JP2006154516A - Near ir beams absorption filter for plasma display panels, and plasma display panel using the same - Google Patents

Near ir beams absorption filter for plasma display panels, and plasma display panel using the same Download PDF

Info

Publication number
JP2006154516A
JP2006154516A JP2004347204A JP2004347204A JP2006154516A JP 2006154516 A JP2006154516 A JP 2006154516A JP 2004347204 A JP2004347204 A JP 2004347204A JP 2004347204 A JP2004347204 A JP 2004347204A JP 2006154516 A JP2006154516 A JP 2006154516A
Authority
JP
Japan
Prior art keywords
tungsten oxide
fine particles
plasma display
oxide fine
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004347204A
Other languages
Japanese (ja)
Other versions
JP4586970B2 (en
Inventor
Hiromitsu Takeda
広充 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004347204A priority Critical patent/JP4586970B2/en
Publication of JP2006154516A publication Critical patent/JP2006154516A/en
Application granted granted Critical
Publication of JP4586970B2 publication Critical patent/JP4586970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near IR absorption filter for PDP which is high in near IR absorptive power, is excellent in durability and can be inexpensively produced. <P>SOLUTION: Tungsten oxide particulates are produced by dissolving tungsten hexachloride by a slight amount each into ethanol to obtain a solution and drying the solution to a powder form, then heating the powder in a reducing atmosphere and heating the powder in an argon atmosphere after once restoring the powder to room temperature. The tungsten oxide particulates are dispersed into a UV curing resin and are allowed to cure after coating application onto a suitable substrate, and thereby, the near IR absorption filter for PDP which is high in visible light transmittance and the near IR absorptive power, is excellent in the durability and can be inexpensively produced is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマディスプレイパネル(以下、PDPと記載することもある。)用光学フィルターに係り、特に、PDP本体の発光部からPDP画面前面に向けて放射される近赤外線を吸収するPDP用近赤外線吸収フィルターと、このフィルターを用いたPDPに関するものである。   The present invention relates to an optical filter for a plasma display panel (hereinafter also referred to as PDP), and in particular, a near-PDP for absorbing near-infrared rays emitted from a light emitting portion of a PDP main body toward the front surface of the PDP screen. The present invention relates to an infrared absorption filter and a PDP using the filter.

近年、ディスプレイの大型化、薄型化に伴い、PDPが注目を集めている。このPDPの一般的構成について図面を参照しながら説明する。図1は、交流型(AC型)のPDPの発光部の概略を示す拡大断面図である。図1において、符号11は、前面ガラス基板(フロントカバープレート)であり、この前面ガラス基板11上に表示電極12が形成されている。更に、この表示電極12が形成されている前面ガラス基板11は、誘電体ガラス層13及び酸化マグネシウム(MgO)からなる保護層14により覆われている(例えば、特許文献1参照)。また、符号15は、背面ガラス基板(バックプレート)であり、この背面ガラス基板15上には、アドレス電極16及び隔壁17、蛍光体層18が設けられており、符号19は放電ガスを封入する放電空間となっている。   In recent years, PDPs have attracted attention as displays become larger and thinner. A general configuration of this PDP will be described with reference to the drawings. FIG. 1 is an enlarged cross-sectional view showing an outline of a light emitting portion of an AC type (AC type) PDP. In FIG. 1, reference numeral 11 denotes a front glass substrate (front cover plate), and display electrodes 12 are formed on the front glass substrate 11. Further, the front glass substrate 11 on which the display electrodes 12 are formed is covered with a dielectric glass layer 13 and a protective layer 14 made of magnesium oxide (MgO) (see, for example, Patent Document 1). Reference numeral 15 denotes a rear glass substrate (back plate). On the rear glass substrate 15, address electrodes 16, partition walls 17, and a phosphor layer 18 are provided. Reference numeral 19 encloses a discharge gas. It is a discharge space.

PDPの発光原理は、表示電極12とアドレス電極16との間に電圧を印可することにより放電空間19にて放電させ、当該放電空間に導入してあるキセノンとネオンとの混合ガスを励起して真空紫外線を放射させ、当該真空紫外線により、それぞれ、赤、緑、青の蛍光を発する蛍光体層18を発光させてカラー表示を可能にさせている。   The light emission principle of the PDP is that a voltage is applied between the display electrode 12 and the address electrode 16 to cause discharge in the discharge space 19 and excite the mixed gas of xenon and neon introduced into the discharge space. A vacuum ultraviolet ray is emitted, and the phosphor layer 18 that emits red, green, and blue fluorescence is caused to emit light by the vacuum ultraviolet ray, thereby enabling color display.

ところが、キセノンガスからは前記真空紫外線以外に近赤外線も発生し、当該近赤外線の一部はPDP前方に放射される。特に800nm〜1100nmの波長域を有する近赤外線は、コードレスフォンや家電機器のリモコンに誤動作を引き起こしたり、伝送系光通信に悪影響を及ぼす等の問題が生じている。このため、上記誤動作等を防止する目的で、PDPの前面には近赤外線の遮蔽加工が施されている。   However, xenon gas also generates near infrared rays in addition to the vacuum ultraviolet rays, and a part of the near infrared rays is emitted forward of the PDP. In particular, near-infrared rays having a wavelength range of 800 nm to 1100 nm cause problems such as malfunctioning of cordless phones and remote controls of home appliances, and adverse effects on transmission optical communication. For this reason, the near-infrared shielding process is performed on the front surface of the PDP for the purpose of preventing the malfunction and the like.

これら近赤外線の遮蔽加工は、近赤外線吸収剤をPDPの前面にフィルターとして設けることによっておこなわれるが、当該近赤外線吸収剤には、PDPの輝度に悪影響を及ぼさないよう可視光線領域(波長域、約380nm〜780nm)の光は十分透過し、波長域800nm〜1100nmの近赤外線は遮蔽するような特性が要求される。そして、近赤外線を吸収させるPDPのフィルターとして、従来は、有機染料や金属錯体を多種類併用もしくは多層に塗り重ねたフィルター等(特許文献2、特許文献3など参照)が提案されている。   These near-infrared shielding processes are performed by providing a near-infrared absorber as a filter on the front surface of the PDP. The near-infrared absorber has a visible light region (wavelength region, wavelength region, so as not to adversely affect the luminance of the PDP). Light with a wavelength of about 380 nm to 780 nm) is sufficiently transmitted, and near infrared rays with a wavelength range of 800 nm to 1100 nm are required to be shielded. Conventionally, as a PDP filter that absorbs near-infrared rays, filters or the like in which multiple types of organic dyes and metal complexes are used in combination or in multiple layers (see Patent Document 2, Patent Document 3, etc.) have been proposed.

有機化合物や金属錯体をフィルターとして使用する場合、有機化合物や金属錯体をそれぞれ溶媒に溶解させたものを、PDP表面の基材にコーティングする方法が一般的である。ここで、有機化合物や金属錯体等の近赤外線吸収剤としては、ジイモニウム系化合物、アミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物等が挙げられるが、これらは、熱や光に対して耐性が低く、経時的に劣化し易いため、これら有機化合物や金属錯体を単独で使用した場合、性能を長期保持するのが困難であるという問題があった。   When an organic compound or a metal complex is used as a filter, a method of coating a base material on the surface of the PDP with a solution obtained by dissolving the organic compound or the metal complex in a solvent is generally used. Here, as a near-infrared absorber such as organic compounds and metal complexes, diimonium compounds, aminium compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds Compounds, triphenylmethane compounds, etc., but these have low resistance to heat and light and are likely to deteriorate over time, so when these organic compounds and metal complexes are used alone, long-term performance is achieved. There was a problem that it was difficult to hold.

そこで、有機化合物や金属錯体を用いて近赤外線を有効に遮蔽するためには2種類以上の物質を共存させる必要があるのだが、今度は、それぞれの物質が反応して特性が悪化したり、金属錯体は溶媒への溶解性が悪く十分溶解しなかったりする問題があった。そこで、それぞれの近赤外線吸収剤の溶解性を考慮してそれぞれ単独の溶液を調製した場合は、それぞれの溶液を塗り重ねる必要があるため手間がかかるという問題もあった。   Therefore, in order to effectively block near infrared rays using organic compounds and metal complexes, it is necessary to coexist two or more substances, but this time, each substance reacts and the characteristics deteriorate, The metal complex has a problem of poor solubility in a solvent and does not sufficiently dissolve. Therefore, when each single solution is prepared in consideration of the solubility of each near-infrared absorber, there is a problem that it takes time since it is necessary to recoat each solution.

特開平5−342991号公報JP-A-5-342991 特開2001−228324号公報JP 2001-228324 A 特開2001−133624号公報JP 2001-133624 A

本発明は、この様な問題点に着目してなされたもので、その課題とするところは、近赤外線吸収力が大きく耐久性に優れ、安価に作製できるPDP用近赤外線吸収フィルター、及び該フィルターを用いたPDPを提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the near-infrared absorbing filter for PDP, which has a large near-infrared absorbing power, has excellent durability, and can be manufactured at low cost, and the filter. It is to provide a PDP using the.

本発明者は、上記課題を解決するため、PDP用近赤外線吸収フィルターの耐候性を改善させる観点から、近赤外線を吸収する無機材料に注目して鋭意研究を行なった結果、可視光線を透過させ近赤外線を遮蔽することのできる耐候性の良い無機材料微粒子として、平均分散粒子径が800nm以下のタングステン酸化物、または/及び、複合タングステン酸化物の微粒子を用いることによって、波長380nm〜780nm領域の可視領域における光の透過率の最大値が50%以上、波長800nm〜1100nm領域の近赤外領域における光の透過率の最小値が30%以下であるPDP用近赤外線吸収フィルターが得られることを見出した。そして、該無機材料微粒子を用いることによって、近赤外線吸収力が大きく耐久性に優れ、しかも安価に作製できるPDP用近赤外線吸収フィルターを開発するに至った。   In order to solve the above-mentioned problems, the present inventor conducted intensive research focusing on inorganic materials that absorb near infrared rays from the viewpoint of improving the weather resistance of the near infrared absorption filter for PDP. By using tungsten oxide having an average dispersed particle diameter of 800 nm or less and / or composite tungsten oxide fine particles as inorganic material fine particles having good weather resistance capable of shielding near infrared rays, a wavelength of 380 nm to 780 nm can be obtained. It is possible to obtain a near-infrared absorption filter for PDP in which the maximum value of light transmittance in the visible region is 50% or more and the minimum value of light transmittance in the near-infrared region of wavelengths from 800 nm to 1100 nm is 30% or less. I found it. By using the inorganic material fine particles, a near-infrared absorption filter for PDP that has a large near-infrared absorptivity and excellent durability and can be produced at low cost has been developed.

すなわち、本発明の第1の発明は、
基材と、該基材表面上に設けられた樹脂または金属酸化物の被膜とを有し、前記基材内または/及び前記被膜内に、近赤外線吸収材料の粒子が分散されたプラズマディスプレイパネル用の近赤外線吸収材フィルターであって、
前記近赤外線吸収材料の粒子は、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含み、
波長380nm〜780nmの可視光透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であることを特徴とするプラズマディスプレイパネル用の近赤外線吸収材フィルターを提供する。
That is, the first invention of the present invention,
A plasma display panel having a base material and a resin or metal oxide film provided on the surface of the base material, wherein particles of a near-infrared absorbing material are dispersed in the base material and / or in the film Near-infrared absorbing material filter for
The near-infrared absorbing material particles include tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle size of 800 nm or less,
A near-infrared absorbing material filter for a plasma display panel, wherein the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more and the minimum value of near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less I will provide a.

本発明の第2の発明は、
シート状またはフィルム状の樹脂が基材に挟持され、該樹脂内または/及び基材内に近赤外線吸収材料の粒子が分散されたプラズマディスプレイパネル用の近赤外線吸収材フィルターであって、
前記近赤外線吸収材料の粒子は、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含み、
波長380nm〜780nmの可視光透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であることを特徴とするプラズマディスプレイパネル用の近赤外線吸収材フィルターを提供する。
The second invention of the present invention is:
A near-infrared absorbing material filter for a plasma display panel in which a sheet-like or film-like resin is sandwiched between base materials and particles of the near-infrared absorbing material are dispersed in the resin or / and the base material,
The near-infrared absorbing material particles include tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle size of 800 nm or less,
A near-infrared absorbing material filter for a plasma display panel, wherein the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more and the minimum value of near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less I will provide a.

本発明の第3の発明は、
前記樹脂または被膜が、屈折率を異にする2層以上の積層体であって、該積層体間の屈折率差により反射防止機能を発現させる構造を有しており、該積層体の少なくとも1層に、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が分散されていることを特徴とする第1または第2の発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The third invention of the present invention is:
The resin or coating is a laminate of two or more layers having different refractive indexes, and has a structure that exhibits an antireflection function due to a difference in refractive index between the laminates, and at least one of the laminates The near-infrared absorption for a plasma display panel according to the first or second invention, wherein tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle diameter of 800 nm or less are dispersed in the layer. Provide a filter.

本発明の第4の発明は、
前記近赤外線吸収材料が、更に、ジイモニウム系化合物、アミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物から選択された1種類以上の有機化合物を含有していることを特徴とする第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The fourth invention of the present invention is:
The near-infrared absorbing material further comprises a diimonium compound, an aminium compound, a phthalocyanine compound, an organometallic complex, a cyanine compound, an azo compound, a polymethine compound, a quinone compound, a diphenylmethane compound, or a triphenylmethane compound. A near-infrared absorption filter for a plasma display panel according to any one of the first to third inventions, comprising one or more selected organic compounds.

本発明の第5の発明は、
前記タングステン酸化物微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子であることを特徴とする第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The fifth invention of the present invention is:
The tungsten oxide fine particles are tungsten oxide fine particles represented by a general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999). A near-infrared absorption filter for a plasma display panel according to any one of the first to third aspects is provided.

本発明の第6の発明は、
前記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物の微粒子であることを特徴とする第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The sixth invention of the present invention is:
The composite tungsten oxide fine particles have the general formula MxWyOz (where the M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir). Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti , Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1. 1. Near-infrared absorption for plasma display panel according to any one of the first to third inventions, characterized in that the composite tungsten oxide fine particles are represented by the following formula: 1, 2.2 ≦ z / y ≦ 3.0) Provide a filter.

本発明の第7の発明は、
前記タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.45≦z/y≦2.999)で表記される組成比のマグネリ相を含むことを特徴とする第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The seventh invention of the present invention is
The tungsten oxide fine particles or / and the composite tungsten oxide fine particles are composed of a magnetic phase having a composition ratio represented by the general formula WyOz (W is tungsten, O is oxygen, 2.45 ≦ z / y ≦ 2.999). The near-infrared absorption filter for plasma display panels according to any one of the first to third inventions is provided.

本発明の第8の発明は、
前記複合タングステン酸化物微粒子が、六方晶、正方晶、立方晶のいずれか1種類以上の結晶構造を含むことを特徴とする第6の発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The eighth invention of the present invention is:
The composite tungsten oxide fine particles include one or more kinds of crystal structures of hexagonal crystal, tetragonal crystal, and cubic crystal.

本発明の第9の発明は、
前記複合タングステン酸化物微粒子のM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snから選択される1種類以上の元素であり、該複合タングステン酸化物微粒子が六方晶の結晶構造を有することを特徴とする第8の発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The ninth invention of the present invention is:
M element of the composite tungsten oxide fine particles is one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn, and the composite tungsten oxide fine particles Has a hexagonal crystal structure. The near-infrared absorption filter for plasma display panels according to the eighth invention is provided.

本発明の第10の発明は、
前記タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alから選択される1種類以上の元素を含有する酸化物で被覆されていることを特徴とする第5〜第9のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The tenth aspect of the present invention is:
The surface of the tungsten oxide fine particles or / and the composite tungsten oxide fine particles is coated with an oxide containing one or more elements selected from Si, Ti, Zr, and Al. A near-infrared absorption filter for a plasma display panel according to any one of the ninth to ninth aspects is provided.

本発明の第11の発明は、
前記基材が、プラスチックボード、プラスチックフィルム、ガラスから選択される1種類以上の基材で構成されていることを特徴とする第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The eleventh aspect of the present invention is
The near-infrared ray for a plasma display panel according to any one of the first to third inventions, wherein the substrate is composed of one or more types of substrates selected from a plastic board, a plastic film, and glass. Provide an absorption filter.

本発明の第12の発明は、
前記基材が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアリレレート樹脂、ポリエーテルスルホン樹脂から選択される1種類以上の樹脂を含むプラスチックボードまたはプラスチックフィルムであることを特徴とする請求項11に記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The twelfth aspect of the present invention is
The base material is selected from polyolefin resin, polyester resin, polycarbonate resin, poly (meth) acrylate resin, polystyrene, polyvinyl chloride, polyvinyl acetate, polyarylate resin, and polyethersulfone resin. The near-infrared absorption filter for a plasma display panel according to claim 11, wherein the near-infrared absorption filter is a plastic board or plastic film containing one or more kinds of resins.

本発明の第13の発明は、
前記被膜が、紫外線硬化樹脂、熱可塑性樹脂、熱硬化樹脂、常温硬化樹脂、金属アルコキシド、金属アルコキシドの加水分解重合物、粘着材から選択される1種類以上の成分を有することを特徴とする第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The thirteenth aspect of the present invention is
The coating film has one or more components selected from an ultraviolet curable resin, a thermoplastic resin, a thermosetting resin, a room temperature curable resin, a metal alkoxide, a hydrolysis polymer of a metal alkoxide, and an adhesive material. A near-infrared absorption filter for a plasma display panel according to any one of the first to third aspects is provided.

本発明の第14の発明は、
前記シート状またはフィルム状の樹脂が、ポリビニルブチラールであることを特徴とする第2の発明に記載のプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The fourteenth invention of the present invention is
The sheet-like or film-like resin is polyvinyl butyral. The near-infrared absorption filter for a plasma display panel according to the second invention is provided.

本発明の第15の発明は、
第1〜第3のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターであって、更に、色調調整成分を含有することを特徴とするプラズマディスプレイパネル用近赤外線吸収フィルターを提供する。
The fifteenth aspect of the present invention is
A near-infrared absorption filter for a plasma display panel according to any one of the first to third inventions, further comprising a color tone adjusting component.

本発明の第16の発明は、
第1〜第15のいずれかの発明記載のプラズマディスプレイパネル用近赤外線吸収フィルターが設けられていることを特徴とするプラズマディスプレイパネルを提供する。
The sixteenth invention of the present invention is
A near-infrared absorption filter for a plasma display panel according to any one of the first to fifteenth inventions is provided.

第1または第2の発明に係るPDP用近赤外線吸収フィルターは、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含んでいることから、耐熱性、耐候性に優れているので、多様な樹脂、金属酸化物への分散が可能であり、多様な硬化方法を採ることもできるため、耐久性に優れ、生産性も高いので安価に作製できる。更に、波長380nm〜780nmの可視光透過率の最大値が50%以上ありながら、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下と近赤外線吸収力が大きいので、PDP本体の輝度を低下させることなく、該PDP本体から発生する近赤外線によって周囲の電子機器が誤動作を生じる事態を回避することができた。   The near-infrared absorption filter for PDP according to the first or second invention includes tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle size of 800 nm or less, and thus has heat resistance and weather resistance. Therefore, it can be dispersed in a variety of resins and metal oxides, and a variety of curing methods can be employed. Therefore, it has excellent durability and high productivity, and can be manufactured at low cost. Furthermore, since the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more, the near infrared transmittance at a wavelength of 800 nm to 1100 nm is as large as 30% or less, and the near infrared absorptivity is large. Without lowering, it was possible to avoid a situation in which a surrounding electronic device malfunctioned due to near infrared rays generated from the PDP main body.

第3の発明に係るPDP用近赤外線吸収フィルターは、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が分散されている層を、2層以上の積層膜が形成され反射防止機能を発揮するPDPの前面パネルにおける高屈折率層とすることで、近赤外線吸収効果と反射防止効果とを同時に発揮させることで、光学特性の向上と生産コストとの低減を図ることができた。   The near-infrared absorption filter for PDP according to the third invention is a PDP that exhibits an antireflection function by forming a layer in which two or more layers of tungsten oxide fine particles and / or composite tungsten oxide fine particles are dispersed. By using the high refractive index layer in the front panel, the near-infrared absorption effect and the antireflection effect can be exhibited simultaneously, thereby improving the optical characteristics and reducing the production cost.

第4の発明に係るPDP用近赤外線吸収フィルターは、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子と、ジイモニウム系化合物、有機金属錯体等の有機化合物とを併用することで、該有機化合物が有する耐熱性、耐候性等に劣るという弱点を補償し、無機系及び有機系近赤外線吸収材料において、互いの長所を発揮させることができた。   The near-infrared absorption filter for PDP according to the fourth aspect of the invention uses a tungsten oxide fine particle or / and a composite tungsten oxide fine particle in combination with an organic compound such as a diimonium compound or an organometallic complex, whereby the organic compound is Compensating for the weakness of being inferior in heat resistance, weather resistance, etc., it was possible to exhibit the advantages of each other in inorganic and organic near infrared absorbing materials.

第5〜第10の発明に係るPDP用近赤外線吸収フィルターは、いずれも優れた光学特性と耐久性とを発揮した。   The near-infrared absorption filters for PDPs according to the fifth to tenth inventions all exhibited excellent optical characteristics and durability.

第11〜12または第14の発明に係るPDP用近赤外線吸収フィルターは、優れた光学特性と耐久性と機械的特性を発揮するので、多様な態様に係るPDP用近赤外線吸収フィルターとなった。   Since the near-infrared absorption filter for PDP according to the 11th to 12th or 14th invention exhibits excellent optical characteristics, durability and mechanical characteristics, it has become a near-infrared absorption filter for PDP according to various embodiments.

第13の発明に係るPDP用近赤外線吸収フィルターは、優れた光学特性と耐久性と機械的多様性を発揮するので、多様な態様に係るPDP用近赤外線吸収フィルターとなった。   The near-infrared absorption filter for PDP according to the thirteenth invention exhibits excellent optical properties, durability, and mechanical diversity, so that it becomes a near-infrared absorption filter for PDP according to various aspects.

第15の発明に係るPDP用近赤外線吸収フィルターは、優れた光学特性と耐久性とに加えて、PDP本体のコントラスト向上に寄与することができた。   The near-infrared absorption filter for PDP according to the fifteenth aspect of the invention can contribute to improving the contrast of the PDP main body in addition to excellent optical characteristics and durability.

第16の発明に係るPDPは、本体から発生する近赤外線によって周囲の電子機器が誤動作を生じることを回避することができた。   The PDP according to the sixteenth aspect of the present invention can prevent the surrounding electronic devices from malfunctioning due to near infrared rays generated from the main body.

以下、本発明の実施の形態について詳細に説明する。
本発明に係るPDP用近赤外線吸収フィルターは、基材とその基材表面上に形成された樹脂または透明な金属酸化物材料の被膜とを有し、前記基材内または/及び前記被膜内に、近赤外線吸収材料粒子が分散されたPDP用近赤外線吸収フィルターであって、該近赤外線吸収材料が、平均分散粒子径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含み、波長380nm〜780nmの可視光領域における光の透過率の最大値が50%以上で、波長800nm〜1100nmの近赤外光領域における光の透過率の最小値が30%以下である。
Hereinafter, embodiments of the present invention will be described in detail.
The near-infrared absorption filter for PDP according to the present invention has a base material and a resin or transparent metal oxide material film formed on the surface of the base material, in the base material and / or in the film. A near-infrared absorbing filter for PDP in which particles of near-infrared absorbing material are dispersed, wherein the near-infrared absorbing material includes tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle diameter of 800 nm or less. The maximum value of the light transmittance in the visible light region having a wavelength of 380 nm to 780 nm is 50% or more, and the minimum value of the light transmittance in the near infrared light region having a wavelength of 800 nm to 1100 nm is 30% or less.

本発明者らの試験結果によれば、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であれば、PDP本体から発生する近赤外線によって周囲の電子機器が誤動作を生じることを回避することができることが見出された。一方、波長380nm〜780nm領域の可視光透過率の最大値が50%以上であれば、PDP本体の輝度を低下させることが回避でき画像の暗化を起こすことがなく好ましいからである。従って、PDP用近赤外線フィルターにおいて、波長380nm〜780nm領域の可視光透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であることが求められると考えられる。   According to the test results of the present inventors, if the minimum value of the near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, it is avoided that the surrounding electronic equipment malfunctions due to the near-infrared light generated from the PDP main body. It has been found that it can be done. On the other hand, if the maximum value of the visible light transmittance in the wavelength region of 380 nm to 780 nm is 50% or more, it is preferable that the luminance of the PDP main body can be avoided and the image is not darkened. Therefore, in the near infrared filter for PDP, when the maximum value of the visible light transmittance in the wavelength range of 380 nm to 780 nm is required to be 50% or more, and the minimum value of the near infrared transmittance of the wavelength 800 nm to 1100 nm is required to be 30% or less. Conceivable.

また、前記PDP用近赤外線吸収フィルターの好ましい変形例として、前記被膜が2層以上の多層積層体であり、該積層体の屈折率を各々異ならせることで、該多層積層体の境界面における屈折率差により反射防止機能を発現させる構造を有しており、該多層積層体中の少なくとも1層に平均分散粒子径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物の微粒子が分散されていることを特徴とするプラズマディスプレイパネル用近赤外線吸収フィルターである。   Further, as a preferred modification of the near infrared absorption filter for PDP, the coating film is a multilayer laminate of two or more layers, and the refractive index of the multilayer laminate is made different so that the refractive index at the boundary surface of the multilayer laminate is different. It has a structure that exhibits an antireflection function due to a difference in rate, and tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle size of 800 nm or less are dispersed in at least one layer of the multilayer laminate. This is a near-infrared absorption filter for plasma display panels.

また、前記PDP用近赤外線吸収フィルターの好ましい他の変形例として、シート状またはフィルム状の該樹脂を透明な基材で挟持し、該基材内または/及び樹脂内へ、該タングステン酸化物または/及び複合タングステン酸化物の微粒子を分散させたPDP用近赤外線吸収フィルターがある。平均分散粒子径が800nm以下の微粒子により構成されており、波長380nm〜780nmの可視光領域における光の透過率の最大値が50%以上で、波長800nm〜1100nmの近赤外光領域における光の透過率の最小値が30%以下であることを特徴としている。   As another preferred modification of the near-infrared absorption filter for PDP, the sheet-like or film-like resin is sandwiched between transparent substrates, and the tungsten oxide or There is a near infrared absorption filter for PDP in which fine particles of composite tungsten oxide are dispersed. It is composed of fine particles having an average dispersed particle diameter of 800 nm or less, the maximum value of light transmittance in the visible light region with a wavelength of 380 nm to 780 nm is 50% or more, and the light in the near infrared light region with a wavelength of 800 nm to 1100 nm The minimum value of the transmittance is 30% or less.

本発明に係る近赤外線吸収材料は、平均分散粒子径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物を含んでいる。
まず、本発明に適用されるタングステン酸化物の微粒子は、一般式WO(但し、Wはタングステン、Oは酸素、2.45≦X≦2.999)で示される。該タングステン酸化物微粒子は近赤外線吸収成分として有効に機能する。
The near-infrared absorbing material according to the present invention includes tungsten oxide fine particles and / or composite tungsten oxide having an average dispersed particle diameter of 800 nm or less.
First, the fine particles of tungsten oxide applied to the present invention are represented by the general formula WO X (W is tungsten, O is oxygen, 2.45 ≦ X ≦ 2.999). The tungsten oxide fine particles function effectively as a near-infrared absorbing component.

ここで、前記一般式WO(2.45≦X≦2.999)で示されるタングステン酸化物微粒子として、例えばW1849、W2058、W11などを挙げることができる。Xの値が2.45以上であれば、当該熱線吸収材料中に目的外であるWOの結晶相が現れるのを完全に回避することが出来ると共に、材料の化学的安定性を得ることが出来る。一方Xの値が2.999以下であれば、十分な量の自由電子が生成され効率よい近赤外線吸収材料となる。そして、Xの範囲が2.45≦X≦2.95であるようなWO化合物は、いわゆるマグネリ相と呼ばれる化合物で耐久性に優れている。 Here, examples of the tungsten oxide fine particles represented by the general formula WO X (2.45 ≦ X ≦ 2.999) include W 18 O 49 , W 20 O 58 , and W 4 O 11 . If the value of X is 2.45 or more, it is possible to completely avoid the appearance of an undesired WO 2 crystal phase in the heat ray absorbing material and to obtain the chemical stability of the material. I can do it. On the other hand, if the value of X is 2.999 or less, a sufficient amount of free electrons is generated, and an efficient near-infrared absorbing material is obtained. A WO X compound having an X range of 2.45 ≦ X ≦ 2.95 is a compound called a so-called Magneli phase and has excellent durability.

次に、前記一般式MWO(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦Y≦1.0、2.2≦Z≦3.0)で示される複合タングステン酸化物微粒子は、近赤外線吸収成分として有効に機能する。 Next, the general formula M Y WO Z (wherein M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, One or more elements selected from Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ Y ≦ 1.0, 2 The composite tungsten oxide fine particles represented by .2 ≦ Z ≦ 3.0) function effectively as a near-infrared absorbing component.

前記一般式MxWyOzで表記される複合タングステン酸化物微粒子は、六方晶、正方晶、立方晶の結晶構造を有する場合に耐久性に優れることから、該六方晶、正方晶、立方晶から選ばれるの1つ以上の結晶構造を含むことが好ましい。例えば、六方晶の結晶構造を持つ複合タングステン酸化物微粒子の場合であれば、好ましいM元素として、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの各元素から選択される1種類以上の元素を含む複合タングステン酸化物微粒子が挙げられる。   The composite tungsten oxide fine particles represented by the general formula MxWyOz are selected from the hexagonal, tetragonal, and cubic crystals because they have excellent durability when they have a hexagonal, tetragonal, or cubic crystal structure. Preferably it contains one or more crystal structures. For example, in the case of composite tungsten oxide fine particles having a hexagonal crystal structure, preferable M elements include Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Examples thereof include composite tungsten oxide fine particles containing one or more selected elements.

このとき、添加されるM元素の添加量Yは、0.001以上1.0以下が好ましく、更に好ましくは0.33付近が好ましい。これは六方晶の結晶構造から理論的に算出されるYの値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。一方、酸素の存在量Zは、2.2以上3.0以下が好ましい。典型的な例としてはCs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WOなどを挙げることができるが、Y, Zが上記の範囲に収まるものであれば、有用な近赤外線吸収特性を得ることができる。 At this time, the addition amount Y of the added M element is preferably 0.001 or more and 1.0 or less, and more preferably around 0.33. This is because the Y value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this value. On the other hand, the abundance Z of oxygen is preferably 2.2 or more and 3.0 or less. Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, but Y and Z fall within the above ranges. If it is a thing, a useful near-infrared absorption characteristic can be acquired.

以上説明したタングステン酸化物微粒子、複合タングステン酸化物微粒子は、各々単独で使用してもよいが、混合使用することも好ましい。
また、上記タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の表面を、Si、Ti、Zr、Alのいずれか1種類以上の元素を含有する酸化物で被覆すれば、耐候性をより向上させることができ、好ましい。
The tungsten oxide fine particles and the composite tungsten oxide fine particles described above may be used alone or in combination.
Further, if the surfaces of the tungsten oxide fine particles and / or composite tungsten oxide fine particles are covered with an oxide containing one or more elements of Si, Ti, Zr, and Al, the weather resistance is further improved. Can be preferred.

当該近赤外線吸収材料が分散された被膜を有する近赤外線吸収フィルターは、PDP用近赤外線吸収フィルターであるので、当該近赤外線吸収材料は、透明性を保持したまま近赤外線の効率良い吸収を行なうことが必要となる。ここで、本発明に係るタングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含有する近赤外線吸収成分は、近赤外線領域、特に、波長900〜2200nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。   Since the near-infrared absorbing filter having a coating film in which the near-infrared absorbing material is dispersed is a near-infrared absorbing filter for PDP, the near-infrared absorbing material can efficiently absorb near-infrared while maintaining transparency. Is required. Here, the near-infrared absorbing component containing the tungsten oxide fine particles and / or composite tungsten oxide fine particles according to the present invention greatly absorbs light in the near-infrared region, particularly in the vicinity of a wavelength of 900 to 2200 nm. There are many things that turn from blue to green.

一方、当該近赤外線吸収材料である、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子は、前記基材内や前記基材上に形成された樹脂もしくは金属酸化物を含む被膜内、またはその両方に分散されるが、その含有量は、単位面積あたりの含有量で表した場合、0.01g/m〜10g/mの間であることが好ましい。含有量が0.01g/mより多ければ、十分な近赤外線吸収効果が現れ、10g/m以下であれば、十分な量の可視光線を透過できる。 On the other hand, the tungsten oxide fine particles and / or composite tungsten oxide fine particles, which are the near-infrared absorbing material, are contained in the base material, in the film containing a resin or metal oxide formed on the base material, or both Although the dispersed, its content, when expressed in content per unit area is preferably between 0.01g / m 2 ~10g / m 2 . If the content is more than 0.01 g / m 2 , a sufficient near-infrared absorption effect appears, and if it is 10 g / m 2 or less, a sufficient amount of visible light can be transmitted.

前記タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を、近赤外線吸収材料として適用した場合、波長380nm〜780nmにおける可視光線領域の透過率が高く、波長780nm〜1500nmにおける近赤外線領域の透過率が低くなる。該波長780nm〜1500nmにおける透過率の低下は、前記タングステン酸化物または複合タングステン酸化物中の伝導電子によるプラズモン共鳴に起因した吸収反射が原因であると考えられる。また、波長380nm〜780nmにおける可視光線領域では、波長1000nm付近の吸収と比較してその吸収量が少ないため、視認性が良好に保たれる。この結果、当該近赤外線吸収材料が分散された被膜を有する近赤外線吸収フィルターを、ディスプレイ前面に設置しても画面表示を十分鮮明に確認することが可能となり、好ましい。   When the tungsten oxide fine particles or / and the composite tungsten oxide fine particles are applied as a near-infrared absorbing material, the transmittance in the visible light region at a wavelength of 380 nm to 780 nm is high, and the transmittance in the near infrared region at a wavelength of 780 nm to 1500 nm. Lower. The decrease in transmittance at the wavelength of 780 nm to 1500 nm is considered to be caused by absorption reflection caused by plasmon resonance due to conduction electrons in the tungsten oxide or composite tungsten oxide. Further, in the visible light region in the wavelength range of 380 nm to 780 nm, the amount of absorption is small compared to the absorption in the vicinity of the wavelength of 1000 nm, and thus visibility is maintained well. As a result, even if a near-infrared absorbing filter having a film in which the near-infrared absorbing material is dispersed is installed on the front surface of the display, the screen display can be confirmed sufficiently clearly, which is preferable.

前記タングステン酸化物または/及び複合タングステン酸化物を近赤外線吸収剤として用いる場合、工業的に安価で簡便な方法として、微粒子分散法を用いることが好ましい。これは、前記タングステン酸化物微粒子や複合タングステン酸化物微粒子を、フィルター基材内もしくはフィルター基材上に設けられた樹脂または被膜内に均一に分散させた、そこを透過する近赤外線を遮蔽する方法である。   When the tungsten oxide and / or composite tungsten oxide is used as a near-infrared absorber, it is preferable to use a fine particle dispersion method as an industrially inexpensive and simple method. This is a method in which the tungsten oxide fine particles or the composite tungsten oxide fine particles are uniformly dispersed in a filter base material or a resin or coating provided on the filter base material, and a near infrared ray transmitted therethrough is shielded. It is.

前記微粒子分散法でプラズマディスプレイパネル用近赤外線吸収フィルターを作製するとき、前記タングステン酸化物または/及び複合タングステン酸化物の微粒子の粒子径は、800nm以下であることを要し、好ましくは200nm以下、更に好ましくは100nm以下がよい。タングステン酸化物や複合タングステン酸化物微粒子の粒子径が800nmを超えた場合、幾何学散乱またはミー散乱によって、PDPから放射される波長380nm〜780nmの可視光線領域の光を散乱してしまうため外観上曇りガラスのようになり、鮮明な画面表示が得られず好ましくないからである。粒子径が200nm以下になると、前記幾何学散乱またはミー散乱が低減し、レイリー散乱領域になる。該レイリー散乱領域において、散乱光は粒子径の6乗に反比例して低減するため、前記可視光線の散乱が低減し鮮明な画面表示が可能となる。更に、粒子径が100nm以下になると散乱光は非常に少なくなるためより好ましい。一方、粒子径が1nm以上であれば、工業的な製造は容易である。   When producing a near-infrared absorption filter for a plasma display panel by the fine particle dispersion method, the particle diameter of the fine particles of the tungsten oxide and / or composite tungsten oxide needs to be 800 nm or less, preferably 200 nm or less, More preferably, it is 100 nm or less. When the particle diameter of tungsten oxide or composite tungsten oxide fine particles exceeds 800 nm, the light in the visible light region having a wavelength of 380 nm to 780 nm emitted from the PDP is scattered by geometrical scattering or Mie scattering. This is because it looks like frosted glass and a clear screen display cannot be obtained. When the particle diameter is 200 nm or less, the geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the visible light scattering is reduced and a clear screen display is possible. Further, it is more preferable that the particle diameter is 100 nm or less because scattered light is extremely reduced. On the other hand, if the particle diameter is 1 nm or more, industrial production is easy.

上記タングステン酸化物、複合タングステン酸化物微粒子を分散する方法は、乾式法、湿式法等各種挙げられるが、特に200nm以下のタングステン酸化物、複合タングステン酸化物を分散する場合は、湿式法が有効であり、具体的には、ボールミル、サンドミル、媒体攪拌ミル、超音波照射等が挙げられる。また、微粒子分散時に、各種分散剤を添加したり、pHを調整することで200nm以下のタングステン酸化物、複合タングステン酸化物微粒子を安定に液体中に分散保持することが容易になる。各種分散剤は、使用する溶媒やバインダー等との相性で各種選択可能であり、代表的なものは、シランカップリング剤や各種界面活性剤が挙げられる。   Various methods such as a dry method and a wet method can be used to disperse the tungsten oxide and composite tungsten oxide fine particles, but the wet method is particularly effective when dispersing tungsten oxide and composite tungsten oxide of 200 nm or less. Specific examples include a ball mill, a sand mill, a medium stirring mill, and ultrasonic irradiation. Further, when dispersing the fine particles, it is easy to stably hold the tungsten oxide and composite tungsten oxide fine particles of 200 nm or less in the liquid by adding various dispersants or adjusting the pH. Various types of dispersants can be selected depending on the compatibility with the solvent and binder used, and typical examples include silane coupling agents and various surfactants.

次に、微粒子が液体媒質中に分散された近赤外線吸収剤の分散液を用いて本発明に係るプラズマディスプレイパネル用近赤外線吸収フィルターを製造する方法を以下に具体的に説明する。
以下の説明においては、プラズマディスプレイパネル用近赤外線吸収フィルターの製造方法であって、フィルター基材内にタングステン酸化物、複合タングステン酸化物微粒子が分散されたものを例として説明する。
Next, a method for producing a near-infrared absorbing filter for a plasma display panel according to the present invention using a dispersion of a near-infrared absorber in which fine particles are dispersed in a liquid medium will be specifically described below.
In the following description, a method for manufacturing a near-infrared absorption filter for a plasma display panel, in which tungsten oxide and composite tungsten oxide fine particles are dispersed in a filter base material, will be described as an example.

まず、後述する実施例において例示するタングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が液体媒質中に分散された近赤外線吸収材の分散液を調製し、かつ、この分散液から溶剤成分を除去して該微粒子の粉末を得る。尚、原料であるタングステン酸化物微粒子、複合タングステン酸化物微粒子を液体媒質中に分散させることにより、当初の原料段階で結合されていた微粒子同士が分離され、微細な微粒子が分散した粉末を得ることが可能となる。但し、当初の原料段階で微粒子の粒子径が微細化されている場合、該処理については省略してもよい。   First, a near-infrared absorbing material dispersion in which tungsten oxide fine particles and / or composite tungsten oxide fine particles exemplified in the examples described later are dispersed in a liquid medium is prepared, and the solvent component is removed from the dispersion. Thus, a powder of the fine particles is obtained. In addition, by dispersing the tungsten oxide fine particles and the composite tungsten oxide fine particles, which are raw materials, in the liquid medium, the fine particles bonded at the initial raw material stage are separated from each other to obtain a powder in which fine fine particles are dispersed. Is possible. However, when the particle diameter of the fine particles is miniaturized at the initial raw material stage, the treatment may be omitted.

タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の粉末は、フィルター基材を構成する樹脂中にそのまま練り込んでプラスチックボードやプラスチックフィルムを作製することが可能である。ここで、近赤外線吸収材材料の粉体を樹脂に練り込むとき、一般的には該樹脂の融点付近の温度(200〜300℃前後)で加熱混合するため、近赤外線吸収材料として染料等の有機化合物を用いた場合には、該有機化合物の耐熱性に制限され、練り込み作業が困難であった。しかし、本発明においては、耐熱性が高い無機酸化物微粒子の粉末を用いるため、通常の樹脂の融点である200℃〜300℃前後での混合も可能となる。   The powder of the tungsten oxide fine particles and / or the composite tungsten oxide fine particles can be kneaded as they are in the resin constituting the filter base material to produce a plastic board or a plastic film. Here, when the powder of the near-infrared absorbing material is kneaded into the resin, it is generally heated and mixed at a temperature near the melting point of the resin (around 200 to 300 ° C.). When an organic compound is used, the heat resistance of the organic compound is limited, and the kneading work is difficult. However, in the present invention, since the powder of inorganic oxide fine particles having high heat resistance is used, mixing at around 200 ° C. to 300 ° C., which is the melting point of a normal resin, is also possible.

以上のようにして、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が混合された樹脂はペレット化し、さらに、各方式でプラスチックフィルムへ形成することが可能である。例えば、透明樹脂を選択し、公知のTダイ成形法、カレンダー成形法、圧縮形成法、キャスティング法等を用いて形成することで、透明な樹脂フィルムを形成することができる。   As described above, the resin mixed with the tungsten oxide fine particles and / or the composite tungsten oxide fine particles can be pelletized, and further formed into a plastic film by each method. For example, a transparent resin film can be formed by selecting a transparent resin and using a known T-die molding method, calendar molding method, compression forming method, casting method, or the like.

基材の厚みについては、使用目的によるが、10μm〜3mmの範囲のフィルムやボード状のものが望ましい。このとき、基材樹脂に対するタングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の配合量は、該基材の厚さや、必要とされる光学特性に応じて任意に設定可能である。従って、当該配合量は、得られる近赤外線吸収フィルターの光学的特性が、波長380nm〜780nmの可視光領域における透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下となる範囲で適宜に設定すれば良い。   About the thickness of a base material, although based on a use purpose, the film and board-shaped thing of the range of 10 micrometers-3 mm are desirable. At this time, the compounding amount of the tungsten oxide fine particles or / and the composite tungsten oxide fine particles with respect to the base resin can be arbitrarily set according to the thickness of the base material and required optical characteristics. Therefore, the blending amount is such that the optical characteristics of the obtained near-infrared absorption filter are such that the maximum value of the transmittance in the visible light region with a wavelength of 380 nm to 780 nm is 50% or more and the minimum value of the near-infrared transmittance with a wavelength of 800 nm to 1100 nm. May be appropriately set within a range of 30% or less.

前記基材樹脂の具体的例としては、光学的特性、機械的特性の観点より、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアリレート樹脂、ポリエーテルスルホン樹脂等を挙げることができる。これらの樹脂の中でも、非晶質のポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリ(メタ)アクリル酸エステル樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂が好ましく、非晶質ポリオレフィン系樹脂の中では環状ポリオレフィンが、ポリエステル系樹脂の中では、ポリエチレンテレフタレートが更に好ましい。樹脂以外の基材としては、光学的特性、機械的特性の観点よりガラスが好ましい。
また、基材樹脂としてポリビニルブチラール(PVB)樹脂を選択し、該基材樹脂中へ近赤外線吸収材料粒子を分散させたブラスチックシートまたはプラスチックフィルムを、ガラス等の透明基材で挟持することでラミネートガラス化した用近赤外線吸収フィルターも、PDP用近赤外線吸収フィルターとして好ましい構成である。
Specific examples of the base resin include polyolefin resin, polyester resin, polycarbonate resin, poly (meth) acrylate ester resin, polystyrene, polyvinyl chloride, from the viewpoint of optical properties and mechanical properties. Polyvinyl acetate, polyarylate resin, polyethersulfone resin and the like can be mentioned. Among these resins, amorphous polyolefin resin, polyester resin, polycarbonate resin, poly (meth) acrylate resin, polyarylate resin, and polyethersulfone resin are preferable. Among amorphous polyolefin resins, Among the polyester-based resins, the cyclic polyolefin is more preferably polyethylene terephthalate. As the base material other than the resin, glass is preferable from the viewpoint of optical properties and mechanical properties.
Further, by selecting a polyvinyl butyral (PVB) resin as a base resin, and sandwiching a plastic sheet or plastic film in which near-infrared absorbing material particles are dispersed in the base resin with a transparent base material such as glass, The near-infrared absorbing filter for laminated glass is also a preferable configuration as a near-infrared absorbing filter for PDP.

次に、基材上に形成した被膜内に微粒子が分散されたPDP用近赤外線吸収フィルターの製造方法の一例について説明する。
まず、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が液体溶媒中に分散された近赤外線吸収材料の分散液を調製し、この分散液をプラスチックボード、プラスチックフィルム、ガラス等の基材表面へ均一にコートする。そして、該液体溶媒を蒸発させれば、基材上に形成した被膜内に微粒子が分散されたPDP用近赤外線吸収フィルターを得ることができる。該フィルターにおいて、前記被膜の膜厚を変えることで近赤外線の吸収効率を調整することが可能である。更に、前記近赤外線吸収材料の分散液中へ、適宜な結着剤等を配合することで、基材への被膜の結着性を向上させ、フィルター表面における保護機能アップや本体への粘着の機能付与をおこなうのも好ましい構成である。
Next, an example of a method for producing a near infrared absorption filter for PDP in which fine particles are dispersed in a film formed on a substrate will be described.
First, a near-infrared absorbing material dispersion in which tungsten oxide fine particles and / or composite tungsten oxide fine particles are dispersed in a liquid solvent is prepared, and this dispersion is applied to the surface of a substrate such as a plastic board, plastic film, or glass. Coat evenly. And if this liquid solvent is evaporated, the near-infrared absorption filter for PDP by which microparticles | fine-particles were disperse | distributed in the film formed on the base material can be obtained. In the filter, the near-infrared absorption efficiency can be adjusted by changing the film thickness of the coating. Furthermore, by adding an appropriate binder or the like to the dispersion of the near-infrared absorbing material, the binding property of the film to the substrate is improved, and the protection function on the filter surface is improved and the adhesion to the main body is improved. It is also a preferable configuration to provide functions.

また、PDPの前面パネル表面には、反射防止機能を付与した多層積層被膜が形成されている場合がある。該多層積層被膜は、屈折率差を利用した光の干渉を用いた反射防止被膜であり、例えば、高屈折率層と低屈折率層とが交互に積層された構造を有している。ここで、本発明に用いている近赤外線吸収材料は屈折率が2.3以上と高いので、適宜な結着剤等と配合して近赤外線吸収材料が分散された被膜を形成することで、該被膜を高屈折率層として前記反射防止膜の一部として適用可能である。   In addition, a multilayer laminated film having an antireflection function may be formed on the front panel surface of the PDP. The multilayer laminated coating is an antireflection coating using light interference utilizing a refractive index difference, and has, for example, a structure in which high refractive index layers and low refractive index layers are alternately laminated. Here, since the near-infrared absorbing material used in the present invention has a refractive index as high as 2.3 or more, by forming a film in which the near-infrared absorbing material is dispersed by blending with an appropriate binder or the like, The coating can be applied as a part of the antireflection film as a high refractive index layer.

ここで、前記結着剤等としては多様なものが適用可能だが、基材の種類、フィルターへの要求特性、フィルターの構成等によって適宜選択すればよい。具体的には、紫外線硬化樹脂、熱硬化樹脂、熱可塑性樹脂、常温硬化樹脂、金属アルコキシド、金属アルコキシドの加水分解重合物を使用したゾルゲル溶液、各種粘着材等を例示することができる。特に、紫外線硬化樹脂を使用した場合は、製造工程における生産効率が高く、更に該紫外線硬化樹脂がハードコート性も兼ね備えているので、結着剤として紫外線硬化型ハードコート樹脂を使用することで、基材への耐磨耗性付与と近赤外線吸収機能を1層で両立させる近赤外線吸収材フィルターを得ることが可能となる。   Here, a variety of binders can be used, but may be appropriately selected depending on the type of base material, required characteristics of the filter, filter configuration, and the like. Specific examples include ultraviolet curable resins, thermosetting resins, thermoplastic resins, room temperature curable resins, metal alkoxides, sol-gel solutions using metal alkoxide hydrolysis polymers, and various adhesive materials. In particular, when an ultraviolet curable resin is used, the production efficiency in the manufacturing process is high, and since the ultraviolet curable resin also has a hard coat property, by using an ultraviolet curable hard coat resin as a binder, It becomes possible to obtain a near-infrared absorbing material filter that achieves both wear resistance imparting to a substrate and a near-infrared absorbing function in a single layer.

以上の被膜において、被膜の膜厚や、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の配合量は、得られる近赤外線吸収フィルターの光学的特性が、波長380nm〜780nmの可視光領域における透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下となる範囲で適宜に設定すれば良い。   In the above coating, the film thickness of the coating and the blending amount of the tungsten oxide fine particles and / or the composite tungsten oxide fine particles are determined so that the optical characteristics of the obtained near-infrared absorption filter are transmitted in the visible light region having a wavelength of 380 nm to 780 nm. What is necessary is just to set suitably in the range from which the maximum value of a ratio is 50% or more and the minimum value of the near-infrared transmittance of wavelengths 800nm-1100nm is 30% or less.

有機化合物や金属錯体等の近赤外線吸収材料は紫外線や熱によって分解するので、紫外線硬化樹脂への分散、高温硬化させる結着剤との併用、溶解性の低いアルコールや水を溶媒として使用すること等、が困難であったが、本発明においては、上述したように安定性が高い無機酸化物微粒子の粉末を適用しているため、紫外線硬化樹脂への練り込みが可能である。UV硬化は数秒間以下の照射時間で膜を硬化させることが可能であり、生産効率が非常に高い方法であることから本発明は極めて有用である。   Near-infrared absorbing materials such as organic compounds and metal complexes are decomposed by ultraviolet rays and heat. Disperse them in ultraviolet curable resins, use in combination with binders that cure at high temperatures, and use low-solubility alcohol or water as a solvent. However, in the present invention, since the powder of inorganic oxide fine particles having high stability is applied as described above, it can be kneaded into an ultraviolet curable resin. The UV curing can cure the film with an irradiation time of several seconds or less, and the present invention is extremely useful because it is a method with very high production efficiency.

フィルターの基材としてガラスを用いる場合は、結着剤としてシリケート等の金属アルコキシドを用いることができる。タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子と金属アルコキシドとの混合物を、ガラス上へ均一に塗布し焼成することで、表面強度の強い近赤外線吸収材フィルターを得ることが可能となる。焼成膜の膜厚や、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の配合量は、当該近赤外線吸収材フィルターの光学的特性が、波長380nm〜780nmの可視光領域における透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下となる範囲で、適宜に設定すれば良い。
得られた近赤外線吸収材フィルターは、機械的方法または接着法等の適宜な方法によりPDP本体の前面に設けることで、該PDPから発生する近赤外線によって周囲の電子機器が誤動作を生じる事態を回避することができた。
When glass is used as the filter substrate, a metal alkoxide such as silicate can be used as the binder. By applying a mixture of tungsten oxide fine particles or / and composite tungsten oxide fine particles and a metal alkoxide uniformly onto glass and baking, it is possible to obtain a near-infrared absorbing material filter having high surface strength. The film thickness of the fired film and the compounding amount of the tungsten oxide fine particles and / or the composite tungsten oxide fine particles are such that the optical characteristics of the near-infrared absorbing material filter are the maximum transmittance in the visible light region with a wavelength of 380 nm to 780 nm. May be set appropriately within a range where the minimum value of the near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less.
The obtained near-infrared absorbing material filter is provided on the front surface of the PDP main body by an appropriate method such as a mechanical method or an adhesion method, thereby avoiding a situation in which surrounding electronic devices malfunction due to near-infrared rays generated from the PDP. We were able to.

更に、結着剤として粘着性を有する材料を選択することで、PDP本体の前面ガラスにプラスチックフィルムやボードを接着する際の接着層に対して近赤外線吸収機能を持たせることで、前記PDP本体の前面ガラスを基材とし該接着層を近赤外線吸収層とした近赤外線吸収材フィルターとすることも可能である。   Further, by selecting a material having adhesiveness as a binder, the PDP main body is provided with a near infrared absorption function for an adhesive layer when a plastic film or board is bonded to the front glass of the PDP main body. It is also possible to make a near-infrared absorbing material filter using the front glass as a base material and the adhesive layer as a near-infrared absorbing layer.

また、前記結着剤の選定により、PDP本体の前面ガラスへ、前記本発明に係る近赤外線吸収材料の分散液を直接塗布し、溶媒を蒸発後、各種最適な硬化方法を用いることで、前記PDP本体の前面ガラスを基材とし、該基材上に近赤外線吸収材料が分散された被膜が設けられた近赤外線吸収材フィルターとすることも可能である。   In addition, by selecting the binder, the dispersion of the near-infrared absorbing material according to the present invention is directly applied to the front glass of the PDP main body, and after evaporating the solvent, various optimal curing methods are used. It is also possible to use a near-infrared absorbing material filter in which a front glass of the PDP main body is used as a base material and a coating film in which a near-infrared absorbing material is dispersed is provided on the base material.

一方、前記近赤外線吸収材料の分散液中へ色調調整用として、染料や顔料を添加することが可能である。特に、PDP本体のコントラスト向上に寄与するような色調調整は、PDPの画像品質を向上させるためにも有効な方法である。   On the other hand, dyes and pigments can be added to the dispersion of the near-infrared absorbing material for color tone adjustment. In particular, color tone adjustment that contributes to improving the contrast of the PDP main body is an effective method for improving the image quality of the PDP.

更に、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子と、有機化合物や金属錯体等の近赤外線吸収材料である例えば、ジイモニウム系化合物、アミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物等と併用することも好ましい構成である。上述したように、有機化合物や金属錯体等の近赤外線吸収材料は耐熱性、耐候性等に難があり単独使用には限界があったが、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子と併用することで、耐候性を向上させる効果が得られることが判明した。このことから、両近赤外線吸収材料の混合使用も好ましい構成である。   Further, tungsten oxide fine particles or / and composite tungsten oxide fine particles, and near infrared absorbing materials such as organic compounds and metal complexes such as diimonium compounds, aminium compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds It is also a preferred configuration to use in combination with an azo compound, a polymethine compound, a quinone compound, a diphenylmethane compound, a triphenylmethane compound, or the like. As described above, near-infrared absorbing materials such as organic compounds and metal complexes have difficulty in heat resistance, weather resistance and the like, and have limited use alone. However, tungsten oxide fine particles and / or composite tungsten oxide fine particles and It has been found that the effect of improving weather resistance can be obtained by the combined use. For this reason, mixed use of both near-infrared absorbing materials is also a preferred configuration.

以下、本発明について実施例を挙げて具体的に説明するが、本発明は当然のことながらこれ等実施例に限定されるわけではない。
以下の各実施例において光の透過率測定は、JIS A 5759に準ずる方法で行った(但し、試料をガラスに貼付せず測定を行っている)。すなわち、透過率測定は分光光度計(日立製作所製U―4000)を使用して、波長300nm〜2600nmの範囲において5nm間隔で測定した。
膜のヘイズ値は、JIS K 7105に基づき測定を行なった。
平均分散粒子径は、動的光散乱法を用いた測定装置(大塚電子株式会社製 ELS−800)により測定し、得られた値を平均し測定値とした。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not necessarily limited to these Examples.
In each of the following examples, light transmittance was measured by a method according to JIS A 5759 (however, the measurement was performed without attaching the sample to glass). That is, the transmittance was measured using a spectrophotometer (U-4000 manufactured by Hitachi, Ltd.) at 5 nm intervals in the wavelength range of 300 nm to 2600 nm.
The haze value of the film was measured based on JIS K 7105.
The average dispersed particle size was measured with a measuring device (ELS-800 manufactured by Otsuka Electronics Co., Ltd.) using a dynamic light scattering method, and the obtained values were averaged to obtain a measured value.

(実施例1)
6塩化タングステンをエタノールに少量ずつ溶解し溶液を得た。この溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後、800℃アルゴン雰囲気中で1時間加熱することで、W1849(WO2.72)粉末を作製した。
このWO2.72粉末は、X線回折による結晶相の同定の結果、W1849の結晶相が観察され、比表面積は30m2/gであった。
Example 1
Tungsten hexachloride was dissolved in ethanol little by little to obtain a solution. This solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated at 550 ° C. for 1 hour in a reducing atmosphere (argon / hydrogen = 95/5 volume ratio). Then, after once returned to room temperature, by heating 1 hour at 800 ° C. in an argon atmosphere to prepare a W 18 O 49 (WO 2.72) powder.
As a result of identification of the crystal phase by X-ray diffraction, this WO 2.72 powder was observed to have a W 18 O 49 crystal phase and a specific surface area of 30 m 2 / g.

このWO2.72粉末の10重量部、トルエンの85重量部、分散剤の5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液(A液)とした。このA液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して近赤外線吸収材料微粒子分散液とした。この分散液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この成膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ膜を得た。 10 parts by weight of this WO 2.72 powder, 85 parts by weight of toluene and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (A liquid) having an average dispersed particle diameter of 80 nm. 10 parts by weight of this liquid A and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to obtain a near-infrared absorbing material fine particle dispersion. This dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain a film.

この膜の光学特性を測定したところ、波長430nmで透過率71%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率は29%、波長1100nmで透過率は19%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線における遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図2に示す。
When the optical properties of this film were measured, it showed a transmittance of 71% at a wavelength of 430 nm, the maximum value of the visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. Further, the transmittance is 29% at a wavelength of 800 nm, the transmittance is 19% at a wavelength of 1100 nm, the minimum value of the near infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the shielding factor in the near infrared is I found it expensive. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained membrane is shown in FIG.

(実施例2)
メタタングステンアンモニウム水溶液(WO3換算で50wt%)と蟻酸タリウムの水溶液とを、WとTlのモル比が1対0.33となるように所定量秤量し、両液を混合し混合溶液を得た。この混合溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後、800℃アルゴン雰囲気中で1時間加熱することで、Tl0.33WO3粉末を作製した。この粉末の比表面積は20m2/gであった。また。該Tl0.33WO3粉末のX線回折による結晶相の同定の結果、六方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。
(Example 2)
A predetermined amount of an aqueous metatungsten ammonium solution (50 wt% in terms of WO 3 ) and an aqueous solution of thallium formate are weighed so that the molar ratio of W to Tl is 1: 0.33, and both solutions are mixed to obtain a mixed solution. It was. This mixed solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated at 550 ° C. for 1 hour in a reducing atmosphere (argon / hydrogen = 95/5 volume ratio). Then, once After returning to room temperature, by heating 1 hour at 800 ° C. in an argon atmosphere to prepare a Tl 0.33 WO 3 powder. The specific surface area of this powder was 20 m 2 / g. Also. As a result of identifying the crystal phase of the Tl 0.33 WO 3 powder by X-ray diffraction, a crystal phase of hexagonal tungsten bronze (composite tungsten oxide fine particles) was observed.

このTl0.33WO3粉末20重量部と、トルエン75重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液(B液)とした。このB液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して赤外線遮蔽材料微粒子分散体液とした。この赤外線遮蔽材料微粒子分散体液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。 20 parts by weight of this Tl 0.33 WO 3 powder, 75 parts by weight of toluene, and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (liquid B) having an average dispersed particle diameter of 80 nm. 10 parts by weight of this B liquid and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to obtain an infrared shielding material fine particle dispersion liquid. This infrared shielding material fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この膜の光学特性を測定したところ、波長475nmで透過率75%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率33%、波長1100nmで透過率6%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線の遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図3に示す。
When the optical characteristics of this film were measured, it showed a transmittance of 75% at a wavelength of 475 nm, the maximum value of the visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. Furthermore, the transmittance is 33% at a wavelength of 800 nm, the transmittance is 6% at a wavelength of 1100 nm, the minimum value of the near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the near-infrared shielding rate is high. I understood. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained film is shown in FIG.

(実施例3)
メタタングステンアンモニウム水溶液(WO3換算で50wt%)と塩化ルビジウム水溶液とを、WとRbのモル比が1対0.33となるように所定量秤量し、両液を混合し混合溶液を得た。この混合溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後、800℃アルゴン雰囲気中で1時間加熱することで、Rb0.33WO3粉末を作製した。この粉末の比表面積は20m2/gであった。また。該Rb0.33WO3粉末のX線回折による結晶相の同定の結果、六方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。
(Example 3)
A predetermined amount of an aqueous metatungsten ammonium solution (50 wt% in terms of WO 3 ) and an aqueous rubidium chloride were weighed so that the molar ratio of W and Rb was 1: 0.33, and both solutions were mixed to obtain a mixed solution. . This mixed solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated at 550 ° C. for 1 hour in a reducing atmosphere (argon / hydrogen = 95/5 volume ratio). Then, once After returning to room temperature, by heating 1 hour at 800 ° C. in an argon atmosphere to prepare a Rb 0.33 WO 3 powder. The specific surface area of this powder was 20 m 2 / g. Also. As a result of identifying the crystal phase of the Rb 0.33 WO 3 powder by X-ray diffraction, a crystal phase of hexagonal tungsten bronze (composite tungsten oxide fine particles) was observed.

このRb0.33WO3粉末20重量部と、トルエン75重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液(C液)とした。このC液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して赤外線遮蔽材料微粒子分散体液とした。この赤外線遮蔽材料微粒子分散体液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。 20 parts by weight of this Rb 0.33 WO 3 powder, 75 parts by weight of toluene, and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (liquid C) having an average dispersed particle diameter of 80 nm. 10 parts by weight of this C liquid and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to prepare an infrared shielding material fine particle dispersion liquid. This infrared shielding material fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この膜の光学特性を測定したところ、波長465nmで透過率76%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率は24%、波長1100nmで透過率は4%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線における遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図4に示す。
When the optical properties of this film were measured, it showed a transmittance of 76% at a wavelength of 465 nm, the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. Furthermore, the transmittance is 24% at a wavelength of 800 nm, the transmittance is 4% at a wavelength of 1100 nm, the minimum value of the near infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the shielding rate in the near infrared is low. I found it expensive. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained film is shown in FIG.

(実施例4)
メタタングステンアンモニウム水溶液(WO3換算で50wt%)と塩化カリウム水溶液とを、WとKのモル比が1対0.33となるように所定量秤量し、両液を混合し混合溶液を得た。この混合溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後、800℃アルゴン雰囲気中で1時間加熱することで、K0.33WO3粉末を作製した。この粉末の比表面積は20m2/gであった。また。該K0.33WO3粉末のX線回折による結晶相の同定の結果、六方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。
Example 4
A predetermined amount of an aqueous metatungsten ammonium solution (50 wt% in terms of WO 3 ) and an aqueous potassium chloride solution were weighed so that the molar ratio of W and K was 1: 0.33, and both solutions were mixed to obtain a mixed solution. . This mixed solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated at 550 ° C. for 1 hour in a reducing atmosphere (argon / hydrogen = 95/5 volume ratio). Then, once After returning to room temperature, by heating 1 hour at 800 ° C. in an argon atmosphere to prepare a K 0.33 WO 3 powder. The specific surface area of this powder was 20 m 2 / g. Also. As a result of identifying the crystal phase of the K 0.33 WO 3 powder by X-ray diffraction, a crystal phase of hexagonal tungsten bronze (composite tungsten oxide fine particles) was observed.

このK0.33WO3粉末20重量部と、トルエン75重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液(P液)とした。このP液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して赤外線遮蔽材料微粒子分散体液とした。この赤外線遮蔽材料微粒子分散体液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。 20 parts by weight of this K 0.33 WO 3 powder, 75 parts by weight of toluene, and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (P liquid) having an average dispersed particle diameter of 80 nm. 10 parts by weight of this P solution and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to prepare an infrared shielding material fine particle dispersion liquid. This infrared shielding material fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この膜の光学特性を測定したところ、波長460nmで透過率76%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率は39%、波長1100nmで透過率は10%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線における遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図5に示す。
When the optical characteristics of this film were measured, it showed a transmittance of 76% at a wavelength of 460 nm, the maximum value of the visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. Further, the transmittance is 39% at a wavelength of 800 nm, the transmittance is 10% at a wavelength of 1100 nm, the minimum value of the near infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the shielding rate in the near infrared is low. I found it expensive. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained membrane is shown in FIG.

(実施例5)
WO・HOで記載される三酸化タングステンの水和物粉末と炭酸セシウムの粉末とを、WとCsのモル比が1対0.33となるように所定量秤量して、両粉を混合し、この混合粉末を出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=97/3体積比)中において600℃で1時間加熱し、アルゴン雰囲気に置換後、800℃で1時間加熱することで、Cs0.33WO3粉末を作製した。この粉末の比表面積は20m2/gであった。また、該Cs0.33WO3粉末のX線回折による結晶相の同定の結果、六方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。
(Example 5)
A predetermined amount of a tungsten trioxide hydrate powder and a cesium carbonate powder described in WO 3 · H 2 O are weighed to a molar ratio of W to Cs of 1:33, The mixed powder was used as a starting material. This starting material was heated in a reducing atmosphere (argon / hydrogen = 97/3 volume ratio) at 600 ° C. for 1 hour, replaced with an argon atmosphere, and then heated at 800 ° C. for 1 hour to obtain Cs 0.33 WO 3 powder. Produced. The specific surface area of this powder was 20 m 2 / g. As a result of identifying the crystal phase of the Cs 0.33 WO 3 powder by X-ray diffraction, a crystal phase of hexagonal tungsten bronze (composite tungsten oxide fine particles) was observed.

このCs0.33WO3粉末20重量部、トルエン75重量部、分散剤5重量部を混合し、分散処理を行い、平均分散粒子径80nmの分散液(R液)とした。このR液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して赤外線遮蔽材料微粒子分散体液とした。この赤外線遮蔽材料微粒子分散体液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。 20 parts by weight of this Cs 0.33 WO 3 powder, 75 parts by weight of toluene and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (R liquid) having an average dispersed particle diameter of 80 nm. 10 parts by weight of the R liquid and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to obtain an infrared shielding material fine particle dispersion liquid. This infrared shielding material fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この膜の光学特性を測定したところ、波長480nmで透過率77%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率は19%、波長1100nmで透過率は6%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線の遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図6に示す。
When the optical characteristics of this film were measured, it showed a transmittance of 77% at a wavelength of 480 nm, the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. Further, the transmittance is 19% at a wavelength of 800 nm, the transmittance is 6% at a wavelength of 1100 nm, the minimum value of the near infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the near infrared shielding factor is I found it expensive. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained film is shown in FIG.

(実施例6)
WO・HOで記載される三酸化タングステンの水和物粉末と炭酸ナトリウムの粉末とを、WとNaのモル比が1対0.50となるように所定量秤量して、両粉を混合し、この混合粉末を出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=97/3体積比)中において600℃で1時間加熱し、アルゴン雰囲気に置換後、800℃で1時間加熱することで、Na0.5WO3の粉末を作製した。この粉末の比表面積は20m2/gであった。また、該Na0.5WO3の粉末のX線回折による結晶相の同定の結果、立方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。
(Example 6)
A predetermined amount of tungsten trioxide hydrate powder and sodium carbonate powder described in WO 3 · H 2 O are weighed to a molar ratio of W to Na of 1:50, The mixed powder was used as a starting material. This starting material was heated in a reducing atmosphere (argon / hydrogen = 97/3 volume ratio) at 600 ° C. for 1 hour, and after replacing with an argon atmosphere, it was heated at 800 ° C. for 1 hour, whereby Na 0.5 WO 3 The powder of was produced. The specific surface area of this powder was 20 m 2 / g. Further, as a result of identification of the crystal phase of the Na 0.5 WO 3 powder by X-ray diffraction, a crystal phase of cubic tungsten bronze (composite tungsten oxide fine particles) was observed.

このNa0.5WO3粉末20重量部と、トルエン75重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液(R液)とした。このR液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して赤外線遮蔽材料微粒子分散体液とした。この赤外線遮蔽材料微粒子分散体液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。 20 parts by weight of this Na 0.5 WO 3 powder, 75 parts by weight of toluene and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (R liquid) having an average dispersed particle diameter of 80 nm. 10 parts by weight of the R liquid and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to obtain an infrared shielding material fine particle dispersion liquid. This infrared shielding material fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この膜の光学特性を測定したところ、波長465nmで透過率72%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率16%、波長1100nmで透過率は5.8%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線の遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図7に示す。
When the optical properties of this film were measured, it showed a transmittance of 72% at a wavelength of 465 nm, the maximum value of the visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and the light in the visible light region was sufficiently transmitted. Further, the transmittance is 16% at a wavelength of 800 nm, the transmittance is 5.8% at a wavelength of 1100 nm, the minimum value of the near infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the near infrared shielding factor It turned out to be expensive. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained film is shown in FIG.

(実施例7)
WO・HOで記載される三酸化タングステンの水和物粉末と炭酸カリウムの粉末とを、WとKのモル比が1対0.55となるように所定量秤量して、両粉を混合し、この混合粉末を出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=97/3体積比)中において600℃で1時間加熱し、アルゴン雰囲気に置換後、800℃で1時間加熱することで、K0.55WO3粉末を作製した。この粉末の比表面積は30m2/gであった。また、該K0.55WO3粉末のX線回折による結晶相の同定の結果、正方晶タングステンブロンズ(複合タングステン酸化物微粒子)の結晶相が観察された。
(Example 7)
A predetermined amount of tungsten trioxide hydrate powder and potassium carbonate powder described in WO 3 · H 2 O are weighed to a molar ratio of W to K of 1 to 0.55. The mixed powder was used as a starting material. This starting material was heated in a reducing atmosphere (argon / hydrogen = 97/3 volume ratio) at 600 ° C. for 1 hour, replaced with an argon atmosphere, and then heated at 800 ° C. for 1 hour, whereby K 0.55 WO 3 A powder was prepared. The specific surface area of this powder was 30 m 2 / g. Further, as a result of identification of the crystal phase of the K 0.55 WO 3 powder by X-ray diffraction, a crystal phase of tetragonal tungsten bronze (composite tungsten oxide fine particles) was observed.

このK0.55WO3粉末20重量部と、トルエン75重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液(S液)とした。このS液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して赤外線遮蔽材料微粒子分散体液とした。この赤外線遮蔽材料微粒子分散体液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。 20 parts by weight of this K 0.55 WO 3 powder, 75 parts by weight of toluene and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion liquid (S liquid) having an average dispersed particle diameter of 80 nm. 10 parts by weight of this S liquid and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to prepare an infrared shielding material fine particle dispersion liquid. This infrared shielding material fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この膜の光学特性を測定したところ、波長460nmで透過率75%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率21%、波長1100nmで透過率10%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線の遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。
得られた膜の透過率プロファイルを図8に示す。
When the optical properties of this film were measured, it showed a transmittance of 75% at a wavelength of 460 nm, the maximum visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and the light in the visible light region was sufficiently transmitted. Furthermore, the transmittance is 21% at a wavelength of 800 nm, the transmittance is 10% at a wavelength of 1100 nm, the minimum near infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the near infrared shielding rate is high. I understood. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.
The transmittance profile of the obtained film is shown in FIG.

(実施例8)
実施例5で作製したCs0.33WO粉末を20重量部と、トルエン75重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液とした。真空乾燥機を用い、50℃にて該分散液の溶剤成分を除去し粉末とした。この粉末とPET樹脂とをVブレンダーにて乾式混合後、該PET樹脂の溶融温度付近迄昇温し、十分に密閉混合を行って混合物とし、この混合物を溶融押出しして、膜厚約50μmのフィルムに成形し近赤外線吸収フィルムとした。このとき、Cs0.33WO微粒子が、得られたフィルム中に約1.3g/m含有されるように調製した。
(Example 8)
20 parts by weight of Cs 0.33 WO 3 powder prepared in Example 5, 75 parts by weight of toluene, and 5 parts by weight of a dispersant were mixed and dispersed to obtain a dispersion having an average dispersed particle diameter of 80 nm. . Using a vacuum dryer, the solvent component of the dispersion was removed at 50 ° C. to obtain a powder. After this powder and PET resin are dry-mixed in a V-blender, the temperature is raised to around the melting temperature of the PET resin, sufficiently closed and mixed to form a mixture, and the mixture is melt-extruded to have a film thickness of about 50 μm. The film was formed into a near infrared absorbing film. At this time, Cs 0.33 WO 3 fine particles were prepared so as to be contained in the obtained film at about 1.3 g / m 2 .

この膜の光学特性を測定したところ、波長475nmで透過率70%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、更に、波長800nmで透過率10%、波長1100nmで透過率2%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であり近赤外線の遮蔽率が高いことが分かった。さらにヘイズ値は0.9%であり、透明性が極めて高いことが分かった。透過色調は、美しい青色となった。ここで、一般的にPDPは青色の輝度が低いため、該膜が青色の色調を有していることは有効である。   When the optical properties of this film were measured, it showed a transmittance of 70% at a wavelength of 475 nm, the maximum value of the visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. Further, the transmittance is 10% at a wavelength of 800 nm, the transmittance is 2% at a wavelength of 1100 nm, the minimum value of the near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less, and the near-infrared shielding rate is high. I understood. Furthermore, the haze value was 0.9%, and it was found that the transparency was extremely high. The transmission color tone was beautiful blue. Here, since the PDP generally has low blue luminance, it is effective that the film has a blue color tone.

(比較例1)
実施例1から8にて基材として使用した、膜厚50μmPETフィルム自体の光学特性を測定した。すると、波長550nmで透過率88%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過しているが、波長1000nmで透過率85%であり、波長800nm〜1100nmの近赤外線透過率の最小値が30%を超えており近赤外線を殆ど透過していることが分かった。
(Comparative Example 1)
The optical properties of the 50 μm-thick PET film itself used as the substrate in Examples 1 to 8 were measured. Then, the transmittance is 88% at a wavelength of 550 nm, the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more, and the visible light region is sufficiently transmitted, but the transmittance is 85% at a wavelength of 1000 nm. It was found that the minimum value of the near-infrared transmittance at wavelengths of 800 nm to 1100 nm exceeded 30%, and almost all the near-infrared light was transmitted.

(比較例2)
有機系の近赤外線吸収染料である、日本化薬社製IRG−022をジメチルホルムアミド(DMF)に溶解し、この溶液10重量部と、ハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して塗布液とした。この塗布液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。この膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。すると、得られた膜は、塗布直後(乾燥前)の緑色系の色調から、黄色系の色調に変化していた。これは、UV硬化時に該有機系の近赤外線吸収染料が劣化したためであると考えられる。この劣化のため、生産性の良いUV硬化法を用いて近赤外線吸収する樹脂を製造することが出来ず、工業的に有用ではない。
(Comparative Example 2)
IRG-022 manufactured by Nippon Kayaku Co., Ltd., which is an organic near-infrared absorbing dye, is dissolved in dimethylformamide (DMF), 10 parts by weight of this solution, and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content 100%). Were mixed to obtain a coating solution. This coating liquid was applied and formed on a PET resin film (HPE-50) using a bar coater. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain an infrared shielding film. Then, the obtained film was changed from a green color tone immediately after coating (before drying) to a yellow color tone. This is presumably because the organic near-infrared absorbing dye deteriorated during UV curing. Because of this deterioration, a resin that absorbs near-infrared rays cannot be produced using a highly productive UV curing method, which is not industrially useful.

(比較例3)
6塩化タングステンをエタノールに少量ずつ溶解し溶液を得た。この溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、還元雰囲気(アルゴン/水素=95/5体積比)中において550℃で1時間加熱した。そして、一度室温に戻した後、800℃アルゴン雰囲気中で1時間加熱することで、W1849(WO2.72)粉末を作製した。
該WO2.72粉末は、X線回折による結晶相の同定の結果、W1849の結晶相が観察され、比表面積は30m2/gであった。
(Comparative Example 3)
Tungsten hexachloride was dissolved in ethanol little by little to obtain a solution. This solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated at 550 ° C. for 1 hour in a reducing atmosphere (argon / hydrogen = 95/5 volume ratio). Then, after once returned to room temperature, by heating 1 hour at 800 ° C. in an argon atmosphere to prepare a W 18 O 49 (WO 2.72) powder.
As a result of identification of the crystal phase by X-ray diffraction, the WO 2.72 powder was observed to have a W 18 O 49 crystal phase and a specific surface area of 30 m 2 / g.

このWO2.72粉末10重量部と、トルエン85重量部と、分散剤5重量部とを混合し、分散処理をせず、攪拌のみを行った。このときの平均分散粒子径は約2000nmだった。この液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して近赤外線吸収材料微粒子分散液とした。この分散液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この成膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ膜を得た。
この膜の光学特性を測定したところ、ヘイズ値は18.8%であり、光散乱が大きく鮮明な画像を映すことは困難であった。
10 parts by weight of this WO 2.72 powder, 85 parts by weight of toluene, and 5 parts by weight of a dispersant were mixed, and only agitation was performed without performing a dispersion treatment. The average dispersed particle size at this time was about 2000 nm. 10 parts by weight of this liquid and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to obtain a near-infrared absorbing material fine particle dispersion. This dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain a film.
When the optical properties of this film were measured, the haze value was 18.8%, and it was difficult to project a clear image with large light scattering.

(比較例4)
6塩化タングステンをエタノールに少量ずつ溶解し溶液を得た。この溶液を130℃で乾燥し、粉末状の出発原料とした。この出発原料を、大気中で800℃1時間加熱することで、WO粉末を作製した。該WO粉末のX線回折による結晶相の同定の結果、WOの結晶相が観察され、比表面積は30m2/gであった。
(Comparative Example 4)
Tungsten hexachloride was dissolved in ethanol little by little to obtain a solution. This solution was dried at 130 ° C. to obtain a powdery starting material. This starting material was heated in the atmosphere at 800 ° C. for 1 hour to produce WO 3 powder. As a result of identification of the crystal phase of the WO 3 powder by X-ray diffraction, the crystal phase of WO 3 was observed and the specific surface area was 30 m 2 / g.

このWO3粉末10重量部と、トルエン85重量部と、分散剤5重量部とを混合し、分散処理を行い、平均分散粒子径80nmの分散液とした。この分散液10重量部とハードコート用紫外線硬化樹脂(固形分100%)10重量部とを混合して微粒子分散液とした。この微粒子分散液を、PET樹脂フィルム(HPE−50)上にバーコーターを用いて塗布、成膜した。当該成膜の膜厚は、波長380nm〜780nmの可視光領域における透過率の最大値が70〜80%程度となる値とした。この成膜を60℃で30秒乾燥し溶剤を蒸発させた後、高圧水銀ランプで硬化させ膜を得た。 10 parts by weight of this WO 3 powder, 85 parts by weight of toluene, and 5 parts by weight of a dispersant were mixed and subjected to dispersion treatment to obtain a dispersion having an average dispersed particle diameter of 80 nm. 10 parts by weight of this dispersion and 10 parts by weight of an ultraviolet curable resin for hard coat (solid content: 100%) were mixed to obtain a fine particle dispersion. This fine particle dispersion was applied and formed on a PET resin film (HPE-50) using a bar coater. The film thickness of the film formation was such that the maximum value of transmittance in the visible light region with a wavelength of 380 nm to 780 nm was about 70 to 80%. This film was dried at 60 ° C. for 30 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to obtain a film.

この膜の光学特性を測定したところ、波長550nmで透過率82.5%を示し、波長380nm〜780nmの可視光透過率の最大値が50%以上であり可視光領域の光を十分透過している事が分かった、しかし、波長800nmで透過率82.2%、波長1100nmで透過率77.9%を示し、波長800nm〜1100nmの近赤外線透過率の最小値が30%を超えており近赤外線の吸収率が低く近赤外線吸収材料として機能が劣ることが分かった。
得られた膜の透過率プロファイルを図9に示す。
When the optical properties of this film were measured, it showed a transmittance of 82.5% at a wavelength of 550 nm, the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm was 50% or more, and sufficiently transmitted light in the visible light region. However, the transmittance was 82.2% at a wavelength of 800 nm, the transmittance was 77.9% at a wavelength of 1100 nm, and the minimum value of the near infrared transmittance at a wavelength of 800 nm to 1100 nm exceeded 30%. It was found that the infrared absorptivity is low and the function as a near infrared absorbing material is inferior.
The transmittance profile of the obtained film is shown in FIG.

PDPの発光部の概略を示す拡大断面図である。It is an expanded sectional view which shows the outline of the light emission part of PDP. 実施例1に係る膜の透過率プロファイルである。2 is a transmittance profile of the film according to Example 1. 実施例2に係る膜の透過率プロファイルである。4 is a transmittance profile of a film according to Example 2. 実施例3に係る膜の透過率プロファイルである。10 is a transmittance profile of a film according to Example 3. 実施例4に係る膜の透過率プロファイルである。10 is a transmittance profile of a film according to Example 4; 実施例5に係る膜の透過率プロファイルである。10 is a transmittance profile of a film according to Example 5. 実施例6に係る膜の透過率プロファイルである。10 is a transmittance profile of a film according to Example 6. 実施例7に係る膜の透過率プロファイルである。10 is a transmittance profile of a film according to Example 7. 比較例4に係る膜の透過率プロファイルである。It is the transmittance | permeability profile of the film | membrane which concerns on the comparative example 4.

符号の説明Explanation of symbols

11.前面ガラス基板(フロントカバープレート)
12.表示電極
13.誘電体ガラス層
14.保護層
15.背面ガラス基板
16.アドレス電極
17.隔壁
18.蛍光体層
19.放電空間
11. Front glass substrate (front cover plate)
12 Display electrode 13. Dielectric glass layer 14. Protective layer 15. Back glass substrate 16. Address electrode 17. Septum 18. Phosphor layer 19. Discharge space

Claims (16)

基材と、該基材表面上に設けられた樹脂または金属酸化物の被膜とを有し、前記基材内または/及び前記被膜内に、近赤外線吸収材料の粒子が分散されたプラズマディスプレイパネル用の近赤外線吸収材フィルターであって、
前記近赤外線吸収材料の粒子は、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含み、
波長380nm〜780nmの可視光透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であることを特徴とするプラズマディスプレイパネル用の近赤外線吸収材フィルター。
A plasma display panel having a base material and a resin or metal oxide film provided on the surface of the base material, wherein particles of a near-infrared absorbing material are dispersed in the base material and / or in the film Near-infrared absorbing material filter for
The near-infrared absorbing material particles include tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle size of 800 nm or less,
A near-infrared absorbing material filter for a plasma display panel, wherein the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more and the minimum value of near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less .
シート状またはフィルム状の樹脂が基材に挟持され、該樹脂内または/及び基材内に近赤外線吸収材料の粒子が分散されたプラズマディスプレイパネル用の近赤外線吸収材フィルターであって、
前記近赤外線吸収材料の粒子は、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含み、
波長380nm〜780nmの可視光透過率の最大値が50%以上、波長800nm〜1100nmの近赤外線透過率の最小値が30%以下であることを特徴とするプラズマディスプレイパネル用の近赤外線吸収材フィルター。
A near-infrared absorbing material filter for a plasma display panel in which a sheet-like or film-like resin is sandwiched between base materials and particles of the near-infrared absorbing material are dispersed in the resin or / and the base material,
The near-infrared absorbing material particles include tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle size of 800 nm or less,
A near-infrared absorbing material filter for a plasma display panel, wherein the maximum value of visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more and the minimum value of near-infrared transmittance at a wavelength of 800 nm to 1100 nm is 30% or less .
前記樹脂または被膜が、屈折率を異にする2層以上の積層体であって、該積層体間の屈折率差により反射防止機能を発現させる構造を有しており、該積層体の少なくとも1層に、平均分散粒径が800nm以下の、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が分散されていることを特徴とする請求項1または2記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The resin or coating is a laminate of two or more layers having different refractive indexes, and has a structure that exhibits an antireflection function due to a difference in refractive index between the laminates, and at least one of the laminates 3. The near-infrared absorption filter for plasma display panel according to claim 1, wherein tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle diameter of 800 nm or less are dispersed in the layer. 前記近赤外線吸収材料が、更に、ジイモニウム系化合物、アミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物から選択された1種類以上の有機化合物を含有していることを特徴とする請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The near-infrared absorbing material further includes a diimonium compound, an aminium compound, a phthalocyanine compound, an organometallic complex, a cyanine compound, an azo compound, a polymethine compound, a quinone compound, a diphenylmethane compound, and a triphenylmethane compound. The near-infrared absorption filter for a plasma display panel according to any one of claims 1 to 3, comprising one or more selected organic compounds. 前記タングステン酸化物微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子であることを特徴とする請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The tungsten oxide fine particles are tungsten oxide fine particles represented by a general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999). Item 4. A near-infrared absorption filter for a plasma display panel according to any one of Items 1 to 3. 前記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物の微粒子であることを特徴とする請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The composite tungsten oxide fine particles have the general formula MxWyOz (where the M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir). Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti , Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1. The near-infrared absorption filter for a plasma display panel according to any one of claims 1 to 3, wherein the fine particle is a composite tungsten oxide represented by (1, 2.2≤z / y≤3.0). . 前記タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.45≦z/y≦2.999)で表記される組成比のマグネリ相を含むことを特徴とする請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The tungsten oxide fine particles or / and the composite tungsten oxide fine particles are composed of a magnetic phase having a composition ratio represented by the general formula WyOz (W is tungsten, O is oxygen, 2.45 ≦ z / y ≦ 2.999). The near-infrared absorption filter for plasma display panels according to any one of claims 1 to 3, wherein 前記複合タングステン酸化物微粒子が、六方晶、正方晶、立方晶のいずれか1種類以上の結晶構造を含むことを特徴とする請求項6記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The near-infrared absorption filter for a plasma display panel according to claim 6, wherein the composite tungsten oxide fine particles include one or more crystal structures of hexagonal, tetragonal, and cubic. 前記複合タングステン酸化物微粒子のM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snから選択される1種類以上の元素であり、該複合タングステン酸化物微粒子が六方晶の結晶構造を有することを特徴とする請求項8記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   M element of the composite tungsten oxide fine particles is one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn, and the composite tungsten oxide fine particles 9. The near-infrared absorption filter for a plasma display panel according to claim 8, wherein has a hexagonal crystal structure. 前記タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alから選択される1種類以上の元素を含有する酸化物で被覆されていることを特徴とする請求項5〜9のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The surface of the tungsten oxide fine particles and / or composite tungsten oxide fine particles is coated with an oxide containing one or more elements selected from Si, Ti, Zr, and Al. The near-infrared absorption filter for plasma display panels in any one of 5-9. 前記基材が、プラスチックボード、プラスチックフィルム、ガラスから選択される1種類以上の基材で構成されていることを特徴とする請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The near-infrared absorption for a plasma display panel according to any one of claims 1 to 3, wherein the substrate is composed of one or more types of substrates selected from a plastic board, a plastic film, and glass. filter. 前記基材が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアリレレート樹脂、ポリエーテルスルホン樹脂から選択される1種類以上の樹脂を含むプラスチックボードまたはプラスチックフィルムであることを特徴とする請求項11に記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The base material is selected from polyolefin resin, polyester resin, polycarbonate resin, poly (meth) acrylate resin, polystyrene, polyvinyl chloride, polyvinyl acetate, polyarylate resin, and polyethersulfone resin. The near-infrared absorption filter for a plasma display panel according to claim 11, which is a plastic board or a plastic film containing one or more kinds of resins. 前記被膜が、紫外線硬化樹脂、熱可塑性樹脂、熱硬化樹脂、常温硬化樹脂、金属アルコキシド、金属アルコキシドの加水分解重合物、粘着材から選択される1種類以上の成分を有することを特徴とする請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The coating film has one or more components selected from an ultraviolet curable resin, a thermoplastic resin, a thermosetting resin, a room temperature curable resin, a metal alkoxide, a hydrolysis polymer of a metal alkoxide, and an adhesive material. Item 4. A near-infrared absorption filter for a plasma display panel according to any one of Items 1 to 3. 前記シート状またはフィルム状の樹脂が、ポリビニルブチラールであることを特徴とする請求項2に記載のプラズマディスプレイパネル用近赤外線吸収フィルター。   The near-infrared absorbing filter for a plasma display panel according to claim 2, wherein the sheet-like or film-like resin is polyvinyl butyral. 請求項1〜3のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルターであって、
更に、色調調整成分を含有することを特徴とするプラズマディスプレイパネル用近赤外線吸収フィルター。
A near-infrared absorption filter for a plasma display panel according to any one of claims 1 to 3,
Furthermore, the near-infrared absorption filter for plasma display panels characterized by containing a color tone adjustment component.
請求項1〜15のいずれかに記載のプラズマディスプレイパネル用近赤外線吸収フィルターが設けられていることを特徴とするプラズマディスプレイパネル。   A near-infrared absorption filter for a plasma display panel according to any one of claims 1 to 15, wherein the plasma display panel is provided.
JP2004347204A 2004-11-30 2004-11-30 Near infrared absorption filter for plasma display panel and plasma display panel using the same Expired - Fee Related JP4586970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347204A JP4586970B2 (en) 2004-11-30 2004-11-30 Near infrared absorption filter for plasma display panel and plasma display panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347204A JP4586970B2 (en) 2004-11-30 2004-11-30 Near infrared absorption filter for plasma display panel and plasma display panel using the same

Publications (2)

Publication Number Publication Date
JP2006154516A true JP2006154516A (en) 2006-06-15
JP4586970B2 JP4586970B2 (en) 2010-11-24

Family

ID=36632887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347204A Expired - Fee Related JP4586970B2 (en) 2004-11-30 2004-11-30 Near infrared absorption filter for plasma display panel and plasma display panel using the same

Country Status (1)

Country Link
JP (1) JP4586970B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021998A (en) * 2005-07-20 2007-02-01 Lintec Corp Infrared absorption film
JP2008026493A (en) * 2006-07-19 2008-02-07 Lintec Corp Antireflection film
JP2008026492A (en) * 2006-07-19 2008-02-07 Lintec Corp Antireflection film
WO2008059995A1 (en) * 2006-11-17 2008-05-22 Lintec Corporation Pressure sensitive adhesive composition for display
WO2008078833A1 (en) * 2006-12-27 2008-07-03 Achilles Corporation Heat shielding sheet
EP1942517A2 (en) 2007-01-08 2008-07-09 Samsung SDI Co., Ltd. Plasma Display Device
JP2008191395A (en) * 2007-02-05 2008-08-21 Sumitomo Metal Mining Co Ltd Plasma display panel and near infrared ray absorption filter for same
JP2008209485A (en) * 2007-02-23 2008-09-11 Dainippon Printing Co Ltd Sheet-like composite filter for plasma display and manufacturing method thereof
JP2008209486A (en) * 2007-02-23 2008-09-11 Dainippon Printing Co Ltd Composite filter for display
WO2008136317A1 (en) 2007-04-26 2008-11-13 Sumitomo Metal Mining Co., Ltd. Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
WO2009020207A1 (en) * 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. Near infrared absorbing composition and near infrared absorbing filter
JP2009035615A (en) * 2007-07-31 2009-02-19 Dainippon Printing Co Ltd Self-adhesive composition, sheet-like composite filter for plasma display using self-adhesive composition, and plasma display panel display device
JP2009057443A (en) * 2007-08-31 2009-03-19 Dainippon Printing Co Ltd Manufacturing method of adhesive composition having near-ir absorptivity, adhesive coating film and optical filter for pdp
JP2009114326A (en) * 2007-11-06 2009-05-28 Sumitomo Metal Mining Co Ltd Dispersion liquid for near-infrared absorbing tacky adhesive, near-infrared absorbing self-adhesive, near-infrared absorbing filter for plasma display panel and plasma display panel
JP2009227860A (en) * 2008-03-24 2009-10-08 Dainippon Printing Co Ltd Self-adhesive composition, and near-infrared ray absorption filter using the self-adhesive composition
JP2009265638A (en) * 2008-03-31 2009-11-12 Panasonic Electric Works Co Ltd Near infrared absorbing adhesive film, antireflection film with near infrared absorbing adhesive layer, electromagnetic wave shield film with near infrared absorbing adhesive layer, and filter for plasma display
WO2010046285A2 (en) * 2008-10-23 2010-04-29 Basf Se Heat absorbing additives
JP2010163574A (en) * 2009-01-19 2010-07-29 Sumitomo Metal Mining Co Ltd Dispersion for forming infrared-shielding film and coating liquid for forming infrared-shielding film, infrared-shielding film and infrared-shielding optical member, and multilayer filter for plasma display panel and plasma display panel
US20100220388A1 (en) * 2007-06-08 2010-09-02 Bridgestone Corporation Near-infrared shielding material, laminate including the same, and optical filter for display including the same
JP2011093280A (en) * 2009-11-02 2011-05-12 Hiraoka & Co Ltd Near infrared ray shielding sheet and method of manufacturing the same
WO2011067998A1 (en) 2009-12-04 2011-06-09 東レ株式会社 Photosensitive resin composition, laminate utilizing same, and solid-state imaging device
WO2012141211A1 (en) 2011-04-12 2012-10-18 大日本印刷株式会社 Microparticles, particle sets, anti-counterfeiting ink, anti-counterfeiting toner, anti-counterfeiting sheet and anti-counterfeiting medium
KR101249597B1 (en) * 2006-09-06 2013-04-01 린텍 가부시키가이샤 Infrared-ray absorption film
WO2014084353A1 (en) * 2012-11-30 2014-06-05 住友金属鉱山株式会社 Near-infrared absorption filter and image pickup element
WO2014168189A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared-blocking filter
US9267042B2 (en) 2008-10-27 2016-02-23 Datalase Ltd. Coating composition for marking substrates
US9333786B2 (en) 2007-07-18 2016-05-10 Datalase, Ltd. Laser-sensitive coating formulations
WO2018235829A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Near-infrared-curable ink composition, method for producing same, near-infrared-cured film, and optical shaping method
WO2019031238A1 (en) * 2017-08-09 2019-02-14 帝人株式会社 Head-up display device and light-transmissive member used therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562115B (en) 2017-05-05 2022-02-16 William Blythe Ltd Tungsten oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (en) * 1994-06-30 1996-01-16 Nissan Motor Co Ltd Heat ray cut-off glass and its production
JPH08283044A (en) * 1995-04-11 1996-10-29 Asahi Glass Co Ltd Heat ray cutoff glass
JP2000233929A (en) * 1998-11-30 2000-08-29 High Frequency Heattreat Co Ltd Superfine particle powder of v(1-x)o2mx composition, its production and ir ray shielding material
JP2003227922A (en) * 2002-02-01 2003-08-15 Sumitomo Metal Mining Co Ltd Near-infrared ray absorption filter for plasma display panel and dispersion liquid of near-infrared ray absorber used for manufacturing the filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (en) * 1994-06-30 1996-01-16 Nissan Motor Co Ltd Heat ray cut-off glass and its production
JPH08283044A (en) * 1995-04-11 1996-10-29 Asahi Glass Co Ltd Heat ray cutoff glass
JP2000233929A (en) * 1998-11-30 2000-08-29 High Frequency Heattreat Co Ltd Superfine particle powder of v(1-x)o2mx composition, its production and ir ray shielding material
JP2003227922A (en) * 2002-02-01 2003-08-15 Sumitomo Metal Mining Co Ltd Near-infrared ray absorption filter for plasma display panel and dispersion liquid of near-infrared ray absorber used for manufacturing the filter

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021998A (en) * 2005-07-20 2007-02-01 Lintec Corp Infrared absorption film
JP2008026493A (en) * 2006-07-19 2008-02-07 Lintec Corp Antireflection film
JP2008026492A (en) * 2006-07-19 2008-02-07 Lintec Corp Antireflection film
KR101249597B1 (en) * 2006-09-06 2013-04-01 린텍 가부시키가이샤 Infrared-ray absorption film
WO2008059995A1 (en) * 2006-11-17 2008-05-22 Lintec Corporation Pressure sensitive adhesive composition for display
JP5328364B2 (en) * 2006-11-17 2013-10-30 リンテック株式会社 Pressure-sensitive adhesive composition for display
KR101399987B1 (en) * 2006-11-17 2014-05-27 린텍 가부시키가이샤 Pressure sensitive adhesive composition for display
WO2008078833A1 (en) * 2006-12-27 2008-07-03 Achilles Corporation Heat shielding sheet
JP2010514844A (en) * 2006-12-27 2010-05-06 アキレス株式会社 Heat ray shielding sheet
EP1942517A3 (en) * 2007-01-08 2009-03-11 Samsung SDI Co., Ltd. Plasma Display Device
EP1942517A2 (en) 2007-01-08 2008-07-09 Samsung SDI Co., Ltd. Plasma Display Device
JP2008191395A (en) * 2007-02-05 2008-08-21 Sumitomo Metal Mining Co Ltd Plasma display panel and near infrared ray absorption filter for same
JP2008209486A (en) * 2007-02-23 2008-09-11 Dainippon Printing Co Ltd Composite filter for display
JP2008209485A (en) * 2007-02-23 2008-09-11 Dainippon Printing Co Ltd Sheet-like composite filter for plasma display and manufacturing method thereof
WO2008136317A1 (en) 2007-04-26 2008-11-13 Sumitomo Metal Mining Co., Ltd. Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
US8258226B2 (en) 2007-04-26 2012-09-04 Sumitomo Metal Mining Co., Ltd. Composition for manufacturing heat ray-shielding polyvinyl chloride film and manufacturing method of the same, and heat ray-shielding polyvinyl chloride film
US20100220388A1 (en) * 2007-06-08 2010-09-02 Bridgestone Corporation Near-infrared shielding material, laminate including the same, and optical filter for display including the same
US9333786B2 (en) 2007-07-18 2016-05-10 Datalase, Ltd. Laser-sensitive coating formulations
JP2009035615A (en) * 2007-07-31 2009-02-19 Dainippon Printing Co Ltd Self-adhesive composition, sheet-like composite filter for plasma display using self-adhesive composition, and plasma display panel display device
WO2009020207A1 (en) * 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. Near infrared absorbing composition and near infrared absorbing filter
US8202927B2 (en) 2007-08-09 2012-06-19 Dai Nippon Printing Co., Ltd. Near-infrared absorbing composition and near-infrared absorbing filter
JP5365197B2 (en) * 2007-08-09 2013-12-11 大日本印刷株式会社 Near-infrared absorbing composition and near-infrared absorbing filter
JP2009057443A (en) * 2007-08-31 2009-03-19 Dainippon Printing Co Ltd Manufacturing method of adhesive composition having near-ir absorptivity, adhesive coating film and optical filter for pdp
JP2009114326A (en) * 2007-11-06 2009-05-28 Sumitomo Metal Mining Co Ltd Dispersion liquid for near-infrared absorbing tacky adhesive, near-infrared absorbing self-adhesive, near-infrared absorbing filter for plasma display panel and plasma display panel
KR101536774B1 (en) * 2007-11-06 2015-07-14 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersant for near infrared ray absorbing adhesive body, near infrared ray absorbing adhesive body, near infrared ray absorbing filter for plasma display panel and plasma display panel
US8174190B2 (en) 2007-11-06 2012-05-08 Sumitomo Metal Mining Co., Ltd. Dispersion liquid for near-infrared-absorbing adhesive-body, near-infrared-absorbing adhesive body, near-infrared-absorbing plasma-display-panel filter, and plasma display panel
JP2009227860A (en) * 2008-03-24 2009-10-08 Dainippon Printing Co Ltd Self-adhesive composition, and near-infrared ray absorption filter using the self-adhesive composition
JP2009265638A (en) * 2008-03-31 2009-11-12 Panasonic Electric Works Co Ltd Near infrared absorbing adhesive film, antireflection film with near infrared absorbing adhesive layer, electromagnetic wave shield film with near infrared absorbing adhesive layer, and filter for plasma display
JP2012506463A (en) * 2008-10-23 2012-03-15 データレース リミテッド Heat absorption additive
WO2010046285A3 (en) * 2008-10-23 2010-07-01 Basf Se Heat absorbing additives
WO2010046285A2 (en) * 2008-10-23 2010-04-29 Basf Se Heat absorbing additives
US8853314B2 (en) 2008-10-23 2014-10-07 Datalase Ltd. Heat absorbing additives
US9267042B2 (en) 2008-10-27 2016-02-23 Datalase Ltd. Coating composition for marking substrates
JP2010163574A (en) * 2009-01-19 2010-07-29 Sumitomo Metal Mining Co Ltd Dispersion for forming infrared-shielding film and coating liquid for forming infrared-shielding film, infrared-shielding film and infrared-shielding optical member, and multilayer filter for plasma display panel and plasma display panel
JP2011093280A (en) * 2009-11-02 2011-05-12 Hiraoka & Co Ltd Near infrared ray shielding sheet and method of manufacturing the same
CN102640054A (en) * 2009-12-04 2012-08-15 东丽株式会社 Photosensitive resin composition, laminate utilizing same, and solid-state imaging device
US8901225B2 (en) 2009-12-04 2014-12-02 Toray Industries, Inc. Photosensitive resin composition, laminate utilizing same and solid-state imaging device
JP5088419B2 (en) * 2009-12-04 2012-12-05 東レ株式会社 Photosensitive resin composition, laminate using the same, and solid-state imaging device
WO2011067998A1 (en) 2009-12-04 2011-06-09 東レ株式会社 Photosensitive resin composition, laminate utilizing same, and solid-state imaging device
WO2012141211A1 (en) 2011-04-12 2012-10-18 大日本印刷株式会社 Microparticles, particle sets, anti-counterfeiting ink, anti-counterfeiting toner, anti-counterfeiting sheet and anti-counterfeiting medium
CN104969098B (en) * 2012-11-30 2018-09-21 住友金属矿山株式会社 Near-infrared absorbing filter and capturing element
KR102042751B1 (en) * 2012-11-30 2019-11-08 스미토모 긴조쿠 고잔 가부시키가이샤 Near-infrared absorption filter and image pickup element
KR20150093186A (en) * 2012-11-30 2015-08-17 스미토모 긴조쿠 고잔 가부시키가이샤 Near-infrared absorption filter and image pickup element
CN104969098A (en) * 2012-11-30 2015-10-07 住友金属矿山株式会社 Near-infrared absorption filter and image pickup element
US20150301243A1 (en) * 2012-11-30 2015-10-22 Sumitomo Metal Mining Co., Ltd. Near-infrared absorption filter and imaging device
JPWO2014084353A1 (en) * 2012-11-30 2017-01-05 住友金属鉱山株式会社 Near infrared absorption filter and imaging device
WO2014084353A1 (en) * 2012-11-30 2014-06-05 住友金属鉱山株式会社 Near-infrared absorption filter and image pickup element
JPWO2014168189A1 (en) * 2013-04-10 2017-02-16 旭硝子株式会社 Infrared shielding filter
WO2014168189A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared-blocking filter
WO2018235829A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Near-infrared-curable ink composition, method for producing same, near-infrared-cured film, and optical shaping method
JPWO2018235829A1 (en) * 2017-06-19 2020-04-16 住友金属鉱山株式会社 Near-infrared curable ink composition and method for producing the same, near-infrared curable film, and stereolithography method
JP7247886B2 (en) 2017-06-19 2023-03-29 住友金属鉱山株式会社 NEAR INFRARED CURABLE INK COMPOSITION AND MANUFACTURING METHOD THEREOF, NEAR INFRARED CURED FILM, AND STEREO FORMULATION
US11685839B2 (en) 2017-06-19 2023-06-27 Sumitomo Metal Mining Co., Ltd. Near-infrared curable ink composition and production method thereof, near-infrared cured layer, and stereolithography
WO2019031238A1 (en) * 2017-08-09 2019-02-14 帝人株式会社 Head-up display device and light-transmissive member used therefor
CN110998414A (en) * 2017-08-09 2020-04-10 帝人株式会社 Head-up display device and light-transmitting member for the same
JPWO2019031238A1 (en) * 2017-08-09 2020-07-27 帝人株式会社 Head-up display display device and translucent member used therefor

Also Published As

Publication number Publication date
JP4586970B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4586970B2 (en) Near infrared absorption filter for plasma display panel and plasma display panel using the same
JP5176492B2 (en) Near-infrared absorbing adhesive, near-infrared absorbing filter for plasma display panel, and plasma display panel
JP4666226B2 (en) Near-infrared absorption filter for plasma display panel, method for producing the same, and plasma display panel
JP2009258581A (en) Near-infrared absorption filter for plasma display panel, manufacturing method, and plasma display panel
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP5245283B2 (en) Heat ray shielding vinyl chloride film composition, method for producing the same, and heat ray shielding vinyl chloride film
EP3712223B1 (en) Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and methods for producing these
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
JP2011065000A (en) Near-infrared absorption filter for plasma display panel, method of manufacturing the same, and the plasma display panel
JP5181716B2 (en) Infrared shielding material fine particle dispersion, infrared shielding film and infrared shielding optical member, and near infrared absorption filter for plasma display panel
JP4735417B2 (en) Near-infrared absorption filter for plasma display panel, method for producing the same, and plasma display panel
EP1891470A2 (en) Fabrication of front filter for plasma display panel
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
EP3915942A1 (en) Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and infrared-absorbing substrate
JP3937851B2 (en) Near infrared absorbing filter for plasma display panel
JP2010079145A (en) Infrared absorbing laminate and optical filter
JP5109841B2 (en) Infrared shielding film forming dispersion liquid and infrared shielding film forming coating liquid, infrared shielding film and infrared shielding optical member, multilayer filter for plasma display panel and plasma display panel
JP5895895B2 (en) Heat ray shielding vinyl chloride film production composition and method for producing the same, and heat ray shielding vinyl chloride film, heat ray shielding laminated transparent base material
JP2003139946A (en) Near ir ray absorbing filter
JP2006299086A (en) Particulate dispersion of ir-shielding material, ir-shielding product, method of manufacturing particulate of ir-shielding material and particulate of ir-shielding material
JP2010008818A (en) Near infrared ray absorption filter for plasma display panel, and plasma display panel
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP2008191395A (en) Plasma display panel and near infrared ray absorption filter for same
JP2018077301A (en) Near-infrared absorptive optical member and image display device using the same
JP2018124363A (en) Dispersion liquid of infrared-shielding material fine particle and infrared-shielding adhesive liquid comprising the same, and substrate with infrared-shielding layer, substrate with infrared-shielding adhesive layer, and infrared-shielding optical member manufactured by using the above liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

R150 Certificate of patent or registration of utility model

Ref document number: 4586970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees