 b is integrally overlapped with the upper surface of the flange portion 41. Then, in a state where the joint piece 5 is overlapped on the upper surface of the flange portion 41 and the original end portion 2b of the support blade 2 is overlapped thereon, the fixing member 6 is driven into the overlapping portion and fixed integrally, thereby supporting The wing 2 projects horizontally from the rotating shaft 3 so that the straight wing 1 held by the ring portion 21 of the supporting wing 2 is supported so as to be able to rotate in parallel with the rotating shaft 3 and integrally with the rotating shaft 3. It has become.

このように構成された本形態の直線翼1によれば、外周に支持翼2のリング部21と補強板3を嵌め、周面に一体化させてあるので、中空内部に強度確保のためのリブを設けなくても、高剛性に構成することができる。また、リブが不要なことから、翼全体が軽量となり、鋼板同士の継ぎ合わせ作業も容易に行なえて作製コストが低減する。
また、直線翼1はその外周に嵌めたリング部21と補強板3により高い剛性を維持したまま理想的な断面形状に保形されるので、翼の軽量化と相俟って、従来構造の翼を用いたときよりも、風車の風力エネルギーの変換効率を向上させることができる。
さらに、直線翼1を支持する支持翼2が、接合縁部を山形に湾曲させた継ぎ片5を介しての回転軸3に取り付けてあるので、直線翼1が回転した際に、支持翼2の根元部分にかかる垂直方向及び水平方向の応力を、前記山形の接合縁部で分散吸収し、支持翼2の根元部の曲げ強度が高くなって、風車が破損し難い構造のものとなる。
According to the straight wing 1 of this embodiment configured as described above, the ring portion 21 and the reinforcing plate 3 of the support wing 2 are fitted on the outer periphery and integrated on the peripheral surface. Even if a rib is not provided, it can be configured with high rigidity. In addition, since the rib is unnecessary, the entire blade is light, and the joining work between the steel plates can be easily performed, so that the manufacturing cost is reduced.
Further, since the straight blade 1 is retained in an ideal cross-sectional shape while maintaining high rigidity by the ring portion 21 and the reinforcing plate 3 fitted on the outer periphery thereof, coupled with the weight reduction of the blade, The wind energy conversion efficiency of the windmill can be improved as compared with the case where the wing is used.
Further, since the support wing 2 supporting the straight wing 1 is attached to the rotating shaft 3 through the joint piece 5 having the joint edge curved in a mountain shape, the support wing 2 is rotated when the straight wing 1 rotates. The stress in the vertical direction and the horizontal direction applied to the root portion of the blade is dispersed and absorbed by the angled joint edge portion, and the bending strength of the root portion of the support blade 2 is increased, so that the wind turbine is hardly damaged.

なお、図示した直線翼、支持翼、風車の形態は一例であり、本発明は他の適宜な形態で構成可能である。図示した形態では、二つの支持翼の間に補強板を一つ配したが、風車の設置条件などに基づく直線翼に要求される強度に応じて、直線翼の外周に支持翼のリング部だけを嵌めこんだり、補強板を複数嵌め込んだりしてもよい。また、直線翼の外周からの補強のために支持翼のリング部と補強板を嵌めたが、例えば支持翼と直線翼の連結構造は従来例と同じとし、複数の補強板のみを直線翼に嵌め込んで補強する形態としてもよい。支持翼を翼の断面形状に設けることも適宜に行なわれる。   In addition, the form of the linear wing | blade, the support wing | blade, and the windmill which were illustrated is an example, and this invention can be comprised with another suitable form. In the illustrated form, one reinforcing plate is placed between the two support wings, but depending on the strength required for the straight wings based on the installation conditions of the wind turbine, etc. Or a plurality of reinforcing plates may be inserted. In addition, the ring part of the support wing and the reinforcing plate were fitted for reinforcement from the outer periphery of the straight wing.For example, the connection structure of the support wing and the straight wing is the same as the conventional example, and only a plurality of reinforcing plates are used as the straight wing. It is good also as a form which inserts and reinforces. Providing support blades in the cross-sectional shape of the blades is also performed as appropriate.

本発明の一実施形態の風車における直線翼の外観を示した図である。It is the figure which showed the external appearance of the linear wing | blade in the windmill of one Embodiment of this invention. (A)は図1の支持翼の先端部の平面図、(B)は補強板の平面図である。(A) is a top view of the front-end | tip part of the support wing | blade of FIG. 1, (B) is a top view of a reinforcement board. (A)は直線翼を一体に取り付けた支持翼の回転軸との連結部を風車の上方から示した図、(B)は側方から示した図である。(A) is the figure which showed the connection part with the rotating shaft of the support wing | blade which attached the straight wing | blade integrally, from the upper side of a windmill, (B) is the figure shown from the side. 図3に示された継ぎ片の平面図である。FIG. 4 is a plan view of the joint piece shown in FIG. 3. 従来の直線翼型風車の外観図である。It is an external view of the conventional straight airfoil type windmill. 従来の直線翼の切断端面図である。It is a cut end view of the conventional straight wing. (A)、(B)は従来の直線翼型風車の構成を示す図である。(A), (B) is a figure which shows the structure of the conventional linear blade type | mold windmill.

符号の説明Explanation of symbols

1 直線翼、2 支持翼、21 リング部、3 補強板、4 回転軸、5 継ぎ片、6 固着部材





DESCRIPTION OF SYMBOLS 1 Straight wing, 2 Support wing, 21 Ring part, 3 Reinforcement plate, 4 Rotating shaft, 5 Joint piece, 6 Adhering member





Claims (3)

回転軸の周面から張り出した支持翼で直線翼を支持してなる直線翼型風車において、
支持翼先端にリング部を設け、このリング部内に直線翼を嵌め入れ、直線翼外周をリング部に一体に固定した構成を有することを特徴とする直線翼型風車。
In a straight airfoil wind turbine in which a straight blade is supported by a support blade protruding from the peripheral surface of the rotating shaft,
A linear blade type windmill having a structure in which a ring portion is provided at a tip of a support blade, a straight blade is fitted into the ring portion, and an outer periphery of the straight blade is integrally fixed to the ring portion.
回転軸から水平に突出した継ぎ片に支持翼の端部を重ね合わせ一体に固定して支持翼を水平に支持する構成を有するとともに、前記継ぎ片の支持翼端部に接合する縁部を山形に湾曲した形状に設けたことを特徴とする請求項1に記載の直線翼型風車。   The end of the support wing is overlapped and fixed integrally with a joint protruding horizontally from the rotating shaft, and the support wing is supported horizontally, and the edge joined to the support wing end of the joint is an angle. The straight airfoil wind turbine according to claim 1, wherein the wind turbine is provided in a curved shape. リング状に形成された薄い板材を外周面に嵌めて一体に固定した構成を有することを特長とする風車用直線翼。






A straight blade for a wind turbine characterized by having a structure in which a thin plate material formed in a ring shape is fitted to an outer peripheral surface and fixed integrally.






JP2005020642A 2005-01-28 2005-01-28 Straight blade type windmill and straight blade for windmill Pending JP2006207475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020642A JP2006207475A (en) 2005-01-28 2005-01-28 Straight blade type windmill and straight blade for windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020642A JP2006207475A (en) 2005-01-28 2005-01-28 Straight blade type windmill and straight blade for windmill

Publications (1)

Publication Number Publication Date
JP2006207475A true JP2006207475A (en) 2006-08-10

Family

ID=36964608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020642A Pending JP2006207475A (en) 2005-01-28 2005-01-28 Straight blade type windmill and straight blade for windmill

Country Status (1)

Country Link
JP (1) JP2006207475A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071527A1 (en) * 2008-12-19 2010-06-24 Vertical Wind Ab A wind turbine
KR101029100B1 (en) 2009-04-24 2011-04-13 이동근 Movable type aerogenerator
KR101113594B1 (en) * 2011-04-20 2012-02-22 씨에이코리아(주) Generator combined vertical-axis wind turbine
WO2012073320A1 (en) * 2010-11-30 2012-06-07 株式会社Cno Vertical shaft windmill
KR101230324B1 (en) 2011-05-18 2013-02-06 주식회사 웨스텍 Vertical axis windpower generation of H-rotor
KR101239625B1 (en) * 2011-04-12 2013-03-07 주식회사 웨스텍 Vertical type windpower generation apparatus having plural layer
KR101344709B1 (en) 2012-04-03 2013-12-24 주식회사 웨스텍 V type support and assembling structure of vertical axis wind power generator
WO2016004506A1 (en) * 2014-07-11 2016-01-14 Instream Energy Systems Corp. Hydrokinetic turbine with configurable blades for bi-directional rotation
JP2016084821A (en) * 2016-02-19 2016-05-19 株式会社Cnoパワーソリューションズ Vertical shaft type wind turbine
JP2016114063A (en) * 2016-02-19 2016-06-23 株式会社Cnoパワーソリューションズ Vertical shaft type windmill
WO2022059624A1 (en) * 2020-09-18 2022-03-24 Ntn株式会社 Vertical shaft wind turbine and vertical shaft wind turbine generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109100A1 (en) * 2003-06-09 2004-12-16 Shinko Electric Co., Ltd. Vertial shaft-type wind power generation device and method of producing blade, structure and method of installing blade wheel for wind power generation device, and wind power generation plant for wind protection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109100A1 (en) * 2003-06-09 2004-12-16 Shinko Electric Co., Ltd. Vertial shaft-type wind power generation device and method of producing blade, structure and method of installing blade wheel for wind power generation device, and wind power generation plant for wind protection

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071527A1 (en) * 2008-12-19 2010-06-24 Vertical Wind Ab A wind turbine
GB2476419A (en) * 2008-12-19 2011-06-22 Vertical Wind Ab A wind turbine
KR101029100B1 (en) 2009-04-24 2011-04-13 이동근 Movable type aerogenerator
JPWO2012073320A1 (en) * 2010-11-30 2014-05-19 株式会社Cno Vertical axis windmill
WO2012073320A1 (en) * 2010-11-30 2012-06-07 株式会社Cno Vertical shaft windmill
KR101239625B1 (en) * 2011-04-12 2013-03-07 주식회사 웨스텍 Vertical type windpower generation apparatus having plural layer
KR101113594B1 (en) * 2011-04-20 2012-02-22 씨에이코리아(주) Generator combined vertical-axis wind turbine
KR101230324B1 (en) 2011-05-18 2013-02-06 주식회사 웨스텍 Vertical axis windpower generation of H-rotor
KR101344709B1 (en) 2012-04-03 2013-12-24 주식회사 웨스텍 V type support and assembling structure of vertical axis wind power generator
WO2016004506A1 (en) * 2014-07-11 2016-01-14 Instream Energy Systems Corp. Hydrokinetic turbine with configurable blades for bi-directional rotation
GB2543988A (en) * 2014-07-11 2017-05-03 Instream Energy Systems Corp Hydrokinetic turbine with configurable blades for bi-directional rotation
GB2543988B (en) * 2014-07-11 2020-05-27 Instream Energy Systems Corp Hydrokinetic turbine with configurable blades for bi-directional rotation
JP2016084821A (en) * 2016-02-19 2016-05-19 株式会社Cnoパワーソリューションズ Vertical shaft type wind turbine
JP2016114063A (en) * 2016-02-19 2016-06-23 株式会社Cnoパワーソリューションズ Vertical shaft type windmill
WO2022059624A1 (en) * 2020-09-18 2022-03-24 Ntn株式会社 Vertical shaft wind turbine and vertical shaft wind turbine generator
JP2022051055A (en) * 2020-09-18 2022-03-31 Ntn株式会社 Vertical axis wind turbine and vertical axis wind power generator

Similar Documents

Publication Publication Date Title
JP2006207475A (en) Straight blade type windmill and straight blade for windmill
EP1965074B1 (en) A wind turbine multi-panel blade
US20070231139A1 (en) Mounting Structure for Support Arms in a Vertical Axis Wind Turbine, and the Vertical Axis Wind Turbine
EP3112671B1 (en) Modular wind turbine rotor blade
EP2504573B1 (en) Nacelle shell structure
US20180051672A1 (en) Jointed rotor blade for wind turbine
EP2492497A2 (en) An improved wind turbine multi-panel blade
JP5506033B2 (en) Wind turbine for wind power generation and manufacturing method thereof
JP4647573B2 (en) Wind generator blade
JP2017207001A (en) Wind turbine blade, wind turbine, process of manufacture for wind turbine blade and wind turbine blade connection structure
US20140377078A1 (en) Root stiffener for a wind turbine rotor blade
JP2005147086A (en) Blade of horizontal axis wind mill
EP3894689B1 (en) Segmented rotor blade having maximized overall pre-bend via an increased pre-bend in a blade tip segment thereof
US20150198142A1 (en) Segmented rotor hub
EP3874142B1 (en) Wind turbine jointed rotor blade having a hollow chord-wise extending pin
EP3655645B1 (en) Airflow configuration for a wind turbine rotor blade
WO2022059624A1 (en) Vertical shaft wind turbine and vertical shaft wind turbine generator
JP2016118170A (en) Blade member for blade of vertical shaft type windmill for wind power generation, and blade
US20130309095A1 (en) Wind turbine blade having improved structural and aerodynamic characteristics
US11680555B2 (en) Jointed wind turbine rotor blade having varying material combinations along its span for pin reinforcement
CN112443451A (en) Novel wind power generation blade
EP3085953B1 (en) Wind turbine dome and method of assembly
CN214092127U (en) Novel wind power generation blade
EP4013959B1 (en) Wind turbine blade assembly and method for producing a wind turbine blade
EP3899245B1 (en) Wind turbine rotor blade shell with varying fiber types

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Effective date: 20100416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928