JP2006143959A - Desulfurization equipment and regeneration method of alumina catalyst - Google Patents

Desulfurization equipment and regeneration method of alumina catalyst Download PDF

Info

Publication number
JP2006143959A
JP2006143959A JP2004338773A JP2004338773A JP2006143959A JP 2006143959 A JP2006143959 A JP 2006143959A JP 2004338773 A JP2004338773 A JP 2004338773A JP 2004338773 A JP2004338773 A JP 2004338773A JP 2006143959 A JP2006143959 A JP 2006143959A
Authority
JP
Japan
Prior art keywords
water
alumina catalyst
desulfurization apparatus
supplied
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004338773A
Other languages
Japanese (ja)
Inventor
Kensaku Kinukawa
謙作 絹川
Manabu Mizobuchi
学 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004338773A priority Critical patent/JP2006143959A/en
Publication of JP2006143959A publication Critical patent/JP2006143959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide desulfurization equipment wherein the desulfurizer is made compact, lower in the cost and longer in the life, and to provide a regeneration method of an alumina catalyst which can regenerate the alumina catalyst at a low cost and simply. <P>SOLUTION: The desulfurization equipment is equipped with an alumina catalyst 6 that decomposes carbonyl sulfide contained in a fuel gas and a water supplying apparatus 4 that supplies water to the alumina catalyst 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素系の気体、液体、固体等やメタノール系等のアルコール燃料、特に、LPガスの燃料ガスに含まれる硫化カルボニルを分解して除去するアルミナ触媒の触媒活性を再生する脱硫装置及びアルミナ触媒の再生方法に関する。   The present invention relates to a desulfurization apparatus for regenerating the catalytic activity of an alumina catalyst that decomposes and removes carbonyl sulfide contained in a hydrocarbon gas, liquid, solid, etc., or methanol-based alcohol fuel, particularly LP gas fuel gas. And a method for regenerating an alumina catalyst.

燃料電池発電システムには、燃料電池に燃料(水素ガス)を供給する供給源として、燃料供給系が設けられている。燃料供給系には改質器が設置されており、改質器では、炭化水素系の気体、液体、固体等あるいはメタノール系のアルコール燃料と水蒸気から、水素リッチな改質ガスを生成している。   The fuel cell power generation system is provided with a fuel supply system as a supply source for supplying fuel (hydrogen gas) to the fuel cell. A reformer is installed in the fuel supply system, and the reformer generates hydrogen-rich reformed gas from hydrocarbon-based gas, liquid, solid, etc. or methanol-based alcohol fuel and steam. .

改質前の炭化水素系あるいはメタノール系の燃料には、一般に硫黄化合物などの硫黄成分が含まれており、また、安全性を確保するために、燃料に硫黄化合物(例えば、硫化メチル(DMS)、tert−ブチルメルカプタン(TBM)、テトラヒドラチオフェン(THT))を添加している。このため、燃料ガスには、通常、硫黄成分が含まれている。   Prior to reforming, hydrocarbon-based or methanol-based fuels generally contain sulfur components such as sulfur compounds, and in order to ensure safety, fuels contain sulfur compounds (for example, methyl sulfide (DMS)). , Tert-butyl mercaptan (TBM), tetrahydrathiophene (THT)). For this reason, the fuel gas usually contains a sulfur component.

燃料中に含まれる硫黄成分は、改質器に導入されると、改質器中の改質反応部、シフト反応部、選択酸化反応部などに設置された白金系、ルテニウム系、ニッケル系、銅系などの各触媒を被毒し、各反応部での改質性能が低下する要因となる。このため、硫黄成分が改質器に導入される前に、燃料ガスに含まれる硫黄成分を脱硫する必要がある。   When the sulfur component contained in the fuel is introduced into the reformer, platinum-based, ruthenium-based, nickel-based, installed in the reforming reaction section, shift reaction section, selective oxidation reaction section, etc. in the reformer, Each catalyst such as copper is poisoned, which causes a reduction in reforming performance in each reaction section. For this reason, it is necessary to desulfurize the sulfur component contained in the fuel gas before the sulfur component is introduced into the reformer.

特に、炭化水素系の燃料であるLPガス(気体)には、燃料を精製する過程で、硫化カルボニル(COS)が主成分として生成されるため、COSを分解して除去することが必要である。   In particular, LP gas (gas), which is a hydrocarbon-based fuel, generates carbonyl sulfide (COS) as the main component in the process of refining the fuel, so it is necessary to decompose and remove COS. .

例えば、液化石油ガスの脱硫方法として、燃料ガスに含まれるCOSを分解触媒(例えば、アルミナ、活性炭、酸化チタン)により分解した後、COS以外の硫黄成分をゼオライト系脱硫剤により脱硫し、燃料ガスに含まれる硫黄成分を除去する方法が開示されている(例えば、特許文献1参照)。ゼオライト系脱硫剤は常温で使用することができ、交換等が容易であるという利点がある。
特開2003−313570号公報
For example, as a method for desulfurization of liquefied petroleum gas, COS contained in fuel gas is decomposed with a cracking catalyst (for example, alumina, activated carbon, titanium oxide), then sulfur components other than COS are desulfurized with a zeolite-based desulfurizing agent, and fuel gas Has disclosed a method for removing sulfur components contained therein (see, for example, Patent Document 1). Zeolite-based desulfurization agents can be used at room temperature and have the advantage of being easy to replace.
JP 2003-313570 A

しかしながら、アルミナ触媒の使用を継続すると、COS転化率が低下するため、脱硫性能を維持するために、多量のアルミナ触媒が必要となっていた。また、常温環境下においてアルミナ触媒を使用すると、高温での使用に比べてアルミナ触媒のCOS転化率の低下が著しくなるため、より多くのアルミナ触媒が必要となっていた。   However, if the use of the alumina catalyst is continued, the COS conversion rate decreases, so that a large amount of the alumina catalyst is necessary to maintain the desulfurization performance. In addition, when an alumina catalyst is used in a room temperature environment, the COS conversion rate of the alumina catalyst is significantly reduced as compared with the use at a high temperature, so that more alumina catalyst is required.

本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の脱硫装置は、燃料ガスに含まれる硫化カルボニルを分解するアルミナ触媒と、アルミナ触媒に水を供給する水供給装置と、を備えることを要旨とする。   The present invention has been made to solve the above-described problems. That is, the desulfurization apparatus of the present invention includes an alumina catalyst for decomposing carbonyl sulfide contained in a fuel gas, and a water supply apparatus for supplying water to the alumina catalyst. And a gist of the above.

本発明のアルミナ触媒の再生方法は、燃料ガスに含まれる硫化カルボニルを分解するアルミナ触媒に対して、少なくとも水を接触させて、アルミナ触媒の活性を再生することを要旨とする。   The summary of the method for regenerating an alumina catalyst of the present invention is to regenerate the activity of the alumina catalyst by bringing at least water into contact with the alumina catalyst for decomposing carbonyl sulfide contained in the fuel gas.

本発明の脱硫装置によれば、COS転化率が低下したアルミナ触媒を再生して利用できるため、脱硫器をコンパクトにして、低コスト化かつ長寿命化を図ることができる。   According to the desulfurization apparatus of the present invention, since the alumina catalyst having a lowered COS conversion rate can be regenerated and used, the desulfurizer can be made compact, and the cost can be reduced and the life can be extended.

本発明のアルミナ触媒の再生方法によれば、低コストかつ簡易にアルミナ触媒を再生して、アルミナ触媒の触媒活性を回復することができる。   According to the method for regenerating an alumina catalyst of the present invention, the alumina catalyst can be regenerated at low cost and easily, and the catalytic activity of the alumina catalyst can be recovered.

以下、本発明に係る脱硫装置及びアルミナ触媒の再生方法について、第1実施形態から第3実施形態までを用いて説明する。   Hereinafter, a desulfurization apparatus and an alumina catalyst regeneration method according to the present invention will be described using the first to third embodiments.

第1実施形態
本発明の実施の形態に係る脱硫装置及びアルミナ触媒の再生方法について、図1及び図2に基づき説明する。
1st Embodiment The regeneration method of the desulfurization apparatus and alumina catalyst which concern on embodiment of this invention is demonstrated based on FIG.1 and FIG.2.

図1は、本発明の実施の形態に係る脱硫装置が設置される燃料電池発電システムにおける水素燃料供給系の一部を示す構成図である。図1に示すように、水素燃料供給系には、脱硫装置1の後流側に、ゼオライト系脱硫剤2と、改質器3と、が順次設けられている。   FIG. 1 is a configuration diagram showing a part of a hydrogen fuel supply system in a fuel cell power generation system in which a desulfurization apparatus according to an embodiment of the present invention is installed. As shown in FIG. 1, a zeolitic desulfurizing agent 2 and a reformer 3 are sequentially provided on the downstream side of the desulfurization apparatus 1 in the hydrogen fuel supply system.

図2は、図1に示す脱硫装置1を拡大して示す構成図である。図2に示すように、脱硫装置1は、水供給装置4の後流側に、供給配管5を介してアルミナ触媒6を搭載した脱硫器7が設置されている。供給配管5には、切り替え器として三方弁8が取り付けられており、三方弁8から分岐して、供給配管5は、図示しない燃料ガスタンクに接続された燃料ガス供給配管9に連結している。さらに、脱硫装置1には制御装置10が設置されており、脱硫器7への水あるいは燃料ガスの供給を制御している。   FIG. 2 is an enlarged configuration diagram of the desulfurization apparatus 1 shown in FIG. As shown in FIG. 2, in the desulfurization apparatus 1, a desulfurizer 7 in which an alumina catalyst 6 is mounted via a supply pipe 5 is installed on the downstream side of the water supply apparatus 4. A three-way valve 8 is attached to the supply pipe 5 as a switching device. The supply pipe 5 branches from the three-way valve 8 and is connected to a fuel gas supply pipe 9 connected to a fuel gas tank (not shown). Further, a control device 10 is installed in the desulfurization device 1 to control the supply of water or fuel gas to the desulfurizer 7.

水供給装置4は、空気ポンプ11と、空気ポンプ11の後流側に設けられた水タンク12と、から構成される。水供給装置4では、空気ポンプ11の駆動力により外気(空気)を取り入れて、水タンク12内の水に外気(空気)を含ませて、水を含む空気を生成している。   The water supply device 4 includes an air pump 11 and a water tank 12 provided on the downstream side of the air pump 11. In the water supply device 4, outside air (air) is taken in by the driving force of the air pump 11, the outside air (air) is included in the water in the water tank 12, and air containing water is generated.

脱硫器7は、図示しない燃料ガスタンクから供給される燃料ガスに含まれる硫化カルボニル(COS)をアルミナ触媒6に接触させて、COSを硫化水素(H2S)に分解する。また、脱硫器7は、アルミナ触媒6にCOSを接触させないときに、水供給装置4から供給される水によって、アルミナ触媒6の表面に水酸基を再生し、アルミナ触媒6の触媒活性を再生する。 The desulfurizer 7 brings carbonyl sulfide (COS) contained in fuel gas supplied from a fuel gas tank (not shown) into contact with the alumina catalyst 6 to decompose COS into hydrogen sulfide (H 2 S). The desulfurizer 7 regenerates the catalytic activity of the alumina catalyst 6 by regenerating hydroxyl groups on the surface of the alumina catalyst 6 with water supplied from the water supply device 4 when COS is not brought into contact with the alumina catalyst 6.

制御装置10は、例えば、脱硫器7後流側に設置された図示しないガス検出器から検出されるガス検出情報を受信し、燃料ガスが脱硫器7に供給されているかを判定し、燃料ガスが脱硫器7に供給されていないとき、即ちCOSを含む燃料ガスがアルミナ触媒6に接触していないときに、三方弁8に信号を送信し、三方弁8の開閉を制御する。なお、制御装置10は、改質器の起動時あるいは停止時に、三方弁8の開閉信号を送信することにより、アルミナ触媒の触媒活性を再生するように制御しても良い。   The control device 10 receives, for example, gas detection information detected from a gas detector (not shown) installed on the downstream side of the desulfurizer 7, determines whether or not the fuel gas is supplied to the desulfurizer 7, and the fuel gas Is not supplied to the desulfurizer 7, that is, when the fuel gas containing COS is not in contact with the alumina catalyst 6, a signal is transmitted to the three-way valve 8 to control the opening and closing of the three-way valve 8. The control device 10 may control the regeneration of the catalytic activity of the alumina catalyst by transmitting an open / close signal of the three-way valve 8 when the reformer is started or stopped.

図1に示す燃料電池発電システムの燃料供給系においては、図示しない燃料ガスタンクから、COSを含む燃料ガスが燃料ガス供給配管9を介して脱硫器7に供給される。燃料ガスに含まれるCOSは、アルミナ触媒6により浄化される。その後、COS以外の燃料ガスに含まれる硫黄成分が、後流側のゼオライト系脱硫剤2により吸着除去されて、硫黄成分を除去した燃料ガスが改質器3に供給される。改質器3では、図示しないが、改質反応部、シフト反応部、選択酸化反応部に設置された白金系、ルテニウム系、ニッケル系、銅系等の各触媒で改質反応等の反応を進行させて、水素ガスリッチな改質ガスが生成される。   In the fuel supply system of the fuel cell power generation system shown in FIG. 1, a fuel gas containing COS is supplied to a desulfurizer 7 via a fuel gas supply pipe 9 from a fuel gas tank (not shown). COS contained in the fuel gas is purified by the alumina catalyst 6. Thereafter, the sulfur component contained in the fuel gas other than COS is adsorbed and removed by the zeolitic desulfurization agent 2 on the downstream side, and the fuel gas from which the sulfur component has been removed is supplied to the reformer 3. In the reformer 3, although not shown, a reaction such as a reforming reaction is performed with a platinum-based catalyst, a ruthenium-based catalyst, a nickel-based catalyst, a copper-based catalyst, etc. installed in the reforming reaction unit, the shift reaction unit, and the selective oxidation reaction unit. As a result, the reformed gas rich in hydrogen gas is generated.

脱硫器7への燃料ガスの供給を継続すると、アルミナ触媒6のCOS転化率が低下するため、脱硫器7への燃料ガスの供給を停止する。また、燃料電池あるいは改質器の運転を開始あるいは停止する場合にも、脱硫器7への燃料ガスの供給を停止する。制御装置10では、脱硫器7への燃料ガスの供給が停止され、脱硫器7に供給される燃料ガスに含まれるCOSが、アルミナ触媒6に接触しているかが判定される。そして、アルミナ触媒6にCOSが接触していないと判定されると、制御装置19から三方弁8に制御信号が送信されて、供給配管5を介して水供給装置4から水を含む空気が脱硫器7に供給される。水を含む空気は、アルミナ触媒6と接触すると、アルミナ触媒6の表面に水酸基を再生し、アルミナ触媒6の触媒活性が再生する。   If the supply of the fuel gas to the desulfurizer 7 is continued, the COS conversion rate of the alumina catalyst 6 decreases, so the supply of the fuel gas to the desulfurizer 7 is stopped. Further, when the operation of the fuel cell or the reformer is started or stopped, the supply of the fuel gas to the desulfurizer 7 is also stopped. In the control device 10, the supply of the fuel gas to the desulfurizer 7 is stopped, and it is determined whether COS contained in the fuel gas supplied to the desulfurizer 7 is in contact with the alumina catalyst 6. When it is determined that COS is not in contact with the alumina catalyst 6, a control signal is transmitted from the control device 19 to the three-way valve 8, and air containing water is desulfurized from the water supply device 4 via the supply pipe 5. Is supplied to the vessel 7. When the air containing water comes into contact with the alumina catalyst 6, the hydroxyl group is regenerated on the surface of the alumina catalyst 6, and the catalytic activity of the alumina catalyst 6 is regenerated.

アルミナ触媒6の触媒活性を再生した後、制御装置10から三方弁8に制御信号を送信して三方弁8の開閉を制御し、再び脱硫器7にCOSを含む燃料ガスを供給する。供給された燃料ガスに含まれるCOSは、再生されたアルミナ触媒6によりH2Sに分解される。 After regenerating the catalytic activity of the alumina catalyst 6, a control signal is transmitted from the control device 10 to the three-way valve 8 to control the opening and closing of the three-way valve 8, and the fuel gas containing COS is supplied to the desulfurizer 7 again. COS contained in the supplied fuel gas is decomposed into H 2 S by the regenerated alumina catalyst 6.

また、本発明の実施の形態に係るアルミナ触媒の再生方法は、上記構成の脱硫装置1を用いて、アルミナ触媒を再生するものであり、すなわち、硫化カルボニルを含有する燃料ガスと接触して硫化カルボニルを分解除去するアルミナ触媒6に、水を供給してアルミナ触媒6の触媒活性を再生するものである。なお、本実施形態においては、アルミナ触媒6に供給する水として空気を含む水を用いたが、これに限定されず、比較的湿度が高い外気を導入可能であれば、水タンク12を設けずに、外気を導入するようにしても良く、また後述するように、水蒸気あるいは水自体をアルミナ触媒に供給してアルミナ触媒6を再生しても良い。   In addition, the method for regenerating an alumina catalyst according to the embodiment of the present invention regenerates the alumina catalyst using the desulfurization apparatus 1 having the above-described configuration, that is, contacting with a fuel gas containing carbonyl sulfide. Water is supplied to the alumina catalyst 6 that decomposes and removes carbonyl to regenerate the catalytic activity of the alumina catalyst 6. In the present embodiment, water containing air is used as the water supplied to the alumina catalyst 6. However, the present invention is not limited to this, and the water tank 12 is not provided as long as outside air having a relatively high humidity can be introduced. In addition, outside air may be introduced, or as described later, the alumina catalyst 6 may be regenerated by supplying water vapor or water itself to the alumina catalyst.

本実施形態によれば、アルミナ触媒に空気を含む水を供給してアルミナ触媒の触媒活性を再生したため、脱硫器自体をコンパクトにすることができる。また、アルミナ触媒の触媒活性を再生してCOSを浄化できるため、アルミナ触媒の使用量が少量で済み、低コスト化を図ることができるだけではなく、脱硫装置の使用寿命を延ばすこともできる。   According to this embodiment, since the water containing air is supplied to the alumina catalyst to regenerate the catalytic activity of the alumina catalyst, the desulfurizer itself can be made compact. In addition, since the COS can be purified by regenerating the catalytic activity of the alumina catalyst, the amount of the alumina catalyst used is small, and not only the cost can be reduced, but also the service life of the desulfurization apparatus can be extended.

また、本実施形態の水供給装置では、外気を直接取り込み、空気を含む水を生成したため、脱硫器に簡単に水を供給することができるだけではなく、脱硫処理の停止時に外気を取り込むため、脱硫装置の管理がし易くなる。   Further, in the water supply device of the present embodiment, since outside air is directly taken in and water containing air is generated, not only can water be easily supplied to the desulfurizer, but also outside air is taken in when the desulfurization process is stopped. It becomes easy to manage the device.

なお、本実施形態においては、切り替え器として三方弁を設置して水供給装置と脱硫器とを一体化した脱硫装置を構成したが、水供給装置を脱硫器に接続せずに交換式としても良く、交換式とした場合にも、アルミナ触媒を低コストかつ簡易に再生することができる。   In the present embodiment, a three-way valve is installed as a switching device to configure a desulfurization device in which the water supply device and the desulfurizer are integrated. However, the water supply device may be replaced without being connected to the desulfurizer. Even when the exchange type is used, the alumina catalyst can be easily regenerated at low cost.

さらに、本実施形態によれば、アルミナ触媒に空気を含む水を接触させて、硫化カルボニルを分解して、アルミナ触媒の触媒活性を再生することができるため、アルミナ触媒を低コストかつ簡易に再生することができる。   Furthermore, according to this embodiment, since the alumina catalyst can be contacted with water containing air to decompose carbonyl sulfide to regenerate the catalytic activity of the alumina catalyst, the alumina catalyst can be regenerated at low cost and easily. can do.

第2実施形態
本実施形態では、水供給装置の構成を変えた脱硫装置について、図3により説明する。なお、第1実施形態の図2に示す脱硫装置と同一の構成については、その説明を省略し、同一符号を使用する。
2nd Embodiment In this embodiment, the desulfurization apparatus which changed the structure of the water supply apparatus is demonstrated with reference to FIG. In addition, about the structure same as the desulfurization apparatus shown in FIG. 2 of 1st Embodiment, the description is abbreviate | omitted and the same code | symbol is used.

図3に示すように、水供給装置4は、水タンク13の後流側に、水ポンプ14と蒸発管15とが設置されている。水供給装置4では、水ポンプ14の駆動力により水タンク13から水が蒸発管15に供給されて、蒸発管15により水を加熱して水蒸気を生成する。   As shown in FIG. 3, the water supply device 4 is provided with a water pump 14 and an evaporation pipe 15 on the downstream side of the water tank 13. In the water supply device 4, water is supplied from the water tank 13 to the evaporation pipe 15 by the driving force of the water pump 14, and the water is heated by the evaporation pipe 15 to generate water vapor.

上記構成の脱硫装置においては、COSを含む燃料ガスが脱硫器7に供給されないときに、制御装置10により三方弁8の開閉を制御して、水供給装置4から脱硫器7に水蒸気を供給することにより、COS転化率が低下したアルミナ触媒を再生することができる。   In the desulfurization apparatus having the above-described configuration, when the fuel gas containing COS is not supplied to the desulfurizer 7, the controller 10 controls the opening and closing of the three-way valve 8 to supply water vapor from the water supply apparatus 4 to the desulfurizer 7. Thus, an alumina catalyst having a reduced COS conversion rate can be regenerated.

本実施形態によれば、アルミナ触媒に水蒸気を接触させたため、反応性が高まり、アルミナ触媒を短時間で再生することができる。なお、本実施形態においても、第1実施形態と同様の効果が得られることはもちろんである。   According to this embodiment, since the water vapor is brought into contact with the alumina catalyst, the reactivity is increased and the alumina catalyst can be regenerated in a short time. Of course, the present embodiment can provide the same effects as those of the first embodiment.

第3実施形態
本実施形態では、水供給装置の構成を変えた脱硫装置について、図4により説明する。なお、第1実施形態の図2に示す脱硫装置と同一の構成については、その説明を省略し、同一符号を使用する。
3rd Embodiment In this embodiment, the desulfurization apparatus which changed the structure of the water supply apparatus is demonstrated with reference to FIG. In addition, about the structure same as the desulfurization apparatus shown in FIG. 2 of 1st Embodiment, the description is abbreviate | omitted and the same code | symbol is used.

図4に示すように、水供給装置4は、水タンク16と、水タンク6の後流側に設置された水ポンプ17と、を備える。水供給装置4では、水ポンプ17の駆動力により水タンク16内の水が脱硫器7に供給される。   As shown in FIG. 4, the water supply device 4 includes a water tank 16 and a water pump 17 installed on the downstream side of the water tank 6. In the water supply device 4, the water in the water tank 16 is supplied to the desulfurizer 7 by the driving force of the water pump 17.

上記脱硫装置では、COSを含む燃料ガスが脱硫器7に供給されないときに、水供給装置4からアルミナ触媒4に水が供給されて、供給された水によりCOS転化率が低下したアルミナ触媒の触媒活性を再生することができる。   In the desulfurization apparatus, when the fuel gas containing COS is not supplied to the desulfurizer 7, water is supplied from the water supply apparatus 4 to the alumina catalyst 4, and the catalyst of the alumina catalyst whose COS conversion rate is reduced by the supplied water. The activity can be regenerated.

本実施形態によれば、第2実施形態での水蒸気を供給する場合に比べて、アルミナ触媒の再生効率が低下するが、水を蒸発させる蒸発管が不要となるため、水供給装置の構成を簡素化することができる。また、本実施形態においても、第1実施形態と同様の効果が得られることはもちろんである。   According to the present embodiment, the regeneration efficiency of the alumina catalyst is reduced as compared with the case of supplying water vapor in the second embodiment, but an evaporation pipe for evaporating water is not necessary, so the configuration of the water supply device is It can be simplified. Of course, in the present embodiment, the same effects as those of the first embodiment can be obtained.

なお、前述した第1実施形態から第3実施形態までは、脱硫装置の一例を示したにすぎず、例示した構成に限定されるものではないことはもちろんである。   It should be noted that the above-described first to third embodiments are merely examples of a desulfurization apparatus and are not limited to the illustrated configuration.

本発明の第1実施形態に係る脱硫装置が設置される燃料電池発電システムにおける水素燃料供給系の一部を示す構成図である。It is a block diagram which shows a part of hydrogen fuel supply system in the fuel cell power generation system in which the desulfurization apparatus which concerns on 1st Embodiment of this invention is installed. 図1に示す脱硫装置の構成を示す拡大図である。It is an enlarged view which shows the structure of the desulfurization apparatus shown in FIG. 本発明の第2実施形態に係る脱硫装置の構成を示す図である。It is a figure which shows the structure of the desulfurization apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る脱硫装置の構成を示す図である。It is a figure which shows the structure of the desulfurization apparatus which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…脱硫装置、
2…ゼオライト系脱硫剤、
3…改質器、
4…水供給装置、
5…供給配管、
6…アルミナ触媒、
7…脱硫器、
8…三方弁、
9…燃料ガス供給配管
10…制御装置
11…空気ポンプ
1 ... desulfurization equipment,
2… Zeolite desulfurization agent,
3 ... reformer,
4 ... water supply device,
5 ... Supply piping,
6 ... Alumina catalyst,
7 ... desulfurizer,
8 ... Three-way valve,
9 ... Fuel gas supply pipe 10 ... Control device 11 ... Air pump

Claims (7)

燃料ガスに含まれる硫化カルボニルを分解するアルミナ触媒と、前記アルミナ触媒に水を供給する水供給装置と、を備えることを特徴とする脱硫装置。   A desulfurization apparatus comprising: an alumina catalyst that decomposes carbonyl sulfide contained in a fuel gas; and a water supply device that supplies water to the alumina catalyst. さらに、前記アルミナ触媒に硫化カルボニルを接触させないときに、前記水供給装置から前記アルミナ触媒に供給される水の供給を制御する制御装置を備えることを特徴とする請求項1記載の脱硫装置。   The desulfurization apparatus according to claim 1, further comprising a control device that controls supply of water supplied from the water supply device to the alumina catalyst when carbonyl sulfide is not brought into contact with the alumina catalyst. 前記水供給装置は、空気ポンプと、前記空気ポンプの後流側に設置された水タンクと、を備え、前記空気ポンプから供給される空気を前記水タンク内の水に含ませて前記アルミナ触媒に供給することを特徴とする請求項1又は2記載の脱硫装置。   The water supply device includes an air pump and a water tank installed on the downstream side of the air pump, and the alumina catalyst is obtained by including the air supplied from the air pump in the water in the water tank. The desulfurization apparatus according to claim 1, wherein the desulfurization apparatus is supplied to the desulfurization apparatus. 前記水供給装置は、水タンクと、前記水タンクの後流側に設置された水ポンプと、蒸発管と、を備え、前記水タンクから供給される水を前記蒸発管で加熱して生成した水蒸気を前記アルミナ触媒に供給することを特徴とする請求項1又は2記載の脱硫装置。   The water supply device includes a water tank, a water pump installed on the downstream side of the water tank, and an evaporation pipe, and is generated by heating water supplied from the water tank with the evaporation pipe The desulfurization apparatus according to claim 1 or 2, wherein water vapor is supplied to the alumina catalyst. 前記水供給装置は、水タンクと、前記水タンクの後流側に設置された水ポンプと、を備え、前記水ポンプの駆動力により前記水タンクから供給される水を前記アルミナ触媒に供給することを特徴とする請求項1又は2記載の脱硫装置。   The water supply device includes a water tank and a water pump installed on the downstream side of the water tank, and supplies water supplied from the water tank to the alumina catalyst by a driving force of the water pump. The desulfurization apparatus according to claim 1 or 2, characterized in that. 前記アルミナ触媒を搭載する脱硫器と前記水供給装置とを連結する供給配管に切り替え器を設置し、
前記制御装置は、前記アルミナ触媒に硫化カルボニルを接触させないときに、前記切り替え器に水の供給を制御する信号を送信し、前記水供給装置から前記アルミナ触媒に水を供給することを特徴とする請求項2記載の脱硫装置。
A switch is installed in a supply pipe connecting the desulfurizer carrying the alumina catalyst and the water supply device,
When the carbonyl sulfide is not brought into contact with the alumina catalyst, the control device transmits a signal for controlling supply of water to the switch, and supplies water to the alumina catalyst from the water supply device. The desulfurization apparatus according to claim 2.
燃料ガスに含まれる硫化カルボニルを分解するアルミナ触媒に対して、少なくとも水を接触させて、前記アルミナ触媒の活性を再生することを特徴とするアルミナ触媒の再生方法。   A method for regenerating an alumina catalyst comprising regenerating the activity of the alumina catalyst by bringing at least water into contact with the alumina catalyst for decomposing carbonyl sulfide contained in the fuel gas.
JP2004338773A 2004-11-24 2004-11-24 Desulfurization equipment and regeneration method of alumina catalyst Pending JP2006143959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338773A JP2006143959A (en) 2004-11-24 2004-11-24 Desulfurization equipment and regeneration method of alumina catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338773A JP2006143959A (en) 2004-11-24 2004-11-24 Desulfurization equipment and regeneration method of alumina catalyst

Publications (1)

Publication Number Publication Date
JP2006143959A true JP2006143959A (en) 2006-06-08

Family

ID=36624025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338773A Pending JP2006143959A (en) 2004-11-24 2004-11-24 Desulfurization equipment and regeneration method of alumina catalyst

Country Status (1)

Country Link
JP (1) JP2006143959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045466A (en) * 2010-08-25 2012-03-08 High Pressure Gas Safety Institute Of Japan Desulfurization agent, and desulfurization device desulfurization method using the same
JP2015080767A (en) * 2013-10-23 2015-04-27 三菱重工業株式会社 Catalyst regeneration method for cos conversion catalyst
WO2015098319A1 (en) * 2013-12-27 2015-07-02 三菱重工業株式会社 Catalyst regeneration method for cos conversion catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150521A (en) * 1982-03-03 1983-09-07 Agency Of Ind Science & Technol Method for removing carbonyl sulfide from gas containing olefin
JP2003313570A (en) * 2002-04-19 2003-11-06 Matsushita Electric Works Ltd Method for desulfurization of liquefied petroleum gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150521A (en) * 1982-03-03 1983-09-07 Agency Of Ind Science & Technol Method for removing carbonyl sulfide from gas containing olefin
JP2003313570A (en) * 2002-04-19 2003-11-06 Matsushita Electric Works Ltd Method for desulfurization of liquefied petroleum gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045466A (en) * 2010-08-25 2012-03-08 High Pressure Gas Safety Institute Of Japan Desulfurization agent, and desulfurization device desulfurization method using the same
JP2015080767A (en) * 2013-10-23 2015-04-27 三菱重工業株式会社 Catalyst regeneration method for cos conversion catalyst
WO2015060251A1 (en) * 2013-10-23 2015-04-30 三菱重工業株式会社 Method for regenerating cos conversion catalyst
US9604206B2 (en) 2013-10-23 2017-03-28 Mitsubishi Heavy Industries, Ltd. Method for regenerating COS hydrolysis catalyst
WO2015098319A1 (en) * 2013-12-27 2015-07-02 三菱重工業株式会社 Catalyst regeneration method for cos conversion catalyst
JP2015127037A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Catalyst regeneration method for cos conversion catalyst
US9486797B2 (en) 2013-12-27 2016-11-08 Mitsubishi Heavy Industries, Ltd. Method for regenerating COS hydrolysis catalyst

Similar Documents

Publication Publication Date Title
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
EP1236495A1 (en) Process and apparatus for removing sulfur compounds from a hydrocarbon stream
US9492777B2 (en) Hydrogen generation device, operation method thereof, and fuel cell system
JPWO2009107362A1 (en) Desulfurizer, hydrogen generator, fuel cell power generation system, and desulfurizing agent cartridge
JP4485917B2 (en) Hydrogen production apparatus and start / stop method of fuel cell system
EP1780256A1 (en) Apparatus for desulfurization of fuels
KR100968580B1 (en) Fuel Process Apparatus of Multiple Desulfurizing Type and Fuel Cell System with the Same
JP2006143959A (en) Desulfurization equipment and regeneration method of alumina catalyst
JP4167140B2 (en) Desulfurization agent breakthrough detection method
WO2000053696A1 (en) System for removing carbon monoxide and method for removing carbon monoxide
JP4143028B2 (en) Fuel cell system and operation method thereof
JP4936645B2 (en) Hydrogen production apparatus and fuel cell system
JP5143663B2 (en) Raw fuel pretreatment system for fuel cell hydrogen production
JP2006265480A (en) Method for desulfurizing hydrocarbon-containing gas and fuel battery system
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP2001325981A (en) Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP4455040B2 (en) Fuel cell system and operation method thereof
JP2001031402A (en) Reforming device
JP6755964B2 (en) Fuel cell system combining an inert adsorption bed and an active adsorption bed
WO2005005313A1 (en) Fuel treatment device and fuel treatment method
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
EP2004310B1 (en) Method for removing sulfur from gaseous fuels using a self regenerating desulfurizer
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP4383972B2 (en) Desulfurization system and method for stopping the same
JP2016009594A (en) Fuel battery power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090430

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125