JP2006183250A - Building having aseismatic reinforcing structure and aseismatic reinforcing method of building - Google Patents

Building having aseismatic reinforcing structure and aseismatic reinforcing method of building Download PDF

Info

Publication number
JP2006183250A
JP2006183250A JP2004375216A JP2004375216A JP2006183250A JP 2006183250 A JP2006183250 A JP 2006183250A JP 2004375216 A JP2004375216 A JP 2004375216A JP 2004375216 A JP2004375216 A JP 2004375216A JP 2006183250 A JP2006183250 A JP 2006183250A
Authority
JP
Japan
Prior art keywords
reinforcement
existing
column
force
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375216A
Other languages
Japanese (ja)
Other versions
JP4597660B2 (en
Inventor
Hideshi Aono
Yuichi Kimura
Osamu Takahashi
Masaharu Takayama
Yasuo Tsuyuki
雄一 木村
保男 露木
英志 青野
正春 高山
治 高橋
Original Assignee
Kayaba Ind Co Ltd
Kozo Keikaku Engineering Inc
Taisei Corp
カヤバ工業株式会社
大成建設株式会社
株式会社構造計画研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Ind Co Ltd, Kozo Keikaku Engineering Inc, Taisei Corp, カヤバ工業株式会社, 大成建設株式会社, 株式会社構造計画研究所 filed Critical Kayaba Ind Co Ltd
Priority to JP2004375216A priority Critical patent/JP4597660B2/en
Publication of JP2006183250A publication Critical patent/JP2006183250A/en
Application granted granted Critical
Publication of JP4597660B2 publication Critical patent/JP4597660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building and an aseismatic reinforcing method for arranging a seismic response control structure part in the building, capable of aseismatically reinforcing an existing skeleton structure by a seismic response control device, without reinforcing a member cross section of an existing column of respective layers. <P>SOLUTION: This multilayer building has an aseismatic reinforcing structure for arranging the seismic response control structure part in the existing skeleton structure. The aseismatic reinforcing structure is constituted by arranging the seismic response control structure part in an opening part surrounded by mutually opposed existing columns of the existing skeleton structure and upper-lower existing beams horizontally installed between these existing columns. The seismic response control structure part is composed of a reinforcing skeleton part having a damper. The damper constitutes damper restoring force for gradually reducing damping force in a predetermined damping force-reducing gradient for increasing deformation in a deformation area between a predetermined damping force reduction starting deformation point and a stroke end. The existing column constitutes a column-less yield strength reinforcing structure even after reinforcement by reducing column adding axial force acting on the existing column connected with the seismic response control structure part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は既存骨組構造体に制震構造部を配設する耐震補強構造を有する多層の建物および建物に制震構造部を配設する耐震補強方法に関するものである。   The present invention relates to a multi-layer building having a seismic strengthening structure in which a seismic structure is disposed in an existing frame structure and a seismic strengthening method in which the seismic structure is disposed in a building.
従来、新築の建物の制震構造のひとつとして、制震構造部としてオイルダンパを組み込んだブレース型の制震装置が数多く提案、実施されている。ここで、柱と梁によるラーメン骨組に、オイルダンパを備えたブレース型の制震装置を組み込むと、制震装置が減衰力を負担するので、建物全体の耐震性能が向上する。
しかし、図12に示すように、オイルダンパの減衰力・変位に関する復元力特性は、上下がカットされたほぼ矩形状に表出されることが周知されている。
したがって、オイルダンパが高速で伸縮する場合には、一方向から他方向に反転するいわゆる間際に極めて大きい層剪断力が発生するので、ラーメン骨組では、柱・梁仕口部を補強する必要性があった。
そこで、本出願人は、先に、オイルダンパが所定領域での伸縮時に所定の大きさの減衰力を発生する一方で、所定領域を超えてストロークエンド近傍領域で上記した所定の大きさの減衰力を漸減させるように構成されてなることを特徴とする「減少制震型」制震装置を提案した(特許文献1参照)。
Conventionally, as one of the vibration control structures of newly built buildings, many brace-type vibration control devices incorporating an oil damper as a vibration control structure have been proposed and implemented. Here, when a brace type vibration control device equipped with an oil damper is incorporated into a frame frame made of columns and beams, the vibration control device bears a damping force, so that the seismic performance of the entire building is improved.
However, as shown in FIG. 12, it is well known that the restoring force characteristic regarding the damping force / displacement of the oil damper is expressed in a substantially rectangular shape with the top and bottom cut off.
Therefore, when the oil damper expands and contracts at high speed, a very large layer shear force is generated just before the other direction reverses from one direction to the other. Therefore, it is necessary to reinforce the column / beam joint in the ramen frame. there were.
Therefore, the applicant firstly, the oil damper generates a damping force having a predetermined magnitude when the oil damper expands and contracts in the predetermined area, while the above-mentioned damping of the predetermined magnitude exceeds the predetermined area in the vicinity of the stroke end. A "decreasing vibration control type" vibration control device characterized by being configured to gradually reduce the force has been proposed (see Patent Document 1).
特開2003−227243号公報JP 2003-227243 A
しかし、上記減少制震型制震装置は、柱と上下の梁とによって囲まれた開口部にブレース材(斜材)を配置した骨組において、ブレース材の部材軸方向の中間に上記ダンパを組み込んだものであり、層せん断力(水平力)に着目してピーク部を有しない特性にすることによって、柱・梁仕口部を従来技術による場合よりも軽微に構成し得るものである。
したがって、上記減少制震型制震装置を、既存骨組構造体を有する多層の既存建物の耐震補強に適用する場合を記載していない。
本発明は、各層の既存柱の部材断面補強することなく、既存骨組構造体を制震装置によって耐震補強することができる建物および建物に制震構造部を配設する耐震補強方法を提供することを目的とする。
However, the above-mentioned seismic reduction control device incorporates the damper in the middle of the brace member axial direction in the frame in which the brace material (diagonal material) is arranged in the opening surrounded by the column and the upper and lower beams. However, by focusing on the layer shear force (horizontal force) and making it a characteristic that does not have a peak portion, the column / beam joint can be made lighter than in the case of the prior art.
Therefore, it does not describe the case where the reduced seismic control system is applied to the seismic reinforcement of a multi-layer existing building having an existing frame structure.
The present invention provides a building capable of seismically reinforcing an existing frame structure with a seismic control device without reinforcing the cross-section of the existing pillars in each layer, and a seismic strengthening method for disposing the seismic structure in the building. With the goal.
(1)上述の目的を達成するため、本発明は、既存骨組構造体に制震構造部を配設する耐震補強構造を有する多層の建物であって、耐震補強構造は、既存骨組構造体の相対向する既存柱とこれらの既存柱間に横架される上下の既存梁とによって囲まれた開口部に制震構造部を配設して構成され、制震構造部は、ダンパを備えた補強骨組部によって構成され、ダンパは、所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配で漸減するダンパ復元力を構成し、制震構造部が連結している既存柱に作用する柱付加軸力を軽減することによって、既存柱は、補強後においても、無・柱耐力補強構造を構成する。
(2)また、制震構造部は、補強後の層間水平変形と、制震構造部が連結している既存柱に作用する補強後の柱付加軸力に関する復元力特性を構成し、前記復元力特性において、所定の柱付加軸力・減少開始変形点とダンパのストロ−クエンドとの間の変形領域において、補強後の層間水平変形が増加するにつれて既存柱の補強後の柱付加軸力が、所定の柱付加軸力・減少勾配で漸減するように構成し、既存柱は補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されることが好ましい。
(3)補強前の既存柱についての補強前の層間水平変形と補強前の柱付加軸力に関する第一の復元力特性と、補強後の制震構造部についての補強後の層間水平変形と制震構造部と連結している既存柱に作用する補強後の柱付加軸力に関する第二の復元力特性とを組み合わせて、補強後の既存柱について、補強後の層間水平変形と補強後の柱付加軸力に関する第三の復元力特性を構成し、第三の復元力特性において、制震構造部の所定の柱付加軸力・減少開始変形点に対応する点と、補強前の既存骨組構造体の最大層間水平変形時に対応する点との間の変形領域において、既存柱は補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されることが好ましい。
(4)既存骨組構造体は、最下層に杭基礎を有する基礎構造部を有し、最下層の既存柱において、補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されたことによって、基礎構造部は、補強後においても、無・増打ち杭補強構造を構成していることが好ましい。
(5)建物は、建物の塔状比(建物の最高高さ/建物の幅)が2を超えるような細長い正面形状を有する高層建物であることが好ましい。
(6)更に、本発明に係わる耐震補強方法は、既存骨組構造体を有する多層の建物に制震構造部を配設する耐震補強方法であって、制震構造部を、補強柱と補強梁を備えた補強骨組部と、ダンパとによって構成し、ダンパを、所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配で漸減するダンパ復元力を有するように構成し、既存骨組構造体の相対向する既存柱とこれらの既存柱間に横架される上下の既存梁とによって囲まれた開口部に制震構造部を配設し、補強後に制震構造部が連結している既存柱に作用する柱付加軸力を軽減することによって、既存柱は、補強後においても、無・柱耐力補強構造を構成している。
(1) In order to achieve the above-mentioned object, the present invention is a multi-layer building having a seismic reinforcement structure in which a vibration control structure is disposed on an existing frame structure, and the seismic reinforcement structure is an existing frame structure. A damping structure is arranged in the opening surrounded by the existing columns facing each other and the upper and lower existing beams that are installed between these existing columns. The damping structure is equipped with a damper. The damper is constituted by a reinforcing frame, and the damper is a damper in which the damping force gradually decreases at a predetermined damping force / decreasing gradient as the deformation increases in a deformation region between the predetermined damping force / decreasing start deformation point and the stroke end. By constructing a restoring force and reducing the additional axial force acting on the existing columns to which the seismic control structure is connected, the existing columns form a no-column strength reinforcement structure even after reinforcement.
(2) In addition, the seismic control structure comprises a restoring force characteristic related to the inter-layer horizontal deformation after reinforcement and the post-reinforcement column additional axial force acting on the existing column connected to the seismic control structure, and In the force characteristics, the post-reinforcement column additional axial force of the existing column increases as the inter-layer horizontal deformation increases in the deformation region between the predetermined post-column additional axial force / decay start deformation point and the damper stroke end. Preferably, the existing column is configured to gradually decrease with a predetermined column additional axial force / decrease gradient, and the existing column is configured such that the post-reinforcing column additional axial force does not exceed the pre-reinforcing column additional axial force.
(3) The first restoring force characteristics regarding the inter-layer horizontal deformation before reinforcement and the additional axial force before reinforcement for the existing column before reinforcement, and the horizontal deformation and damping after reinforcement for the seismic structure after reinforcement Combined with the second restoring force characteristics of post-reinforcement column additional axial force acting on the existing column connected to the seismic structure part, the post-reinforcement horizontal horizontal deformation and post-reinforcement column Consists of the third restoring force characteristics related to the additional axial force. In the third restoring force characteristic, the point corresponding to the predetermined column additional axial force and the decrease starting deformation point of the damping structure, and the existing frame structure before reinforcement It is preferable that the existing column is configured such that the post-reinforcement column additional axial force does not exceed the post-reinforcement column additional axial force in a deformation region between points corresponding to the maximum horizontal horizontal deformation of the body.
(4) The existing frame structure has a foundation structure with a pile foundation in the lowest layer, and in the existing pillar in the lowest layer, the post-reinforcement column additional axial force does not exceed the column additional axial force before reinforcement. By being comprised, it is preferable that the foundation structure part comprises the non-addition pile pile reinforcement structure even after reinforcement.
(5) The building is preferably a high-rise building having an elongated front shape such that the tower ratio of the building (the maximum height of the building / the width of the building) exceeds 2.
(6) Furthermore, the seismic strengthening method according to the present invention is a seismic strengthening method in which a seismic structure is disposed in a multi-layered building having an existing frame structure. The seismic structure is composed of a reinforcing column and a reinforcing beam. The damper is composed of a reinforcing frame having a damper, and the damper has a predetermined damping force as the deformation increases in the deformation region between the predetermined damping force / decreasing start deformation point and the stroke end. -It is configured to have a damper restoring force that gradually decreases with a decreasing gradient, and is controlled by an opening surrounded by the existing columns facing each other of the existing frame structure and the upper and lower existing beams that are laid horizontally between these existing columns. By installing the seismic structure and reducing the additional axial force acting on the existing columns to which the seismic control structure is connected after reinforcement, the existing columns will have a no-column strength reinforcement structure even after reinforcement. It is composed.
(1)請求項1に係る発明は、既存骨組構造体に制震構造部を配設する耐震補強構造を有する多層の建物であって、制震構造部のダンパは、所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配で漸減するダンパ復元力を構成し、制震構造部が連結している既存柱に作用する柱付加軸力を軽減することによって、既存柱は、補強後においても、無・柱耐力補強構造を構成しているので、
所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域においては、制震構造部は減衰力によって既存柱の負担せん断力(水平力)を軽減するとともに、補強後に既存柱に生じる柱付加軸力が補強前の柱付加軸力を超えないようすることができる。
したがって、補強後において、階高の全長に亘って既存柱の「柱部材としての断面耐力の耐震補強を必要としないこと」、すなわち、「無・柱耐力補強構造」を構成することは、既存の建物を耐震補強によって耐震性能を高めて継続使用する可能性を著しく増大させるので、その技術的効果及び経済的効果は極めて高い。
既存骨組構造体は、補強前と補強後においても、大地震時の崩壊メカニズムを同一に維持することができるので、耐震性能が向上するとともに、その安定性も保持することができる。
地震時に基礎構造部に生じる転倒曲げモーメントが大幅に削減されるので、基礎構造部の引き抜き抵抗力を高める補強構造(基礎フーチングの自重を大きくする、新たな杭を増し打ちするなど)が不要となる。
更に、制震構造部を配設した補強後の既存骨組構造体について、地震応答解析の応答結果を低減することができる。
(2)請求項2に係る発明は、制震構造部は、補強後の層間水平変形と、制震構造部が連結している既存柱に作用する補強後の柱付加軸力に関する復元力特性を構成し、前記復元力特性において、所定の柱付加軸力・減少開始変形点とダンパのストロ−クエンドとの間の変形領域において、補強後の層間水平変形が増加するにつれて既存柱の補強後の柱付加軸力が、所定の柱付加軸力・減少勾配で漸減するように構成しているので、
既存柱は、補強後においても、柱部材断面耐力の耐震補強を必要としない「無・柱耐力補強構造」を確実に構成することができる。
(3)請求項3に係る発明は、第三の復元力特性において、制震構造部の所定の柱付加軸力・減少開始変形点に対応する点と、補強前の既存骨組構造体の最大層間水平変形時に対応する点との間の変形領域において、既存柱は補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されているので、層間水平変形が小さい時から最大となる、あらゆる地震レベルに対して、既存柱は、補強後の柱付加軸力が補強前の最大層間水平変形時における柱付加軸力を超えないように確実に構成される。
(4)請求項4に係る発明は、基礎構造部は、補強後においても、杭の増し打ち補強を必要としない「無・増打ち杭補強構造」を構成しているので、
実際の既存建物において杭の増し打ち補強は困難であるので、高層の既存建物を耐震補強する場合に極めて技術的効果及び経済的効果が高い。
(5)請求項5に係る発明は、建物は、建物の塔状比(建物の最高高さ/建物の幅)が2を超えるような細長い正面形状を有する高層建物であるので、
既存の高層建物であっても、最新の耐震設計基準に合致する耐震性能にレベルアップして、建物のライフサイクルを延長することができる。
本発明は「無・柱耐力補強構造」、「無・増打ち杭補強構造」を構成するので、特に、建物の塔状比が2を超える高層建物の耐震補強構造に好適である。
(6)請求項6に係る発明は、既存骨組構造体を有する多層の建物に制震構造部を配設する耐震補強方法であって、制震構造部は、補強柱と補強梁を備えた補強骨組部と、ダンパとによって構成され、ダンパは、所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配で漸減するダンパ復元力を構成し、
相対向する既存柱とこれらの既存柱間に横架される上下の既存梁とによって囲まれた開口部に制震構造部を配設し、補強後において、「無・柱耐力補強構造」を構成するので、
補強工事が簡略化されて工期の短縮、工事費のコストダウンを実現することができる。
さらに、既存の建物を耐震補強によって耐震性能を高めて継続使用する可能性を著しく増大させるので、その技術的効果及び経済的効果は極めて高い。
(1) The invention according to claim 1 is a multi-layered building having a seismic reinforcement structure in which the seismic structure is disposed on the existing frame structure, and the damper of the seismic structure has a predetermined damping force / reduction In the deformation region between the starting deformation point and the stroke end, a damper restoring force is constructed in which the damping force gradually decreases with a predetermined damping force / decreasing gradient as the deformation increases, and the existing seismic control structure is connected. By reducing the additional axial force acting on the column, the existing column has a non-column strength reinforcement structure even after reinforcement.
In the deformation region between the predetermined damping force / decreasing start deformation point and the stroke end, the damping structure reduces the shear force (horizontal force) of the existing column by the damping force, and after the reinforcement, It is possible to prevent the generated column additional axial force from exceeding the column additional axial force before reinforcement.
Therefore, after reinforcement, the existing column “does not require the seismic reinforcement of the cross-sectional strength as a column member” over the entire length of the floor height, that is, constructing the “no-column strength reinforcement structure” Since the possibility of continuous use of this building with seismic reinforcement is improved significantly, its technical and economic effects are extremely high.
Since the existing frame structure can maintain the same collapse mechanism during a large earthquake before and after reinforcement, the seismic performance is improved and the stability can be maintained.
Since the overturning bending moment that occurs in the foundation structure during an earthquake is greatly reduced, there is no need for a reinforcing structure that increases the pulling resistance of the foundation structure (such as increasing the weight of the foundation footing or increasing the number of new piles) Become.
Furthermore, the response result of the seismic response analysis can be reduced with respect to the existing frame structure after reinforcement in which the damping structure is disposed.
(2) The invention according to claim 2 is characterized in that the damping structure portion includes the horizontal deformation after reinforcement, and the restoring force characteristics relating to the post-reinforcement column additional axial force acting on the existing column connected to the damping structure portion. In the restoring force characteristic, in the deformation region between the predetermined column additional axial force / decreasing start deformation point and the stroke end of the damper, after the reinforcement of the existing column as the interlayer horizontal deformation after reinforcement increases Since the column additional axial force is gradually reduced with a predetermined column additional axial force / decreasing gradient,
Even after reinforcement, the existing column can reliably constitute a “no-column-column strength reinforcement structure” that does not require seismic reinforcement of the column member cross-sectional strength.
(3) The invention according to claim 3 is characterized in that, in the third restoring force characteristic, the point corresponding to the predetermined column additional axial force / decrease start deformation point of the damping structure and the maximum of the existing frame structure before reinforcement In the deformation area between the points corresponding to the interlayer horizontal deformation, the existing column is configured so that the post-reinforcement column additional axial force does not exceed the post-reinforcement column additional axial force. For all seismic levels that are the largest, the existing column is reliably configured so that the post-reinforcement column additional axial force does not exceed the maximum post-reinforcement column additional axial force.
(4) Since the invention according to claim 4 constitutes the “no-increase pile reinforcement structure” in which the foundation structure portion does not require additional pile reinforcement even after reinforcement,
Since it is difficult to reinforce piles in actual existing buildings, the technical and economic effects are extremely high when earthquake-proofing high-rise existing buildings.
(5) In the invention according to claim 5, the building is a high-rise building having an elongated front shape such that the tower ratio of the building (the maximum height of the building / the width of the building) exceeds 2.
Even existing high-rise buildings can be upgraded to seismic performance that meets the latest seismic design standards, extending the life cycle of the building.
Since the present invention constitutes a “no-column strength reinforcement structure” and a “no-addition pile reinforcement structure”, it is particularly suitable for an earthquake-proof reinforcement structure for high-rise buildings in which the tower ratio of the building exceeds 2.
(6) The invention according to claim 6 is a seismic strengthening method for disposing a vibration control structure in a multi-layered building having an existing frame structure, and the vibration control structure includes a reinforcing column and a reinforcing beam. The damper includes a reinforcing frame portion and a damper. The damper has a predetermined damping force / decreasing gradient as the deformation increases in a deformation region between a predetermined damping force / decreasing start deformation point and the stroke end. The damper restoring force gradually decreases at
A damping structure is placed in the opening surrounded by the existing columns facing each other and the existing beams above and below that are installed between the existing columns. Because we configure
Reinforcement work can be simplified to shorten the construction period and reduce the construction cost.
Furthermore, since the possibility of continuing to use existing buildings with seismic reinforcement is improved significantly by seismic reinforcement, the technical and economic effects are extremely high.
本発明の好ましい実施の形態について実施例を挙げ、図面を参照して説明する。なお、各図において同じ要素には同じ符号を用い、適宜その説明を省略する場合がある。     The preferred embodiments of the present invention will be described with reference to the accompanying drawings. Note that the same reference numerals are used for the same elements in the drawings, and description thereof may be omitted as appropriate.
以下、本発明にかかる実施例を、図1ないし図11を参照して説明する。     Embodiments according to the present invention will be described below with reference to FIGS.
図1(a)に示すように、多層の建物1は、各層(基準階)の平面形状が、はり間方向(Y方向)に3スパン、桁行方向(X方向)に7スパンの略矩形平面形を形成した、地上30階建ての既存建物である。
補強前の既存骨組構造体2は、はり間方向、桁行方向とも、既存柱21と既存梁22から成るラーメン構造を構成している(図1(a))。
補強前の既存骨組構造体2は、はり間方向では3スパン、地上30階建ての既存柱21と既存梁22から成る純ラーメン構造を形成している。
既存骨組構造体2の骨組構造体とは、柱、梁などのラーメン骨組が一般的であるが、耐震壁、制震壁、壁ブレース、壁式ラーメン構造などの面部材を組み合わせた架構であっても良く、地震力などの外力に対して構造設計上抵抗し得る構造体を言う。
建物1は、集合住宅、事務所、ホテル、商業施設、医療施設などの幅広い建物用途に適用される。
建物1の平面形状も、矩形平面形に限定されず、板状平面形、内部に吹き抜け空間を有する形状(ロ字形,C字形)などの建物でもよい。
尚、本実施例の建物1は、地下階の無い場合について説明するが、地下階を設けた場合でも良い。
As shown in FIG. 1 (a), the multi-layer building 1 has a substantially rectangular plane in which the plane shape of each layer (reference floor) is 3 spans in the beam-to-beam direction (Y direction) and 7 spans in the digit direction (X direction). It is an existing building with 30 floors above the ground.
The existing frame structure 2 before reinforcement forms a rigid frame structure composed of the existing columns 21 and the existing beams 22 in both the beam-to-beam direction and the cross-beam direction (FIG. 1A).
The existing frame structure 2 before reinforcement forms a pure ramen structure composed of the existing pillar 21 and the existing beam 22 having three spans in the direction between the beams and 30 stories above the ground.
The frame structure of the existing frame structure 2 is generally a ramen frame such as a column or a beam, but it is a frame that combines surface members such as earthquake resistant walls, vibration control walls, wall braces, and wall-type frame structures. It may be a structure that can resist structural forces against external forces such as seismic force.
The building 1 is applied to a wide range of building uses such as collective housing, offices, hotels, commercial facilities, and medical facilities.
The planar shape of the building 1 is not limited to the rectangular planar shape, and may be a plate-like planar shape or a shape having a hollow space inside (b-shaped or C-shaped).
In addition, although the building 1 of a present Example demonstrates the case where there is no basement, the case where a basement is provided may be sufficient.
図2に示すように、建物1は、既存骨組構造体2と、既存骨組構造体2の最下階に杭基礎61を有する基礎構造部6を設けている。
基礎構造部6は、各既存柱21の直下に配置された杭基礎61と、隣接する杭基礎61、61同士を横方向に連結する基礎梁62によって構成される。
なお、基礎構造部6は、杭基礎61を設置しない直接基礎でも良い。
As shown in FIG. 2, the building 1 includes an existing frame structure 2 and a foundation structure 6 having a pile foundation 61 on the lowest floor of the existing frame structure 2.
The foundation structure 6 is constituted by a pile foundation 61 disposed immediately below each existing pillar 21 and a foundation beam 62 that connects adjacent pile foundations 61 and 61 in the lateral direction.
Note that the foundation structure 6 may be a direct foundation on which the pile foundation 61 is not installed.
補強後の既存骨組構造体2は、はり間方向に有効な制震構造部3を平面視2箇所配置して耐震補強構造を形成する(図1(b)参照)。
図2に示すように、建物1は、補強前(耐震補強前)の既存骨組構造体2に制震構造部3を組み込んだ耐震補強構造を形成する。
補強後(耐震補強後)のはり間方向では、3スパン、地上30階建ての既存骨組構造体2の、中央のスパンに制震構造部3を上下方向に複数階に積層して配設している。
本実施例では、補強後の既存骨組構造体2は、制震構造部3を上下方向に1階から最上階に至る複数階に連層して配設した1スパン30層の連層型制震構造体を構成している。
なお、本発明の制震構造部3の配置方法は、連層型に限定されず、たとえば、分散型であっても良い。
The existing frame structure 2 after reinforcement forms an earthquake-resistant reinforcement structure by arranging two vibration control structures 3 effective in the direction between the beams in plan view (see FIG. 1B).
As shown in FIG. 2, the building 1 forms a seismic reinforcement structure in which a vibration control structure 3 is incorporated into an existing frame structure 2 before reinforcement (before earthquake resistance reinforcement).
After reinforcement (after seismic strengthening), the existing frame structure 2 with 3 spans and 30 stories above the ground is arranged with multiple layers of damping structures 3 on the center span in the vertical direction. ing.
In this embodiment, the reinforced existing frame structure 2 has a 1-span 30-layer multi-story control system in which the vibration control structure 3 is arranged in multiple layers from the first floor to the top floor in the vertical direction. It constitutes a seismic structure.
In addition, the arrangement | positioning method of the damping structure 3 of this invention is not limited to a continuous layer type, For example, a distributed type may be sufficient.
制震構造部3は、ダンパ4を備えた補強骨組部によって構成される。
図3に示すように、制震構造部3は、既存骨組構造体2相対向する既存柱21、21とこれらの既存柱間21、21に横架される上下の既存梁22、22とによって囲まれた開口部に配設され、補強柱31と補強梁32と補強斜材33から成る補強骨組部と、ダンパ4とによって構成され、正面視では1スパン1層のユニットに形成されている。
2つの補強柱31、31は、所定の横方向(スパン方向)の距離を離隔して相対向して配置されるとともに、既存柱21、21に近接して縦方向部材(柱部材)として配置される。
2つの補強梁32、32は、所定の上下方向(階高方向)の距離を離隔して相対向して配置されるとともに、上下階の既存梁22、22に近接して横方向部材(梁部材)として配置される。
補強斜材33とダンパ4は、その部材軸方向が直線上に連結されてひとつの斜材を形成し、正面視、逆V字形の斜材(ブレース材)を形成している。
なお、本実施例の補強骨組部は、補強柱31と補強梁32と補強斜材33から成る場合について説明したが、補強斜材33を既存柱21、21または既存梁22、22に直接に取り付けて補強柱31と補強梁32を設けなくても良い。
ダンパ4と補強骨組部から成る制震構造部3は地震時にダンパ4がストロ−クして減衰力を発揮しうる構造体であれば良いので、補強骨組部とダンパ4がそれ自体で水平力を負担し得る安定した構造として構成しても良く、または、補強骨組部とダンパ4とが既存骨組構造体2(既存柱21、21、既存梁22、22)に取り付けられた段階で水平力を負担し得る安定した構造として構成しても良い。
The vibration control structure part 3 is constituted by a reinforcing frame part provided with a damper 4.
As shown in FIG. 3, the vibration control structure 3 is composed of existing columns 21, 21 opposite to each other of the existing frame structure 2, and upper and lower existing beams 22, 22 laid horizontally between these existing columns 21, 21. It is disposed in the enclosed opening, and is constituted by a reinforcing frame portion including a reinforcing column 31, a reinforcing beam 32, and a reinforcing diagonal member 33, and a damper 4, and is formed in a unit of one span and one layer in a front view. .
The two reinforcing columns 31 and 31 are arranged opposite to each other with a predetermined distance in the lateral direction (span direction), and arranged as a longitudinal member (column member) adjacent to the existing columns 21 and 21. Is done.
The two reinforcing beams 32 and 32 are arranged to face each other with a predetermined distance in the vertical direction (floor height direction), and in the vicinity of the existing beams 22 and 22 on the upper and lower floors, Member).
The reinforcing diagonal member 33 and the damper 4 are connected in a straight line to form a single diagonal member, forming a reverse V-shaped diagonal member (brace member) in front view.
In addition, although the reinforcement frame | skeleton part of a present Example demonstrated the case where it comprised the reinforcement pillar 31, the reinforcement beam 32, and the reinforcement diagonal member 33, the reinforcement diagonal member 33 is directly attached to the existing pillars 21 and 21 or the existing beams 22 and 22. The reinforcing column 31 and the reinforcing beam 32 may not be provided.
The damping structure 3 including the damper 4 and the reinforcing frame may be any structure that can exert a damping force by the damper 4 stroking during an earthquake, so that the reinforcing frame and the damper 4 themselves have a horizontal force. It may be configured as a stable structure capable of bearing the load, or a horizontal force is applied when the reinforcing frame portion and the damper 4 are attached to the existing frame structure 2 (existing columns 21, 21, and existing beams 22, 22). It may be configured as a stable structure that can bear the burden.
制震構造部3は、相対向する既存柱21、21とこれらの既存柱21、21間に横架される上下の既存梁22、22とによって囲まれた開口部に配設されている(図3参照)。
既存柱21と補強柱31の間に縦方向クリアランスCL1を形成し、既存梁22と補強梁32の間に横方向クリアランスCL2を形成して、縦方向クリアランスCL1および横方向クリアランスCL2にモルタルなどの充填材を充填する。
充填材は、モルタル、コンクリート、接着剤など所定の圧縮強度、接着強度を有する材料を言う。
既存柱21と補強柱31との間に作用する縦方向のせん断力、既存梁22と補強梁32との相互間に作用する横方向のせん断力を、前記充填材によって伝達するアンカーレス構造を構成することができる。
アンカーレス構造とは、既存柱21と補強柱31との相互間、または、既存梁22と補強梁32との相互間に作用するせん断力に対して、鉄筋、鋼製プレートなどの定着部材(アンカー)を配置しない構造をいう。
The vibration control structure 3 is disposed in an opening surrounded by the existing columns 21 and 21 facing each other and the upper and lower existing beams 22 and 22 laid across the existing columns 21 and 21 ( (See FIG. 3).
A longitudinal clearance CL1 is formed between the existing column 21 and the reinforcing column 31, and a lateral clearance CL2 is formed between the existing beam 22 and the reinforcing beam 32. A mortar or the like is provided in the longitudinal clearance CL1 and the lateral clearance CL2. Fill with filler.
The filler refers to a material having a predetermined compressive strength and adhesive strength, such as mortar, concrete, and adhesive.
An anchorless structure that transmits the longitudinal shearing force acting between the existing column 21 and the reinforcing column 31 and the transverse shearing force acting between the existing beam 22 and the reinforcing beam 32 by the filler. Can be configured.
The anchorless structure is a fixing member such as a reinforcing bar or a steel plate against a shearing force acting between the existing column 21 and the reinforcing column 31 or between the existing beam 22 and the reinforcing beam 32 ( An anchor is not arranged.
ダンパ4は、「減少制震型」の制震装置を構成する。
以下に、ダンパ4のバイパス経路についてのみ説明する。
図4に、ダンパ4の縦断面図を示す。図4(a)はピストン43が最伸長した状態から中立状態に戻る、ダンパ4に圧縮力CFが加わる場合を示し、図4(b)は、中立状態から最圧縮した状態に進む、ダンパ4に圧縮力CFが加わる場合を示し、図4(c)はピストン43が最圧縮した状態から中立状態に戻る、ダンパ4に引張力TFが加わる場合を示す。
ダンパ4は、両ロッド型に形成されていて、シリンダ体40の内部空間は、ロッド体42に固定されたピストン43で2つのオイルタンク47a、47bに区画されている。ピストン43には、一方のオイルタンク47aに連通するバルブ44a、他方のオイルタンク47bに連通するバルブ44bが形成されている。バルブ44a、バルブ44bは一方向のみにオイルが流れるワンウェイバルブに構成されている。
ロッド体42の外端部及び反対側のシリンダ体には、補強骨組部の補強斜材33に接続する取付部48が設けられている。図4では、バイリニア特性の減衰バルブを図示していない。
The damper 4 constitutes a “decreasing vibration control type” vibration control device.
Only the bypass path of the damper 4 will be described below.
FIG. 4 shows a longitudinal sectional view of the damper 4. 4A shows a case where the compression force CF is applied to the damper 4 when the piston 43 returns from the most extended state to the neutral state, and FIG. 4B shows a state where the damper 4 advances from the neutral state to the most compressed state. FIG. 4C shows the case where the tensile force TF is applied to the damper 4 where the piston 43 returns from the most compressed state to the neutral state.
The damper 4 is formed in a double rod shape, and the internal space of the cylinder body 40 is partitioned into two oil tanks 47 a and 47 b by a piston 43 fixed to the rod body 42. The piston 43 is formed with a valve 44a communicating with one oil tank 47a and a valve 44b communicating with the other oil tank 47b. The valves 44a and 44b are configured as one-way valves in which oil flows only in one direction.
A mounting portion 48 connected to the reinforcing diagonal member 33 of the reinforcing frame portion is provided on the outer end portion of the rod body 42 and the cylinder body on the opposite side. FIG. 4 does not show a bilinear characteristic damping valve.
シリンダ体40の内面壁には、ダンパ4の長さ方向(ロッド体42が伸長する方向)の両端部に、2つのバイバス溝部41a、41bが所定の溝部長さ(図4(a)に示すS1の長さ)で直線上に形成されている。
2つのバイバス溝部41a、41bの間(図4(a)に示すS2の長さ)では、シリンダ体40の内面壁は溝部の無い平滑面になっている。
したがって、バイバス溝部41a、41bを形成することによって、ピストン43がシリンダ体40内で一方向から他方向に反転することになる「ストロークエンド」近傍領域にあるときに、2つのオイルタンク47a、47bの間を、バイバス溝部41a、41b―出入孔部45―連通孔部46―バルブ44a、44bというオイルが移動するバイパス経路が機能する。
すなわち、ダンパ4は、ピストン43がシリンダ体40内での中立領域にあるときからその肉厚分(図4(a)に示すS3の長さ)以上をストロークすると、ピストン43の出入孔部45と、バイバス溝部41a、41bとが連通するので、上記バイパス経路を機能し始める(図4(b)参照)。
バイパス経路が機能するときには、それまで、ピストン43によってオイルタンク47a、47bが十分に加圧されていた状態が開放されるので、ダンパ4の減衰力は減少することになる。
したがって、ピストン43が、シリンダ体40内での中立領域にあるときからその肉厚分(図4(a)に示すS3の長さ)をストロークした点と、他方向に反転することになるストロークエンドの間の変形領域においては上記バイパス経路が機能するので、ダンパ4の減衰力が徐々に小さくなりながら零に近付くようになる。
On the inner wall of the cylinder body 40, two bypass groove portions 41a and 41b are provided at both end portions in the length direction of the damper 4 (direction in which the rod body 42 extends) as shown in FIG. 4A. (Length of S1) and is formed on a straight line.
Between the two bypass groove portions 41a and 41b (the length of S2 shown in FIG. 4A), the inner wall of the cylinder body 40 is a smooth surface without a groove portion.
Therefore, by forming the bypass groove portions 41a and 41b, the two oil tanks 47a and 47b are formed when the piston 43 is in a region near the "stroke end" where the piston 43 is reversed from one direction to the other direction in the cylinder body 40. A bypass path in which oil moves between the bypass grooves 41a and 41b, the entrance / exit hole 45, the communication hole 46, and the valves 44a and 44b functions.
That is, when the damper 4 strokes more than its thickness (the length of S3 shown in FIG. 4A) from when the piston 43 is in the neutral region in the cylinder body 40, the entrance / exit hole 45 of the piston 43 is moved. Since the bypass groove portions 41a and 41b communicate with each other, the bypass path starts to function (see FIG. 4B).
When the bypass path functions, the state in which the oil tanks 47a and 47b have been sufficiently pressurized by the piston 43 until then is released, so that the damping force of the damper 4 decreases.
Therefore, when the piston 43 is in the neutral region in the cylinder body 40, the stroke of the thickness (the length of S3 shown in FIG. 4A) is stroked and the stroke is reversed in the other direction. Since the bypass path functions in the deformation region between the ends, the damping force of the damper 4 approaches zero while gradually decreasing.
図4(b)に示すように、ダンパ4に圧縮力CFが加わって、中立状態から最圧縮した状態に進む状態では、バイパス経路は機能している。
一方のオイルタンク47aに充填されているオイルは、ピストン43によって加圧されながら、バイバス溝部41a、出入孔部45、連通孔部46、バルブ44bのバイバス経路によって、他方のオイルタンク47bに移動する。
図4(c)に示すように、ピストン43がシリンダ体40内で中立領域にない状態でもバルブ44bはワンウェイバルブに構成されているので、バイパス経路は機能しない。
As shown in FIG. 4B, the bypass path functions in a state in which the compression force CF is applied to the damper 4 and the state proceeds from the neutral state to the most compressed state.
While being pressurized by the piston 43, the oil filled in one oil tank 47a moves to the other oil tank 47b through the bypass groove 41a, the entrance / exit hole 45, the communication hole 46, and the bypass path of the valve 44b. .
As shown in FIG. 4C, even if the piston 43 is not in the neutral region in the cylinder body 40, the valve 44b is configured as a one-way valve, so the bypass path does not function.
図5に示すように、ダンパ4は、所定の減衰力・減少開始変形点DB1、DB2とストロ−クエンドDC1、DC2との間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配α1、α2で漸減する「減少制震型」のダンパ復元力を構成している。このダンパ復元力は、建物1が1次固有周期で定常振動しているとの前提で導いたものである。
ダンパ4における変位に対する減衰力の特性は、縦軸を減衰力、横軸をダンパ4の長さ方向の変形(ストロ−ク)で表しており、上辺側および下辺側を平らにする、変形型の六角形(図5に示すDA1−DB1−DC1−DA2−DB2−DC2で示す六角形)のダンパ復元力を構成している。
減衰力・減少開始変形点DB1、DB2は、2つのバイバス溝部41a、41bの所定の溝部長さ(図4(a)に示すS1の長さ)によって設定することができる。
所定の減衰力・減少勾配α1、α2は、バイバス溝部41a、41bの溝部長さ、オイル移動能力に関係する溝部の断面大きさによって設定することができる。
したがって、ストロ−クエンドDC1、DC2近傍において、ダンパ4に生じている減衰力は、減衰力・減少開始変形点DB1、DB2における減衰力に対して極めて小さくすることができる。
As shown in FIG. 5, the damper 4 has a predetermined damping force as the deformation increases in the deformation region between the predetermined damping force / decrease starting deformation points DB1, DB2 and the stroke ends DC1, DC2. -It constitutes a "decreasing vibration control type" damper restoring force that gradually decreases with decreasing gradients α1 and α2. This damper restoring force is derived on the assumption that the building 1 is constantly oscillating with a primary natural period.
The characteristic of the damping force with respect to the displacement in the damper 4 is a deformation type in which the vertical axis represents the damping force and the horizontal axis represents the deformation (stroke) in the length direction of the damper 4 and the upper side and the lower side are flattened. The damper restoring force of the hexagon (DA1-DB1-DC1-DA2-DB2-DC2 shown in FIG. 5) is configured.
The damping force / decrease start deformation points DB1 and DB2 can be set by a predetermined groove length (the length of S1 shown in FIG. 4A) of the two bypass groove portions 41a and 41b.
The predetermined damping force / decreasing gradients α1 and α2 can be set according to the groove length of the bypass groove portions 41a and 41b and the cross-sectional size of the groove portion related to the oil movement capability.
Therefore, the damping force generated in the damper 4 in the vicinity of the stroke ends DC1 and DC2 can be made extremely small with respect to the damping force at the damping force / decrease starting deformation points DB1 and DB2.
そこで、図6を参照して、1ユニットの制震構造部3の地震時の復元力特性の構成方法について説明する。
<耐震補強前>
(1) 第1ステップ
補強前の既存骨組構造体2において、大地震時に発生する各層の「最大層間水平変形」を設定する。
大地震時に最大層間水平変形が発生しているときに、補強前の既存骨組構造体2を構成する各層の既存柱21、既存梁22などが破壊しないことを前提とする。
たとえば、大地震時とは、既存骨組構造体2に発生する地震力が保有水平耐力に近づく場合をいう。
保有水平耐力とは、構造物に水平力(地震力)が作用して構造物の全体または一部が崩壊メカニズムを形成し、水平力の僅かな増大に対して変形が急激に増大していくときの荷重(崩壊荷重)をいう。
層間水平変形とは、多層の建物1において、地震時において、ある層の床と直上または直下の層の床の間に生じる水平方向の相対変形をいう。
Therefore, with reference to FIG. 6, a method for configuring the restoring force characteristics of the single unit damping structure 3 during an earthquake will be described.
<Before seismic reinforcement>
(1) First step In the existing frame structure 2 before reinforcement, “maximum horizontal horizontal deformation” of each layer that occurs at the time of a large earthquake is set.
It is assumed that the existing column 21 and the existing beam 22 of each layer constituting the existing frame structure 2 before reinforcement are not destroyed when the maximum horizontal deformation occurs during a large earthquake.
For example, a large earthquake means a case where the seismic force generated in the existing frame structure 2 approaches the retained horizontal proof stress.
The retained horizontal strength is the horizontal force (seismic force) acting on the structure, and the whole or part of the structure forms a collapse mechanism, and the deformation increases rapidly with a slight increase in the horizontal force. The load at the time (collapse load).
Interlayer horizontal deformation refers to horizontal relative deformation that occurs between a floor of a certain layer and a floor immediately above or immediately below in a multi-layer building 1 during an earthquake.
(2)第2ステップ
補強前の既存骨組構造体2において、既存柱21について、「補強前の層間水平変形」と「補強前の柱付加軸力」に関する第一の復元力特性を構成する(図6参照)。
図6では、ある既存柱21について、補強前の層間水平変形(横軸方向)と上下方向に作用する補強前の柱付加軸力(縦軸方向)との相関関係を、直線の線形型の復元力特性を示す。
図6で、M1、M2は補強前の既存骨組構造体2の最大層間水平変形時(第1ステップ)の点を示し、最大層間水平変形点M1における最大層間水平変形はFD1、最大柱付加軸力はFN1であり、最大層間水平変形点M2における最大層間水平変形はFD2、最大柱付加軸力はFN2で示される。
既存柱21の柱付加軸力とは、地震力(水平力)を既存骨組構造体2に作用させたときに、既存柱21に上下方向に生じる軸方向力(圧縮力、引張力)であって、長期鉛直荷重(自重、積載荷重など)によって生じる軸方向力を含まない。
純ラーメン骨組にあっては、地震時に発生する両側の梁のせん断力の差が累加して、各層の既存柱21の付加軸力として現れる。
既存柱21に生じる「補強前の柱付加軸力」は、制震構造部3が組み込まれるすべての既存柱21について、補強前の既存骨組構造体2の状態において算定するのが好ましい。
なお、既存柱21について、補強前の層間水平変形と補強前の柱付加軸力との復元力特性を線形型で表現したが、非線形型(たとえば、バイリニア、トリリニアなど)で構成しても良い。
(2) Second Step In the existing frame structure 2 before reinforcement, the first restoring force characteristic regarding the “inter-layer horizontal deformation before reinforcement” and “column additional axial force before reinforcement” is configured for the existing column 21 ( (See FIG. 6).
In FIG. 6, for a certain existing column 21, the correlation between the interlayer horizontal deformation before reinforcement (horizontal axis direction) and the post-reinforcement column additional axial force (vertical axis direction) acting in the vertical direction is shown as a linear linear type. The restoring force characteristics are shown.
In FIG. 6, M1 and M2 indicate points at the time of the maximum interlayer horizontal deformation (first step) of the existing frame structure 2 before reinforcement, and the maximum interlayer horizontal deformation at the maximum interlayer horizontal deformation point M1 is FD1 and the maximum column additional axis. The force is FN1, the maximum interlayer horizontal deformation at the maximum interlayer horizontal deformation point M2 is indicated by FD2, and the maximum column additional axial force is indicated by FN2.
The column additional axial force of the existing column 21 is an axial force (compression force, tensile force) generated in the vertical direction on the existing column 21 when a seismic force (horizontal force) is applied to the existing frame structure 2. In addition, it does not include axial forces generated by long-term vertical loads (self-weight, load capacity, etc.).
In a pure ramen frame, the difference in shearing force between the beams on both sides generated during an earthquake accumulates and appears as an additional axial force of the existing column 21 in each layer.
It is preferable to calculate the “additional axial force before reinforcement” generated in the existing column 21 in the state of the existing frame structure 2 before reinforcement for all the existing columns 21 in which the damping structure 3 is incorporated.
In addition, about the existing pillar 21, although the restoring force characteristic of the interlayer horizontal deformation | transformation before reinforcement and the column additional axial force before reinforcement was expressed by the linear type, you may comprise by nonlinear types (for example, bilinear, trilinear etc.). .
<耐震補強後>
(3)第3ステップ
制震構造部3を組み込んだ補強後の既存骨組構造体2において、制震構造部3について、「補強後の層間水平変形」と、制震構造部3と連結している既存柱21に作用する「補強後の柱付加軸力」に関する第二の復元力特性を構成する(図7、図8(a)参照)。
<After seismic reinforcement>
(3) Third step In the existing reinforced frame structure 2 that incorporates the vibration control structure 3, the vibration control structure 3 is connected to the “horizontal deformation after reinforcement” and the vibration control structure 3. The second restoring force characteristic relating to “the post-reinforcing column additional axial force” acting on the existing column 21 is configured (see FIGS. 7 and 8A).
先ず、図7を参照して、補強後の制震構造部3から既存柱21に作用する「補強後の柱付加軸力」について説明する。
制震構造部3は、補強柱31と補強梁32から成る正面視略矩形の枠状の補強骨組部の内部に、補強斜材33とダンパ4からなる一対の斜材(ブレース材)によって正面視逆V字形のブレース構造を形成している。したがって、層間水平変形が発生すると、制震構造部3は減衰力としての水平力(せん断力)を負担するので、ラーメン骨組を構成している既存柱21が負担する水平力(せん断力)が軽減される。
制震構造部3によって既存柱21に作用する「補強後の柱付加軸力」とは、制震構造部3が負担している水平力(せん断力)QQ(i)によって、両側の既存柱21に生じる柱付加軸力である。
図7の制震構造部3では、任意の層(i層)の制震構造部3の補強斜材33とダンパ4からなる斜材(ブレース材)の軸力BC(i)の鉛直成分の軸方向力(圧縮力、引張力)と、上層(i+1層)の柱付加軸力N(i+1)を累加したものが、i層の柱付加軸力N(i)となる。
First, with reference to FIG. 7, “the post-reinforcement column additional axial force” acting on the existing column 21 from the post-reinforcement damping structure 3 will be described.
The vibration control structure 3 is front-faced by a pair of diagonal members (brace members) each including a reinforcing diagonal member 33 and a damper 4 inside a substantially rectangular frame-shaped reinforcing frame portion including the reinforcing columns 31 and the reinforcing beams 32. A brace structure having a reverse V-shape is formed. Therefore, when the interlayer horizontal deformation occurs, the damping structure 3 bears a horizontal force (shearing force) as a damping force, so that the horizontal force (shearing force) borne by the existing column 21 constituting the ramen frame is reduced. It is reduced.
“Reinforced column additional axial force” acting on the existing column 21 by the seismic control unit 3 is the horizontal force (shearing force) QQ (i) borne by the seismic control unit 3 on both sides. 21 is a column additional axial force generated at 21.
7, the vertical component of the axial component BC (i) of the diagonal member (brace member) composed of the reinforcing diagonal member 33 and the damper 4 of the damping member 3 of the arbitrary layer (i layer) is provided. The sum of the axial force (compressive force, tensile force) and the column additional axial force N (i + 1) of the upper layer (i + 1 layer) is the i layer additional axial force N (i).
制震構造部3の「補強後の層間水平変形」と「補強後の柱付加軸力」に関する第二の復元力特性において、所定の柱付加軸力・減少開始変形点B1、B2とダンパ4のストロ−クエンドC1、C2との間の変形領域(層間水平変形)において、補強後の層間水平変形が増加するにつれて既存柱21の補強後の柱付加軸力が、所定の柱付加軸力・減少勾配β1、β2で漸減する復元力特性を構成する(図8(a)参照)。
図8(a)を参照して、補強後の制震構造部3について、「補強後の層間水平変形」と、制震構造部3と連結している既存柱21に作用する「補強後の柱付加軸力」に関する復元力特性を構成する方法について説明する。
図8(a)では、ある制震構造部3について、補強後の層間水平変形(横軸方向)と既存柱21に作用する補強後の柱付加軸力(縦軸方向)との相関関係を、略六角形(図中のA1−B1−C1−A2−B2−C2で示す六角形)の復元力特性を構成している。
図8(a)のB1、B2は、制震構造部3が負担する減衰力(水平力)が減少することによって既存柱21に作用する補強後の柱付加軸力が減少しだす「柱付加軸力・減少開始変形点」を示し、C1、C2は、制震構造部3のダンパ4の「ストロ−クエンド」の点を示す。
制震構造部3の「柱付加軸力・減少開始変形点」B1、B2は、図5に示すダンパ4の「減衰力・減少開始変形点DB1、DB2」に対応し、制震構造部3の柱付加軸力・減少勾配β1、β2は、図5に示すダンパ4の減衰力・減少勾配α1、α2に対応し、制震構造部3の「ストロ−クエンド」C1、C2は、図5に示すダンパ4のDC1、DC2にそれぞれ対応する。
本発明において制震構造部3の復元力特性を構成する際に、柱付加軸力・減少開始変形点B1、B2と、ストロ−クエンドC1、C2と、柱付加軸力・減少勾配β1、β2が重要な因子となる。
In the second restoring force characteristic regarding the “horizontal horizontal deformation after reinforcement” and “post-additional axial force after reinforcement” of the damping structure 3, predetermined additional axial force / decrease starting deformation points B1 and B2 and the damper 4 In the deformation region (inter-layer horizontal deformation) between the stroke ends C1 and C2, the post-reinforcement column additional axial force of the existing column 21 is increased by a predetermined column additional axial force. A restoring force characteristic that gradually decreases with decreasing gradients β1 and β2 is configured (see FIG. 8A).
Referring to FIG. 8A, with respect to the seismic control structure 3 after reinforcement, “interlayer horizontal deformation after reinforcement” and “an after reinforcement” acting on the existing column 21 connected to the seismic control structure 3 A method of constructing the restoring force characteristic regarding the “column additional axial force” will be described.
In FIG. 8 (a), the correlation between the inter-layer horizontal deformation after reinforcement (horizontal axis direction) and the post-reinforcement column additional axial force (vertical axis direction) acting on the existing column 21 is shown for a certain damping structure 3. , Constituting the restoring force characteristic of a substantially hexagonal shape (hexagonal shape indicated by A1-B1-C1-A2-B2-C2 in the drawing).
B1 and B2 in FIG. 8A indicate that the post-reinforcement column additional axial force acting on the existing column 21 starts to decrease as the damping force (horizontal force) borne by the damping structure 3 decreases. C1 and C2 indicate points of “stroke end” of the damper 4 of the vibration control structure 3.
The “column additional axial force / decrease starting deformation points” B1 and B2 of the damping structure 3 correspond to the “damping force / decreasing starting deformation points DB1 and DB2” of the damper 4 shown in FIG. 5 correspond to the damping force / decreasing gradients α1 and α2 of the damper 4 shown in FIG. 5, and the “stroke end” C1 and C2 of the damping structure 3 are shown in FIG. Correspond to DC1 and DC2 of the damper 4 shown in FIG.
In constructing the restoring force characteristic of the damping structure 3 in the present invention, the column additional axial force / decrease start deformation points B1, B2, the stroke ends C1, C2, and the column additional axial force / decreasing gradient β1, β2 Is an important factor.
(4)第4ステップ
補強後の既存骨組構造体2において、各既存柱21について、「補強後の層間水平変形」と「補強後の柱付加軸力」に関する第三の復元力特性を構成する(図8(b)参照)。
補強前の各既存柱21についての「補強前の層間水平変形」と「補強前の柱付加軸力」に関する第一の復元力特性(第2ステップ)と、補強後の各制震構造部3についての「補強後の層間水平変形」と、制震構造部3と連結している既存柱21に作用する「補強後の柱付加軸力」に関する第二の復元力特性(第3ステップ)とを組み合わせて、補強後の各既存柱21について、「補強後の層間水平変形」と「補強後の柱付加軸力」に関する第三の復元力特性が構成される。
(4) Fourth Step In the existing frame structure 2 after reinforcement, the third restoring force characteristic regarding “interlayer horizontal deformation after reinforcement” and “column additional axial force after reinforcement” is configured for each existing column 21. (See FIG. 8 (b)).
First restoring force characteristics (second step) regarding “horizontal deformation between layers before reinforcement” and “additional axial force before reinforcement” for each existing pillar 21 before reinforcement, and each damping structure 3 after reinforcement The second restoring force characteristic (third step) regarding the “horizontal deformation after reinforcement” and the “additional axial force after reinforcement” acting on the existing pillar 21 connected to the damping structure 3 As a result, the third restoring force characteristics relating to “inter-layer horizontal deformation after reinforcement” and “column additional axial force after reinforcement” are configured for each of the existing pillars 21 after reinforcement.
図8(b)では、制震構造部3と連結している既存柱21について、補強後の層間水平変形(横軸方向)と補強後の柱付加軸力(縦軸方向)との相関関係を、略六角形(図中のP1−M1−Q1−P2−M2−Q2で示す六角形)の復元力特性を示す。
この補強後の復元力特性は、M1とM2を結ぶ傾斜した直線(第2ステップの線形の復元力特性に対応)に沿って所定の幅で傾斜した紡錘形に似た細長い略六角形を示す。
図8(b)のM1、M2は、第2ステップの補強前の既存骨組構造体2の最大層間水平変形時に対応する点を示す。P1は第3ステップの柱付加軸力・減少開始変形点B1に対応し、P2は第3ステップの柱付加軸力・減少開始変形点B2に対応し、Q1は第3ステップのA2、Q2は第3ステップのA1にそれぞれ対応する。
In FIG. 8B, for the existing column 21 connected to the damping structure 3, the correlation between the inter-layer horizontal deformation after reinforcement (horizontal axis direction) and the post-reinforcement column additional axial force (vertical axis direction). Is a restoring force characteristic of a substantially hexagon (a hexagon represented by P1-M1-Q1-P2-M2-Q2 in the figure).
This restoring force characteristic after reinforcement shows an elongated substantially hexagonal shape similar to a spindle shape inclined at a predetermined width along an inclined straight line connecting M1 and M2 (corresponding to the linear restoring force characteristic of the second step).
M1 and M2 in FIG. 8B indicate points corresponding to the maximum interlayer horizontal deformation of the existing frame structure 2 before reinforcement in the second step. P1 corresponds to the column additional axial force / decrease start deformation point B1 in the third step, P2 corresponds to the column additional axial force / decrease start deformation point B2 in the third step, and Q1 corresponds to A2 and Q2 in the third step. Each corresponds to A1 of the third step.
第三の復元力特性において、制震構造部の所定の柱付加軸力・減少開始変形点に対応する点P1、P2と、補強前の既存骨組構造体2の最大層間水平変形時に対応する点M1、M2との間の変形領域において、既存柱において、補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成している(図8(b)参照)。
したがって、各層の既存柱21において、補強後の柱付加軸力が補強前の柱付加軸力を超えないように、各層の制震構造部3の復元力特性を構成することによって、各層の既存柱21は、補強後においても、「無・柱耐力補強構造」を構成している。
図8(b)において、P1点からM1点の間の変形領域において変動する柱付加軸力の値N1がM1点の柱付加軸力の値FN1を超えない場合、及び、P2点からM2点の間の変形領域において変動する柱付加軸力の値N2がM2点の柱付加軸力の値FN2を超えない場合には、その既存柱21ついて、補強後の柱付加軸力N1、N2が補強前の柱付加軸力FN1、FN2を超えないことになって、既存柱21の部材断面補強を必要としない「無・柱耐力補強構造」を構成する。
ここで、柱付加軸力は、正負(圧縮力、引張力)の2種類があるので、FN1、FN2、N1、N2とはそれぞれ絶対値で比較するのが好ましい。
補強後の既存柱21に生じる柱付加軸力N1、N2を、制震構造部3が組み込まれるすべての既存柱21について、補強後の既存骨組構造体2の状態において算定するのが好ましい。
In the third restoring force characteristic, points P1 and P2 corresponding to the predetermined column additional axial force / decrease starting deformation point of the damping structure and points corresponding to the maximum interlayer horizontal deformation of the existing frame structure 2 before reinforcement In the deformation region between M1 and M2, in the existing column, the post-reinforcement column additional axial force is configured not to exceed the pre-reinforcement column additional axial force (see FIG. 8B).
Therefore, in the existing pillars 21 of each layer, the restoring force characteristics of the seismic structure 3 of each layer are configured so that the post-reinforcement column additional axial force does not exceed the pre-reinforcement column additional axial force. Even after reinforcement, the column 21 constitutes a “no-column proof structure”.
In FIG. 8B, when the column additional axial force value N1 fluctuating in the deformation region between the P1 point and the M1 point does not exceed the column additional axial force value FN1 of the M1 point, and from the P2 point to the M2 point If the column additional axial force value N2 which fluctuates in the deformation region between the two columns does not exceed the column additional axial force value FN2 at the point M2, the post-reinforcing column additional axial forces N1 and N2 are Since the column additional axial forces FN1 and FN2 before reinforcement are not exceeded, a “no-column strength-proof reinforcement structure” that does not require member cross-section reinforcement of the existing column 21 is configured.
Here, since there are two types of column additional axial force, positive and negative (compressive force, tensile force), it is preferable to compare FN1, FN2, N1, and N2 with absolute values.
It is preferable to calculate the column additional axial forces N1 and N2 generated in the existing column 21 after reinforcement in the state of the existing frame structure 2 after reinforcement for all the existing columns 21 in which the damping structure 3 is incorporated.
既存柱21の「無・柱耐力補強構造」とは、既存柱21の既存の部材断面のままで補強後の既存骨組構造体2の耐震性能を充足しうる柱構造であって、階高の全長に亘って部材断面耐力の耐震補強を必要としない構造をいう。
既存柱21の「柱構造部材」としての部材断面耐力は、軸耐力(圧縮耐力、引張耐力)、曲げ耐力(軸力と曲げモーメントとによって決定される)、せん断耐力の3種類がある。
ここで、「無・柱耐力補強構造」における部材断面耐力は、柱付加軸力が関係する軸耐力、曲げ耐力をいう。
たとえば、軸耐力、曲げ耐力を補強する方法として、既存柱21の断面を鋼製プレートで被覆する方法、増し打ち鉄筋コンクリートで被覆する方法などが有る。
図7に示すように、i層の既存柱21は階高(図7のhで示す)において、柱・梁接合部(仕口部)の断面高さと、上下の柱・梁接合部の間の中間部に区画される。しかし、柱・梁接合部(仕口部)では、既存柱21に平面視二方向から既存梁22が接合されるので、既存柱21の部材断面耐力の補強構造を構築することは困難である。
したがって、補強後において、階高の全長に亘って「部材断面耐力の耐震補強を必要としないこと」、すなわち、「無・柱耐力補強構造」を構成することは、既存の建物1を耐震補強によって耐震性能を高めて継続使用する可能性を著しく増大させるので、その技術的効果及び経済的効果は極めて高い。
The “no-column strength reinforcement structure” of the existing column 21 is a column structure that can satisfy the seismic performance of the existing frame structure 2 after reinforcement while maintaining the cross-section of the existing member of the existing column 21. A structure that does not require seismic reinforcement of the cross-sectional strength of the member over its entire length.
There are three types of member cross-sectional strength of the existing column 21 as “column structural members”: axial strength (compression strength, tensile strength), bending strength (determined by the axial force and bending moment), and shear strength.
Here, the member cross-sectional proof stress in the “no-column proof strength reinforcement structure” refers to the axial proof strength and bending proof strength related to the column additional axial force.
For example, as a method of reinforcing the shaft strength and bending strength, there are a method of covering the cross section of the existing column 21 with a steel plate, a method of covering with an additional reinforced concrete, and the like.
As shown in FIG. 7, the existing column 21 of the i layer is located at the height of the floor (indicated by h in FIG. 7) between the cross-sectional height of the column / beam joint (joint portion) and the upper and lower columns / beam joints. It is divided into the middle part. However, since the existing beam 22 is joined to the existing column 21 from two directions in plan view at the column / beam joint (joint portion), it is difficult to construct a reinforcing structure of the member cross-sectional strength of the existing column 21. .
Therefore, after reinforcement, the fact that “there is no need for seismic reinforcement of the cross-sectional strength of the member” over the entire length of the floor height, that is, the construction of the “no-column proof strength reinforcement structure” is the seismic reinforcement of the existing building 1 Therefore, the technical and economic effects are extremely high.
なお、既存柱21について、補強後の柱付加軸力N1、N2が補強前の柱付加軸力FN1、FN2を超える場合であっても、補強後の柱付加軸力N1、N2と長期鉛直荷重(自重、積載荷重など)によって生じる軸方向力とを合成した柱軸力と、最大層間水平変形時に対応する点M1、M2で生じる曲げモーメントによっても、既存柱21の部材断面耐力が許容範囲以下であれば、既存柱21の部材断面補強を必要としない。   For the existing column 21, even if the post-reinforcement column additional axial forces N1, N2 exceed the post-reinforcement column additional axial forces FN1, FN2, the post-reinforcement column additional axial forces N1, N2 and the long-term vertical load The column cross-sectional strength of the existing column 21 is less than the allowable range due to the column axial force obtained by combining the axial force generated by (self-weight, loading load, etc.) and the bending moment generated at the points M1 and M2 corresponding to the maximum horizontal deformation. If it is, the member cross-section reinforcement of the existing pillar 21 is not required.
既存骨組構造体2は、最下層に杭基礎61を有する基礎構造部6を設けているが、最下層の既存柱21において、補強後の柱付加軸力が、補強前の柱付加軸力より小さくなるように制震構造部3の復元力を構成することによって、杭の増し打ち補強を必要としない「無・増打ち杭補強構造」を構成することができる。
「無・増打ち杭補強構造」とは、既存の基礎構造部6の杭基礎61のままで、補強後の既存骨組構造体2に対して要求される耐震性能を充足しうる基礎構造をいう。
杭の増し打ち補強は、地震時に既存の杭基礎61に作用する柱軸力(圧縮力、引張力)が、杭の許容支持力、または、許容引張抵抗力を超えるときに、既存の杭基礎61に近接して、新たな杭基礎61を構築する補強工事をいう。
したがって、実際の既存建物において杭の増し打ち補強構造を構築することは極めて困難であるので、本発明の杭の増し打ち補強を必要としない「無・増打ち杭補強構造」を構成することができるのは、高層の既存建物を耐震補強する場合に極めて技術的効果及び経済的効果が高い。
特に、建物の塔状比(建物の最高高さ/建物の幅)が2を超えるような細長い正面形状を有する建物においても、既存骨組構造体2を制震構造部3によって耐震補強しても杭の増し打ち補強を必要としないので、その技術的効果は大きい。
The existing frame structure 2 is provided with the foundation structure portion 6 having the pile foundation 61 in the lowermost layer. In the existing pillar 21 in the lowermost layer, the post-reinforcement column additional axial force is greater than the column additional axial force before reinforcement. By configuring the restoring force of the damping structure 3 so as to be small, it is possible to configure a “no-increase pile reinforcement structure” that does not require additional pile reinforcement.
“Non-addition pile reinforcement structure” refers to a foundation structure that can satisfy the seismic performance required for the existing frame structure 2 after reinforcement, with the pile foundation 61 of the existing foundation structure 6 remaining as it is. .
Incremental reinforcement of piles is based on the existing pile foundation when the column axial force (compressive force, tensile force) acting on the existing pile foundation 61 during an earthquake exceeds the allowable support force or allowable tensile resistance force of the pile. Reinforcement work that constructs a new pile foundation 61 in the vicinity of 61.
Therefore, since it is extremely difficult to construct an additional pile reinforcement structure in an actual existing building, it is possible to constitute a “no-increase pile reinforcement structure” that does not require additional pile reinforcement according to the present invention. What can be done is extremely high technical and economic effects when retrofitting existing high-rise buildings.
In particular, even in a building having an elongated front shape in which the tower ratio of the building (the maximum height of the building / the width of the building) exceeds 2, even if the existing frame structure 2 is seismically reinforced by the damping structure 3 Since it does not require additional reinforcement of piles, its technical effect is great.
図9、図10に図1に示す建物1のはり間方向(Y方向)についての弾性地震応答解析結果の一例をしめす。
図9、図10において3つの解析ケースについて検討するが、ケース1は本発明による場合(図中、□印で示す)、ケース2は従来技術のオイルダンパを組み込んだ場合(図中、●印で示す)、ケース3は、制震装置の無い純ラーメン構造による場合)(図中、▲印で示す)を示す。
図9は、縦軸方向は層、横軸方向は柱付加軸力を示す。最下層(1層)における柱付加軸力を比較すると、ケース1(本発明)による柱付加軸力は、ケース2(従来のオイルダンパ)及びケース3(純ラーメン構造)の約70%に低減している。
図10は、縦軸方向は層、横軸方向は層間水平変形角(=層間水平変形/階高)を示す。最下層(1層)における層間水平変形角を比較すると、ケース1(本発明)による層間水平変形角は、ケース2(従来のオイルダンパ)とほぼ同一であるが、ケース3(純ラーメン構造)の約70%に低減している。
本発明は、補強後の既存骨組構造体2において、制震構造部3と連結している既存柱21に作用する「補強後の柱付加軸力」を約70%に低減する効果を発揮する。
FIG. 9 and FIG. 10 show an example of an elastic seismic response analysis result for the beam direction (Y direction) of the building 1 shown in FIG.
9 and 10, three analysis cases are examined. Case 1 is the case according to the present invention (indicated by □ in the figure), and case 2 is a case where a conventional oil damper is incorporated (in the figure, marked with ●). Case 3 shows a case of a pure ramen structure without a vibration control device (indicated by ▲ in the figure).
In FIG. 9, the vertical axis represents the layer, and the horizontal axis represents the column additional axial force. Comparing the column additional axial force in the lowermost layer (one layer), the column additional axial force by case 1 (present invention) is reduced to about 70% of case 2 (conventional oil damper) and case 3 (pure ramen structure). is doing.
In FIG. 10, the vertical axis represents the layer, and the horizontal axis represents the interlayer horizontal deformation angle (= interlayer horizontal deformation / floor height). Comparing the interlayer horizontal deformation angle in the lowermost layer (one layer), the interlayer horizontal deformation angle in case 1 (invention) is almost the same as in case 2 (conventional oil damper), but case 3 (pure ramen structure) It is reduced to about 70%.
The present invention exerts an effect of reducing the “additional post-reinforcement axial force” acting on the existing column 21 connected to the vibration control structure 3 to about 70% in the existing frame structure 2 after reinforcement. .
図11は、制震構造部3の変形例を示す。
変形例の制震構造部3と、図3に示す制震構造部3との相違点は、一対のダンパ4と横部材34とを直線上の水平部材として構成して、一対の補強柱31、31の間を連結している。
一対の補強斜材33、33のみで正面視V字形の斜材(ブレース材)を形成し、一対の補強斜材33、33の交点は横部材34の略中央部に接合されている。
本発明では、制震構造部3は、層間水平変形が発生すると減衰力としての水平(せん断力)を負担する構造であれば良いので、各種のブレース構造のみならず、間柱型構造でも良い。
FIG. 11 shows a modification of the vibration control structure 3.
The difference between the damping structure 3 of the modified example and the damping structure 3 shown in FIG. 3 is that the pair of dampers 4 and the lateral member 34 are configured as a straight horizontal member, and a pair of reinforcing columns 31 is provided. , 31 are connected.
A pair of reinforcing diagonal members 33, 33 alone forms a diagonal V-shaped diagonal member (brace material), and the intersection of the pair of reinforcing diagonal members 33, 33 is joined to the substantially central portion of the transverse member 34.
In the present invention, the seismic control structure 3 may be a structure that bears the horizontal (shearing force) as a damping force when the interlayer horizontal deformation occurs, and thus may be not only various brace structures but also a stud-type structure.
次に、既存骨組構造体2を有する多層の建物1に制震構造部3を配設する耐震補強方法を説明する。
(1)先ず、制震構造部3を、補強柱31と補強梁32を備えた補強骨組部と、ダンパ4とによって構成する(図3参照)。
ダンパ4を、所定の減衰力・減少開始変形点DB1、DB2とストロ−クエンドDC1、DC2との間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配α1、α2で漸減するダンパ復元力を有するように構成する(図5参照)。
ダンパ4において、減衰力・減少開始変形点DB1、DB2を構成するように、2つのバイバス溝部41a、41bの所定の溝部長さ(図4(a)に示すS1の長さ)を設定する。
所定の減衰力・減少勾配α1、α2を構成するように、バイバス溝部41a、41bの溝部長さ、オイル移動能力に関係する溝部の断面大きさによって設定する。
(2)補強前の既存骨組構造体2において、大地震時に発生する各層の「最大層間水平変形」を設定する(第1ステップ)。
補強前の既存骨組構造体2において、既存柱21について、「補強前の層間水平変形」と「補強前の柱付加軸力」に関する第一の復元力特性を構成する(第2ステップ、図6参照)。
制震構造部3を組み込んだ補強後の既存骨組構造体2において、制震構造部3について、「補強後の層間水平変形」と、制震構造部3と連結している既存柱21に作用する「補強後の柱付加軸力」に関する第二の復元力特性を構成する(第3ステップ、図7、図8(a)参照)。
補強後の既存骨組構造体2において、各既存柱21について、「補強後の層間水平変形」と「補強後の柱付加軸力」に関する第三の復元力特性を構成する(第4ステップ、図8(b)参照)。
(3)既存骨組構造体2の相対向する既存柱21とこれらの既存柱21間に横架される上下の既存梁22とによって囲まれた開口部に制震構造部3を配設した補強後の建物1の耐震性を地震応答解析によって確認する。
制震構造部3が連結している既存柱に作用する柱付加軸力を軽減することによって、既存柱は、補強後においても、無・柱耐力補強構造を構成することが解析上で確認することができる。
(4)補強柱31と補強梁32と補強斜材33から成る補強骨組部とダンパ4とによって構成された制震構造部3を、既存骨組構造体2の相対向する既存柱21、21とこれらの既存柱間21、21に横架される上下の既存梁22、22とによって囲まれた開口部に取り付ける。
Next, the earthquake-proof reinforcement method which arrange | positions the damping structure part 3 in the multilayer building 1 which has the existing frame structure 2 is demonstrated.
(1) First, the vibration control structure 3 is constituted by a reinforcing frame having a reinforcing column 31 and a reinforcing beam 32, and a damper 4 (see FIG. 3).
In the deformation region between the predetermined damping force / decrease starting deformation points DB1 and DB2 and the stroke ends DC1 and DC2, the damper 4 has a predetermined damping force / decreasing gradient α1 and α2 as the deformation increases. The damper is configured to have a gradually decreasing damper restoring force (see FIG. 5).
In the damper 4, predetermined groove lengths (the length of S1 shown in FIG. 4A) of the two bypass groove portions 41a and 41b are set so as to constitute the damping force / decrease start deformation points DB1 and DB2.
The predetermined damping force / decreasing gradients α1 and α2 are set according to the groove lengths of the bypass groove portions 41a and 41b and the cross-sectional size of the groove portions related to the oil moving ability.
(2) In the existing frame structure 2 before reinforcement, “maximum interlayer horizontal deformation” of each layer occurring at the time of a large earthquake is set (first step).
In the existing frame structure 2 before reinforcement, the first restoring force characteristics relating to “interlayer horizontal deformation before reinforcement” and “column additional axial force before reinforcement” are configured for the existing column 21 (second step, FIG. 6). reference).
In the existing frame structure 2 after the reinforcement incorporating the vibration control structure 3, the vibration control structure 3 acts on the existing column 21 connected to the vibration control structure 3 and “inter-layer horizontal deformation after reinforcement”. The second restoring force characteristic relating to the “post-added axial force after reinforcement” is configured (see the third step, FIG. 7 and FIG. 8A).
In the existing frame structure 2 after reinforcement, a third restoring force characteristic relating to “inter-layer horizontal deformation after reinforcement” and “column additional axial force after reinforcement” is configured for each existing column 21 (fourth step, FIG. 8 (b)).
(3) Reinforcement in which the damping structure 3 is disposed in the opening surrounded by the existing columns 21 facing each other of the existing frame structure 2 and the upper and lower existing beams 22 laid across these existing columns 21 The seismic resistance of the later building 1 is confirmed by seismic response analysis.
By reducing the additional axial force acting on the existing column connected to the seismic control structure 3, it is confirmed in the analysis that the existing column will form a no-column strength reinforcement structure even after reinforcement. be able to.
(4) The vibration control structure 3 constituted by the reinforcing frame 31 including the reinforcing column 31, the reinforcing beam 32, and the reinforcing diagonal member 33 and the damper 4 is connected to the existing columns 21 and 21 facing each other of the existing frame structure 2. It attaches to the opening part enclosed by the upper and lower existing beams 22 and 22 laid across between these existing pillars 21 and 21. As shown in FIG.
以上、実施例を挙げて本発明の実施の形態を説明したが、本発明は上記した実施例に限定されるものではなく、本発明の要旨の範囲で適宜、付加、変形等なし得るものである。   The embodiments of the present invention have been described with reference to the examples. However, the present invention is not limited to the above-described examples, and appropriate additions, modifications, and the like can be made within the scope of the gist of the present invention. is there.
(a)は建物1の補強前の平面図、(b)は建物1の補強後の平面図である。(A) is a top view before reinforcement of the building 1, (b) is a top view after reinforcement of the building 1. FIG. 図1(b)の1A−1A線断面図であって、補強後の既存骨組構造体2の側面図である。It is the 1A-1A sectional view taken on the line of FIG.1 (b), Comprising: It is a side view of the existing frame structure 2 after reinforcement. 制震構造部3の正面図である。FIG. 3 is a front view of the vibration control structure 3. (a)(b)(c)はダンパ4の縦断面図である。(A) (b) (c) is a longitudinal sectional view of the damper 4. ダンパ4のダンパ復元力を示す説明図である。It is explanatory drawing which shows the damper restoring force of the damper. 補強前の既存柱21に関する、「補強前の層間水平変形」と「補強前の柱付加軸力」に関する第一の復元力特性を示す説明図である。It is explanatory drawing which shows the 1st restoring force characteristic regarding the existing pillar 21 before reinforcement regarding "the horizontal deformation | transformation between layers before reinforcement" and the "column additional axial force before reinforcement". 補強後の制震構造部3から既存柱21に作用する「補強後の柱付加軸力」を示す説明図である。It is explanatory drawing which shows "the column additional axial force after reinforcement" which acts on the existing pillar 21 from the damping structure part 3 after reinforcement. (a)は補強後の制震構造部3に関する、「補強後の層間水平変形」と既存柱21に作用する「補強後の柱付加軸力」に関する第二の復元力特性、(b)は既存柱21に関する補強後の層間水平変形(横軸方向)と補強後の柱付加軸力(縦軸方向)の第三の復元力特性を示す説明図である。(A) is the second restoring force characteristic regarding the post-reinforcement damping structure 3 regarding the “horizontal deformation after reinforcement” and the “additional axial force after reinforcement” acting on the existing column 21, (b) It is explanatory drawing which shows the 3rd restoring force characteristic of the interlayer horizontal deformation | transformation (horizontal axis direction) after reinforcement regarding the existing pillar 21, and the column additional axial force (vertical axis direction) after reinforcement. 建物1のはり間方向についての弾性地震応答解析結果(柱付加軸力)である。It is an elastic seismic response analysis result (column additional axial force) about the beam direction of building 1. 建物1のはり間方向についての弾性地震応答解析結果(層間水平変形角)である。It is an elastic seismic response analysis result (interlayer horizontal deformation angle) about the beam direction of building 1. 制震構造部3の変形例を示す正面図である。FIG. 6 is a front view showing a modified example of the damping structure 3. 従来技術のオイルダンパの減衰力・変位に関する復元力特性である。It is a restoring force characteristic regarding the damping force and displacement of a conventional oil damper.
符号の説明Explanation of symbols
1・・・建物
2・・・既存骨組構造体
3・・・制震構造部
4・・・ダンパ
6・・・基礎構造部
21・・・既存柱
22・・・既存梁
31・・・補強柱
32・・・補強梁
33・・・補強斜材
40・・・シリンダ体
41a、41b・・・バイバス溝部
42・・・ロッド体
43・・・ピストン
44a、44b・・・バルブ
47a、47b・・・オイルタンク
48・・・取付部
61・・・杭基礎
62・・・基礎梁
α1、α2・・・減衰力・減少勾配
β1、β2・・・柱付加軸力・減少勾配
DESCRIPTION OF SYMBOLS 1 ... Building 2 ... Existing frame structure 3 ... Damping structure part 4 ... Damper 6 ... Foundation structure part 21 ... Existing pillar 22 ... Existing beam 31 ... Reinforcement Column 32 ... Reinforcement beam 33 ... Reinforcement diagonal 40 ... Cylinder body 41a, 41b ... Bypass groove
42 ... Rod body
43 ... Piston 44a, 44b ... Valve
47a, 47b ... Oil tank 48 ... Mounting part 61 ... Pile foundation 62 ... Foundation beam α1, α2 ... Damping force / decreasing gradient β1, β2 ... Column additional axial force / decreasing gradient

Claims (6)

  1. 既存骨組構造体に制震構造部を配設する耐震補強構造を有する多層の建物であって、
    耐震補強構造は、既存骨組構造体の相対向する既存柱とこれらの既存柱間に横架される上下の既存梁とによって囲まれた開口部に制震構造部を配設して構成され、
    制震構造部は、ダンパを備えた補強骨組部によって構成され、
    ダンパは、所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配で漸減するダンパ復元力を構成し、
    制震構造部が連結している既存柱に作用する柱付加軸力を軽減することによって、
    既存柱は、補強後においても、無・柱耐力補強構造を構成していることを特徴とする建物。
    It is a multi-layered building having a seismic reinforcement structure that arranges the damping structure on the existing frame structure,
    The seismic reinforcement structure is configured by arranging a damping structure in the opening surrounded by the existing columns facing each other of the existing frame structure and the upper and lower existing beams that are laid across these existing columns,
    The damping structure is composed of a reinforcing frame with a damper,
    The damper constitutes a damper restoring force in which the damping force gradually decreases at a predetermined damping force / decreasing gradient as the deformation increases in the deformation region between the predetermined damping force / decreasing start deformation point and the stroke end,
    By reducing the additional axial force acting on the existing columns connected by the seismic control structure,
    The building is characterized in that the existing pillars, even after reinforcement, constitute a no-column strength structure.
  2. 前記制震構造部は、補強後の層間水平変形と、制震構造部が連結している既存柱に作用する補強後の柱付加軸力に関する復元力特性を構成し、
    前記復元力特性において、所定の柱付加軸力・減少開始変形点とダンパのストロ−クエンドとの間の変形領域において、補強後の層間水平変形が増加するにつれて既存柱の補強後の柱付加軸力が、所定の柱付加軸力・減少勾配で漸減するように構成し、
    既存柱は補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されたことを特徴とする請求項1に記載の建物。
    The seismic control structure comprises a restoring force characteristic related to post-reinforcement column horizontal deformation and post-reinforcement column additional axial force acting on existing columns to which the seismic control structure is connected,
    In the restoring force characteristics, in the deformation region between the predetermined column additional axial force / decreasing start deformation point and the damper stroke end, the post-reinforcing column additional shaft of the existing column is increased as the interlayer horizontal deformation after reinforcement increases. It is configured so that the force gradually decreases with a predetermined column additional axial force and decreasing gradient,
    The building according to claim 1, wherein the existing column is configured such that the column additional axial force after reinforcement does not exceed the column additional axial force before reinforcement.
  3. 補強前の既存柱についての補強前の層間水平変形と補強前の柱付加軸力に関する第一の復元力特性と、
    補強後の制震構造部についての補強後の層間水平変形と制震構造部と連結している既存柱に作用する補強後の柱付加軸力に関する第二の復元力特性とを組み合わせて、
    補強後の既存柱について、補強後の層間水平変形と補強後の柱付加軸力に関する第三の復元力特性を構成し、
    第三の復元力特性において、制震構造部の所定の柱付加軸力・減少開始変形点に対応する点と、補強前の既存骨組構造体の最大層間水平変形時に対応する点との間の変形領域において、
    既存柱は補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されたことを特徴とする請求項2に記載の建物。
    The first restoring force characteristic about the horizontal deformation before the reinforcement and the additional axial force of the column before reinforcement for the existing column before reinforcement,
    Combining the inter-layer horizontal deformation after reinforcement for the seismic control structure after reinforcement and the second restoring force characteristic regarding the post-reinforcement column additional axial force acting on the existing column connected to the seismic control structure,
    For the existing column after reinforcement, the third restoring force characteristics regarding the horizontal deformation between the layers after reinforcement and the additional axial force of the column after reinforcement are configured.
    In the third restoring force characteristic, between the point corresponding to the predetermined column additional axial force / decay start deformation point of the damping structure and the point corresponding to the maximum horizontal horizontal deformation of the existing frame structure before reinforcement In the deformation area,
    The building according to claim 2, wherein the existing column is configured such that the column additional axial force after reinforcement does not exceed the column additional axial force before reinforcement.
  4. 前記既存骨組構造体は、最下層に杭基礎を有する基礎構造部を有し、
    最下層の既存柱において、補強後の柱付加軸力が補強前の柱付加軸力を超えないように構成されたことによって、
    基礎構造部は、補強後においても、無・増打ち杭補強構造を構成していることを特徴とする請求項2または3に記載の建物。
    The existing frame structure has a foundation structure having a pile foundation at the lowest layer,
    In the existing pillar at the lowest layer, the column additional axial force after reinforcement does not exceed the column additional axial force before reinforcement,
    The building according to claim 2 or 3, wherein the foundation structure portion constitutes a non-additional pile reinforcement structure even after reinforcement.
  5. 前記建物は、建物の塔状比(建物の最高高さ/建物の幅)が2を超えるような細長い正面形状を有する高層建物であることを特徴とする請求項1ないし4のいずれか1項に記載の建物。   5. The high-rise building according to claim 1, wherein the building is a high-rise building having an elongated front shape such that a tower ratio of the building (the maximum height of the building / the width of the building) exceeds 2. 5. Listed in the building.
  6. 既存骨組構造体を有する多層の建物に制震構造部を配設する耐震補強方法であって、
    制震構造部を、ダンパを備えた補強骨組部によって構成し、
    ダンパを、所定の減衰力・減少開始変形点とストロ−クエンドとの間の変形領域において、変形が増加するにつれて減衰力が所定の減衰力・減少勾配で漸減するダンパ復元力を有するように構成し、
    既存骨組構造体の相対向する既存柱とこれらの既存柱間に横架される上下の既存梁とによって囲まれた開口部に制震構造部を配設し、
    補強後に制震構造部が連結している既存柱に作用する柱付加軸力を軽減することによって、
    既存柱は、補強後においても、無・柱耐力補強構造を構成することを特徴とする建物の耐震補強方法。
    A seismic reinforcement method for arranging a damping structure in a multi-layer building having an existing frame structure,
    The seismic control structure is composed of a reinforcing frame with a damper,
    The damper is configured to have a damper restoring force in which the damping force gradually decreases at a predetermined damping force / decreasing gradient as the deformation increases in a deformation region between the predetermined damping force / decreasing start deformation point and the stroke end. And
    The vibration control structure is disposed in the opening surrounded by the existing columns facing each other of the existing frame structure and the existing upper and lower beams that are laid between these existing columns.
    By reducing the column additional axial force acting on the existing columns to which the damping structure is connected after reinforcement,
    A seismic reinforcement method for buildings, in which the existing pillars, even after reinforcement, constitute a no-column strength structure.
JP2004375216A 2004-12-27 2004-12-27 Building having seismic reinforcement structure and method for seismic reinforcement of building Active JP4597660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375216A JP4597660B2 (en) 2004-12-27 2004-12-27 Building having seismic reinforcement structure and method for seismic reinforcement of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375216A JP4597660B2 (en) 2004-12-27 2004-12-27 Building having seismic reinforcement structure and method for seismic reinforcement of building

Publications (2)

Publication Number Publication Date
JP2006183250A true JP2006183250A (en) 2006-07-13
JP4597660B2 JP4597660B2 (en) 2010-12-15

Family

ID=36736562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375216A Active JP4597660B2 (en) 2004-12-27 2004-12-27 Building having seismic reinforcement structure and method for seismic reinforcement of building

Country Status (1)

Country Link
JP (1) JP4597660B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303705A (en) * 2008-07-24 2008-12-18 Kawaguchi Techno Solution Co Ltd Aseismic control structure
JP2009013782A (en) * 2008-07-24 2009-01-22 Kawaguchi Techno Solution Co Ltd Aseismic response control reinforcing construction method, its aseismic response control reinforcing body and aseismic response control reinforcing structure
JP2010281171A (en) * 2009-06-08 2010-12-16 Taisei Corp Building having vibration control reinforcing structure and vibration control reinforcing method
CN101967900A (en) * 2009-07-28 2011-02-09 任利青 Building wall seismic resisting method
JP2011102530A (en) * 2009-10-15 2011-05-26 Ohbayashi Corp Vibration control building
JP2011149249A (en) * 2010-01-25 2011-08-04 Taisei Corp Control system for variable damping damper in vibration control structure
JP2015068155A (en) * 2013-10-01 2015-04-13 清水建設株式会社 Building vibration control structure and building provided with the same
JP2015129384A (en) * 2014-01-07 2015-07-16 清水建設株式会社 Vibration control structure of building, and building with the same
JP6237847B1 (en) * 2016-08-31 2017-11-29 積水ハウス株式会社 Vibration control reform method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6535157B2 (en) * 2014-07-03 2019-06-26 旭化成ホームズ株式会社 Seismic structure, building panels and buildings

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303705A (en) * 2008-07-24 2008-12-18 Kawaguchi Techno Solution Co Ltd Aseismic control structure
JP2009013782A (en) * 2008-07-24 2009-01-22 Kawaguchi Techno Solution Co Ltd Aseismic response control reinforcing construction method, its aseismic response control reinforcing body and aseismic response control reinforcing structure
JP2010281171A (en) * 2009-06-08 2010-12-16 Taisei Corp Building having vibration control reinforcing structure and vibration control reinforcing method
CN101967900A (en) * 2009-07-28 2011-02-09 任利青 Building wall seismic resisting method
JP2011102530A (en) * 2009-10-15 2011-05-26 Ohbayashi Corp Vibration control building
JP2011149249A (en) * 2010-01-25 2011-08-04 Taisei Corp Control system for variable damping damper in vibration control structure
JP2015068155A (en) * 2013-10-01 2015-04-13 清水建設株式会社 Building vibration control structure and building provided with the same
JP2015129384A (en) * 2014-01-07 2015-07-16 清水建設株式会社 Vibration control structure of building, and building with the same
JP6237847B1 (en) * 2016-08-31 2017-11-29 積水ハウス株式会社 Vibration control reform method

Also Published As

Publication number Publication date
JP4597660B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
Kaushik et al. Code Approaches to Seismic Design of Masonry-Infilled Reinforced ConcreteFrames: A State-of-the-Art Review
US9518401B2 (en) Open web composite shear connector construction
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
Powell Progressive collapse: Case studies using nonlinear analysis
Elnashai et al. Fundamentals of earthquake engineering: from source to fragility
Choi et al. Outrigger design for high-rise buildings
Pavese et al. Experimental assessment of the seismic performance of a prefabricated concrete structural wall system
TWI472670B (en) Method and structure for damping movement in buildings
Panchal et al. Comparative Study of RCC, steel and composite (G+ 30 storey) building
JP3981949B2 (en) Seismic reinforcement structure
Pincheira et al. Seismic response of RC frames retrofitted with steel braces or walls
Bachmann et al. Seismic conceptual design of buildings: basic principles for engineers, architects, building owners, and authorities
JP2010528234A (en) Seismic joint device
KR101767677B1 (en) Compisite column structure for steel and concrete
JP5213248B2 (en) Seismic reinforcement structure for existing buildings
JP5069534B2 (en) Outer shell reinforcement structure of existing building
JP2006291477A (en) Vibration control structure
US5271197A (en) Earthquake resistant multi-story building
CN106869367A (en) A kind of concrete filled steel tube organ timbering shear wall with type steel support and preparation method thereof
JP4631280B2 (en) Seismic control pier
Gledhill et al. The damage avoidance design of tall steel frame buildings-fairlie terrace student accommodation project, victoria university of wellington
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
WO2006031001A1 (en) Steel-concrete sandwitch type hybrid beam and high strengh hybrid structure system using the same
WO2006109580A1 (en) Seismic strengthening structure and seismic strengthening construction method for existing building
KR100802515B1 (en) Composite floor structure using two precast composite steel beams

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090616

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

R150 Certificate of patent or registration of utility model

Ref document number: 4597660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250