JP2006145083A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006145083A
JP2006145083A JP2004333010A JP2004333010A JP2006145083A JP 2006145083 A JP2006145083 A JP 2006145083A JP 2004333010 A JP2004333010 A JP 2004333010A JP 2004333010 A JP2004333010 A JP 2004333010A JP 2006145083 A JP2006145083 A JP 2006145083A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
temperature
exchanger temperature
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004333010A
Other languages
Japanese (ja)
Other versions
JP4617844B2 (en
Inventor
Yusuke Kono
裕介 河野
Satoshi Tokura
聡 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004333010A priority Critical patent/JP4617844B2/en
Publication of JP2006145083A publication Critical patent/JP2006145083A/en
Application granted granted Critical
Publication of JP4617844B2 publication Critical patent/JP4617844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner having superior heating performance and capable of minimizing degradation of amenity caused by deicing. <P>SOLUTION: In this separate type air conditioner separated into the inside and outside, and comprising an outside air temperature detecting means 68 for detecting an outside air temperature and an outdoor heat exchanger temperature detecting means 67 for detecting an outdoor heat exchanger temperature, a first conditional expression [Y=a×(X)+b] and a second conditional expression [Y=a×(X)+c] calculated from the outside air temperature X and the outdoor heat exchanger temperature Y are prepared (a is positive constant and b>c), and deicing is started when a prescribed deicing starting condition is satisfied when the outdoor heat exchanger temperature exists in a lower area of the first conditional expression, or the deicing is started when the outdoor heat exchanger temperature exists in a lower area of the second conditional expression, thereby deicing control is properly performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は暖房運転において、ディアイス制御を行う空気調和機に関するものである。   The present invention relates to an air conditioner that performs deice control in heating operation.

従来、セパレートタイプの空気調和機での暖房運転の際は、室内熱交換器は高温に室外熱交換器は低温となる。その為、外気温がある程度低いときは(2度〜5度以下)室外熱交換器の温度は0度以下となり、ある程度水分が介在する場合は霜となり室外熱交換器に付着する。その後も暖房運転が継続すれば、その霜が徐々に成長する為、やがては室外熱交換器での熱交換能力を阻害し、暖房能力を徐々に落としてしまうという課題が生じる。それを防止する為に、ある程度霜が成長したと推定できる場合は空気調和機の電子制御装置にて判定を行い、霜を融かすための運転(以降、ディアイス運転と呼ぶ)を実施する。この運転は通常の暖房運転と異なり、四方弁を切り替えて冷房運転とし、室外の熱交換器にホットガスを送り、室外付着の霜を溶かす。この際は、室外は高温を維持する為、室内はユーザーに冷風感を感じさせない為に、どちらもファンを止めて運転するのが一般的である。つまり、基本的に暖房能力はゼロで運転されていることとなる。この為、ディアイス運転はユーザーにとってエアコンの不満点の一つとなっており、ディアイス運転を効率良く行うということが重要な課題となっている。つまり着霜現象が生じる全ての外気温度条件下において,除霜運転開始時に室外熱交換器に付着している着霜量を一定に制御することが重要であり、この課題解決への従来の技術として、特許文献1に示すように外気温度Xと室外熱交換器温度Yから計算される一次式Y=a・X−b(a、bは正の定数)に応じて除霜指示をおこなうことで、着霜量一定を目指すディアイス制御を行っていた。それを図7に示す。横軸に外気温度、縦軸に室外熱交器温度をとったものであり、領域Bに入った場合ディアイスを行うというものである。
特開昭55−137439号公報
Conventionally, during a heating operation with a separate type air conditioner, the indoor heat exchanger is at a high temperature and the outdoor heat exchanger is at a low temperature. Therefore, when the outside air temperature is low to some extent (2 degrees to 5 degrees or less), the temperature of the outdoor heat exchanger is 0 degrees or less, and when moisture is present to some extent, it forms frost and adheres to the outdoor heat exchanger. If the heating operation continues thereafter, the frost gradually grows, and eventually the heat exchange capability in the outdoor heat exchanger is hindered, and the heating capability is gradually reduced. In order to prevent this, when it can be estimated that frost has grown to some extent, an electronic controller of the air conditioner is used for determination, and an operation for melting the frost (hereinafter referred to as a deice operation) is performed. Unlike normal heating operation, this operation switches the four-way valve for cooling operation, sends hot gas to the outdoor heat exchanger, and melts frost adhered to the outdoor. In this case, in order to maintain a high temperature outside the room and to prevent the user from feeling a cold wind, it is common to operate with both fans stopped. That is, it is basically operated with zero heating capacity. For this reason, deice operation is one of the complaints of air conditioners for users, and it is an important issue to perform deice operation efficiently. In other words, it is important to control the amount of frost adhering to the outdoor heat exchanger at the beginning of the defrosting operation under all outdoor temperature conditions where frosting occurs, and the conventional technology for solving this problem As shown in Patent Document 1, a defrosting instruction is given according to a primary expression Y = a · X−b (a and b are positive constants) calculated from the outside air temperature X and the outdoor heat exchanger temperature Y. Then, de-ice control aiming at a constant amount of frost formation was performed. This is shown in FIG. The horizontal axis represents the outside air temperature, and the vertical axis represents the outdoor heat exchanger temperature. When entering the region B, de-ice is performed.
JP-A-55-137439

しかしながら、このように上記従来の技術では外気温度と室外熱交換器温度の一次式のみをパラメータとして、ディアイスを行うか行わないかの判断を行っており、その他、着霜に影響を与えるパラメータである周波数、室内気温、室内ファン速、室外ファン速、外湿度などの影響が考慮されておらず、場合によっては、殆ど着霜がしていない状況でディアイス運転を行うことがあり、結果運転効率を悪化させ、暖房能力を落としてしまうという課題があった。また逆に着霜が進行した状態でも制御条件が成立せず、結果進行を抑制できないといった課題があった。さらに、高外気温時においても、室外熱交換器温度が図7の領域Bにあればディアイスを行うので、全く着霜していない状況において無意味なディアイスを行うという課題があった。さらに加えるならば、外気温をパラメータとして用いていることから、外気温センサが何らかの原因で適切な外気温度を取得できない状況に陥った場合、特に実際よりも低い外気温度を取得した場合、着霜が多量であるにも関わらず、全くディアイスを行わないという課題があった。   However, in the above-described conventional technique, only the primary expression of the outside air temperature and the outdoor heat exchanger temperature is used as a parameter to determine whether or not to perform de-ice, and other parameters that affect frost formation. The effects of certain frequencies, room temperature, indoor fan speed, outdoor fan speed, outside humidity, etc. are not taken into account, and in some cases, de-ice operation may be performed in a situation where there is almost no frost formation. There was a problem of deteriorating the heating capacity. On the other hand, there is a problem that the control condition is not satisfied even in a state where frosting has progressed, and the progress of the result cannot be suppressed. Further, even when the outdoor temperature is high, if the outdoor heat exchanger temperature is in the region B of FIG. 7, de-ice is performed, so there is a problem of performing meaningless de-ice in a situation where no frost is formed. In addition, since the outside air temperature is used as a parameter, if the outside air temperature sensor cannot obtain an appropriate outside air temperature for some reason, especially if an outside air temperature lower than the actual temperature is obtained, frost formation Despite the large amount, there was a problem that no de-ice was performed.

本発明は、前記従来の課題を解決するもので、暖房運転時のディアイス制御を適宜行うことで、暖房性能に優れ、ディアイスによる快適性の悪化を極力防ぐ空気調和機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide an air conditioner that is superior in heating performance and prevents deterioration of comfort due to deice as much as possible by appropriately performing deice control during heating operation. To do.

前記従来の課題を解決するために、本発明の空気調和機は、内外に分離されたセパレートタイプの空気調和機で、外気温度を検出する外気温検出手段、及び室外熱交換器温度を
検出する室外熱交換器温度検出手段を備えた空気調和機において、外気温度と室外熱交換器温度から計算される、一次式からなる第一の条件式と第二の条件式を設け、前記第一の条件式の下領域に室外熱交換器温度があった場合、所定のディアイス開始条件を満足すればディアイスを開始する、あるいは前記室外熱交換器温度が前記第二の条件式の下領域にあった場合、ディアイスを開始するものである。
In order to solve the above-described conventional problems, the air conditioner of the present invention is a separate type air conditioner separated into the inside and outside, and detects the outside air temperature detecting means for detecting the outside air temperature, and the outdoor heat exchanger temperature. In the air conditioner provided with the outdoor heat exchanger temperature detecting means, a first conditional expression and a second conditional expression, which are calculated from the outdoor air temperature and the outdoor heat exchanger temperature, are provided. When the outdoor heat exchanger temperature is in the lower region of the conditional expression, the deice is started if the predetermined deice start condition is satisfied, or the outdoor heat exchanger temperature is in the lower region of the second conditional expression If it is, start the de-ice.

これによって、第一の条件式の下領域において、他に着霜をしているかどうかの基準が加わる。また、第二の条件式の下領域において、無条件にディアイスを行う。   As a result, in the lower region of the first conditional expression, another reference is added as to whether or not frosting is occurring. In addition, in the lower region of the second conditional expression, deice is performed unconditionally.

また、本発明の空気調和機は、前記室外熱交換器温度が所定の値を上回っていればディアイスを行わないものである。これによって、外気温度を無視し、室外熱交換器温度が所定の温度以上であればディアイスを行わない。   Moreover, the air conditioner of this invention does not perform de-ice if the outdoor heat exchanger temperature exceeds a predetermined value. Accordingly, the outside air temperature is ignored, and de-ice is not performed if the outdoor heat exchanger temperature is equal to or higher than a predetermined temperature.

さらに、本発明の空気調和機は、前記室外熱交換器温度が所定の温度以下の時は、ディアイスを行うものである。これによって、外気温度を無視し、室外熱交換器温度が所定の温度以下になったら、ディアイス制御を行う。   Furthermore, the air conditioner of the present invention performs de-ice when the outdoor heat exchanger temperature is equal to or lower than a predetermined temperature. As a result, the outside air temperature is ignored, and the de-ice control is performed when the outdoor heat exchanger temperature falls below a predetermined temperature.

本発明の空気調和機は、暖房運転時のディアイス制御を適宜行うことで、暖房性能に優れ、ディアイスによる快適性の悪化を極力防ぐ空気調和機を提供することができる。   The air conditioner of the present invention can provide an air conditioner that is excellent in heating performance and prevents deterioration of comfort due to deice as much as possible by appropriately performing deice control during heating operation.

第1の発明は、内外に分離されたセパレートタイプの空気調和機で、外気温度を検出する外気温検出手段、及び室外熱交換器温度を検出する室外熱交換器温度検出手段を備えた空気調和機において、外気温度Xと室外熱交換器温度Yから計算される第一の条件式
(Y=a・X+b)と第二の条件式(YY=a・X+c)を設け(ただしaは正の定数でありb>cである)、前記第一の条件式の下領域に室外熱交換器温度があった場合、所定のディアイス開始条件を満足すればディアイスを開始する、あるいは前記室外熱交換器温度が前記第二の条件式の下領域にあった場合、ディアイスを開始することにより、第一の条件式の下領域において、他に着霜をしているかどうかの基準を加えることができ、ディアイス制御の精度を高めることができる。また、第二の条件式の下領域において、無条件にディアイスを行うが、これによって第一の条件式の下領域において、他に設ける着霜をしているかどうかの判断基準が不適切な設定、あるいは外環境等の影響によって着霜しているという判断ができなかった場合においても、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。
1st invention is the air conditioner of the separate type separated into the inside and outside, and is equipped with the outside air temperature detection means which detects outside temperature, and the air conditioner provided with the outdoor heat exchanger temperature detection means which detects outdoor heat exchanger temperature The first conditional expression (Y = a · X + b) and the second conditional expression (YY = a · X + c) calculated from the outdoor air temperature X and the outdoor heat exchanger temperature Y are provided (where a is a positive value) A constant and b> c), when the outdoor heat exchanger temperature is in the lower region of the first conditional expression, the de-ice is started if a predetermined de-ice start condition is satisfied, or the outdoor heat exchanger When the temperature is in the lower region of the second conditional expression, by starting the de-ice, in the lower region of the first conditional expression, it is possible to add another criterion for whether or not frosting is performed, By increasing the accuracy of deice control That. In addition, the de-icing is performed unconditionally in the lower area of the second conditional expression, so that in the lower area of the first conditional expression, the criterion for determining whether or not frosting is provided is set inappropriately. Even when it is not possible to determine that frost formation has occurred due to the influence of the outside environment or the like, it is possible to prevent the state in which frost formation has progressed from being continued, and it is possible to appropriately perform deice control.

第2の発明は、特に、第1の発明の空気調和機において、前記所定のディアイス開始条件として、前記熱交換器温度の変化率が前記熱交換器温度下降時において、所定の変化率以上になった場合、ディアイスを開始することにより、室外熱交換器が目詰まりしたかどうか判断することができるので、より適切な着霜状態を把握することができ、適宜ディアイス制御を行うことができる。   In particular, in the air conditioner according to the first aspect of the present invention, the change rate of the heat exchanger temperature is greater than or equal to a predetermined change rate when the heat exchanger temperature falls as the predetermined deice start condition. In this case, it is possible to determine whether or not the outdoor heat exchanger is clogged by starting the de-ice, so that a more appropriate frosting state can be grasped and the de-ice control can be appropriately performed.

第3の発明は、特に、第1または第2の発明の空気調和機において、前記所定のディアイス開始条件として、前記室外熱交換器温度が前記第一条件値を下回ってから所定時間経過した場合、ディアイスを開始することにより、室外湿度が低く、室外熱交換器が目詰まりしたかどうかの判断を熱交換器温度の変化率によって判断できない場合においても、ある程度着霜が進行している状態である第一の条件式の下領域において、一定時間が経過した後ディアイス制御を行うので、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。   In a third aspect of the present invention, in particular, in the air conditioner of the first or second aspect, when the predetermined deice start condition, a predetermined time elapses after the outdoor heat exchanger temperature falls below the first condition value Even if the outdoor humidity is low and the outdoor heat exchanger cannot be determined by the rate of change in the heat exchanger temperature by starting the de-ice, the frosting is progressing to some extent. In a lower region of a certain first conditional expression, the deice control is performed after a predetermined time has elapsed, so that the state in which frost formation has progressed can be prevented, and the deice control can be performed as appropriate.

第4の発明は、特に、第1〜3のいずれか1つの発明の空気調和機において、前記室外熱交換器温度が所定の値を上回っていればディアイスを行わないことにより、外気温度が高く、着霜のない状態においてはディアイスを行わないので、不適切なディアイスを防ぐことができる。   According to a fourth aspect of the invention, in particular, in the air conditioner of any one of the first to third aspects of the invention, if the outdoor heat exchanger temperature exceeds a predetermined value, de-ice is not performed, so that the outside air temperature is high. In the state where there is no frost formation, since deice is not performed, inappropriate deice can be prevented.

第5の発明は、特に、第1〜4のいずれか1つの発明の空気調和機において、前記室外熱交換器温度が所定の温度以下の時は、ディアイスを行うので、外気温度センサが着霜や降雪などによって、霜または雪に覆われ、適切に外気温度を取得できなくなった場合においても、外気温度を無視し、室外熱交換器温度が所定の温度以下になったら、ディアイスを行うので、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。   In the fifth aspect of the invention, in particular, in the air conditioner of any one of the first to fourth aspects, when the outdoor heat exchanger temperature is equal to or lower than a predetermined temperature, de-ice is performed. Even if it is covered with frost or snow due to frost or snow, and the outside temperature cannot be obtained properly, the outside air temperature is ignored, and if the outdoor heat exchanger temperature falls below the predetermined temperature, de-ice is performed. It is possible to prevent the state where frost formation has progressed from being continued, and it is possible to appropriately perform deice control.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図6は本実施の形態に係る空気調和機の構成図の例である。同図において、61は室外熱交換器、62の圧縮機、63の膨張弁、65の室内熱交換器、66の四方弁と一系統にて繋がっている。そして64の室外送風機によって出される風により、熱交換が行われている。暖房運転時は長時間運転されると徐々に61の室外熱交換器の温度が下がり、条件により霜が発生・成長する。霜が徐々に成長するに従い、通風抵抗が大きくなり、熱交換量が少なくなって暖房能力が低下する。空気調和機ではある程度霜が成長したとおもわれる状態を67の室外熱交温度センサ、68の外気温度センサの出力により69の電子制御装置で推定・判断して、除霜運転を行う。
(Embodiment 1)
FIG. 6 is an example of a configuration diagram of the air conditioner according to the present embodiment. In the figure, 61 is connected to an outdoor heat exchanger, a compressor 62, an expansion valve 63, an indoor heat exchanger 65, and a four-way valve 66 in one system. And heat exchange is performed with the wind emitted by 64 outdoor fans. When the heating operation is performed for a long time, the temperature of 61 outdoor heat exchangers gradually decreases, and frost is generated and grows depending on conditions. As the frost grows gradually, the ventilation resistance increases, the amount of heat exchange decreases, and the heating capacity decreases. In the air conditioner, the defrosting operation is performed by estimating / determining the state where frost has been grown to some extent in the outdoor heat exchanger temperature sensor 67 and the output of the outdoor air temperature sensor 68 by the electronic control unit 69.

以上のように構成された空気調和機について、以下その動作、作用を説明する。   About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図1は、本発明の実施の形態におけるディアイス判定の概念図を示すものである。図1において、領域Aは全くディアイスを行わない領域、領域Bは条件によってディアイスを行う領域、領域Cは無条件にディアイスを行う領域である。ここで、第一の条件式と第二の条件式の定め方について説明を加えておく。実験によって、それぞれの外気温度における暖房能力の最大値からの能力の落ち(例えば最大能力の90%)について、その状況(最大能力の90%)における室外熱交換器温度及び外気温度について、略線形的な相関があることが判明した(図3参照)。よってこの関係を利用すれば、暖房能力について最大値から一定の能力落ちの時にディアイスに入れることが可能となる。しかしながら、周波数、室内気温、室内ファン速、室外ファン速、外湿度などの影響により、室外熱交換器温度及び外気温度についての略線形的な関係は変動することもわかっており、単純にこの関係を利用するだけでは、必ずしも適切なタイミングでディアイスに入れることができない。そこで、緩和措置として、狙いの最大能力からの落ちにおける、室外熱交換器温度と外気温度から上下に余裕度を持たせることとし、具体的には、狙いの最大能力からの落ちにおける、室外熱交換器温度と外気温度の略線形的な関係を一次式に変換し、その一次式に平行に上方向にもっていったのが第一の条件式であり、下方向にもっていったのが第二の条件式とした。こうすることで、領域Bにおいて、他のディアイス判定条件を設けることができ、ディアイス制御の精度を上げることができる。   FIG. 1 is a conceptual diagram of the deice determination in the embodiment of the present invention. In FIG. 1, a region A is a region where no de-ice is performed, a region B is a region where de-ice is performed depending on conditions, and a region C is a region where de-ice is performed unconditionally. Here, a description will be given of how to define the first conditional expression and the second conditional expression. As a result of experiments, a drop in capacity from the maximum value of the heating capacity at each outdoor temperature (for example, 90% of the maximum capacity), the outdoor heat exchanger temperature and the outdoor temperature in the situation (90% of the maximum capacity) are approximately linear. (See FIG. 3). Therefore, if this relationship is utilized, it becomes possible to put in the deice when the heating capacity falls from the maximum value to a certain level. However, it is known that the linear relationship between the outdoor heat exchanger temperature and the outdoor air temperature fluctuates due to the influence of frequency, indoor air temperature, indoor fan speed, outdoor fan speed, and outdoor humidity. If you just use, you can't always put it on the ice cream at the right time. Therefore, as a mitigation measure, allowance is given to the outdoor heat exchanger temperature and the outside air temperature above and below the target maximum capacity, and specifically, the outdoor heat at the target maximum capacity drop. The first conditional expression was converted to a first-order equation from the approximately linear relationship between the exchanger temperature and the outside air temperature. Two conditional expressions were used. In this way, another deice determination condition can be provided in the region B, and the accuracy of deice control can be increased.

なお、狙いの最大能力からの落ちの決定方法についてであるが、最大能力からの落ちがほとんどない時にディアイス入れる場合、着霜量の少ない状況でディアイス運転が頻繁に行われ、暖房運転時間に対するディアイス運転時間の割合が大きくなり、暖房時間が短くなるため、累積暖房能力が低下すると共に、ディアイス運転毎に室外熱交換器の温度を上げるためのエネルギーが必要となるため、無駄なエネルギーを消費することになる。一方
、最大能力からの落ちが大きい場合、1サイクル当たりの暖房運転時間は長くなるものの、着霜による暖房能力の低下が生じ、無駄なエネルギを消費するだけでなく、着霜量が多いため、ディアイス運転時間が長くなり、快適性を損ねる。よって、バランスを考慮し狙いの最大能力からの落ちを決定する必要がある。本発明の実施の形態においては最大能力の90%前後でディアイスに入れることを考えており、これは室外熱交換器が目詰まりするポイントとほぼ一致する。また、周波数、室内気温、室内ファン速、室外ファン速などの影響を一次式に盛り込んでおいても当然構わない。さらに、今回は室外熱交換器温度と外気温度の略線形的な関係を1次式として置き換えたが、2次式で置き換えても、あるいはその他の多項式で置き換えても構わない。
In addition, as for the method of determining the drop from the target maximum capacity, when adding deice when there is almost no drop from the maximum capacity, the deice operation is frequently performed in a situation where the amount of frost formation is small, and the deice for the heating operation time Since the proportion of operation time increases and the heating time becomes shorter, the cumulative heating capacity decreases, and energy is required to raise the temperature of the outdoor heat exchanger every deice operation, and thus wasteful energy is consumed. It will be. On the other hand, when the drop from the maximum capacity is large, although the heating operation time per cycle becomes long, the heating capacity is reduced due to frost formation, not only wasteful energy is consumed, but also the amount of frost formation is large. Diice driving time will be longer and comfort will be lost. Therefore, it is necessary to determine the fall from the target maximum capacity in consideration of balance. In the embodiment of the present invention, it is considered that the ice cream is put in about 90% of the maximum capacity, which almost coincides with the point where the outdoor heat exchanger is clogged. Of course, the effects of frequency, room temperature, indoor fan speed, outdoor fan speed, and the like may be included in the primary expression. Further, this time, the linear relationship between the outdoor heat exchanger temperature and the outside air temperature is replaced as a linear expression, but it may be replaced with a quadratic expression or another polynomial.

また図1において、Ta以上であればディアイスを行なわないが、こうすることで外気温度が高く、着霜のない状態においてはディアイスを行わないので、不適切なディアイスを防ぐことができる。さらにTb以下であればディアイスを行うが、こうすることで外気温度センサが着霜や降雪などによって、霜または雪に覆われ、適切に外気温度を取得できなくなった場合においても、外気温度を無視し、室外熱交換器温度が所定の温度以下になったら、ディアイスを行うので、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。   In FIG. 1, deice is not performed when Ta is equal to or higher than this value. However, since the deairing is not performed in a state where the outside air temperature is high and frost is not formed, inappropriate deice can be prevented. In addition, if it is Tb or less, de-icing is performed, but even if the outside temperature sensor is covered with frost or snow due to frost or snowfall and the outside temperature cannot be acquired properly, the outside temperature is ignored. However, when the outdoor heat exchanger temperature becomes equal to or lower than the predetermined temperature, deice is performed, so that the state in which frost formation has progressed can be prevented, and deice control can be appropriately performed.

図2は、本発明の実施の形態におけるフローチャートである。   FIG. 2 is a flowchart in the embodiment of the present invention.

まず、図2において暖房運転が行われると、SP21において領域A(図1参照)にいるかどうかの判断が行われ、そうであれば、暖房運転を継続し、そうでなければSP22に進む。SP22において、領域B(図1参照)にいるかどうかの判定が行われ、そうであればSP23に進み、そうでなければ、領域C(図1参照)にいるのでディアイスを行う。SP23において、室外熱交換器温度の変化率の絶対値が所定の値以上かつ変化率がマイナス(|ΔT|>△Taかつ△T<0)かどうかの判定が行われ、そうであればディアイスを行い、そうでなければSP24に進む。ここで、SP23の条件によって、ディアイスを判定できる根拠を述べておく。実験によって図4に示すような結果を得た。図4は縦軸に暖房能力、と室外熱交換器温度、横軸に運転時間をプロットしたものであり、あるポイントから暖房能力及び室外熱交換器温度が急激に落ち込んでいることが分かる。このポイントにおいて、室外熱交換器が目詰まりをし始めており、この室外熱交換器温度の急激な落ちを用いることにより、精度よくディアイスを行うことができる。ただし、この室外熱交換器温度の急激な落ち込みについては、領域Aでこの条件を用いた場合、何らかの外乱によって室外熱交換器温度が急激に落ち込んだ場合、全く着霜していないか、またはほとんど着霜していない状況においてもディアイスに入ってしまうので、室外熱交換器温度の変化率のみをディアイスの判定条件にすることは好ましくなく、室外熱交換器温度も考慮し(本実施例では領域Bにいる場合)ディアスに入れる必要がある。SP24において一旦領域Bに入ってから所定時間経過(例えば20分)したかどうかの判定が行われ、そうであればディアイスを行い、そうでなければSP22に戻る。SP24の条件によって、ディアイスに入れる根拠についてであるが、図5に外湿度が低湿度(例えば70%以下)における、暖房能力及び室外熱交換器温度の時間変化を示す。図5から分かるように、低湿度条件下においては急激な室外熱交換器温度の減少を見て取ることができず、室外熱交換器温度の変化率をディアイス判定条件にすることができない。しかしながら、低湿度下においても、領域Bであればある程度は着霜している状況であり、この状態が長い時間続くことは累積暖房能力の低下につながり、好ましくない。そこで、B領域に入り、ある程度の時間(例えば20分)が経過(この時間は累積暖房能力が最大となるように決めればよい)した場合はディアイスに入れることとした。   First, when the heating operation is performed in FIG. 2, it is determined whether or not the vehicle is in the region A (see FIG. 1) in SP21. If so, the heating operation is continued, and if not, the process proceeds to SP22. In SP22, it is determined whether or not the user is in the area B (see FIG. 1). If so, the process proceeds to SP23. If not, the process is in the area C (see FIG. 1), and deice is performed. In SP23, it is determined whether or not the absolute value of the change rate of the outdoor heat exchanger temperature is equal to or greater than a predetermined value and the change rate is negative (| ΔT |> ΔTa and ΔT <0). Otherwise, go to SP24. Here, the grounds for determining the deice depending on the condition of SP23 will be described. The experiment gave results as shown in FIG. FIG. 4 is a plot of heating capacity and outdoor heat exchanger temperature on the vertical axis, and operating time on the horizontal axis, and it can be seen that the heating capacity and outdoor heat exchanger temperature drop sharply from a certain point. At this point, the outdoor heat exchanger is beginning to clog, and by using this sudden drop in the outdoor heat exchanger temperature, de-ice can be performed with high accuracy. However, with regard to the sudden drop in the outdoor heat exchanger temperature, when this condition is used in the region A, when the outdoor heat exchanger temperature suddenly falls due to some disturbance, there is no frost formation or almost no frost formation. Even in a situation where frost is not formed, the ice cream enters the ice cream. Therefore, it is not preferable to use only the rate of change in the outdoor heat exchanger temperature as a condition for determining the ice ice temperature. If you are in B) you need to put in Diaz. In SP24, it is determined whether or not a predetermined time has elapsed (for example, 20 minutes) after entering the region B. If so, de-ice is performed, and if not, the process returns to SP22. FIG. 5 shows changes over time in the heating capacity and the outdoor heat exchanger temperature when the outside humidity is low (for example, 70% or less). As can be seen from FIG. 5, a rapid decrease in the outdoor heat exchanger temperature cannot be observed under low humidity conditions, and the rate of change in the outdoor heat exchanger temperature cannot be used as the de-ice determination condition. However, even under low humidity, the region B is frosted to some extent, and it is not preferable that this state continues for a long time, leading to a decrease in the cumulative heating capacity. Therefore, when a certain amount of time (for example, 20 minutes) has elapsed (this time may be determined so that the cumulative heating capacity is maximized) after entering the region B, the ice cream is put into the deice.

以上のように、本実施の形態においては、図1における領域Bに室外熱交換器温度があった場合、所定のディアイス開始条件を満足すればディアイスを開始する、あるいは前記
室外熱交換器温度が図1における領域Cにあった場合、ディアイスを開始することにより、領域Bにおいて他に着霜をしているかどうかの基準を加えることができ、ディアイス制御の精度を高めることができる。また、領域Cにおいて、無条件にディアイスを行うが、これによって領域B以下において、他に設ける着霜をしているかどうかの判断基準が不適切な設定、あるいは外環境等の影響によって着霜しているという判断ができなかった場合においても、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。
As described above, in the present embodiment, when the outdoor heat exchanger temperature is in the region B in FIG. 1, the de-ice is started if the predetermined de-ice start condition is satisfied, or the outdoor heat exchanger temperature is In the area C in FIG. 1, by starting the de-ice, it is possible to add another reference for whether or not frost is formed in the area B, and to improve the accuracy of the de-ice control. In addition, in the area C, the de-ice is unconditionally performed. However, in the area B and below, the frost is formed due to an improper setting of whether or not other frost formation is provided or the influence of the external environment or the like. Even when it is not possible to determine that the frosting has occurred, it is possible to prevent the frosting state from continuing, and the deice control can be appropriately performed.

また、本実施の形態においては、前記所定のディアイス開始条件として、前記熱交換器温度の変化率が前記熱交換器温度下降時において、所定の変化率以上になった場合、ディアイスを開始することにより、室外熱交換器が目詰まりしたかどうか判断することができるので、より適切な着霜状態を把握することができ、適宜ディアイス制御を行うことができる。   Further, in the present embodiment, as the predetermined deice start condition, when the rate of change of the heat exchanger temperature becomes equal to or greater than the predetermined rate of change when the temperature of the heat exchanger decreases, deice is started. Thus, it can be determined whether or not the outdoor heat exchanger is clogged, so that a more appropriate frost formation state can be grasped and de-ice control can be performed as appropriate.

さらに本実施の形態においては、前記所定のディアイス開始条件として、前記室外熱交換器温度が領域Bを下回ってから所定時間経過した場合、ディアイスを開始することにより、室外湿度が低く、室外熱交換器が目詰まりしたかどうかの判断を熱交換器温度の変化率によって判断できない場合においても、ある程度着霜が進行している状態である領域Bにおいて、一定時間が経過した後ディアイス制御を行うので、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。   Further, in the present embodiment, as the predetermined deice start condition, when a predetermined time has elapsed after the outdoor heat exchanger temperature falls below the region B, the dehumidification is started so that the outdoor humidity is low and the outdoor heat exchange is started. Even if it is not possible to determine whether the heat exchanger is clogged by the rate of change of the heat exchanger temperature, the de-ice control is performed after a certain time has passed in the region B where frosting has progressed to some extent. Further, it is possible to prevent the state in which frost formation has progressed from being continued, and it is possible to appropriately perform deice control.

加えて、本実施の形態においては室外熱交換器温度が所定の値を上回っていればディアイスを行わないことにより、外気温度が高く、着霜のない状態においてはディアイスを行わないので、不適切なディアイスを防ぐことができる。   In addition, in this embodiment, if the outdoor heat exchanger temperature exceeds a predetermined value, the de-ice is not performed, so that the de-ice is not performed in a state where the outside air temperature is high and no frost is formed. Can prevent a serious dying.

さらに加えて、本実施の形態においては、室外熱交換器温度が所定の温度以下の時は、ディアイスを行うので、外気温度センサが着霜や降雪などによって、霜または雪に覆われ、適切に外気温度を取得できなくなった場合においても、外気温度を無視し、室外熱交換器温度が所定の温度以下になったら、ディアイスを行うので、着霜が進行した状態が続くことを防ぐことができ、適宜ディアイス制御を行うことができる。   In addition, in this embodiment, when the outdoor heat exchanger temperature is equal to or lower than a predetermined temperature, de-ice is performed, so that the outdoor temperature sensor is covered with frost or snow due to frost or snowfall, and appropriately Even when the outside air temperature can no longer be acquired, the outside air temperature is ignored, and when the outdoor heat exchanger temperature falls below the predetermined temperature, de-ice is performed, so that it is possible to prevent the frosting state from continuing. Therefore, the deice control can be performed as appropriate.

以上のように、本発明にかかる空気調和器は、暖房運転時のディアイス制御を適宜行うことで、暖房性能に優れ、ディアイスによる快適性の悪化を極力防ぐことが可能となるので、種々の空気調和機に適用できる。   As described above, the air conditioner according to the present invention appropriately performs deice control at the time of heating operation, so that it is excellent in heating performance and can prevent deterioration of comfort due to deice as much as possible. Applicable to harmony machines.

本発明の実施の形態1におけるディアイス判定の概念図Conceptual diagram of diice determination in Embodiment 1 of the present invention 本発明の実施の形態1におけるフローチャートFlowchart in Embodiment 1 of the present invention 本発明の実施の形態1におけるそれぞれの外気温における暖房能力について最大能力の90%の時の室外熱交換器温度と外気温度の関係を示した関係図The relationship figure which showed the relationship between the outdoor heat exchanger temperature and the outdoor temperature at the time of 90% of maximum capacity | capacitance about the heating capability in each outdoor temperature in Embodiment 1 of this invention 本発明の実施の形態1における暖房能力と室外配管温度と運転時間の関係を示した関係図The relationship figure which showed the relationship between the heating capability in Embodiment 1 of this invention, outdoor piping temperature, and operation time. 本発明の実施の形態1における低湿度時における暖房能力と室外配管温度と運転時間の関係を示した関係図The relationship figure which showed the relationship between the heating capability at the time of the low humidity in Embodiment 1 of this invention, outdoor piping temperature, and operation time 本発明の実施の形態1に係る空気調和機の構成図The block diagram of the air conditioner which concerns on Embodiment 1 of this invention. 従来の空気調和器におけるディアイス判定の概念図Conceptual diagram of deice determination in a conventional air conditioner

符号の説明Explanation of symbols

61 室外熱交換器
62 圧縮機
63 膨張弁
64 室外送風機
65 室内熱交換器
66 四方弁
67 室外熱交温度センサ
68 室外気温センサ
69 電子制御装置
61 Outdoor Heat Exchanger 62 Compressor 63 Expansion Valve 64 Outdoor Blower 65 Indoor Heat Exchanger 66 Four-way Valve 67 Outdoor Heat Exchange Temperature Sensor 68 Outdoor Air Temperature Sensor 69 Electronic Control Unit

Claims (5)

内外に分離されたセパレートタイプの空気調和機で、外気温を検出する外気温検出手段、及び室外熱交換器温度を検出する室外熱交換器温度検出手段を備えた空気調和機において、外気温Xと室外熱交換器温度Yから計算される第一の条件式(Y=a・X+b)と第二の条件式(Y=a・X+c)を設け(ただし、aは正の定数でありb>cである)、前記第一の条件式の下領域に室外熱交換器温度があった場合、所定のディアイス開始条件を満足すればディアイスを開始する、あるいは前記室外熱交換器温度が前記第二の条件式の下領域にあった場合、ディアイスを開始することを特徴とした空気調和機。 In an air conditioner that is a separate type air conditioner that is separated into the inside and outside, and that includes an outside air temperature detecting means that detects the outside air temperature, and an outdoor heat exchanger temperature detecting means that detects the outside heat exchanger temperature, the outside air temperature X And the first conditional expression (Y = a · X + b) calculated from the outdoor heat exchanger temperature Y and the second conditional expression (Y = a · X + c) are provided (where a is a positive constant and b> c), when there is an outdoor heat exchanger temperature in the lower region of the first conditional expression, de-ice is started if a predetermined de-ice start condition is satisfied, or the outdoor heat exchanger temperature is An air conditioner that starts de-ice when it is in the lower region of the conditional expression. 前記所定のディアイス開始条件として、前記室外熱交換器温度の変化率が前記室外熱交換器温度下降時において、所定の変化率以上になった場合、ディアイスを開始することを特徴とする請求項1に記載の空気調和機。 2. The deice start is started when the rate of change of the outdoor heat exchanger temperature is equal to or greater than a predetermined rate of change when the temperature of the outdoor heat exchanger decreases, as the predetermined deice start condition. Air conditioner as described in. 前記所定のディアイス開始条件として、前記室外熱交換器温度が前記第一の条件式の下領域に入り、所定時間経過した場合、ディアイスを開始することを特徴とした請求項1または請求項2に記載の空気調和機。 The deicing is started when the outdoor heat exchanger temperature enters the lower region of the first conditional expression and the predetermined time has passed as the predetermined deice start condition. The air conditioner described. 前記室外熱交換器温度が所定の値を上回れば、ディアイスを行わないことを特徴とした請求項1から3に記載の空気調和機。 The air conditioner according to any one of claims 1 to 3, wherein de-ice is not performed if the outdoor heat exchanger temperature exceeds a predetermined value. 前記室外熱交換器温度が所定の値を下回れば、ディアイスを行うことを特徴とした請求項1から4に記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, wherein de-ice is performed when the outdoor heat exchanger temperature falls below a predetermined value.
JP2004333010A 2004-11-17 2004-11-17 Air conditioner Expired - Fee Related JP4617844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333010A JP4617844B2 (en) 2004-11-17 2004-11-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333010A JP4617844B2 (en) 2004-11-17 2004-11-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006145083A true JP2006145083A (en) 2006-06-08
JP4617844B2 JP4617844B2 (en) 2011-01-26

Family

ID=36624979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333010A Expired - Fee Related JP4617844B2 (en) 2004-11-17 2004-11-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP4617844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014593A (en) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2009014215A (en) * 2007-07-02 2009-01-22 Panasonic Corp Air conditioning device
JP2009103426A (en) * 2007-10-03 2009-05-14 Panasonic Corp Air conditioner
CN109059374A (en) * 2018-06-14 2018-12-21 浙江正理生能科技有限公司 A kind of air source heat pump defrosting control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285629A (en) * 1988-09-20 1990-03-27 Matsushita Refrig Co Ltd Heat pump type air conditioner
JPH06103818A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive film with no back spreading
JPH0633895B2 (en) * 1986-11-18 1994-05-02 三洋電機株式会社 Heat pump type air conditioner
JPH10246543A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Controlling method for air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633895B2 (en) * 1986-11-18 1994-05-02 三洋電機株式会社 Heat pump type air conditioner
JPH0285629A (en) * 1988-09-20 1990-03-27 Matsushita Refrig Co Ltd Heat pump type air conditioner
JPH06103818A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive film with no back spreading
JPH10246543A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Controlling method for air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014593A (en) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2009014215A (en) * 2007-07-02 2009-01-22 Panasonic Corp Air conditioning device
JP2009103426A (en) * 2007-10-03 2009-05-14 Panasonic Corp Air conditioner
CN109059374A (en) * 2018-06-14 2018-12-21 浙江正理生能科技有限公司 A kind of air source heat pump defrosting control method
CN109059374B (en) * 2018-06-14 2020-09-15 浙江正理生能科技有限公司 Defrosting control method for air source heat pump

Also Published As

Publication number Publication date
JP4617844B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
CN108204657B (en) Operation control method, operation control device, air conditioner and computer readable storage medium
JP6843227B2 (en) Dehumidifier
CN104613593A (en) Air conditioner and electric heating control method thereof
CN111189171B (en) Air conditioner and anti-freezing control method thereof
CN107894062B (en) Control method of mobile air conditioner and mobile air conditioner
CN109489195B (en) Control method for air conditioner and air conditioner
CN107923679A (en) Conditioner
EP3492837B1 (en) Refrigeration cycle device
JP2010210223A (en) Air conditioner
CN114110953B (en) Self-cleaning control method for air conditioner, air conditioner and computer storage medium
JP2009109165A (en) Operation control method of air conditioner
JP2015036591A (en) Dehumidifier
JP2013130384A (en) Air conditioner
JP2006170528A (en) Air conditioner
JP4617844B2 (en) Air conditioner
JP2008051361A (en) Heat pump type water heater
JP2008014593A (en) Air conditioner
JP2006292240A (en) Heat pump water heater
JP2008232500A (en) Refrigerating cycle device
JP4507907B2 (en) Air conditioner
JP2007139350A (en) Air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
CN111189194B (en) Air conditioner and anti-freezing control method thereof
KR20070077637A (en) Controlling method for defrosting operation of airconditioner
JP2011085269A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees