JP2006188597A - Method for producing fiber-reinforced plastic - Google Patents

Method for producing fiber-reinforced plastic Download PDF

Info

Publication number
JP2006188597A
JP2006188597A JP2005001266A JP2005001266A JP2006188597A JP 2006188597 A JP2006188597 A JP 2006188597A JP 2005001266 A JP2005001266 A JP 2005001266A JP 2005001266 A JP2005001266 A JP 2005001266A JP 2006188597 A JP2006188597 A JP 2006188597A
Authority
JP
Japan
Prior art keywords
fiber
raw fabric
long
continuous fibers
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005001266A
Other languages
Japanese (ja)
Inventor
Masatoshi Kobayashi
正俊 小林
Daiki Moriizumi
大樹 森泉
Yasuhiko Tange
康彦 丹下
Fumito Ueha
文人 上羽
Masayuki Yamaguchi
賢之 山口
Hidekazu Kabaya
英和 蒲谷
Hideaki To
秀明 湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005001266A priority Critical patent/JP2006188597A/en
Publication of JP2006188597A publication Critical patent/JP2006188597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fiber-reinforced plastic with which the fiber-reinforced plastic is produced with sheets ensuring the strength by the whole sheets when long fiber-reinforced resin sheets having an optional desired angle as the fiber direction are produced by using a unidirectional prepreg raw fabric. <P>SOLUTION: The fiber-reinforced plastic having a structure in which each fiber direction 1 of mutually adjacently laminated sheets obtained by laminating the fiber-reinforced resin sheets 3, 4', 5' and 6' composed of unidirectional continuous fibers impregnated with a resin intersects is produced. In the process, long continuous fibers 3 having the longitudinal direction 2 coincident with the fiber direction 1, i.e. the unidirectional prepreg raw fabric 3 is used as the fiber-reinforced resin sheet raw fabric 3 to successively carry out the following steps: a first step of cutting the raw fabric 3 at a prescribed angle relatively to the fiber direction 1 using the nearly same length W as the width of the long continuous fibers 3 as a cutting interval, a second step of successively placing raw fabric small pieces 4 composed of the cut raw fabric 3 in a state of each arranged fiber direction 1 and the cutting interval coincident with the width W of the continuous length on the long continuous fibers 3 having the different fiber directions 1 and a third step of heating and pressurizing the material of the continuous length composed of the successively placed raw fabric small pieces 4 together with the underlying long continuous fibers 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、繊維強化プラスチックの製造方法に関し、特に、繊維強化プラスチックを構成する繊維強化樹脂シート(プリプレグ)原反が巻取り式などの長尺形状で提供される場合に、この原反を複数積層して形成される繊維強化プラスチックの製造方法に関する。   The present invention relates to a method for producing a fiber reinforced plastic, and in particular, when a fiber reinforced resin sheet (prepreg) raw material constituting the fiber reinforced plastic is provided in a long shape such as a winding type, a plurality of the raw materials are used. The present invention relates to a method for producing a fiber-reinforced plastic formed by lamination.

繊維強化プラスチックは、エポキシ樹脂やポリカーボネート樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリプロピレン樹脂などをマトリックス(母材)として、炭素繊維、ガラス繊維などの各種繊維で強化した材料である。この繊維強化プラスチックは、比強度、比剛性が高いため、軽量かつ高強度が要求される自動車部品、航空機部品、電気機器部品などに幅広く使用されている。   The fiber reinforced plastic is a material reinforced with various fibers such as carbon fiber and glass fiber using an epoxy resin, polycarbonate resin, unsaturated polyester resin, vinyl ester resin, polypropylene resin or the like as a matrix (base material). Since this fiber reinforced plastic has high specific strength and specific rigidity, it is widely used for automobile parts, aircraft parts, electrical equipment parts and the like that are required to be lightweight and have high strength.

繊維強化プラスチックの製造方法としては、例えば、ガラスクロスなどの補強材に熱硬化性樹脂や熱可塑性樹脂を均等に含浸させ、乾燥させた繊維強化樹脂シート(プリプレグ)を製作し、これを複数積層した後に、加圧加熱して所要の形状に一体化する積層成形法が知られている。   As a method for producing fiber reinforced plastic, for example, a reinforcing material such as glass cloth is uniformly impregnated with a thermosetting resin or a thermoplastic resin, and a dried fiber reinforced resin sheet (prepreg) is manufactured, and a plurality of these are laminated. After that, a lamination molding method is known in which it is heated under pressure and integrated into a required shape.

このような繊維強化プラスチックでは、補強材として連続繊維を用いた場合、連続繊維の長手方向での強度、靱性が高いため、より高強度、軽量化が要求される部材に用いられる。その一方、連続繊維の長手方向と直交する方向では、強度、靱性が低く、機械的特性に異方性を有すると言える。このような異方性を緩和するために、繊維方向の異なる3枚以上の繊維強化樹脂シートを、仮想中心面を挟んで対称配置となる組合せで積層させたものが知られている(例えば、特許文献1参照。)。   In such a fiber reinforced plastic, when continuous fibers are used as a reinforcing material, the strength and toughness in the longitudinal direction of the continuous fibers are high, so that they are used for members that require higher strength and light weight. On the other hand, in the direction orthogonal to the longitudinal direction of the continuous fiber, it can be said that the strength and toughness are low and the mechanical properties are anisotropic. In order to alleviate such anisotropy, a laminate in which three or more fiber reinforced resin sheets having different fiber directions are laminated in a symmetrical arrangement across a virtual center plane is known (for example, (See Patent Document 1).

また、繊維強化樹脂シートの積層を確実かつ容易に行うために、熱間ローラや冷間ローラを用い、繊維方向にかかわらず、複数のシートを一括的に積層するものが知られている(例えば、特許文献2参照)。   In addition, in order to reliably and easily laminate fiber reinforced resin sheets, a hot roller or a cold roller is used, and a plurality of sheets are laminated together regardless of the fiber direction (for example, , See Patent Document 2).

ところで、特許文献3などにも記載されるように、現在商品として提供される繊維強化樹脂シート原反は、長手方向と繊維方向とが一致した長尺の一方向プリプレグと呼ばれるものである。また、繊維方向が互いに交差したクロスプリプレグと呼ばれるものもある。即ち、繊維方向角度が0°に限定されており、例えば繊維方向が長尺方向(長手方向)に対して45°に配向した原反商品は存在しない。よって、これが必要なときは、一方向プリプレグ原反を、希望の繊維方向角度の小片に切断し、この繊維方向角度の配向に揃えて再配列させながら、小片同士を互いに貼り合せる作業が必要となる。   By the way, as described in Patent Document 3 and the like, the fiber reinforced resin sheet original fabric currently provided as a commercial product is a long unidirectional prepreg in which the longitudinal direction matches the fiber direction. There is also a so-called cross prepreg in which the fiber directions intersect each other. That is, the fiber direction angle is limited to 0 °. For example, there is no original fabric product in which the fiber direction is oriented at 45 ° with respect to the longitudinal direction (longitudinal direction). Therefore, when this is necessary, it is necessary to cut the original unidirectional prepreg into small pieces having a desired fiber direction angle, and to align the pieces in the fiber direction angle and rearrange them so that the pieces are bonded to each other. Become.

特許文献3に示す装置は、この作業を自動化するものであるが、小片同士を接着で連続的に継合し、長尺連続繊維として再現しているため、長手方向に作用する力には弱い、という問題が残る。
特公昭56-54207号公報(第2図(f)、第4-6図) 特開2001-293790号公報(図1、第2頁) 特許2876244号公報(第1-4図)
The device shown in Patent Document 3 automates this work, but is small in the force acting in the longitudinal direction because the pieces are continuously joined by bonding and reproduced as long continuous fibers. The problem remains.
Japanese Patent Publication No. 56-54207 (Fig. 2 (f), Fig. 4-6) Japanese Patent Laid-Open No. 2001-293790 (FIG. 1, page 2) Japanese Patent No. 2876244 (Fig. 1-4)

本発明は、上記問題点に鑑み、プリプレグ原反を使用し、任意の希望角度を繊維方向とした長尺の繊維強化樹脂シートを製作する際に、シート全体で強度を確保し、このようなシートで繊維強化プラスチックを製造する方法を提供することを課題としている。   In view of the above problems, the present invention ensures the strength of the entire sheet when using a prepreg raw fabric and manufacturing a long fiber reinforced resin sheet with an arbitrary desired angle in the fiber direction. An object of the present invention is to provide a method for producing a fiber-reinforced plastic using a sheet.

上記課題を解決するため、本発明は、樹脂を含浸させた一方向性連続繊維を含む繊維強化樹脂シートを複数積層し、互いに隣接して積層する前記シートのそれぞれの繊維方向が交差する構造を含む繊維強化プラスチックを製造するに際して、繊維強化樹脂シート原反として、長手方向と繊維方向とが一致する長尺の連続繊維を使用し、この長尺連続繊維の幅と略同一の長さを切断間隔として、繊維方向に対して所定の角度に、原反を切断する第1工程と、切断した原反から成る原反小片を、それぞれ繊維方向を揃えると共に切断間隔を長尺幅に合致させた状態で、繊維方向の異なる長尺連続繊維上に、連続して載置する第2工程と、連続載置した原反小片から成る長尺体を、下地の長尺連続繊維とともに、温度制御し加圧する第3工程とを順次行うものとした。   In order to solve the above problems, the present invention has a structure in which a plurality of fiber reinforced resin sheets including unidirectional continuous fibers impregnated with a resin are laminated, and the respective fiber directions of the sheets laminated adjacent to each other intersect. When manufacturing fiber reinforced plastics, use long continuous fibers with the same length and fiber direction as the fiber reinforced resin sheet, and cut the length approximately the same as the width of the long continuous fibers. As the interval, the first step of cutting the original fabric at a predetermined angle with respect to the fiber direction and the original raw piece made of the cut original fabric are aligned in the fiber direction and the cutting interval is made to match the long width. In this state, temperature control is performed on the long body composed of the second continuous step and the continuously placed raw small piece on the continuous continuous fiber having different fiber directions together with the continuous long continuous fiber. The third step to pressurize in order It was assumed to be performed.

これによれば、長手方向と繊維方向とが一致する長尺の連続繊維、即ち、一方向プリプレグを共通の原反として使用し、以下工程が行われる。
第1工程:長尺連続繊維の幅と略同一長さの切断間隔で、繊維方向に対して所定の角度に
原反を切断することにより、繊維方向角度0°以外の繊維方向に揃った多数の
原反小片が作製される。
第2工程:各原反小片の繊維方向を揃えると共に切断間隔を長尺幅に合致させた状態で、
直下に隣接させた、繊維方向の異なる長尺連続繊維上に、各原反小片を継ぎ合
わせて連続的に載置することにより、原反小片の集合体が、同一の繊維方向を
有する長尺体形状となる。ただし、この時点では、各原反小片は継ぎ合わせで
互いに当接するのみであり、別体構成のままである。
第3工程:各原反小片で構成される長尺体を、下地の長尺連続繊維とともに温度制御し加 圧することにより、原反小片の当接部分が圧着され、長手方向に連続的に一体
化した状態となり、下地繊維シートとの積層が完成する。なお、本工程は、隣
接する下地シートとの積層のみに着目した内容としたが、長尺体全体を載置す
る長尺基体及び基体上の積層シートすべてを温度制御し加圧するものも含まれ
る。また、長尺基体としては、一方向プリプレグ原反をそのまま使用するのが
一般的である。
According to this, long continuous fibers in which the longitudinal direction coincides with the fiber direction, that is, a unidirectional prepreg is used as a common raw fabric, and the following steps are performed.
First step: At a predetermined angle with respect to the fiber direction at a cutting interval of substantially the same length as the width of the long continuous fiber
By cutting the raw fabric, a large number of fibers aligned in the fiber direction other than the fiber direction angle of 0 °
A raw piece is produced.
Second step: While aligning the fiber direction of each raw fabric piece and matching the cutting interval with the long width,
Each piece of raw fabric is spliced on a continuous continuous fiber with different fiber directions adjacent to each other.
By placing them continuously, the aggregate of the raw fabric pieces has the same fiber direction.
It has a long body shape. At this point, however,
They only abut against each other and remain in a separate configuration.
Third step: A long body composed of each piece of raw fabric is temperature-controlled and pressed together with the continuous long continuous fiber, so that the contact portion of the piece of raw fabric is crimped and integrated continuously in the longitudinal direction.
In this state, lamination with the base fiber sheet is completed. In addition, this process is next
The content focuses only on the lamination with the base sheet that comes into contact, but the entire long body is placed.
Also included are long substrates and laminated sheets on the substrate that are temperature controlled and pressurized.
The In addition, as a long base, it is possible to use a unidirectional prepreg original as it is.
It is common.

さらに、繊維強化樹脂シートが複数である場合には、隣接すべき一対のシートにおいて第1工程の切断角度を相違させたうえで、第1乃至第3工程を、各シートごとの工程サイクルとして繰り返す。これにより、互いに隣接して積層する繊維強化樹脂シートのそれぞれの繊維方向が交差し、さらに、各シートにおいて幅方向長さに過不足なく精度良く揃った状態で、複数の繊維強化樹脂シートの積層構造が完成される。   Furthermore, when there are a plurality of fiber reinforced resin sheets, the first to third steps are repeated as a process cycle for each sheet after making the cutting angle of the first step different between a pair of adjacent sheets. . As a result, the fiber directions of the fiber reinforced resin sheets laminated adjacent to each other cross each other, and further, a plurality of fiber reinforced resin sheets are laminated in a state where each sheet is accurately aligned with a sufficient length in the width direction. The structure is completed.

なお、繊維強化樹脂シートに用いる樹脂は、熱硬化性樹脂及び熱可塑性樹脂のいずれの種類も用いられるが、熱硬化性樹脂を含浸させたシートを用いる場合、通常は、室温環境で粘着性を有する。この種の原反を用いる場合、第1工程における原反切断や第2工程の原反小片の連続載置の作業時に、小片同士が接触すると、その接触箇所で互いに接着することになり、切断や載置作業を妨げるおそれがある。   The resin used for the fiber reinforced resin sheet may be either a thermosetting resin or a thermoplastic resin. However, when a sheet impregnated with a thermosetting resin is used, it usually has an adhesive property at room temperature. Have. When using this type of original fabric, when the original pieces are cut in the first step or when the original pieces are continuously placed in the second step, if the pieces come into contact with each other, they will adhere to each other at the contact point. And there is a risk of hindering the placement work.

そこで、熱硬化性樹脂を用いる場合には、上記した第2工程以前に、原反または原反小片を冷却する冷却工程を加え、粘着性のない状態で原反あるいは原反小片を扱えるようにすると作業能率が向上する。   Therefore, when a thermosetting resin is used, a cooling step for cooling the original fabric or the original web piece is added before the above-described second step so that the original fabric or the original web piece can be handled without stickiness. Then, work efficiency improves.

本発明によれば、一方向プリプレグを共通の原反材料とし、第1工程において、繊維方向角度0°以外の繊維方向に揃った多数の原反小片を作製し、第2工程において、原反小片の集合体が同一繊維方向を有する長尺体を形成し、第3工程において、原反小片同士の当接部分が圧着され、長手方向に連続的に一体化して、下地繊維シートとの積層が完成する。そして、隣接すべき一対のシートにおいて第1工程の切断角度を相違させたうえで、第1乃至第3工程を各シートごとの工程サイクルとして繰り返す。   According to the present invention, a unidirectional prepreg is used as a common raw material, and in the first step, a large number of raw fabric pieces aligned in the fiber direction other than the fiber direction angle of 0 ° are produced. The assembly of small pieces forms a long body having the same fiber direction, and in the third step, the contact portions of the raw small pieces are pressure-bonded and continuously integrated in the longitudinal direction, and laminated with the underlying fiber sheet. Is completed. And after making the cutting angle of a 1st process different in a pair of sheet | seat which should be adjacent, a 1st thru | or 3rd process is repeated as a process cycle for every sheet | seat.

これにより、互いに隣接して積層する繊維強化樹脂シートのそれぞれの繊維方向が交差する構造を含み、さらに、各シートにおいて幅方向長さに過不足なく精度良く揃った状態で、複数の繊維強化樹脂シートの積層構造が完成する。   This includes a structure in which the fiber directions of the fiber reinforced resin sheets laminated adjacent to each other cross each other, and in addition, the plurality of fiber reinforced resins in a state where each sheet is accurately aligned in the width direction length. A laminated structure of sheets is completed.

上記したように、本発明による繊維強化プラスチックの製造方法は、樹脂を含浸させた連続繊維から成る一方向性プリプレグ原反に対して、これを切断する第1工程と、繊維方向を揃えた原反小片を連続して載置する第2工程と、連続載置した原反小片による長尺体を温度制御し加圧する第3工程とで構成される。そして、図1により第1工程を示し、図2により第2工程を示し、図3により第3工程を示し、また、図4は第1乃至第3工程を経て得られる繊維強化プラスチックの完成図を示す。   As described above, the method for producing a fiber-reinforced plastic according to the present invention includes a first step of cutting a unidirectional prepreg raw material composed of continuous fibers impregnated with a resin, and a raw material in which the fiber directions are aligned. It comprises a second step of continuously placing the anti-small pieces and a third step of controlling and pressurizing the long body of the continuously placed original small pieces. 1 shows the first step, FIG. 2 shows the second step, FIG. 3 shows the third step, and FIG. 4 is a completed drawing of the fiber reinforced plastic obtained through the first to third steps. Indicates.

図1の各図を用いて本発明方法の第1工程を説明する。図1(a-1)では、繊維方向1と長手方向2とが一致した、長尺幅Wの一方向性プリプレグ原反3を用い、これを繊維方向1に対して135°(-45°)の角度で切断する。このときの切断間隔を長尺幅Wと略同一にする。この切断作業を連続して行うことにより、図1(a-2)に示すように繊維方向角度-45°及び高さWに揃った同形のプリプレグ原反小片4が複数個得られる。   The first step of the method of the present invention will be described with reference to FIG. In FIG. 1 (a-1), a unidirectional prepreg raw fabric 3 having a long width W in which the fiber direction 1 coincides with the longitudinal direction 2 is used, and this is 135 ° (−45 ° with respect to the fiber direction 1). ) Cut at an angle. The cutting interval at this time is made substantially the same as the long width W. By continuously performing this cutting operation, a plurality of identical prepreg raw fabric pieces 4 having a fiber direction angle of −45 ° and a height W as shown in FIG. 1 (a-2) are obtained.

同様に、図1(b-1)及び(b-2)では、繊維方向角度45°及び高さWに揃ったプリプレグ原反小片5が得られ、図1(c-1)及び(c-2)では、繊維方向角度90°及び高さWに揃ったプリプレグ原反小片6が得られる。   Similarly, in FIGS. 1 (b-1) and (b-2), a prepreg raw fabric piece 5 having a fiber direction angle of 45 ° and a height W is obtained, and FIGS. 1 (c-1) and (c−) are obtained. In 2), the prepreg raw fabric pieces 6 having a fiber direction angle of 90 ° and a height W are obtained.

次の第2工程においては、このようにして得られたプリプレグ原反小片4、5、6を、繊維方向で類別した種類ごとに、長尺基体たるプリプレグ原反3上に載置する。即ち、図2に示すように繊維方向角度135°(-45°)の原反小片4の高さWを、直下のプリプレグ原反3の幅Wに合致させた状態で、原反3上に載置する。このとき、原反小片4の高さWとプリプレグ原反3の幅Wとが確実に合致するように、プリプレグ原反3の両側線に沿って、両側線間距離を長さWに規制するガイド7、7が設置されている。即ち、原反小片4を載置する位置は、ガイド7、7間である。   In the next second step, the prepreg raw fabric pieces 4, 5, 6 thus obtained are placed on the prepreg raw fabric 3, which is a long substrate, for each type classified in the fiber direction. That is, as shown in FIG. 2, the height W of the original fabric piece 4 having a fiber direction angle of 135 ° (−45 °) is matched with the width W of the prepreg original fabric 3 directly below the original fabric 3. Place. At this time, the distance between both side lines is restricted to the length W along both side lines of the prepreg original fabric 3 so that the height W of the original fabric piece 4 and the width W of the prepreg original fabric 3 are surely matched. Guides 7 and 7 are installed. That is, the position for placing the original web piece 4 is between the guides 7 and 7.

なお、基体たるプリプレグ原反3は、紙面右方向の長手方向に連続して繰り出されており、プリプレグ原反3上に載置された原反小片4は、原反3の繰り出しに伴って同じ方向に移動する。そして、ガイド7、7位置に対して原反小片4が1個分移動した時点において、繊維方向を揃えた状態で次の原反小片4をプリプレグ原反3上に載置する。これにより、原反小片4、4が両者間で隙間を生じずに継ぎ合わされる。この載置作業を連続して行うことで、原反小片4、4、4・・・の集合体が繊維方向の揃った長尺体を形成する。   In addition, the prepreg original fabric 3 as the base is continuously fed out in the longitudinal direction in the right direction on the paper surface, and the raw piece 4 placed on the prepreg original fabric 3 is the same as the original fabric 3 is fed out. Move in the direction. Then, at the point of time when the original web piece 4 is moved by one piece with respect to the guides 7 and 7, the next original web piece 4 is placed on the prepreg original fabric 3 with the fiber directions aligned. Thereby, the raw fabric pieces 4 and 4 are joined together without generating a gap between them. By continuously performing this mounting operation, an elongated body in which the aggregates of the raw fabric pieces 4, 4, 4,... Are aligned in the fiber direction is formed.

また、これと同様の載置作業を、原反小片5及び6においても行う。即ち、ガイド8、8位置において、原反小片4が載置されたプリプレグ原反3上に、繊維方向角度45°の原反小片5、5、5・・・を、繊維方向が揃った状態で連続して載置し、また、原反小片4及び5が載置されたプリプレグ原反3上に、繊維方向角度90°の原反小片6、6、6・・・を、繊維方向が揃った状態で連続して載置する。これらの載置作業を各原反小片4、5、6ごとに並行して行うことにより、互いに隣接するプリプレグ原反3、4、5、6の繊維方向が交差した状態で、4種類の繊維方向の長尺体から成る4層積層体が得られる。ただし、この段階では、原反小片4、5、6は継ぎ合わせで互いに当接するのみであり、別体構成のままである。   In addition, the same placement operation is performed on the raw fabric pieces 5 and 6. That is, in the guides 8 and 8 positions, the raw fabric pieces 5, 5, 5... Having a fiber direction angle of 45 ° are aligned on the prepreg original fabric 3 on which the raw fabric pieces 4 are placed. In addition, on the prepreg raw fabric 3 on which the raw fabric pieces 4 and 5 are placed, the raw fabric pieces 6, 6, 6. Place continuously in an aligned state. By performing these placing operations in parallel for each of the raw fabric pieces 4, 5 and 6, four types of fibers in a state where the fiber directions of the adjacent prepreg raw fabrics 3, 4, 5 and 6 cross each other. A four-layer laminate consisting of elongated bodies in the direction is obtained. However, at this stage, the raw fabric pieces 4, 5, and 6 are merely brought into contact with each other by seaming and remain in a separate configuration.

そこで、第3工程では、この4層積層体に対して温度制御し加圧を行うことで、原反小片4、5、6を圧着し、長手方向に連続する一体構成とする。図3は、第3工程を行うための装置の概略図である。この装置には、巻物原反3´から搬送ローラ10により繰り出されたプリプレグ原反3を挟むガイド7、8、9と、原反3を架設する加圧ローラ11、12、13とが設けられている。また、ガイド7、8、9付近の原反小片4、5、6の載置位置の前後に、冷却機構14及び加熱機構15が設置されている。   Therefore, in the third step, the four-layer laminate is subjected to temperature control and pressurization, whereby the original pieces 4, 5, 6 are pressure-bonded to form an integrated configuration continuous in the longitudinal direction. FIG. 3 is a schematic view of an apparatus for performing the third step. This apparatus is provided with guides 7, 8, and 9 sandwiching the prepreg original fabric 3 fed from the roll original 3 'by the conveying roller 10, and pressure rollers 11, 12, and 13 for laying the original fabric 3. ing. In addition, a cooling mechanism 14 and a heating mechanism 15 are installed before and after the placement positions of the raw fabric pieces 4, 5, 6 near the guides 7, 8, 9.

この冷却機構14は、冷風送風装置や冷蔵庫などを転用しても良く、プリプレグ原反3の含浸樹脂が熱硬化性樹脂である場合の粘着性を低減させるものである。つまり、作業前に原反小片4の粘着性を減じ、作業能率を向上させる目的で設置される。一方、加熱機構15は、ハロゲンヒータや赤外線ヒータなどで良く、これにより、原反小片4及びこれを載置したプリプレグ原反3とを加熱する。   The cooling mechanism 14 may be diverted from a cold air blower or a refrigerator, and reduces the adhesiveness when the impregnating resin of the prepreg raw fabric 3 is a thermosetting resin. That is, it is installed for the purpose of reducing the adhesiveness of the original small piece 4 and improving the work efficiency before work. On the other hand, the heating mechanism 15 may be a halogen heater, an infrared heater or the like, and thereby heats the raw fabric piece 4 and the prepreg raw fabric 3 on which it is placed.

そして、図3(a)に示すように、搬送ローラ10によりプリプレグ原反3を連続的に繰り出しつつ、ガイド7付近位置で原反小片4を連続して載置し(第2工程参照)、プリプレグ原反3上に原反小片4を隙間無く載置する。そして、このままの状態で、原反小片4、4、4・・・を載置したプリプレグ原反3を加圧ローラ11で加圧する。この際、原反小片4、4、4・・・の継ぎ合せ部分が圧着され、長手方向に連続的に一体化した長尺連続繊維4´に改質される。そして、加圧ローラ11以降で、互いに繊維方向が相違する長尺連続繊維4´とプリプレグ原反3との積層が完成する。   Then, as shown in FIG. 3A, while the prepreg original fabric 3 is continuously fed out by the conveying roller 10, the original fabric pieces 4 are continuously placed in the vicinity of the guide 7 (see the second step). The original piece 4 is placed on the prepreg original 3 with no gap. In this state, the prepreg original fabric 3 on which the original fabric pieces 4, 4, 4,. At this time, the joined portions of the raw fabric pieces 4, 4, 4,... Are pressure-bonded to be modified into long continuous fibers 4 ′ that are continuously integrated in the longitudinal direction. Then, after the pressure roller 11, the lamination of the long continuous fiber 4 ′ and the prepreg original fabric 3 having different fiber directions is completed.

図3(a)は、搬送ローラ10により繰り出され、プリプレグ原反3に載置された長尺連続繊維4´がガイド8付近に到達した状態が示されている。次の図3(b)は、この状態のガイド8付近位置で、さらに長尺連続繊維4´上に、原反小片5を連続して載置し(第2工程参照)、プリプレグ原反3及び長尺連続繊維4´上に原反小片5を隙間無く載置する作業を行う状態を示す。原反小片5の載置の前後に、冷却機構16及び加熱機構17が設置される目的は、ガイド7付近における冷却機構14及び加熱機構15と同様である。   FIG. 3A shows a state in which the long continuous fiber 4 ′ drawn out by the conveying roller 10 and placed on the prepreg original fabric 3 has reached the vicinity of the guide 8. Next, FIG. 3B shows a state in which the raw fabric pieces 5 are continuously placed on the long continuous fiber 4 ′ in the vicinity of the guide 8 in this state (see the second step), and the prepreg raw fabric 3 is placed. And the state which performs the operation | work which mounts the raw fabric piece 5 on the elongate continuous fiber 4 'without a gap is shown. The purpose of installing the cooling mechanism 16 and the heating mechanism 17 before and after placing the original small piece 5 is the same as that of the cooling mechanism 14 and the heating mechanism 15 in the vicinity of the guide 7.

そして、図3(c)に示すように、このままの状態で、原反小片5、5、5・・・を載置したプリプレグ原反3を加圧ローラ12で加圧する。この際、原反小片5、5、5・・・の継ぎ合せ部分が圧着され、長手方向に連続的に一体化した長尺連続繊維5´に改質されるのも上記と同様である。そして、加圧ローラ12以降で、互いに繊維方向が相違する長尺連続繊維4´と長尺連続繊維5´との積層が完成する。   Then, as shown in FIG. 3C, in this state, the prepreg original fabric 3 on which the original fabric small pieces 5, 5, 5,. At this time, the seam pieces 5, 5, 5,... Are joined to each other so that they are crimped and reformed into a long continuous fiber 5 ′ continuously integrated in the longitudinal direction. Then, after the pressure roller 12, the lamination of the long continuous fibers 4 'and the long continuous fibers 5' having different fiber directions is completed.

図3(c)は、搬送ローラ10により繰り出され、プリプレグ原反3に載置された長尺連続繊維5´がガイド9付近に到達した状態が示されている。次の図3(d)は、この状態のガイド9付近位置で、さらに長尺連続繊維5´上に、原反小片6を連続して載置し(第2工程参照)、プリプレグ原反3、長尺連続繊維4´及び長尺連続繊維5´上に原反小片6を隙間無く載置する作業を行う状態を示す。原反小片6の載置の前後に、冷却機構18及び加熱機構19が設置される目的は、ガイド7付近における冷却機構14及び加熱機構15などと同様である。   FIG. 3C shows a state in which the long continuous fiber 5 ′ drawn out by the transport roller 10 and placed on the prepreg original fabric 3 has reached the vicinity of the guide 9. Next, FIG. 3D shows a state in which the raw fabric pieces 6 are continuously placed on the long continuous fiber 5 ′ in the vicinity of the guide 9 in this state (see the second step), and the prepreg raw fabric 3 is placed. The state which performs the operation | work which mounts the raw fabric piece 6 on the elongate continuous fiber 4 'and the elongate continuous fiber 5' without a gap is shown. The purpose of installing the cooling mechanism 18 and the heating mechanism 19 before and after placing the original small piece 6 is the same as that of the cooling mechanism 14 and the heating mechanism 15 in the vicinity of the guide 7.

そして、図3(c)に示すように、このままの状態で、原反小片6、6、6・・・を載置したプリプレグ原反3を加圧ローラ13で加圧する。この際、原反小片6、6、6・・・の継ぎ合せ部分が圧着され、長手方向に連続的に一体化した長尺連続繊維6´に改質されるのも上記と同様である。そして、加圧ローラ13以降で、互いに繊維方向が相違する長尺連続繊維5´と長尺連続繊維6´との積層が完成する。   Then, as shown in FIG. 3C, the prepreg original fabric 3 on which the original fabric small pieces 6, 6, 6... Are pressed with the pressure roller 13 in this state. At this time, the seam pieces 6, 6, 6... Are joined together by pressure bonding and reformed into a continuous continuous fiber 6 'continuously integrated in the longitudinal direction. Then, after the pressure roller 13, the lamination of the long continuous fibers 5 ′ and the long continuous fibers 6 ′ having different fiber directions is completed.

図3(d)では、原反小片4、5、6をそれぞれガイド7、8、9付近で連続して載置する第2工程と、原反小片集合体をそれぞれ加熱機構15、17、19及び加圧ローラ11、12、13を用いて加熱、加圧する第3工程とを並行して行う様子が示される。そして、これら工程を経ることにより、図4に示すように、プリプレグシート3、4´、5´、6´中で互いに隣接して積層するものそれぞれの繊維方向が交差し、さらに、シート3、4´、5´、6´において幅方向長さWに過不足なく精度良く揃った状態で、繊維強化プラスチックを構成する積層構造が完成する。   In FIG.3 (d), the 2nd process which mounts the raw fabric pieces 4,5,6 continuously in the vicinity of the guides 7,8,9, respectively, and the heating fabrics 15,17,19 respectively, In addition, a state in which the third step of heating and pressing using the pressure rollers 11, 12, and 13 is performed in parallel is shown. Then, through these steps, as shown in FIG. 4, the fiber directions of those laminated adjacent to each other in the prepreg sheets 3, 4 ′, 5 ′, 6 ′ intersect, In 4 ′, 5 ′, and 6 ′, the laminated structure constituting the fiber reinforced plastic is completed in a state where the width direction length W is accurately and accurately aligned.

ところで、上記では含浸樹脂に熱硬化性樹脂を用い、図3に示す装置に対して、冷却機構14、16、18を設置することにより、室温環境下での粘着性対策を行ったが、熱可塑性樹脂を用いる場合は冷却機構を不要とすることもできる。熱硬化性樹脂の場合と異なり、熱可塑性樹脂は室温下で取り扱いが容易で作業性に問題がないため、冷却機構を除去した簡便な装置(例えば図5参照。)を用いることにより、上記と同様に繊維強化プラスチックの積層構造が完成される。   By the way, in the above, a thermosetting resin is used as the impregnating resin, and the cooling mechanism 14, 16, 18 is installed in the apparatus shown in FIG. When a plastic resin is used, a cooling mechanism can be dispensed with. Unlike the thermosetting resin, the thermoplastic resin is easy to handle at room temperature and has no problem in workability. Therefore, by using a simple apparatus (for example, see FIG. 5) from which the cooling mechanism is removed, Similarly, a laminated structure of fiber reinforced plastic is completed.

なお、図3及び図5の装置において、原反小片4、5、6をそれぞれ載置した後に、加熱及び加圧の第3工程を行う構成としているが、原反小片4、5、6の続載置を先に完了させ、その後、これらを載置したプリプレグ原反3ごと加熱及び加圧を行う簡便法を用いても同様の積層構造が得られる。各々の加圧ローラに加熱機構を設けるようにしても良い。尚、原反小片4、5、6の繊維方向角度、載置順番はこの限りではなく、必要に応じて変えてもよい。   3 and 5, the third process of heating and pressurization is performed after each of the original fabric pieces 4, 5, 6 is placed. The same laminated structure can be obtained by using a simple method in which the subsequent mounting is completed first, and then the prepreg raw fabric 3 on which these are mounted is heated and pressurized. A heating mechanism may be provided for each pressure roller. In addition, the fiber direction angle and the mounting order of the raw fabric pieces 4, 5, and 6 are not limited to this, and may be changed as necessary.

図3に示す装置により、エポキシ樹脂、不飽和ポリエステル樹脂、エポキシアクリレート樹脂のいずれかの熱硬化性樹脂を含浸させたプリプレグ原反3を用い、繊維方向角度0°(プリプレグ原反3)、-45°(原反小片4)、45°(原反小片5)、90°(原反小片6)による4層積層体を製作した。このとき、冷却機構14、16、18には、冷風送風装置や冷蔵庫を用い、約10℃(熱硬化性樹脂が粘着性を示さない温度に相当)にて冷却を行った。また、加熱機構15、17、19には、ハロゲンヒータや赤外線ヒータ等を用い、約45℃から50℃(熱硬化性樹脂が粘着性を示す温度以上硬化温度以下に相当)にて加熱を行った。また、加圧ローラ11、12、13には、1MPa以下程度の圧力負荷を印加した。この結果、図4に示すように、互いに隣接して積層するプリプレグシートのそれぞれの繊維方向が交差し、さらに、各シートにおいて幅方向長さに過不足なく精度良く揃った状態の積層構造が得られた。   Using the prepreg original fabric 3 impregnated with any one of epoxy resin, unsaturated polyester resin, and epoxy acrylate resin by the apparatus shown in FIG. 3, the fiber direction angle is 0 ° (prepreg original fabric 3), − A four-layer laminate was manufactured at 45 ° (raw piece 4), 45 ° (raw piece 5), and 90 ° (raw piece 6). At this time, the cooling mechanisms 14, 16, and 18 were cooled at about 10 ° C. (corresponding to a temperature at which the thermosetting resin does not exhibit adhesiveness) using a cold air blower or a refrigerator. In addition, a halogen heater, an infrared heater, or the like is used for the heating mechanisms 15, 17, and 19, and heating is performed at about 45 ° C. to 50 ° C. (corresponding to a temperature at which the thermosetting resin exhibits adhesiveness and below a curing temperature). It was. Further, a pressure load of about 1 MPa or less was applied to the pressure rollers 11, 12, and 13. As a result, as shown in FIG. 4, the laminated fiber structure in which the fiber directions of the prepreg sheets laminated adjacent to each other intersect each other, and the lengths in the width direction of each sheet are accurately aligned without excess or deficiency is obtained. It was.

図3に示す装置により、ポリプロピレン、ポリエチレンなどのポリオレフィン樹脂、ナイロン樹脂、ポリカーボネート樹脂のいずれかの熱可塑性樹脂を含浸させたプリプレグ原反3を用い、繊維方向角度0°(プリプレグ原反3)、-45°(原反小片4)、45°(原反小片5)、90°(原反小片6)による4層積層体を製作した。このとき、冷却機構14、16、18には、冷風送風装置や冷蔵庫を用い、約100℃(熱可塑性樹脂の溶融温度以下に相当)にて冷却を行った。また、加熱機構15、17、19には、ハロゲンヒータや赤外線ヒータを用い、約150℃から220℃(熱可塑性樹脂の溶融温度以上に相当)にて加熱を行った。また、加圧ローラ11、12、13には、1MPa以下程度の圧力負荷を印加した。この結果、図4に示すように、互いに隣接して積層するプリプレグシートのそれぞれの繊維方向が交差し、さらに、各シートにおいて幅方向長さに過不足なく精度良く揃った状態の積層構造が得られた。   By using the prepreg original fabric 3 impregnated with a thermoplastic resin of any of polyolefin resins such as polypropylene and polyethylene, nylon resin, and polycarbonate resin by using the apparatus shown in FIG. 3, the fiber direction angle is 0 ° (prepreg original fabric 3), Four-layer laminates were produced at -45 ° (raw fabric piece 4), 45 ° (raw fabric piece 5), and 90 ° (raw fabric piece 6). At this time, the cooling mechanisms 14, 16, and 18 were cooled at about 100 ° C. (corresponding to the melting temperature of the thermoplastic resin or lower) using a cold air blower or a refrigerator. In addition, a halogen heater or an infrared heater was used for the heating mechanisms 15, 17, and 19, and heating was performed at about 150 ° C. to 220 ° C. (corresponding to the melting temperature of the thermoplastic resin or higher). Further, a pressure load of about 1 MPa or less was applied to the pressure rollers 11, 12, and 13. As a result, as shown in FIG. 4, the laminated fiber structure in which the fiber directions of the prepreg sheets laminated adjacent to each other intersect each other, and the lengths in the width direction of each sheet are accurately aligned without excess or deficiency is obtained. It was.

本発明は、一方向性プリプレグ原反を用いた繊維強化プラスチックの製造に活用可能である。   INDUSTRIAL APPLICATION This invention can be utilized for manufacture of the fiber reinforced plastic using a unidirectional prepreg original fabric.

本発明の第1工程を示す工程図(a-1)繊維方向角度-45°の原反小片を切断する模式図(a-2)(a-1)により得られる繊維方向角度-45°の原反小片(b-1)繊維方向角度45°の原反小片を切断する模式図(b-2)(b-1)により得られる繊維方向角度45°の原反小片(c-1)繊維方向角度90°の原反小片を切断する模式図(c-2)(c-1)により得られる繊維方向角度90°の原反小片Process drawing showing the first step of the present invention (a-1) Schematic diagram (a-2) for cutting a raw fabric piece having a fiber direction angle of -45 ° (a-1) Fiber direction angle of -45 ° obtained by (a-1) Original fabric piece (b-1) Schematic diagram (b-2) obtained by cutting an original fabric piece having a fiber direction angle of 45 ° (b-1) Original fabric piece (c-1) fiber having a fiber direction angle of 45 ° obtained by (b-1) Schematic drawings (c-2) and (c-1) for cutting a raw fabric piece having a direction angle of 90 °. 本発明の第2工程を示す工程図Process drawing showing the second step of the present invention (a)〜(d)本発明の第3工程を示す工程図(A)-(d) Process drawing which shows the 3rd process of this invention. 本発明による4層積層構造の完成斜視図Complete perspective view of a four-layer laminate structure according to the present invention 熱可塑性樹脂を用いたときの繊維強化プラスチック製造装置Fiber reinforced plastic manufacturing equipment using thermoplastic resin

符号の説明Explanation of symbols

1 繊維方向
2 長手方向(長尺方向)
3 プリプレグ原反
4 5 6 原反小片
11 12 13 加圧ローラ
14 16 18 冷却機構
15 17 19 加熱機構
W 長尺幅、切断間隔
1 Fiber direction 2 Longitudinal direction (long direction)
3 Prepreg original fabric 4 5 6 Original fabric piece 11 12 13 Pressure roller 14 16 18 Cooling mechanism 15 17 19 Heating mechanism W Long width, cutting interval

Claims (1)

樹脂を含浸させた一方向性連続繊維を含む繊維強化樹脂シートを複数積層し、互いに隣接して積層する前記シートのそれぞれの繊維方向が交差する構造を含む繊維強化プラスチックを製造する方法であって、
繊維強化樹脂シート原反として、長手方向と繊維方向とが一致する、長尺の連続繊維を使用するものにおいて、
該長尺連続繊維の幅と略同一の長さを切断間隔として、繊維方向に対して所定の角度に、前記原反を切断する第1工程と、
切断した原反から成る原反小片を、それぞれ繊維方向を揃えると共に切断間隔を長尺幅に合致させた状態で、繊維方向の異なる長尺連続繊維上に、連続して載置する第2工程と、
連続載置した原反小片から成る長尺体を、下地の長尺連続繊維とともに、温度制御し加圧する第3工程と、
を備えることを特徴とする繊維強化プラスチックの製造方法。
A method for producing a fiber reinforced plastic comprising a structure in which a plurality of fiber reinforced resin sheets containing unidirectional continuous fibers impregnated with a resin are laminated, and the respective fiber directions of the sheets laminated adjacent to each other intersect. ,
As a fiber reinforced resin sheet raw fabric, in which the longitudinal direction and the fiber direction match, in which long continuous fibers are used,
A first step of cutting the raw fabric at a predetermined angle with respect to the fiber direction, with a length substantially the same as the width of the continuous continuous fiber as a cutting interval;
A second step of continuously placing the raw fabric pieces made of the cut raw fabric on the long continuous fibers having different fiber directions in a state where the fiber directions are aligned and the cutting intervals are matched to the long width. When,
A third step of controlling the temperature and pressurizing the long body composed of the continuously placed raw fabric pieces together with the continuous long continuous fibers;
A method for producing a fiber-reinforced plastic, comprising:
JP2005001266A 2005-01-06 2005-01-06 Method for producing fiber-reinforced plastic Pending JP2006188597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001266A JP2006188597A (en) 2005-01-06 2005-01-06 Method for producing fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001266A JP2006188597A (en) 2005-01-06 2005-01-06 Method for producing fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2006188597A true JP2006188597A (en) 2006-07-20

Family

ID=36796094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001266A Pending JP2006188597A (en) 2005-01-06 2005-01-06 Method for producing fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2006188597A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289619A (en) * 2005-04-05 2006-10-26 Fukui Prefecture Method and apparatus for manufacturing multi-axial multilayered reinforced sheet
JP2009523083A (en) * 2006-09-06 2009-06-18 ポリストランド インコーポレイティッド Composite laminate and its manufacturing method
CN104119688A (en) * 2013-04-28 2014-10-29 安特普工程塑料(苏州)有限公司 Long fiber-reinforced thermoplastic color master batch and preparation method thereof
JP5737428B2 (en) * 2012-10-23 2015-06-17 三菱レイヨン株式会社 Fiber-reinforced composite material molded body and method for producing the same
WO2015152331A1 (en) * 2014-04-02 2015-10-08 株式会社Ihi Pre-preg sheet lamination device
WO2018088173A1 (en) * 2016-11-11 2018-05-17 株式会社Ihi Prepreg sheet manufacturing apparatus
KR20180130343A (en) * 2017-05-29 2018-12-07 (주)엘지하우시스 Equipment for manufacturing continuous fiber reinforced composite material
KR20190031909A (en) * 2017-09-19 2019-03-27 (주)엘지하우시스 Fiber reinforced plastic composite sheet, method for manufacturing the same and device for manufacturing the smae
CN112339276A (en) * 2019-08-06 2021-02-09 中国科学院宁波材料技术与工程研究所 Fiber-reinforced thermoplastic prepreg sheet lamination forming production line device and process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162642A (en) * 1980-05-21 1981-12-14 Toray Industries Two-layer preimpregnated sheet
JPS6245629A (en) * 1985-08-23 1987-02-27 Mitsubishi Rayon Co Ltd Carbon fiber prepreg for rib structure
JPH02153938A (en) * 1988-12-06 1990-06-13 Toshiba Mach Co Ltd Production of prepreg sheet having different fiber angle or laminator therefor
JPH02501997A (en) * 1987-08-03 1990-07-05 アライド‐シグナル・インコーポレーテッド Composite materials and articles using short fibers
JPH07214714A (en) * 1994-02-07 1995-08-15 Mitsui Toatsu Chem Inc Laminated body and its manufacture of fibre-reinforced resin sheet
JPH07227841A (en) * 1994-02-21 1995-08-29 Asahi Chem Ind Co Ltd Production of continuous angular thermoplastic resin prepreg
JPH0919964A (en) * 1995-05-01 1997-01-21 Mitsui Toatsu Chem Inc Manufacture of laminated sheet
JPH1076622A (en) * 1996-08-05 1998-03-24 Boeing North American Inc Method and apparatus for superposing second crossplied tape segment on first carrier tape
WO1998044017A1 (en) * 1997-03-27 1998-10-08 Mitsubishi Rayon Co., Ltd. Epoxy resin composition for frp, prepreg, and tubular molding produced therefrom
JP2876244B2 (en) * 1990-05-10 1999-03-31 東芝機械株式会社 Arbitrary fiber prepreg manufacturing equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162642A (en) * 1980-05-21 1981-12-14 Toray Industries Two-layer preimpregnated sheet
JPS6245629A (en) * 1985-08-23 1987-02-27 Mitsubishi Rayon Co Ltd Carbon fiber prepreg for rib structure
JPH02501997A (en) * 1987-08-03 1990-07-05 アライド‐シグナル・インコーポレーテッド Composite materials and articles using short fibers
JPH02153938A (en) * 1988-12-06 1990-06-13 Toshiba Mach Co Ltd Production of prepreg sheet having different fiber angle or laminator therefor
JP2876244B2 (en) * 1990-05-10 1999-03-31 東芝機械株式会社 Arbitrary fiber prepreg manufacturing equipment
JPH07214714A (en) * 1994-02-07 1995-08-15 Mitsui Toatsu Chem Inc Laminated body and its manufacture of fibre-reinforced resin sheet
JPH07227841A (en) * 1994-02-21 1995-08-29 Asahi Chem Ind Co Ltd Production of continuous angular thermoplastic resin prepreg
JPH0919964A (en) * 1995-05-01 1997-01-21 Mitsui Toatsu Chem Inc Manufacture of laminated sheet
JPH1076622A (en) * 1996-08-05 1998-03-24 Boeing North American Inc Method and apparatus for superposing second crossplied tape segment on first carrier tape
WO1998044017A1 (en) * 1997-03-27 1998-10-08 Mitsubishi Rayon Co., Ltd. Epoxy resin composition for frp, prepreg, and tubular molding produced therefrom

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289619A (en) * 2005-04-05 2006-10-26 Fukui Prefecture Method and apparatus for manufacturing multi-axial multilayered reinforced sheet
US9593917B2 (en) 2006-09-06 2017-03-14 Polyone Corporation Composite laminate and method of manufacture
JP2009523083A (en) * 2006-09-06 2009-06-18 ポリストランド インコーポレイティッド Composite laminate and its manufacturing method
US8753733B2 (en) 2006-09-06 2014-06-17 Gordon Holdings, Inc. Composite laminate and method of manufacture
US10252505B2 (en) 2006-09-06 2019-04-09 Polyone Corporation Method of manufacturing a composite laminate
JP5737428B2 (en) * 2012-10-23 2015-06-17 三菱レイヨン株式会社 Fiber-reinforced composite material molded body and method for producing the same
CN104119688A (en) * 2013-04-28 2014-10-29 安特普工程塑料(苏州)有限公司 Long fiber-reinforced thermoplastic color master batch and preparation method thereof
KR20180102699A (en) * 2014-04-02 2018-09-17 가부시키가이샤 아이에이치아이 Pre-preg sheet lamination device
WO2015152331A1 (en) * 2014-04-02 2015-10-08 株式会社Ihi Pre-preg sheet lamination device
TWI586510B (en) * 2014-04-02 2017-06-11 Ihi股份有限公司 Laminating apparatus of prepreg sheet
CN106029318B (en) * 2014-04-02 2017-12-26 株式会社Ihi Presoak sheet material stacked laminator
KR101998539B1 (en) * 2014-04-02 2019-07-09 가부시키가이샤 아이에이치아이 Pre-preg sheet lamination device
CN106029318A (en) * 2014-04-02 2016-10-12 株式会社Ihi Pre-preg sheet lamination device
JPWO2015152331A1 (en) * 2014-04-02 2017-04-13 株式会社Ihi Prepreg sheet laminating equipment
TWI640411B (en) * 2016-11-11 2018-11-11 Ihi Corporation Prepreg sheet manufacturing apparatus
KR20190056404A (en) * 2016-11-11 2019-05-24 가부시키가이샤 아이에이치아이 Prepreg sheet manufacturing apparatus
CN109922946A (en) * 2016-11-11 2019-06-21 株式会社Ihi Presoak sheet production apparatus
WO2018088173A1 (en) * 2016-11-11 2018-05-17 株式会社Ihi Prepreg sheet manufacturing apparatus
KR102214447B1 (en) 2016-11-11 2021-02-08 가부시키가이샤 아이에이치아이 Prepreg sheet manufacturing equipment
CN109922946B (en) * 2016-11-11 2021-05-18 株式会社Ihi Prepreg sheet manufacturing apparatus
KR20180130343A (en) * 2017-05-29 2018-12-07 (주)엘지하우시스 Equipment for manufacturing continuous fiber reinforced composite material
KR102225627B1 (en) * 2017-05-29 2021-03-08 (주)엘지하우시스 Equipment for manufacturing continuous fiber reinforced composite material
KR20190031909A (en) * 2017-09-19 2019-03-27 (주)엘지하우시스 Fiber reinforced plastic composite sheet, method for manufacturing the same and device for manufacturing the smae
KR102184469B1 (en) 2017-09-19 2020-11-30 (주)엘지하우시스 Fiber reinforced plastic composite sheet, method for manufacturing the same and device for manufacturing the smae
CN112339276A (en) * 2019-08-06 2021-02-09 中国科学院宁波材料技术与工程研究所 Fiber-reinforced thermoplastic prepreg sheet lamination forming production line device and process
CN112339276B (en) * 2019-08-06 2022-11-15 中国科学院宁波材料技术与工程研究所 Fiber-reinforced thermoplastic prepreg sheet lamination forming production line device and process

Similar Documents

Publication Publication Date Title
JP2006188597A (en) Method for producing fiber-reinforced plastic
JP6222370B2 (en) Manufacturing method of fiber reinforced composite material
EP2941344B1 (en) Fabrication of reinforced thermoplastic composite parts
JP5646089B2 (en) Preform manufacturing method and fiber reinforced plastic molded body manufacturing method
KR20040000297A (en) Method and device for producing laminated composite
JP6935621B2 (en) Laminating equipment and laminating method for prepreg tape
US11597168B2 (en) Thin-layer tape automated lamination method and device
JP6432689B2 (en) Composite material manufacturing method, composite material manufacturing apparatus, composite material preform and composite material
JP2011516752A (en) Manufacturing method of fiber preform
JP2008290421A (en) Manufacturing method of molding comprising prepreg laminate
JP6411677B1 (en) Manufacturing method of composite material part and composite material part manufacturing apparatus
JP2007276453A (en) Reinforcing fiber substrate laminate and manufacturing method thereof
JP7449084B2 (en) Electromagnetic induction welding equipment and related joining methods for joining composite materials
US20090151865A1 (en) Jig and out-of-autoclave process for manufacturing composite material structures
JP2006256202A (en) Substrate for preform and its manufacturing method
WO2020138473A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
JP4873879B2 (en) Manufacturing method and manufacturing apparatus for multi-axis multilayer reinforcing sheet
JP2010253714A (en) Method of molding fiber-reinforced plastics
JP2011084008A (en) Molding method of fiber reinforced plastic laminate
JP6411673B1 (en) Manufacturing method of composite material part and composite material part manufacturing apparatus
WO2018135424A1 (en) Method for manufacturing fiber-reinforced plastic
JP6935620B2 (en) Automatic laminating method and equipment for thin-layer prepreg tape
JP7300698B2 (en) Prepreg manufacturing method and manufacturing apparatus
JP5671314B2 (en) Lamination method and forming method of textile base material and thermoplastic resin
JP6675231B2 (en) Preform for fiber reinforced plastic and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228