JP2006160969A - Method for refining light kerosene fraction and extractive solvent therefor - Google Patents

Method for refining light kerosene fraction and extractive solvent therefor Download PDF

Info

Publication number
JP2006160969A
JP2006160969A JP2004357677A JP2004357677A JP2006160969A JP 2006160969 A JP2006160969 A JP 2006160969A JP 2004357677 A JP2004357677 A JP 2004357677A JP 2004357677 A JP2004357677 A JP 2004357677A JP 2006160969 A JP2006160969 A JP 2006160969A
Authority
JP
Japan
Prior art keywords
solvent
kerosene
extraction
fraction
aromatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004357677A
Other languages
Japanese (ja)
Inventor
Bunhin Tai
文斌 戴
Ryohei Mori
良平 森
Akio Umemura
昭男 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004357677A priority Critical patent/JP2006160969A/en
Publication of JP2006160969A publication Critical patent/JP2006160969A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining a light kerosene fraction enabling aromatics-removing treatment and desulfurization treatment to be conducted simultaneously, and to provide an extractive solvent for the method. <P>SOLUTION: The method comprises the following procedure: The top of an extraction column 11 is continuously fed with a solvent 1.0-1.6 in specific gravity consisting mainly of one or more ionic liquids, while the bottom thereof is continuously fed with a light kerosene fraction 0.8-1.0 in specific gravity, the light kerosene fraction rising through the inside of the column 11 owing to specific gravity difference is brought into contact with the solvent descending through the inside of the column 11 owing to the specific gravity difference to dissolve hetero compounds and aromatic hydrocarbons in the fraction into the solvent, and the resultant solvent is continuously extracted from the bottom of the column 11 while continuously extracting through the top of the column 11 the resultant fraction reduced in the hetero compounds and aromatic hydrocarbons. The solvent extracted from the bottom of the column 11 is fed to a stripping column 12, where the hetero compounds and aromatic hydrocarbons are evaporated, and the solvent remaining in a liquid state is fed to the top of the column 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、重質油等の分解により生成された灯軽油留分を、低硫黄分かつ低芳香族炭化水素灯軽油基材等に精製する方法及びその精製方法に用いられる抽出溶剤に関するものである。   The present invention relates to a method for refining a kerosene fraction produced by the decomposition of heavy oil or the like into a low sulfur content and low aromatic hydrocarbon kerosene base material and the like, and an extraction solvent used in the refining method. .

石油精製直留灯軽油留分、精製後灯軽油留分、或いは重質油から分解などにより生成された灯軽油留分中の芳香族炭化水素は、これらを燃料として用いた場合には粒状物質及びスモークの発生原因となる。また、自動車の排出ガス中に含まれる硫黄化合物に起因する大気の汚染が地域を問わず重大な問題となっている。この大気汚染を改善する方法として、硫黄化合物を低減した高品質燃料油の製造方法が求められている。ここで、燃料中の硫黄化合物は、主にその基材となる灯軽油留分をその起源としており、この灯軽油留分から硫黄分を除去する技術として水素化脱硫法に基づく水素化脱硫プロセスが確立している。(例えば、特許文献1参照。)。
特開平11−80754号公報(請求項1)
Aromatic hydrocarbons in petroleum refined straight-run kerosene fractions, post-refined kerosene fractions, or kerosene fractions produced by cracking heavy oil, etc., are particulate matter when they are used as fuel. And cause smoke. In addition, air pollution caused by sulfur compounds contained in automobile exhaust gas is a serious problem regardless of the region. As a method for improving this air pollution, there is a demand for a method for producing high-quality fuel oil with reduced sulfur compounds. Here, the sulfur compound in the fuel originates mainly from the kerosene fraction that is the base material, and a hydrodesulfurization process based on hydrodesulfurization as a technique for removing sulfur from the kerosene fraction. Established. (For example, refer to Patent Document 1).
JP 11-80754 A (Claim 1)

しかし、従来の灯軽油留分から硫黄分を除去する水素化脱硫法に基づく水素化脱硫プロセスでは、大量の高圧水素や高価な固体触媒が必要であり、コストが高く、固体触媒の再生や2次汚染などの問題がある。また、操作温度は300℃〜400℃であって圧力は4MPa〜8MPaという過酷な条件が必要となる不具合があった。
また、従来では、灯軽油留分を灯軽油基材等に精製する場合に、脱芳香族処理と脱硫処理が別々に行われており、そのプロセスが複雑で、設備投資や製造工数を増大する問題点があった。
本発明の目的は、脱芳香族処理と脱硫処理を同時に行い得る灯軽油留分の精製方法及び灯軽油留分を精製する抽出溶剤を提供することにある。
However, the hydrodesulfurization process based on the conventional hydrodesulfurization method that removes sulfur from kerosene oil fractions requires a large amount of high-pressure hydrogen and expensive solid catalyst, which is expensive, regenerates the solid catalyst, and regenerates the secondary catalyst. There are problems such as contamination. In addition, there was a problem that the operation temperature was 300 ° C. to 400 ° C. and the pressure was 4 MPa to 8 MPa.
Conventionally, when refining a kerosene fraction into a kerosene oil base, etc., the dearomatic treatment and the desulfurization treatment are performed separately, and the process is complicated, increasing capital investment and manufacturing man-hours. There was a problem.
The objective of this invention is providing the extraction solvent which refine | purifies the kerosene oil fraction which can perform a dearomatic process and a desulfurization process simultaneously, and the kerosene oil fraction.

請求項1に係る発明は、図1に示すように、抽出塔11の上部に1種又は2種以上のイオン性液体を主成分とする比重1.0〜1.6の溶剤を連続的に供給するとともに抽出塔11の下部に比重0.8〜1.0の灯軽油留分を連続的に供給し、比重差により抽出塔11の内部を上昇する灯軽油留分を比重差により抽出塔11の内部を下降する溶剤に接触させることにより灯軽油留分中のヘテロ化合物及び芳香族炭化水素を溶剤に溶込ませ、ヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤を抽出塔11の下部から連続的に抽出するとともにヘテロ化合物及び芳香族炭化水素が減少した灯軽油留分を抽出塔11の上部から連続的に抽出することを特徴とする灯軽油留分の精製方法である。
この請求項1に記載された灯軽油留分の精製方法では、抽出塔11の上部に溶剤を連続的に供給するとともにその抽出塔11の下部に灯軽油留分を連続的に供給すると、その比重差により灯軽油留分は抽出塔11の内部を上昇し、溶剤は抽出塔11の内部を下降する。そして、抽出塔11の内部を上昇する灯軽油留分中のヘテロ化合物及び芳香族炭化水素を抽出塔11の内部を下降する溶剤に溶込ませることにより、脱芳香族処理と脱硫処理を同時に行う。また、抽出塔11の上部から抽出された灯軽油留分にあっては、その中のヘテロ化合物及び芳香族炭化水素をイオン性液体を主成分とする溶剤に溶込ませたものであるので、灯軽油留分中のヘテロ化合物及び低セタン価物質である芳香族炭化水素が抽出される。
In the invention according to claim 1, as shown in FIG. 1, a solvent having a specific gravity of 1.0 to 1.6 mainly composed of one or more ionic liquids is continuously added to the upper portion of the extraction column 11. A kerosene oil fraction having a specific gravity of 0.8 to 1.0 is continuously supplied to the lower part of the extraction tower 11 and the kerosene fraction rising inside the extraction tower 11 due to the specific gravity difference is extracted to the extraction tower by the specific gravity difference. 11 is brought into contact with the descending solvent, so that the hetero compound and aromatic hydrocarbon in the kerosene fraction are dissolved in the solvent, and the solvent containing the hetero compound and aromatic hydrocarbon is dissolved in the lower part of the extraction column 11. A kerosene oil fraction that is extracted continuously from the top and extracted continuously from the upper part of the extraction tower 11 with a kerosene oil fraction in which hetero compounds and aromatic hydrocarbons are reduced.
In the method for purifying kerosene fraction described in claim 1, when the solvent is continuously supplied to the upper part of the extraction tower 11 and the kerosene fraction is continuously supplied to the lower part of the extraction tower 11, The kerosene fraction rises inside the extraction tower 11 due to the difference in specific gravity, and the solvent falls inside the extraction tower 11. Then, the dearomatization treatment and the desulfurization treatment are simultaneously performed by dissolving the hetero compound and the aromatic hydrocarbon in the kerosene fraction rising inside the extraction tower 11 in the solvent descending the inside of the extraction tower 11. . Moreover, in the kerosene fraction extracted from the upper part of the extraction tower 11, since the hetero compound and aromatic hydrocarbon in it are dissolved in the solvent which has an ionic liquid as a main component, Hetero compounds in the kerosene fraction and aromatic hydrocarbons which are low cetane number substances are extracted.

ここで、硫黄化合物などのヘテロ化合物と芳香族炭化水素は、両者ともイオン性液体に抽出されやすいけれども、その抽出速度は異なる。このため、この請求項1に係る発明では、その抽出時間と抽出回数を調整することにより、軽油留分中のヘテロ化合物や芳香族炭化水素を規定値以下に抑えながら、前述した抽出速度の相違から軽油のセタン価を調整することができる。即ち、抽出時間を長くするか或いは抽出回数を増加させると、セタン価の低い芳香族炭化水素が比較的多く抽出され、抽出塔11の上部から抽出された灯軽油留分のセタン価を上昇させることができ、逆に、抽出時間を短くするか或いは抽出回数を減少させると、芳香族炭化水素の抽出量が制限され、抽出塔11の上部から抽出された灯軽油留分のセタン価を減少させることができる。ここで、セタン価が低い芳香族化合物を多く抽出して軽油のセタン価を向上させることは今後の脱芳香族燃料油の傾向とも一致しているが、現状では、軽油中の芳香族化合物の含有がまたある程度許されている。このため、セタン価を調整することにより軽油の回収率を向上することができる。即ち、芳香族炭化水素を多めに除去するほど、ヘテロ化合物や芳香族炭化水素を除去した後の軽油の量が少なくなるため、芳香族炭化水素の除去量をコントロールしながら軽油のセタン価を期待値まで調整することにより軽油の回収率を向上させることができる。   Here, hetero compounds such as sulfur compounds and aromatic hydrocarbons are both easily extracted into an ionic liquid, but their extraction rates are different. For this reason, in the invention according to claim 1, by adjusting the extraction time and the number of extractions, the difference in the extraction rate described above can be achieved while keeping the hetero compounds and aromatic hydrocarbons in the gas oil fraction below a specified value. The cetane number of diesel oil can be adjusted. That is, when the extraction time is lengthened or the number of extractions is increased, a relatively large amount of aromatic hydrocarbon having a low cetane number is extracted, and the cetane number of the kerosene oil fraction extracted from the upper part of the extraction tower 11 is increased. Conversely, if the extraction time is shortened or the number of extractions is reduced, the amount of aromatic hydrocarbon extracted is limited, and the cetane number of the kerosene oil fraction extracted from the top of the extraction tower 11 is reduced. Can be made. Here, extracting many aromatic compounds with low cetane number to improve the cetane number of light oil is consistent with the trend of dearomatic fuel oil in the future, but at present, the aromatic compounds in light oil Inclusion is also allowed to some extent. For this reason, the recovery rate of light oil can be improved by adjusting the cetane number. That is, the more aromatic hydrocarbons are removed, the smaller the amount of light oil after removing hetero compounds and aromatic hydrocarbons, so the cetane number of light oil can be expected while controlling the removal amount of aromatic hydrocarbons. The recovery rate of light oil can be improved by adjusting to the value.

請求項15に係る発明は、灯軽油留分中のヘテロ化合物及び芳香族炭化水素を溶込んで灯軽油留分から硫黄化合物、窒素化合物、酸素化合物などのヘテロ化合物及び芳香族炭化水素を除去することにより灯軽油留分を精製する抽出溶剤である。
その特徴ある構成は、70〜100体積%の芳香族系イオン性液体又は脂環式系イオン性液体と、30〜0体積%の脂肪族系イオン性液体からなることを特徴とする。
この請求項15に記載された灯軽油留分を精製する抽出溶剤では、灯軽油留分中のヘテロ化合物及び芳香族炭化水素を抽出することができる。
The invention according to claim 15 is to remove hetero compounds such as sulfur compounds, nitrogen compounds, oxygen compounds and aromatic hydrocarbons from kerosene fraction by dissolving hetero compounds and aromatic hydrocarbons in kerosene fraction. Is an extraction solvent for purifying kerosene oil fraction.
The characteristic structure is characterized by comprising 70 to 100% by volume of an aromatic ionic liquid or alicyclic ionic liquid and 30 to 0% by volume of an aliphatic ionic liquid.
In the extraction solvent for purifying the kerosene oil fraction described in claim 15, hetero compounds and aromatic hydrocarbons in the kerosene oil fraction can be extracted.

請求項2に係る発明は、請求項1に係る発明であって、溶剤が、70〜100体積%の芳香族系イオン性液体又は脂環式系イオン性液体と、30〜0体積%の脂肪族系イオン性液体からなることを特徴とする。
この請求項2に記載された灯軽油留分の精製方法では、灯軽油留分中の直鎖系硫黄化合物、例えば、メルカプタン、サルファイド、ジサルファイドなどを高効率的に溶剤に抽出することができる。
請求項3に係る発明は、請求項1に係る発明であって、溶剤が、ルイス酸性を持つイオン性液体からなるか、又は1種又は2種以上のイオン性液体とその1種又は2種以上のイオン性液体に添加された酸とからなることを特徴とする。
この請求項3に記載された灯軽油留分の精製方法では、溶剤が酸性であることによりその溶剤が酸化剤としても機能し、一部分或いは全部の硫黄化合物等のヘテロ化合物を酸化して溶剤への溶解度が大きい極性の高いスルホン類等の化合物に転換させ、硫黄化合物等の抽出率を向上させることができる。
The invention according to claim 2 is the invention according to claim 1, wherein the solvent is an aromatic ionic liquid or alicyclic ionic liquid of 70 to 100% by volume, and 30 to 0% by volume of fat. It consists of a group ionic liquid.
In the method for purifying kerosene fraction described in claim 2, linear sulfur compounds in the kerosene fraction such as mercaptan, sulfide, disulfide and the like can be extracted with high efficiency into the solvent. .
The invention according to claim 3 is the invention according to claim 1, wherein the solvent is composed of an ionic liquid having Lewis acidity, or one or more ionic liquids and one or two of them. It consists of the acid added to the above ionic liquid, It is characterized by the above-mentioned.
In the method for purifying kerosene oil fraction described in claim 3, since the solvent is acidic, the solvent also functions as an oxidizing agent, and oxidizes a part or all of the hetero compounds such as sulfur compounds to form a solvent. It is possible to improve the extraction rate of sulfur compounds and the like by converting them to compounds such as sulfones having a high solubility.

請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、抽出塔11の下端から抽出した溶剤を回収塔12に供給し、回収塔12においてヘテロ化合物及び芳香族炭化水素を蒸発させ液状で残存する溶剤を抽出塔11の上部に供給することを特徴とする。
この請求項4に記載された灯軽油留分の精製方法では、イオン性液体を主成分とする溶剤を再利用することができる。
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the solvent extracted from the lower end of the extraction tower 11 is supplied to the recovery tower 12, and in the recovery tower 12, the hetero compound and the aromatic The hydrocarbon is evaporated and the remaining solvent is supplied to the upper part of the extraction tower 11.
In the method for purifying a kerosene fraction described in claim 4, a solvent containing an ionic liquid as a main component can be reused.

請求項5に係る発明は、請求項1ないし3いずれか1項に係る発明であって、溶剤が磁性を有し、抽出塔11の下端から抽出した溶剤を下部に磁石が設けられた回収塔12に供給し、回収塔12において磁性を有する溶剤を磁石が設けられた下部に移動させて非磁性のヘテロ化合物及び芳香族炭化水素から分離し、回収塔12の下部からヘテロ化合物及び芳香族炭化水素から分離した溶剤を抽出して抽出塔11の上部に供給することを特徴とする。
この請求項5に記載された灯軽油留分の精製方法では、溶剤をヘテロ化合物及び芳香族炭化水素から分離させるに際して加熱させることを必要としない。このため、エネルギーの消耗を抑制することができる。特に、灯軽油留分のような高沸点抽出物を完全に蒸発させるためには、例えば350℃以上の比較的高い温度で行う必要があり、かなりの熱量を必要とする。このため、比較的大きな量のエネルギーを抑制することが期待できる。
The invention according to claim 5 is the invention according to any one of claims 1 to 3, wherein the solvent has magnetism, and the solvent extracted from the lower end of the extraction tower 11 is provided with a magnet at the bottom. 12, the solvent having magnetism in the recovery tower 12 is moved to the lower part where the magnets are provided, and separated from the non-magnetic hetero compound and aromatic hydrocarbon, and the hetero compound and aromatic carbon are separated from the lower part of the recovery tower 12. The solvent separated from hydrogen is extracted and supplied to the upper part of the extraction tower 11.
In the method for purifying a kerosene fraction described in claim 5, it is not necessary to heat the solvent when separating the solvent from the hetero compound and the aromatic hydrocarbon. For this reason, consumption of energy can be suppressed. In particular, in order to completely evaporate a high boiling point extract such as a kerosene fraction, it is necessary to carry out at a relatively high temperature of, for example, 350 ° C. or more, and a considerable amount of heat is required. For this reason, it can be expected to suppress a relatively large amount of energy.

請求項6に係る発明は、請求項4又は5に係る発明であって、回収塔12において溶剤から分離したヘテロ化合物及び芳香族炭化水素を用いて単体硫黄を製造することを特徴とする。
請求項7に係る発明は、請求項4又は5に係る発明であって、回収塔12において溶剤から分離したヘテロ化合物及び芳香族炭化水素を脱ヘテロして高濃度1環、2環、多環芳香族炭化水素製造原料とするか或いは燃料とすることを特徴とする。
この請求項6又は請求項7に記載された灯軽油留分の精製方法では、比較的単純な設備を用いかつ比較的少ないエネルギで、低コストで高効率に単体硫黄又は高濃度1環、2環、多環芳香族炭化水素製造原料若しくは燃料を得ることができる。
The invention according to claim 6 is the invention according to claim 4 or 5, characterized in that elemental sulfur is produced using the hetero compound and aromatic hydrocarbon separated from the solvent in the recovery tower 12.
The invention according to claim 7 is the invention according to claim 4 or 5, wherein the hetero compound and the aromatic hydrocarbon separated from the solvent in the recovery tower 12 are deheterated to provide a high concentration of one ring, two rings, and multiple rings. An aromatic hydrocarbon production raw material or a fuel is used.
In the method for purifying a kerosene fraction according to claim 6 or claim 7, simple sulfur or a high-concentration ring is used at a low cost and with high efficiency using relatively simple equipment and relatively little energy. A ring or polycyclic aromatic hydrocarbon production raw material or fuel can be obtained.

請求項8に係る発明は、請求項1ないし3いずれか1項に係る発明であって、図3に示すように、抽出塔11の下端から抽出した溶剤を再抽出塔22に供給し、再抽出塔22においてヘテロ化合物及び芳香族炭化水素を再抽出溶剤に抽出して残存する溶剤を再抽出塔22から抽出塔11の上部に供給し、ヘテロ化合物及び芳香族炭化水素を抽出した再抽出溶剤を再抽出溶剤回収塔23において蒸発させ、液状で残存するヘテロ化合物及び芳香族炭化水素を用いて単体硫黄を製造することを特徴とする。
請求項9に係る発明は、請求項1ないし3いずれか1項に係る発明であって、抽出塔11の下端から抽出した溶剤を再抽出塔22に供給し、再抽出塔22においてヘテロ化合物及び芳香族炭化水素を再抽出溶剤に抽出して残存する溶剤を再抽出塔22から抽出塔11の上部に供給し、ヘテロ化合物及び芳香族炭化水素を抽出した再抽出溶剤を再抽出溶剤回収塔23において蒸発させ、液状で残存するヘテロ化合物及び芳香族炭化水素を脱ヘテロして高濃度1環、2環、多環芳香族炭化水素製造原料とするか或いは燃料とすることを特徴とする。
The invention according to claim 8 is the invention according to any one of claims 1 to 3, wherein the solvent extracted from the lower end of the extraction tower 11 is supplied to the re-extraction tower 22 as shown in FIG. The extraction column 22 extracts the hetero compound and the aromatic hydrocarbon into the re-extraction solvent, and supplies the remaining solvent from the re-extraction column 22 to the upper portion of the extraction column 11 to extract the hetero compound and the aromatic hydrocarbon. Is vaporized in the re-extraction solvent recovery tower 23, and elemental sulfur is produced using the hetero compound and aromatic hydrocarbon remaining in liquid form.
The invention according to claim 9 is the invention according to any one of claims 1 to 3, wherein the solvent extracted from the lower end of the extraction column 11 is supplied to the re-extraction column 22, and the hetero-compound and The aromatic hydrocarbon is extracted into the re-extraction solvent, and the remaining solvent is supplied from the re-extraction tower 22 to the upper part of the extraction tower 11, and the re-extraction solvent from which the hetero compound and the aromatic hydrocarbon are extracted is re-extracted solvent recovery tower 23. The hetero compound and the aromatic hydrocarbon which are evaporated in the above are deheterated to produce a high-concentration monocyclic, bicyclic and polycyclic aromatic hydrocarbon production raw material or fuel.

この請求項8又は請求項9に記載された灯軽油留分の精製方法では、再抽出溶剤として超臨界二酸化炭素や炭素数が2ないし8のアルカン類、或いはアルコール類等からなる低沸点再抽出溶剤を用いることにより、その再抽出溶剤を減圧又は若干の加熱だけで蒸発させてヘテロ化合物及び芳香族炭化水素を液状で残存させることができる。このため、その抽出工程において高温処理がなく、高温に対する対策を施すことが不要になってその設備を単純化させることができる。   In the method for purifying kerosene oil fraction according to claim 8 or claim 9, low boiling point reextraction comprising supercritical carbon dioxide, alkane having 2 to 8 carbon atoms, or alcohol as reextraction solvent. By using a solvent, the re-extraction solvent can be evaporated only by reducing the pressure or slightly heating to leave the hetero compound and the aromatic hydrocarbon in a liquid state. For this reason, there is no high-temperature treatment in the extraction process, and it is not necessary to take measures against high temperatures, and the equipment can be simplified.

請求項10に係る発明は、請求項1ないし9いずれか1項に係る発明であって、抽出塔11内の圧力が0.1〜5MPaであり、抽出塔11内の温度が20〜300℃であることを特徴とする。
この請求項10に記載された灯軽油留分の精製方法では、抽出塔11の内部を上昇する灯軽油留分中のヘテロ化合物及び芳香族炭化水素を抽出塔11の内部を下降する溶剤に有効に溶込ませることができる。
The invention according to claim 10 is the invention according to any one of claims 1 to 9, wherein the pressure in the extraction column 11 is 0.1 to 5 MPa, and the temperature in the extraction column 11 is 20 to 300 ° C. It is characterized by being.
In the method for purifying kerosene fraction described in claim 10, the hetero compounds and aromatic hydrocarbons in the kerosene fraction rising inside the extraction tower 11 are effective as a solvent descending the inside of the extraction tower 11. Can be dissolved.

請求項11に係る発明は、請求項1ないし9いずれか1項に係る発明であって、灯軽油留分が、石油精製直留灯軽油留分、精製後灯軽油留分、重質油から生成された接触分解生成灯軽油留分、重質油から生成された熱分解生成灯軽油留分、或いは重質油から生成された水素化分解生成灯軽油留分であることを特徴とする。
この請求項11に記載された灯軽油留分の精製方法では、ヘテロ化合物及び芳香族炭化水素を溶剤に有効に溶込ませることができる。
請求項12に係る発明は、請求項1ないし11いずれか1項に係る発明であって、溶剤が親水性液体であり、抽出塔11の上部から抽出された灯軽油留分を水洗し混合した溶剤を除去して脱硫・脱芳香族灯軽油基材又はライトオレフィンの製造基材を得ることを特徴とする。
この請求項12に記載された灯軽油留分の精製方法では、親水性の溶剤を用いると、比重差で抽出塔11の内部を上昇してその上部から抽出された灯軽油留分に残ったイオン性液体を主成分とする溶剤を水洗で簡単に除去することができる。
The invention according to claim 11 is the invention according to any one of claims 1 to 9, wherein the kerosene oil fraction is obtained from an oil refined straight-run kerosene oil fraction, a refined kerosene oil oil fraction, and heavy oil. It is characterized in that it is a produced catalytic cracking kerosene gas oil fraction, a thermal cracking kerosene gas oil fraction produced from heavy oil, or a hydrocracking kerosene gas oil fraction produced from heavy oil.
In the method for purifying a kerosene fraction described in claim 11, the hetero compound and the aromatic hydrocarbon can be effectively dissolved in the solvent.
The invention according to claim 12 is the invention according to any one of claims 1 to 11, wherein the solvent is a hydrophilic liquid, and the kerosene oil fraction extracted from the upper part of the extraction tower 11 is washed with water and mixed. The solvent is removed to obtain a desulfurized / dearomatic kerosene oil base or a light olefin production base.
In the method for purifying a kerosene oil fraction described in claim 12, when a hydrophilic solvent is used, the inside of the extraction tower 11 rises due to the difference in specific gravity and remains in the kerosene oil fraction extracted from the upper part thereof. The solvent containing ionic liquid as a main component can be easily removed by washing with water.

請求項13に係る発明は、請求項1ないし11いずれか1項に係る発明であって、図3に示すように、抽出塔11の上部から抽出された灯軽油留分をアルコールで洗浄し混合した溶剤を除去して脱硫・脱芳香族灯軽油基材又はライトオレフィンの製造基材を得ることを特徴とする。
この請求項13に記載された灯軽油留分の精製方法では、イオン性液体を主成分とする溶剤が抽出塔11の上部から抽出された灯軽油留分に残存していたとしても、その溶剤はアルコールに溶解するためにその残存する溶剤をアルコール洗浄により除去することができる。このため、アルコール洗浄する場合には、その溶剤を親水性にすることを必要としない。
The invention according to claim 13 is the invention according to any one of claims 1 to 11, wherein the kerosene oil fraction extracted from the upper part of the extraction tower 11 is washed with alcohol and mixed as shown in FIG. The solvent is removed to obtain a desulfurized / dearomatic kerosene oil base or a light olefin production base.
In the method for purifying a kerosene oil fraction described in claim 13, even if the solvent mainly composed of an ionic liquid remains in the kerosene fraction extracted from the upper part of the extraction tower 11, the solvent Since it dissolves in alcohol, the remaining solvent can be removed by washing with alcohol. For this reason, when washing with alcohol, it is not necessary to make the solvent hydrophilic.

請求項14に係る発明は、請求項1ないし13いずれか1項に係る発明であって、水、アルコール類、エーテル類、フェノール類の少なくとも一種以上からなる添加剤を1〜50重量%の割合で溶剤に混合してその溶剤とともに抽出塔11の上部に供給することを特徴とする。
この請求項14に記載された灯軽油留分の精製方法では、添加剤を溶剤に混合することにより全体としての粘性を低下させることができる。このためその操作性が向上する結果、抽出率を更に向上させることができる。
The invention according to claim 14 is the invention according to any one of claims 1 to 13, wherein the additive comprising at least one of water, alcohols, ethers and phenols is added in a proportion of 1 to 50% by weight. And mixed with a solvent and supplied to the upper portion of the extraction tower 11 together with the solvent.
In the method for purifying kerosene oil fraction described in claim 14, the viscosity as a whole can be lowered by mixing the additive with the solvent. For this reason, as a result of improving the operability, the extraction rate can be further improved.

以上述べたように、本発明によれば、比重差により抽出塔の内部を上昇する灯軽油留分を比重差により抽出塔11の内部を下降する溶剤に接触させることにより灯軽油留分中のヘテロ化合物及び芳香族炭化水素を溶剤に溶込ませ、ヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤を抽出塔の下部から連続的に抽出するとともにヘテロ化合物及び芳香族炭化水素が減少した灯軽油留分を抽出塔の上部から連続的に抽出するので、脱芳香族処理と脱硫処理を同時に行うことができる。また、抽出塔11の上部から抽出された灯軽油留分にあっては、その中のヘテロ化合物及び芳香族炭化水素をイオン性液体を主成分とする溶剤に溶込ませたものであり、灯軽油留分中のヘテロ化合物及び芳香族炭化水素を抽出することができる。
そして、溶剤が、70〜100体積%の芳香族系イオン性液体又は脂環式系イオン性液体と、30〜0体積%の脂肪族系イオン性液体からなるものであれば、灯軽油留分中の直鎖系硫黄化合物、例えば、メルカプタン、サルファイド、ジサルファイドなどを高効率的に抽出することができ、抽出塔の下端から排出された混合溶剤から溶剤を回収して抽出塔の上部に戻せば、イオン性液体を主成分とする溶剤を再利用することができる。
As described above, according to the present invention, the kerosene oil fraction rising inside the extraction tower due to the specific gravity difference is brought into contact with the solvent descending the inside of the extraction tower 11 due to the specific gravity difference. Kerosene oil in which the hetero compound and aromatic hydrocarbon are dissolved in the solvent, and the solvent in which the hetero compound and aromatic hydrocarbon are dissolved is continuously extracted from the lower part of the extraction tower and the hetero compound and aromatic hydrocarbon are reduced. Since the fraction is continuously extracted from the upper part of the extraction tower, dearomatic treatment and desulfurization treatment can be performed simultaneously. Moreover, in the kerosene fraction extracted from the upper part of the extraction tower 11, the hetero compound and aromatic hydrocarbon in it are dissolved in the solvent which has an ionic liquid as a main component, Hetero compounds and aromatic hydrocarbons in the light oil fraction can be extracted.
And if a solvent consists of 70-100 volume% aromatic ionic liquid or alicyclic ionic liquid, and 30-0 volume% aliphatic ionic liquid, a kerosene oil fraction It is possible to extract the straight-chain sulfur compounds in it, such as mercaptans, sulfides, disulfides, etc. with high efficiency. For example, a solvent mainly composed of an ionic liquid can be reused.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、本発明における灯軽油留分の精製方法に抽出塔11が用いられ、この抽出塔11の上部に1種又は2種以上のイオン性液体を主成分とする比重1.0〜1.6の溶剤を連続的に供給するとともに、その抽出塔11の下部からは比重0.8〜1.0の灯軽油留分を連続的に供給する。ここで、灯軽油留分とは、石油精製直留灯軽油留分、精製後灯軽油留分、重質油から生成された接触分解生成灯軽油留分、重質油から生成された熱分解生成灯軽油留分、或いは重質油から生成された水素化分解生成灯軽油留分である。石油精製直留灯軽油留分とは、原油を常圧蒸留装置にかけて得られる灯軽油留分であり、精製後灯軽油留分とは、水素化精製などの二次処理を行って得られる灯軽油留分である。また接触分解生成灯軽油留分とは、石油精製残油などの重質油を流動接触分解法(FCC法)により生成した灯軽油留分であり、熱分解生成灯軽油留分とは、石油精製残油などの重質油を熱分解法により生成した灯軽油留分であり、水素化分解生成ナフサとは、石油精製残油などの重質油を水素化処理法(水素化分解法)により生成した灯軽油留分である。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, an extraction tower 11 is used in the method for purifying a kerosene fraction in the present invention, and a specific gravity of 1 or 2 or more kinds of ionic liquids as a main component is provided above the extraction tower 11. A solvent of 0 to 1.6 is continuously supplied, and a kerosene oil fraction having a specific gravity of 0.8 to 1.0 is continuously supplied from the lower part of the extraction tower 11. Here, kerosene oil fraction means petroleum refined straight-run kerosene fraction, refined kerosene fraction, catalytic cracking produced kerosene fraction produced from heavy oil, pyrolysis produced from heavy oil A produced kerosene oil fraction or a hydrocracked produced kerosene fraction produced from heavy oil. An oil refinery straight-run kerosene fraction is a kerosene fraction obtained by applying crude oil to an atmospheric distillation unit, and a post-refining kerosene fraction is a lamp obtained by performing secondary treatment such as hydrorefining. It is a light oil fraction. The kerosene fraction produced by catalytic cracking is a kerosene fraction produced by the fluid catalytic cracking method (FCC method) of heavy oil such as petroleum refining residue. This is a kerosene fraction produced by pyrolysis of heavy oil such as refined residue, and hydrocracked naphtha is a hydrotreating process (hydrocracking) of heavy oil such as petroleum refined residue. Is a kerosene oil fraction produced by

また、溶剤の主成分であるイオン性液体としては芳香族系イオン性液体又は脂環式系イオン性液体が挙げられる。具体的に、それらはカチオンを有し、そのカチオンは、[R−NC55]+(N-アルキルピリジニウム)、[R−NC48]+(N-アルキルピロリジニウム)、[R,R’−N233]+(1,3-N,N’-ジアルキルイミダゾリウム)からなる群より選ばれた少なくとも1種のカチオンである(カチオン中のR及びR’は炭素数1〜10のアルキル基又は水素である。)。また、イオン性液体はアニオンを有し、好ましいアニオンは、Cl-、Br-、AlCl4 -、AlBr4 -、FeCl4 -、CuCl3 -、BF4 -、PF6 -、CF3SO3 -、MeSO4 -、MeSO3 -及びOcSO3 -である。
ここで、イオン性液体とは、常温でも結晶化せずに溶融している有機塩であり、蒸気圧がほぼゼロである。またイオン性であるけれども、低粘性かつ高極性であって、化学的に安定であり、400℃以上でも熱安定、非燃性などの特異な性質を有する(耐熱性が高く液体温度範囲が−100〜300℃と広い。)。更にイオンの組合せにより種々の性質を有する。例えば、原料油中のヘテロ化合物(硫黄化合物、窒素化合物、酸素化合物など)や芳香族炭化水素に対する溶解力が高く、灯軽油留分と混合した場合に比重差により2つの液相に分相するイオン性液体を調製できる。
Moreover, aromatic ionic liquid or alicyclic ionic liquid is mentioned as an ionic liquid which is a main component of a solvent. Specifically, they have a cation, which can be [R-NC 5 H 5 ] + (N-alkylpyridinium), [R-NC 4 H 8 ] + (N-alkylpyrrolidinium), [ R, R′—N 2 C 3 H 3 ] + (1,3-N, N′-dialkylimidazolium) is at least one cation selected from the group consisting of R and R ′ in the cation It is a C1-C10 alkyl group or hydrogen.) The ionic liquid has an anion, and preferable anions are Cl , Br , AlCl 4 , AlBr 4 , FeCl 4 , CuCl 3 , BF 4 , PF 6 , CF 3 SO 3 −. , MeSO 4 , MeSO 3 and OcSO 3 .
Here, the ionic liquid is an organic salt that is melted without crystallizing even at room temperature, and has a vapor pressure of almost zero. Although it is ionic, it has low viscosity and high polarity, is chemically stable, and has unique properties such as heat stability and non-flammability even at 400 ° C. or higher (high heat resistance and liquid temperature range − It is as wide as 100 to 300 ° C.). Furthermore, it has various properties depending on the combination of ions. For example, it has high solubility in hetero compounds (sulfur compounds, nitrogen compounds, oxygen compounds, etc.) and aromatic hydrocarbons in feedstock oil, and when mixed with kerosene fraction, it separates into two liquid phases due to the difference in specific gravity An ionic liquid can be prepared.

また、溶剤は、70〜100体積%の上述した芳香族系イオン性液体又は脂環式系イオン性液体と、30〜0体積%の脂肪族系イオン性液体からなることが好ましい。この脂肪族系イオン性液体としては、それらのカチオンは、[NRX4-X]+(アルキルアンモニウム)及び[PRX4-X]+(アルキルフォスフォニウム)である(カチオン中のR及びR’は炭素数1〜10のアルキル基又は水素であり、カチオン中のXは1〜3である。)。ここで、脂肪族系イオン性液体を30〜0体積%とするのは、灯軽油留分中の直鎖系硫黄化合物、例えば、メルカプタン、サルファイド、ジサルファイドなどを高効率的に抽出するためであって、脂肪族系イオン性液体が30体積%を越えるとチオフェン、ベンゾチオフェン、ジベンゾチオフェン等の環状硫黄化合物の抽出に不具合がある。 Moreover, it is preferable that a solvent consists of 70-100 volume% aromatic ionic liquid or alicyclic ionic liquid mentioned above, and 30-0 volume% aliphatic ionic liquid. For this aliphatic ionic liquid, their cations are [NR X H 4-X ] + (alkylammonium) and [PR X H 4-X ] + (alkylphosphonium) (in the cation). R and R ′ are an alkyl group having 1 to 10 carbon atoms or hydrogen, and X in the cation is 1 to 3). Here, the reason why the aliphatic ionic liquid is adjusted to 30 to 0% by volume is to extract the linear sulfur compound in the kerosene oil fraction, such as mercaptan, sulfide, disulfide, and the like with high efficiency. If the aliphatic ionic liquid exceeds 30% by volume, there is a problem in extraction of cyclic sulfur compounds such as thiophene, benzothiophene, and dibenzothiophene.

更に、イオン性液体を主成分とする溶剤は親水性液体であることが好ましい。これにより抽出後灯軽油留分に含まれるイオン性液体を水洗で簡単に除去でき、灯軽油留分を清浄にすることができる。イオン性液体を主成分とする溶剤を親水性にするためには、アニオンとしてBF4 -を用いたり、カチオンのアルキル基を短くしたり、或いはカチオンのアルキル基の代りに極性の無い基を用いることが好ましい。また、溶剤を抽出塔11の上部に供給する際には、水、アルコール類、エーテル類、フェノール類の少なくとも一種以上からなる添加剤を1〜50重量%の割合でその溶剤に混合し、その添加剤を溶剤とともに抽出塔11の上部に供給することもできる。添加剤を溶剤に混合すると全体としての粘性が低下し、操作性が向上する結果、抽出率を向上させることができる。 Furthermore, the solvent containing ionic liquid as a main component is preferably a hydrophilic liquid. Thereby, the ionic liquid contained in the kerosene fraction after extraction can be easily removed by washing with water, and the kerosene fraction can be cleaned. In order to make a solvent mainly composed of an ionic liquid hydrophilic, BF 4 is used as an anion, a cation alkyl group is shortened, or a non-polar group is used instead of a cation alkyl group. It is preferable. In addition, when the solvent is supplied to the upper portion of the extraction tower 11, an additive composed of at least one of water, alcohols, ethers and phenols is mixed in the solvent at a ratio of 1 to 50% by weight, The additive can be supplied together with the solvent to the upper portion of the extraction tower 11. When an additive is mixed with a solvent, the viscosity as a whole is lowered and the operability is improved. As a result, the extraction rate can be improved.

抽出塔11の上部に上述したような溶剤を連続的に供給するとともにその抽出塔11の下部に灯軽油留分を連続的に供給すると、その比重差により灯軽油留分は抽出塔11の内部を上昇し、溶剤は抽出塔11の内部を下降する。そして、抽出塔11の内部を上昇する灯軽油留分中のヘテロ化合物及び芳香族炭化水素を抽出塔11の内部を下降する溶剤に溶込ませる。このとき、抽出塔11内の圧力が0.1〜5MPaであり、抽出塔11内の温度が20〜300℃であることが好ましい。抽出塔11内の圧力が0.1〜5MPaとするのは、0.1MPa未満では抽出塔11内が負圧になって操作が複雑になり、5MPaを越えると操作が難しくなり設備コストが増大するからである。抽出塔11内の温度を20〜300℃の範囲にするのは、20℃未満ではヘテロ化合物及び芳香族炭化水素が溶剤に溶込むのが遅くなりかつ冷凍設備が必要となるからである。また、300℃を越えると操作が難しくなり設備コストが増大するとともに、灯軽油留分の一部が蒸発してしまい、液体での抽出が困難になるからである。   When the solvent as described above is continuously supplied to the upper part of the extraction tower 11 and the kerosene oil fraction is continuously supplied to the lower part of the extraction tower 11, the kerosene oil fraction is brought into the interior of the extraction tower 11 due to the specific gravity difference. And the solvent descends inside the extraction tower 11. Then, the hetero compound and the aromatic hydrocarbon in the kerosene fraction rising inside the extraction tower 11 are dissolved in the solvent descending the inside of the extraction tower 11. At this time, it is preferable that the pressure in the extraction tower 11 is 0.1-5 MPa, and the temperature in the extraction tower 11 is 20-300 degreeC. The pressure in the extraction tower 11 is set to 0.1 to 5 MPa. If the pressure is less than 0.1 MPa, the inside of the extraction tower 11 becomes negative and the operation becomes complicated. If the pressure exceeds 5 MPa, the operation becomes difficult and the equipment cost increases. Because it does. The reason why the temperature in the extraction tower 11 is in the range of 20 to 300 ° C. is that if it is less than 20 ° C., the hetero compound and the aromatic hydrocarbon are slow to dissolve in the solvent and a refrigeration facility is required. Further, if the temperature exceeds 300 ° C., the operation becomes difficult and the equipment cost increases, and part of the kerosene oil fraction evaporates, which makes extraction with liquid difficult.

ここで、溶剤と灯軽油留分の抽出塔11への供給量は、溶剤と灯軽油留分の抽出塔11が抽出塔11の内部で接触する時間が10〜200分の間になるように調整される。ここで、その接触時間を10〜200分間の範囲としたのは、10分間未満ではヘテロ化合物及び芳香族炭化水素が溶剤に溶込むのが十分に進行せず、200分間を越えるといたずらにその接触時間が増大し経済的でないからである。ここで、硫黄化合物などのヘテロ化合物と芳香族炭化水素は、両者ともイオン性液体に抽出されやすいけれども、その抽出速度は異なる。このため、その抽出時間や抽出回数を調整することにより、軽油留分中のヘテロ化合物や芳香族炭化水素を規定値以下に抑えながら軽油のセタン価を調整することができる。即ち、抽出時間を長くするか或いは抽出回数を増加させると、セタン価の低い芳香族炭化水素が比較的多く抽出され、抽出塔11の上部から抽出された灯軽油留分のセタン価を上昇させることができ、逆に、抽出時間を短くするか或いは抽出回数を減少させると、芳香族炭化水素の抽出量が制限され、抽出塔11の上部から抽出された灯軽油留分のセタン価を減少させることができる。ここで、セタン価が低い芳香族化合物を多く抽出して軽油のセタン価を向上させることは今後の脱芳香族燃料油の傾向とも一致しているが、現状では、軽油中の芳香族化合物の含有がまたある程度許されている。このため、セタン価を調整することにより軽油の回収率を向上することができる。即ち、芳香族炭化水素を多めに除去するほど、ヘテロ化合物や芳香族炭化水素を除去した後の軽油の量が少なくなるため、芳香族炭化水素の除去量をコントロールしながら軽油のセタン価を期待値まで調整することにより軽油の回収率を向上させることができる。   Here, the supply amount of the solvent and the kerosene oil fraction to the extraction tower 11 is set so that the time for which the extraction tower 11 of the solvent and the kerosene oil fraction contacts inside the extraction tower 11 is between 10 and 200 minutes. Adjusted. Here, the contact time was set in the range of 10 to 200 minutes because the hetero compound and the aromatic hydrocarbon did not sufficiently dissolve in the solvent in less than 10 minutes, and when the contact time exceeded 200 minutes, This is because the contact time increases and is not economical. Here, hetero compounds such as sulfur compounds and aromatic hydrocarbons are both easily extracted into an ionic liquid, but their extraction rates are different. For this reason, by adjusting the extraction time and the number of extractions, it is possible to adjust the cetane number of light oil while keeping the hetero compounds and aromatic hydrocarbons in the light oil fraction below a specified value. That is, when the extraction time is lengthened or the number of extractions is increased, a relatively large amount of aromatic hydrocarbon having a low cetane number is extracted, and the cetane number of the kerosene oil fraction extracted from the upper part of the extraction tower 11 is increased. Conversely, if the extraction time is shortened or the number of extractions is reduced, the amount of aromatic hydrocarbon extracted is limited, and the cetane number of the kerosene oil fraction extracted from the top of the extraction tower 11 is reduced. Can be made. Here, extracting many aromatic compounds with low cetane number to improve the cetane number of light oil is consistent with the trend of dearomatic fuel oil in the future, but at present, the aromatic compounds in light oil Inclusion is also allowed to some extent. For this reason, the recovery rate of light oil can be improved by adjusting the cetane number. That is, the more aromatic hydrocarbons are removed, the smaller the amount of light oil after removing hetero compounds and aromatic hydrocarbons, so the cetane number of light oil can be expected while controlling the removal amount of aromatic hydrocarbons. The recovery rate of light oil can be improved by adjusting to the value.

ヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤の密度は1.0〜1.6g/cm3であり抽出塔11の内部で下降するが、ヘテロ化合物及び芳香族炭化水素が減じた灯軽油留分の密度は0.8〜1.0g/cm3であり抽出塔11の内部で上昇する。従って、ヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤を抽出塔11の下部から連続的に抽出され、ヘテロ化合物及び芳香族炭化水素が減少した灯軽油留分を抽出塔11の上部から連続的に抽出される。そして、抽出塔11の下端から抽出した溶剤を次に回収塔12に供給する。この回収塔12においてヘテロ化合物及び芳香族炭化水素を蒸発させ液状で残存する溶剤を抽出塔11の上部に供給して溶剤として再利用する。 The density of the solvent in which the hetero compound and the aromatic hydrocarbon are dissolved is 1.0 to 1.6 g / cm 3 and falls inside the extraction tower 11, but the kerosene oil distillate in which the hetero compound and the aromatic hydrocarbon are reduced. The density of the minute is 0.8 to 1.0 g / cm 3 and rises inside the extraction column 11. Therefore, the solvent in which the hetero compound and the aromatic hydrocarbon are dissolved is continuously extracted from the lower part of the extraction column 11, and the kerosene fraction in which the hetero compound and the aromatic hydrocarbon are reduced is continuously extracted from the upper part of the extraction column 11. Extracted into The solvent extracted from the lower end of the extraction tower 11 is then supplied to the recovery tower 12. In this recovery tower 12, the hetero compound and the aromatic hydrocarbon are evaporated, and the remaining solvent in the liquid state is supplied to the upper part of the extraction tower 11 and reused as a solvent.

この回収塔12では、ヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤を200〜400℃、好ましくは300〜380℃に加熱することが好ましい。溶剤中のイオン性液体の蒸気圧はほぼゼロであり、灯軽油留分の沸点範囲は360℃以下であるため、ヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤を上記温度(例えば、360℃)に加熱すると、溶剤が全く蒸発せずに、この溶剤に含まれる芳香族炭化水素や硫黄化合物などが全て蒸気になって分離して回収される。これにより清浄な溶剤を再生できる。一方、回収塔12で蒸気になって分離して回収された芳香族炭化水素を多く含む油は、工業的には脱硫(例えば、水素化脱硫)することにより、高濃度1環、2環、多環芳香族炭化水素製造原料として或いは燃料として用いることもできる。なお、添加剤が溶剤とともに抽出塔11の上部に供給されている場合には、添加剤はこの回収塔12で灯軽油留分と一緒に蒸発して回収塔12の上部から抽出されるが、その後の冷却により液体となる。この液体の添加剤は液体の灯軽油留分とは相互に不溶解のため分離回収され、再利用される。   In the recovery tower 12, the solvent in which the hetero compound and the aromatic hydrocarbon are dissolved is preferably heated to 200 to 400 ° C, preferably 300 to 380 ° C. The vapor pressure of the ionic liquid in the solvent is almost zero, and the boiling point range of the kerosene fraction is 360 ° C. or lower. ), The solvent does not evaporate at all, and aromatic hydrocarbons and sulfur compounds contained in the solvent are all vaporized and separated and recovered. Thereby, a clean solvent can be regenerated. On the other hand, oil containing a large amount of aromatic hydrocarbons recovered as vapor in the recovery tower 12 is industrially desulfurized (for example, hydrodesulfurization), so that a high concentration of one ring, two rings, It can also be used as a raw material for producing polycyclic aromatic hydrocarbons or as a fuel. In addition, when the additive is supplied to the upper part of the extraction tower 11 together with the solvent, the additive is evaporated together with the kerosene fraction in the recovery tower 12 and extracted from the upper part of the recovery tower 12. Subsequent cooling makes it liquid. The liquid additive is separated from the liquid kerosene oil fraction because it is insoluble and recovered and reused.

一方、抽出塔11の上部から抽出された灯軽油留分にあっては、脱硫・脱芳香族の灯軽油基材として用いるか、又はライトオレフィンを製造するための基材とすることもできる。ここで、溶剤が親水性液体であれば、その後水洗塔13において水洗することにより、抽出塔11の上部から抽出された灯軽油留分に残存する溶剤を有効に除去することができる。この抽出塔11の上部から抽出された灯軽油留分にあっては、その中のヘテロ化合物及び芳香族炭化水素をイオン性液体を主成分とする溶剤に溶込ませたものであるので、灯軽油留分中のヘテロ化合物及び芳香族炭化水素が抽出され、脱硫・脱芳香族灯軽油基材又はライトオレフィンの製造基材を得ることができる。
即ち、本発明の灯軽油留分の精製方法では、水素や高価な固体触媒を用いず、また高温高圧の処理条件を用いずに比較的単純な設備を用いかつ比較的少ないエネルギで、低コストで高効率に脱硫・脱芳香族灯軽油基材又はライトオレフィンの製造基材を得ることができるとともに、高濃度1環、2環、多環芳香族炭化水素製造原料等も同時に得ることができる。そして、溶剤がルイス酸性を持つイオン性液体からなるか又は酸が添加されたものであれば、溶剤が酸性であることによりその溶剤が酸化剤としても機能し、一部分或いは全部の硫黄化合物等のヘテロ化合物を酸化して溶剤への溶解度が大きい極性の高いスルホン類等の化合物に転換させ、硫黄化合物等の抽出率を向上させることができる。
On the other hand, the kerosene fraction extracted from the upper part of the extraction tower 11 can be used as a desulfurized / dearomatic kerosene base material or a base material for producing light olefins. Here, if the solvent is a hydrophilic liquid, the solvent remaining in the kerosene fraction extracted from the upper portion of the extraction tower 11 can be effectively removed by washing with water in the washing tower 13. In the kerosene fraction extracted from the upper part of the extraction tower 11, the hetero compound and the aromatic hydrocarbon contained therein are dissolved in a solvent mainly composed of an ionic liquid. Hetero compounds and aromatic hydrocarbons in the light oil fraction are extracted to obtain a desulfurized / dearomatic kerosene oil base or a light olefin production base.
That is, the method for purifying kerosene oil fraction of the present invention does not use hydrogen or an expensive solid catalyst, uses relatively simple equipment without using high-temperature and high-pressure treatment conditions, uses relatively little energy, and is low in cost. In addition to high-efficiency desulfurization / dearomatic kerosene oil oil base or light olefin production base, high-concentration monocyclic, bicyclic, polycyclic aromatic hydrocarbon production raw materials can be obtained at the same time. . If the solvent is made of an ionic liquid having Lewis acidity or an acid is added, the solvent functions as an oxidant due to the acidity of the solvent. The hetero compound can be oxidized to be converted into a compound such as a highly polar sulfone having a high solubility in a solvent, and the extraction rate of a sulfur compound or the like can be improved.

なお、上述した実施の形態では、回収塔12においてヘテロ化合物及び芳香族炭化水素を蒸発させる場合を示したが、溶剤の主成分であるイオン性液体におけるアニオンが塩化鉄酸であるような場合には、そのイオン性液体は磁性を持っており、磁石を近づけるとイオン性液体がその磁石の方に移動するようになる。従って、溶剤が磁性を有するような場合には、抽出塔11の下端から抽出した溶剤を図2に示すように下部に磁石が設けられた回収塔12に供給し、回収塔12において磁性を有する溶剤を磁石が設けられた下部に移動させて非磁性のヘテロ化合物及び芳香族炭化水素から分離させても良い。そして、回収塔12の下部からヘテロ化合物及び芳香族炭化水素から分離した溶剤を抽出して抽出塔11の上部に供給することによりその溶剤を再利用することができる。また、このように、磁石を用いて溶剤をヘテロ化合物及び芳香族炭化水素から分離させると、その分離に際して加熱させることを必要としない。このため、エネルギーの消耗を抑制することができる。特に、灯軽油留分のような高沸点抽出物を完全に蒸発させるためには、例えば350℃以上の比較的高い温度で行う必要があり、かなりの熱量を必要とする。このため、比較的大きな量のエネルギーを抑制することが期待できる。   In the above-described embodiment, the case where the hetero compound and the aromatic hydrocarbon are evaporated in the recovery tower 12 is shown. However, when the anion in the ionic liquid that is the main component of the solvent is ferric chloride. The ionic liquid has magnetism, and when the magnet is brought closer, the ionic liquid moves toward the magnet. Therefore, when the solvent has magnetism, the solvent extracted from the lower end of the extraction tower 11 is supplied to the recovery tower 12 provided with a magnet at the lower portion as shown in FIG. The solvent may be moved to the lower part where the magnet is provided to separate it from the non-magnetic hetero compound and the aromatic hydrocarbon. Then, the solvent separated from the hetero compound and the aromatic hydrocarbon is extracted from the lower part of the recovery tower 12 and supplied to the upper part of the extraction tower 11 so that the solvent can be reused. Further, when the solvent is separated from the hetero compound and the aromatic hydrocarbon using the magnet as described above, heating is not required for the separation. For this reason, consumption of energy can be suppressed. In particular, in order to completely evaporate a high boiling point extract such as a kerosene fraction, it is necessary to carry out at a relatively high temperature of, for example, 350 ° C. or more, and a considerable amount of heat is required. For this reason, it can be expected to suppress a relatively large amount of energy.

図3に本発明の別の実施の形態を示す。
この実施の形態では、抽出塔11の下端から抽出した溶剤を再抽出塔22に供給する。この再抽出塔22では、ヘテロ化合物及び芳香族炭化水素を再抽出溶剤に抽出し、再抽出塔22に残存する溶剤をその再抽出塔22から抽出塔11の上部に供給してイオン性液体を主成分とする溶剤を再利用する。ここで、ヘテロ化合物及び芳香族炭化水素を再抽出するための再抽出溶剤としては、超臨界二酸化炭素や炭素数が2ないし8のアルカン類、或いはアルコール類が挙げられる。その後、ヘテロ化合物及び芳香族炭化水素を抽出した再抽出溶剤を再抽出溶剤回収塔において減圧又は加熱して蒸発させることにより、ヘテロ化合物及び芳香族炭化水素を液状で残存させることができる。
FIG. 3 shows another embodiment of the present invention.
In this embodiment, the solvent extracted from the lower end of the extraction tower 11 is supplied to the re-extraction tower 22. In the re-extraction tower 22, the hetero compound and the aromatic hydrocarbon are extracted into a re-extraction solvent, and the solvent remaining in the re-extraction tower 22 is supplied from the re-extraction tower 22 to the upper portion of the extraction tower 11 to supply the ionic liquid. Reuse the main solvent. Here, examples of the re-extraction solvent for re-extracting the hetero compound and the aromatic hydrocarbon include supercritical carbon dioxide, alkanes having 2 to 8 carbon atoms, and alcohols. After that, the re-extraction solvent from which the hetero compound and aromatic hydrocarbon have been extracted is evaporated under reduced pressure or by heating in a re-extraction solvent recovery tower, whereby the hetero compound and aromatic hydrocarbon can be left in liquid form.

そして液状で残存するヘテロ化合物及び芳香族炭化水素を用いて単体硫黄を製造するか、或いは更に脱ヘテロすることにより高濃度1環、2環、多環芳香族炭化水素製造原料とするか若しくは燃料とする。このようにヘテロ化合物及び芳香族炭化水素を上述した低沸点再抽出溶剤を用いて抽出し、その後その再抽出溶剤を減圧又は若干の加熱だけで蒸発させてヘテロ化合物及び芳香族炭化水素を液状で残存させることができる。このため、その抽出工程において高温処理がなく、比較的低温においてヘテロ化合物及び芳香族炭化水素を残存回収させることができ、高温に対する対策を施すことが不要になり、その設備を単純化させることができる。   Then, simple sulfur is produced using a hetero compound and an aromatic hydrocarbon remaining in a liquid state, or further deheterized to obtain a high-concentration monocyclic, bicyclic, polycyclic aromatic hydrocarbon production raw material or fuel And In this way, the hetero compound and the aromatic hydrocarbon are extracted using the low boiling point re-extraction solvent described above, and then the re-extraction solvent is evaporated only under reduced pressure or slight heating to make the hetero compound and the aromatic hydrocarbon in a liquid state. It can be left. For this reason, there is no high-temperature treatment in the extraction process, and the hetero compounds and aromatic hydrocarbons can remain and be recovered at a relatively low temperature, making it unnecessary to take measures against high temperatures and simplifying the equipment. it can.

一方、抽出塔11の上部から抽出された灯軽油留分にあっては、その後アルコール洗浄塔24においてアルコール洗浄することにより、抽出塔11の上部から抽出された灯軽油留分に残存する溶剤を除去する。即ち、イオン性液体はアルコールに溶解でき、イオン性液体を主成分とする溶剤が抽出塔11の上部から抽出された灯軽油留分に残存していたとしても、このアルコール洗浄により除去することができる。このため、アルコール洗浄塔24を設けた場合にあっては、その溶剤を親水性にすることを必要としないという効果を生じさせる。   On the other hand, in the kerosene oil fraction extracted from the upper part of the extraction tower 11, the solvent remaining in the kerosene oil fraction extracted from the upper part of the extraction tower 11 is subsequently washed with alcohol in the alcohol washing tower 24. Remove. That is, the ionic liquid can be dissolved in alcohol, and even if the solvent containing the ionic liquid as a main component remains in the kerosene fraction extracted from the upper part of the extraction tower 11, it can be removed by this alcohol washing. it can. For this reason, in the case where the alcohol washing tower 24 is provided, there is an effect that it is not necessary to make the solvent hydrophilic.

次に本発明の実施例を詳しく説明する。
<実施例1>
灯軽油留分からの硫黄化合物及び芳香族炭化水素の分離を確認するために、灯軽油留分に相当する模擬物を作り、20段の抽出塔を用いて模擬物中の硫黄化合物や芳香族炭化水素の抽出分離実験を行った。抽出塔操作温度は50℃であってその操作圧力は0.1MPaである。模擬物とイオン性液体の比は模擬物1重量に対してイオン性液体が5重量になるように抽出塔に供給した。ここでイオン性液体は1-Butyl-methylimidazolium Tetrafluoroborate[BMIM][BF4]を用いた。抽出塔の下部及び上部から排出された抽出液と抽残液をサンプリングし、クロマトグラフを用いて分析した。これらの結果を表1に示す。この表1の結果から明らかなように全種類の硫黄化合物及び芳香族炭化水については、ほぼ全量抽出されていることが判る。
Next, embodiments of the present invention will be described in detail.
<Example 1>
In order to confirm the separation of sulfur compounds and aromatic hydrocarbons from the kerosene oil fraction, a simulated product corresponding to the kerosene fraction is prepared, and the sulfur compounds and aromatic carbonization in the simulated product are obtained using a 20-stage extraction tower. Hydrogen extraction and separation experiments were conducted. The operation temperature of the extraction tower is 50 ° C. and the operation pressure is 0.1 MPa. The ratio of the simulant to the ionic liquid was supplied to the extraction tower so that the ionic liquid was 5 weights per 1 weight of the simulant. Here, 1-Butyl-methylimidazolium Tetrafluoroborate [BMIM] [BF 4 ] was used as the ionic liquid. The extract and the extracted residue discharged from the lower and upper portions of the extraction tower were sampled and analyzed using a chromatograph. These results are shown in Table 1. As is apparent from the results in Table 1, it can be seen that almost all amounts of sulfur compounds and aromatic hydrocarbons are extracted.

Figure 2006160969
Figure 2006160969

本発明実施形態の灯軽油留分の精製方法を示す工程図である。It is process drawing which shows the refinement | purification method of the kerosene oil fraction of this embodiment. 下部に磁石が設けられた回収塔を示す斜視図である。It is a perspective view which shows the collection tower in which the magnet was provided in the lower part. 本発明の別の灯軽油留分の精製方法を示す工程図である。It is process drawing which shows the purification method of another kerosene oil fraction of this invention.

符号の説明Explanation of symbols

11 抽出塔
12 溶剤回収塔
22 再抽出塔
23 再抽出溶剤回収塔

11 Extraction tower 12 Solvent recovery tower 22 Re-extraction tower 23 Re-extraction solvent recovery tower

Claims (15)

抽出塔(11)の上部に1種又は2種以上のイオン性液体を主成分とする比重1.0〜1.6の溶剤を連続的に供給するとともに前記抽出塔(11)の下部に比重0.8〜1.0の灯軽油留分を連続的に供給し、
比重差により前記抽出塔(11)の内部を上昇する前記灯軽油留分を比重差により前記抽出塔(11)の内部を下降する前記溶剤に接触させることにより前記灯軽油留分中の硫黄化合物、酸素化合物又は窒素化合物などのヘテロ化合物及び芳香族炭化水素を前記溶剤に溶込ませ、
硫黄化合物、酸素化合物又は窒素化合物などのヘテロ化合物及び芳香族炭化水素を溶込んだ溶剤を前記抽出塔(11)の下部から連続的に抽出するとともにヘテロ化合物及び芳香族炭化水素が減少した前記灯軽油留分を前記抽出塔(11)の上部から連続的に抽出する
ことを特徴とする灯軽油留分の精製方法。
A solvent having a specific gravity of 1.0 to 1.6 mainly composed of one or more ionic liquids is continuously supplied to the upper part of the extraction tower (11) and the specific gravity is supplied to the lower part of the extraction tower (11). Continuously supplying a kerosene fraction of 0.8 to 1.0,
Sulfur compounds in the kerosene oil fraction by contacting the kerosene oil fraction rising inside the extraction tower (11) due to a specific gravity difference with the solvent descending the inside of the extraction tower (11) due to a specific gravity difference A hetero compound such as an oxygen compound or a nitrogen compound and an aromatic hydrocarbon are dissolved in the solvent,
The lamp in which a hetero compound such as a sulfur compound, oxygen compound or nitrogen compound and an aromatic hydrocarbon are continuously extracted from the lower part of the extraction tower (11) and the hetero compound and the aromatic hydrocarbon are reduced. A method for purifying a kerosene oil fraction, wherein the diesel oil fraction is continuously extracted from the upper part of the extraction tower (11).
溶剤が、70〜100体積%の芳香族系イオン性液体又は脂環式系イオン性液体と、30〜0体積%の脂肪族系イオン性液体からなる請求項1記載の灯軽油留分の精製方法。   The refinement | purification of the kerosene oil fraction of Claim 1 which a solvent consists of 70-100 volume% aromatic ionic liquid or alicyclic ionic liquid, and 30-0 volume% aliphatic ionic liquid. Method. 溶剤が、ルイス酸性を持つイオン性液体からなるか、又は1種又は2種以上のイオン性液体と前記1種又は2種以上のイオン性液体に添加された酸とからなる請求項1記載の灯軽油留分の精製方法。   The solvent is composed of an ionic liquid having Lewis acidity, or composed of one or more ionic liquids and an acid added to the one or two or more ionic liquids. Purification method for kerosene oil fraction. 抽出塔(11)の下端から抽出した溶剤を回収塔(12)に供給し、前記回収塔(12)においてヘテロ化合物及び芳香族炭化水素を蒸発させ液状で残存する溶剤を抽出塔(11)の上部に供給する請求項1ないし3いずれか1項に記載の灯軽油留分の精製方法。   The solvent extracted from the lower end of the extraction tower (11) is supplied to the recovery tower (12), and in the recovery tower (12), the hetero compound and the aromatic hydrocarbon are evaporated to remove the remaining solvent in the liquid form of the extraction tower (11). The method for purifying a kerosene oil fraction according to any one of claims 1 to 3, which is supplied to an upper part. 溶剤が磁性を有し、抽出塔(11)の下端から抽出した溶剤を下部に磁石が設けられた回収塔(12)に供給し、前記回収塔(12)において磁性を有する前記溶剤を前記磁石が設けられた下部に移動させて非磁性のヘテロ化合物及び芳香族炭化水素から分離し、前記回収塔(12)の下部から前記ヘテロ化合物及び芳香族炭化水素から分離した前記溶剤を抽出して前記抽出塔(11)の上部に供給する請求項1ないし3いずれか1項に記載の灯軽油留分の精製方法。   The solvent has magnetism, and the solvent extracted from the lower end of the extraction tower (11) is supplied to the recovery tower (12) provided with a magnet in the lower part, and the solvent having magnetism in the recovery tower (12) is supplied to the magnet. Is separated from the non-magnetic hetero compound and aromatic hydrocarbon, and the solvent separated from the hetero compound and aromatic hydrocarbon is extracted from the lower part of the recovery tower (12) to extract the solvent. The method for purifying kerosene oil fraction according to any one of claims 1 to 3, wherein the kerosene oil fraction is supplied to an upper part of the extraction tower (11). 回収塔(12)において溶剤から分離したヘテロ化合物及び芳香族炭化水素を用いて単体硫黄を製造する請求項4又は5記載の灯軽油留分の精製方法。   The method for purifying a kerosene oil fraction according to claim 4 or 5, wherein elemental sulfur is produced using the hetero compound and aromatic hydrocarbon separated from the solvent in the recovery tower (12). 回収塔(12)において溶剤から分離したヘテロ化合物及び芳香族炭化水素を脱ヘテロして高濃度1環、2環、多環芳香族炭化水素製造原料とするか或いは燃料とする請求項4又は5記載の灯軽油留分の精製方法。   6. The hetero compound and aromatic hydrocarbon separated from the solvent in the recovery tower (12) are deheterized to produce a high-concentration monocyclic, bicyclic, polycyclic aromatic hydrocarbon raw material or fuel. The purification method of the kerosene oil fraction of description. 抽出塔(11)の下端から抽出した溶剤を再抽出塔(22)に供給し、前記再抽出塔(22)においてヘテロ化合物及び芳香族炭化水素を再抽出溶剤に抽出して残存する溶剤を前記再抽出塔(22)から前記抽出塔(11)の上部に供給し、前記ヘテロ化合物及び芳香族炭化水素を抽出した前記再抽出溶剤を再抽出溶剤回収塔(23)において蒸発させ、液状で残存するヘテロ化合物及び芳香族炭化水素を用いて単体硫黄を製造する請求項1ないし3いずれか1項に記載の灯軽油留分の精製方法。   The solvent extracted from the lower end of the extraction tower (11) is supplied to the re-extraction tower (22), and in the re-extraction tower (22), the hetero compound and the aromatic hydrocarbon are extracted into the re-extraction solvent, and the remaining solvent is The re-extraction column (22) is supplied to the top of the extraction column (11), and the re-extraction solvent extracted from the hetero compound and aromatic hydrocarbon is evaporated in the re-extraction solvent recovery column (23), and remains in a liquid state. The method for purifying a kerosene oil fraction according to any one of claims 1 to 3, wherein elemental sulfur is produced using a hetero compound and an aromatic hydrocarbon. 抽出塔(11)の下端から抽出した溶剤を再抽出塔(22)に供給し、前記再抽出塔(22)においてヘテロ化合物及び芳香族炭化水素を再抽出溶剤に抽出して残存する溶剤を前記再抽出塔(22)から前記抽出塔(11)の上部に供給し、前記ヘテロ化合物及び芳香族炭化水素を抽出した前記再抽出溶剤を再抽出溶剤回収塔(23)において蒸発させ、液状で残存するヘテロ化合物及び芳香族炭化水素を脱ヘテロして高濃度1環、2環、多環芳香族炭化水素製造原料とするか或いは燃料とする請求項1ないし3いずれか1項に記載の灯軽油留分の精製方法。   The solvent extracted from the lower end of the extraction tower (11) is supplied to the re-extraction tower (22), and in the re-extraction tower (22), the hetero compound and the aromatic hydrocarbon are extracted into the re-extraction solvent, and the remaining solvent is The re-extraction column (22) is supplied to the top of the extraction column (11), and the re-extraction solvent extracted from the hetero compound and aromatic hydrocarbon is evaporated in the re-extraction solvent recovery column (23), and remains in a liquid state. The kerosene oil according to any one of claims 1 to 3, wherein the hetero compound and aromatic hydrocarbon to be deheterated are used as a raw material for producing high-concentration monocyclic, bicyclic, and polycyclic aromatic hydrocarbons, or used as fuel. Purification method for fractions. 抽出塔(11)内の圧力が0.1〜5MPaであり、抽出塔(11)内の温度が20〜300℃である請求項1ないし9いずれか1項に記載の灯軽油留分の精製方法。   The purification of the kerosene oil fraction according to any one of claims 1 to 9, wherein the pressure in the extraction column (11) is 0.1 to 5 MPa, and the temperature in the extraction column (11) is 20 to 300 ° C. Method. 灯軽油留分が、石油精製直留灯軽油留分、精製後灯軽油留分、重質油から生成された接触分解生成灯軽油留分、重質油から生成された熱分解生成灯軽油留分、或いは重質油から生成された水素化分解生成灯軽油留分である請求項1ないし10いずれか1項に記載の灯軽油留分の精製方法。   A kerosene fraction is a petroleum refined straight-run kerosene fraction, a post-refined kerosene fraction, a catalytic cracking produced kerosene fraction produced from heavy oil, and a pyrolysis produced kerosene fraction produced from heavy oil. The method for purifying a kerosene oil fraction according to any one of claims 1 to 10, which is a hydrocracked kerosene fraction produced from heavy oil or a hydrocracking product. 溶剤が親水性液体であり、抽出塔(11)の上部から抽出された灯軽油留分を水洗し混合した溶剤を除去して脱硫・脱芳香族灯軽油基材又はライトオレフィンの製造基材を得る請求項1ないし11いずれか1項に記載の灯軽油留分の精製方法。   The solvent is a hydrophilic liquid, and the kerosene fraction extracted from the upper part of the extraction tower (11) is washed with water to remove the mixed solvent, and a desulfurized / dearomatic kerosene base oil or light olefin production base is prepared. The method for purifying a kerosene oil fraction according to any one of claims 1 to 11. 抽出塔(11)の上部から抽出された灯軽油留分をアルコールで洗浄し混合した溶剤を除去して脱硫・脱芳香族灯軽油基材又はライトオレフィンの製造基材を得る請求項1ないし11いずれか1項に記載の灯軽油留分の精製方法。   The kerosene fraction extracted from the upper part of the extraction tower (11) is washed with alcohol and the mixed solvent is removed to obtain a desulfurized / dearomatic kerosene base material or light olefin production base. The method for purifying a kerosene oil fraction according to any one of the above. 水、アルコール類、エーテル類、フェノール類の少なくとも一種以上からなる添加剤を1〜50重量%の割合で溶剤に混合して前記溶剤とともに抽出塔(11)の上部に供給する請求項1ないし13いずれか1項に記載の灯軽油留分の精製方法。   14. An additive comprising at least one of water, alcohols, ethers and phenols is mixed in a solvent in a proportion of 1 to 50% by weight and supplied to the upper part of the extraction tower (11) together with the solvent. The method for purifying a kerosene oil fraction according to any one of the above. 灯軽油留分中のヘテロ化合物及び芳香族炭化水素を溶込んで前記灯軽油留分から前記ヘテロ化合物及び芳香族炭化水素を除去することにより前記灯軽油留分を精製する抽出溶剤であって、
70〜100体積%の芳香族系イオン性液体又は脂環式系イオン性液体と、
30〜0体積%の脂肪族系イオン性液体からなる
ことを特徴とする抽出溶剤。
An extraction solvent for purifying the kerosene oil fraction by dissolving the heterocompound and aromatic hydrocarbon from the kerosene fraction by dissolving the heterocompound and aromatic hydrocarbon in the kerosene fraction,
70 to 100 vol% aromatic ionic liquid or alicyclic ionic liquid;
An extraction solvent comprising 30 to 0% by volume of an aliphatic ionic liquid.
JP2004357677A 2004-12-10 2004-12-10 Method for refining light kerosene fraction and extractive solvent therefor Withdrawn JP2006160969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357677A JP2006160969A (en) 2004-12-10 2004-12-10 Method for refining light kerosene fraction and extractive solvent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357677A JP2006160969A (en) 2004-12-10 2004-12-10 Method for refining light kerosene fraction and extractive solvent therefor

Publications (1)

Publication Number Publication Date
JP2006160969A true JP2006160969A (en) 2006-06-22

Family

ID=36663346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357677A Withdrawn JP2006160969A (en) 2004-12-10 2004-12-10 Method for refining light kerosene fraction and extractive solvent therefor

Country Status (1)

Country Link
JP (1) JP2006160969A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138307A2 (en) * 2006-05-25 2007-12-06 The Queen's University Of Belfast Process for removing sulfur-containing acids from crude oil
WO2008034880A1 (en) * 2006-09-21 2008-03-27 Universite Claude Bernard Lyon I Use of an ionic liquid for extracting polyaromatic or neutral nitrogenous compounds from a mixture of hydrocarbons of the diesel boiling range
EP1911829A1 (en) * 2006-10-10 2008-04-16 The Queen's University of Belfast Process for deacidifying crude oil
JP2011506088A (en) * 2007-12-20 2011-03-03 プロイオニック プロダクション オブ イオニック サブスタンシス ゲーエムベーハー ウント コムパニー カーゲー Use of magnetic and ionic liquids as extractants
RU2598383C2 (en) * 2011-12-15 2016-09-27 Юоп Ллк Extraction of polycyclic aromatic compounds from oil stock using ionic liquids
US10150933B2 (en) 2015-05-27 2018-12-11 Evonik Degussa Gmbh Process for removing metal from a metal-containing glyceride oil comprising a basic quaternary ammonium salt treatment
US10221374B2 (en) 2015-05-27 2019-03-05 Evonik Degussa Gmbh Process for refining glyceride oil comprising a basic quaternary ammonium salt treatment
US10301572B1 (en) 2017-11-10 2019-05-28 Evonik Degussa Gmbh Process for extracting fatty acids from triglyceride oils
US10316268B2 (en) 2015-05-27 2019-06-11 The Queen's University Of Belfast Process for removing chloropropanols and/or glycidol, or their fatty acid esters, from glyceride oil, and an improved glyceride oil refining process comprising the same
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
CN113385225A (en) * 2021-06-18 2021-09-14 辽宁东科药业有限公司 Supermolecule ionic liquid catalyst and preparation method and application thereof
CN114058400A (en) * 2021-11-24 2022-02-18 北京工业大学 Multistage extraction device and method for aromatic hydrocarbons from waste tire pyrolysis oil by using ionic liquid

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138307A3 (en) * 2006-05-25 2008-06-05 Univ Belfast Process for removing sulfur-containing acids from crude oil
WO2007138307A2 (en) * 2006-05-25 2007-12-06 The Queen's University Of Belfast Process for removing sulfur-containing acids from crude oil
WO2008034880A1 (en) * 2006-09-21 2008-03-27 Universite Claude Bernard Lyon I Use of an ionic liquid for extracting polyaromatic or neutral nitrogenous compounds from a mixture of hydrocarbons of the diesel boiling range
EP1911829A1 (en) * 2006-10-10 2008-04-16 The Queen's University of Belfast Process for deacidifying crude oil
JP2011506088A (en) * 2007-12-20 2011-03-03 プロイオニック プロダクション オブ イオニック サブスタンシス ゲーエムベーハー ウント コムパニー カーゲー Use of magnetic and ionic liquids as extractants
RU2598383C2 (en) * 2011-12-15 2016-09-27 Юоп Ллк Extraction of polycyclic aromatic compounds from oil stock using ionic liquids
US10150933B2 (en) 2015-05-27 2018-12-11 Evonik Degussa Gmbh Process for removing metal from a metal-containing glyceride oil comprising a basic quaternary ammonium salt treatment
US10221374B2 (en) 2015-05-27 2019-03-05 Evonik Degussa Gmbh Process for refining glyceride oil comprising a basic quaternary ammonium salt treatment
US10316268B2 (en) 2015-05-27 2019-06-11 The Queen's University Of Belfast Process for removing chloropropanols and/or glycidol, or their fatty acid esters, from glyceride oil, and an improved glyceride oil refining process comprising the same
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10301572B1 (en) 2017-11-10 2019-05-28 Evonik Degussa Gmbh Process for extracting fatty acids from triglyceride oils
CN113385225A (en) * 2021-06-18 2021-09-14 辽宁东科药业有限公司 Supermolecule ionic liquid catalyst and preparation method and application thereof
CN113385225B (en) * 2021-06-18 2022-11-18 抚顺东科新能源科技有限公司 Supermolecule ionic liquid catalyst and preparation method and application thereof
CN114058400A (en) * 2021-11-24 2022-02-18 北京工业大学 Multistage extraction device and method for aromatic hydrocarbons from waste tire pyrolysis oil by using ionic liquid

Similar Documents

Publication Publication Date Title
US20100270211A1 (en) Desulfurization and denitrogenation with ionic liquids and metal ion systems
JP2006160969A (en) Method for refining light kerosene fraction and extractive solvent therefor
JP5960719B2 (en) Desulfurization and denitrification integrated process including mild hydrotreatment of aromatic dilute fraction and oxidation of aromatic rich fraction
Sharma et al. Solvent extraction of aromatic components from petroleum derived fuels: a perspective review
JP6114285B2 (en) Selective liquid-liquid extraction of oxidative desulfurization reaction products
US20030127362A1 (en) Selective hydroprocessing and mercaptan removal
US9644156B2 (en) Targeted desulfurization apparatus integrating oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds
JP2014507493A (en) Integrated desulfurization and denitrification processes including mild hydroprocessing and oxidation of aromatic rich hydroprocessing products
EP2241609A1 (en) Method for removing Impurities from Hydrocarbon Oils
JP3036822B2 (en) Solvent extraction of lubricating oil
ES2645438T3 (en) Procedure for removing nitrogen from fuel streams with caprolactam ionic liquids
WO2018090584A1 (en) Catalytic gasoline desulfurization method having also olefin selective removal function
EP3055280B1 (en) Process for removal of sulphur from raw methanol
Haruna et al. Comparative studies on reduction of sulphur content of heavy crude oil using KMnO4+ H2O2/CH3COOH and KMnO4+ H2O2/HCOOH via oxidative desulphurization (ODS)
US9890336B2 (en) Method and apparatus for the purification of a hydrocarbon-containing stream
US9688923B2 (en) Integrated methods for separation and extraction of polynuclear aromatic hydrocarbons, heterocyclic compounds, and organometallic compounds from hydrocarbon feedstocks
JP2020514459A5 (en)
JP2009235407A (en) Oxidative desulfurization of fuel oil
TW201440861A (en) Separation of impurities during extraction processes
US8992767B2 (en) Ionic liquid desulfurization process incorporated in a contact vessel
CN108018066B (en) Deep desulfurization method for sulfur-containing raw material
JP2004323544A (en) Method of isolating sulfur compound present in oil, method of isolating sulfur compound and aromatic hydrocarbon present in oil, method of preparing high octane value desulfurized gasoline base and method of preparing high octane value desulfurized and dearomatized gasoline base
Abubakar et al. Reduction of sulphur content of urals crude oil prior to processing using oxidative desulphurization
EP0461694B1 (en) Process for deasphalting and demetallizing crude petroleum or its fractions
JP2006089659A (en) Method for purifying naphtha fraction and extraction solvent for purifying the naphtha fraction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304