JP2006138900A - Illuminator for photography and camera - Google Patents

Illuminator for photography and camera Download PDF

Info

Publication number
JP2006138900A
JP2006138900A JP2004326090A JP2004326090A JP2006138900A JP 2006138900 A JP2006138900 A JP 2006138900A JP 2004326090 A JP2004326090 A JP 2004326090A JP 2004326090 A JP2004326090 A JP 2004326090A JP 2006138900 A JP2006138900 A JP 2006138900A
Authority
JP
Japan
Prior art keywords
light
led group
color temperature
irradiation range
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004326090A
Other languages
Japanese (ja)
Inventor
Ikuya Saito
郁哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004326090A priority Critical patent/JP2006138900A/en
Publication of JP2006138900A publication Critical patent/JP2006138900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Stroboscope Apparatuses (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminator for photography which restrains the irregular color of illuminating light after correcting the color temperature thereof. <P>SOLUTION: The light emitting body of the white light emitting part of the illuminator 30 is constituted of a xenon discharge tube 32, and the light emitting body of a color temperature correcting light emitting part is constituted of an LED group 42r (1 to 3) emitting red component light, an LED group 42g (1 to 3) emitting green component light and an LED group 42b (1 to 3) emitting blue component light, so as to correct the color temperature of the illuminating light by the xenon discharge tube 32 with LED light. An irradiation range 32A (referring to Figure 7) by the xenon discharge tube 32 is made wider than a photographing range, and an irradiation range 42A (Figure 7) by the LED group 42r (1 to 3), the LED group 42g (1 to 3) and the LED group 42b (1 to 3) includes the irradiation range 32A (Figure 7) by the xenon discharge tube 32 and made much wider than the irradiation range 32A (Figure 7). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、撮影時に被写体を照明する照明装置に関する。   The present invention relates to an illumination device that illuminates a subject during photographing.

撮影時に被写体を照明する照明装置において、複数の光源を備えるものが知られている(特許文献1参照)。特許文献1に記載の照明装置には、キセノンランプなどの放電型光源から発せられるフラッシュ光の色温度を補正するために、赤色光を発するLEDおよび青色光を発するLEDが備えられている。そして、色温度補正量に応じて赤色LEDおよび青色LEDの一方もしくは両方が点灯制御される。   2. Description of the Related Art An illumination device that illuminates a subject at the time of shooting is known that includes a plurality of light sources (see Patent Document 1). The illumination device described in Patent Document 1 includes an LED that emits red light and an LED that emits blue light in order to correct the color temperature of flash light emitted from a discharge-type light source such as a xenon lamp. Then, one or both of the red LED and the blue LED are controlled to be turned on according to the color temperature correction amount.

特開平10−206942号公報Japanese Patent Laid-Open No. 10-206942

一般に、光源からの照明光の輝度は、照射範囲の中央部に比べて照射範囲の周辺部で低くなる。色温度補正用の光源による色温度補正光の輝度が照射範囲の周辺部で低くなる場合、照射範囲の中央部および周辺部間の色むらとして観測される。このような色むらは、照明光(キセノンランプや白色LEDなどによる光)によって照射範囲の中央部および周辺部間で生じている輝度差に比べて、人が感じる違和感が大きい。   In general, the luminance of illumination light from a light source is lower in the peripheral part of the irradiation range than in the central part of the irradiation range. When the brightness of the color temperature correction light from the light source for color temperature correction is low in the peripheral part of the irradiation range, it is observed as color unevenness between the central part and the peripheral part of the irradiation range. Such color unevenness has a greater sense of incongruity felt by humans than the luminance difference between the central portion and the peripheral portion of the irradiation range caused by illumination light (light from a xenon lamp, white LED, or the like).

請求項1に記載の発明による撮影用照明装置は、少なくとも撮影範囲より広い第1の照射範囲を有する照明光発光部と、第1の照射範囲を含み、第1の照射範囲より広い第2の照射範囲を有する色温度補正光発光部と、色温度補正指示に応じて、照明光発光部による照明光の色温度を補正するように色温度補正光発光部を発光制御する発光制御手段とを備えることを特徴とする。
請求項1に記載の撮影用照明装置において、撮影レンズの焦点距離に応じて第2の照射範囲を変化させるように発光制御手段を構成してもよい。
請求項1に記載の撮影用照明装置において、第2の照射範囲を広角撮影レンズ使用時の撮影範囲に対応する照射範囲に固定するように発光制御手段を構成してもよい。
請求項1〜3のいずれか一項に記載の撮影用照明装置において、少なくとも単色成分光を発するLEDを備えるように色温度補正光発光部を構成してもよい。
請求項1〜3のいずれか一項に記載の撮影用照明装置において、少なくとも単色成分光を発する面発光素子を備えるように色温度補正光発光部を構成してもよい。
請求項1〜3のいずれか一項に記載の撮影用照明装置において、少なくとも単色成分光を発する有機ELを備えるように色温度補正光発光部を構成してもよい。
請求項7に記載の発明によるカメラは、請求項1〜6のいずれか一項に記載の撮影用照明装置を備えることを特徴とする。
The illumination device for photographing according to the invention described in claim 1 includes an illumination light emitting unit having a first irradiation range wider than at least the photographing range, and a second lighter including the first irradiation range and wider than the first irradiation range. A color temperature correction light emitting unit having an irradiation range, and a light emission control means for controlling the light emission of the color temperature correction light emitting unit so as to correct the color temperature of the illumination light by the illumination light emitting unit according to a color temperature correction instruction. It is characterized by providing.
In the photographing illumination device according to claim 1, the light emission control means may be configured to change the second irradiation range in accordance with the focal length of the photographing lens.
In the photographing illumination device according to claim 1, the light emission control means may be configured to fix the second irradiation range to an irradiation range corresponding to the photographing range when the wide-angle photographing lens is used.
The illuminating device for photographing according to any one of claims 1 to 3, wherein the color temperature correction light emitting unit may be configured to include an LED that emits at least single color component light.
The illuminating device for photographing according to any one of claims 1 to 3, wherein the color temperature correction light emitting unit may be configured to include a surface light emitting element that emits at least monochromatic component light.
The illuminating device for photographing according to any one of claims 1 to 3, wherein the color temperature correction light emitting unit may be configured to include an organic EL that emits at least monochromatic component light.
According to a seventh aspect of the present invention, there is provided a camera comprising the photographing illumination device according to any one of the first to sixth aspects.

本発明によれば、撮影範囲より広い範囲(第1の照射範囲)を照射する照明光よりさらに広い範囲(第2の照射範囲)を照射する色温度補正光で上記照明光の色温度を補正するようにしたので、第2の照射範囲の中央部と周辺部とで生じる色温度補正光の輝度差に比べて、撮影範囲の中央部と周辺部とで生じる輝度差が小さく抑えられる。これにより、撮影範囲において一様な色温度補正効果が得られ、色温度補正後の照明光の色むらを抑制できる。   According to the present invention, the color temperature of the illumination light is corrected with the color temperature correction light that irradiates a wider range (second irradiation range) than the illumination light that irradiates a wider range (first irradiation range) than the photographing range. Thus, the luminance difference generated between the central portion and the peripheral portion of the photographing range can be suppressed to be smaller than the luminance difference of the color temperature correction light generated between the central portion and the peripheral portion of the second irradiation range. Thereby, a uniform color temperature correction effect can be obtained in the photographing range, and color unevenness of the illumination light after the color temperature correction can be suppressed.

以下、図面を参照して本発明を実施するための最良の形態について説明する。図1は、本発明の一実施の形態による照明装置を装着したカメラシステムの外観図である。図1において、カメラ本体10に交換可能な撮影レンズ20が装着されている。カメラ本体10の被写体側から見て左上部にレリーズボタン11が設けられ、カメラ本体10の中央上部に配設されているアクセサリシュー(不図示)に、照明装置30が装着されている。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is an external view of a camera system equipped with a lighting device according to an embodiment of the present invention. In FIG. 1, a replaceable photographing lens 20 is attached to the camera body 10. A release button 11 is provided at the upper left portion when viewed from the subject side of the camera body 10, and an illumination device 30 is attached to an accessory shoe (not shown) disposed at the upper center of the camera body 10.

図2は、図1のカメラシステムの要部構成を説明するブロック図である。図2において、照明装置30はキセノン(Xe)放電管32、主コンデンサ(MC)33、電圧検出回路34、LED(発光ダイオード)42および電流供給回路43を有する。照明装置30は、アクセサリシューに備えられている通信用端子31を介してキセノン放電管32やLED42の発光開始や発光終了を指示するタイミング信号、発光量を指示する信号、発光準備中(充電中)や発光準備完了を示す信号などをCPU101との間で送受信する。なお、カメラ本体10に照明装置30による発光を禁止する設定が行われている場合には、CPU101が発光を指示する信号を照明装置30へ出力しないように構成されている。   FIG. 2 is a block diagram for explaining a main configuration of the camera system of FIG. In FIG. 2, the illumination device 30 includes a xenon (Xe) discharge tube 32, a main capacitor (MC) 33, a voltage detection circuit 34, an LED (light emitting diode) 42, and a current supply circuit 43. The lighting device 30 is provided with a timing signal for instructing the start and end of light emission of the xenon discharge tube 32 and the LED 42 via the communication terminal 31 provided in the accessory shoe, a signal for instructing the amount of light emission, and light emission preparation (during charging). ) And a signal indicating that the light emission preparation is completed, and the like are transmitted to and received from the CPU 101. In addition, when the setting which prohibits the light emission by the illuminating device 30 to the camera main body 10 is performed, it is comprised so that CPU101 may not output the signal which instruct | indicates light emission to the illuminating device 30. FIG.

CPU101はASICなどによって構成される。CPU101は、後述する各ブロックから出力される信号を入力して所定の演算を行い、演算結果に基づく制御信号を各ブロックへ出力する。   The CPU 101 is configured by an ASIC or the like. The CPU 101 inputs a signal output from each block described later, performs a predetermined calculation, and outputs a control signal based on the calculation result to each block.

撮影レンズ20(図1)を通過してカメラ本体10に入射した被写体光束は、シャッタユニット105を介してCCDイメージセンサやCMOSイメージセンサなどによって構成される撮像素子(不図示)に導かれる。シャッタユニット105は、撮影時にCPU101からの指令に応じて所定のタイミングでシャッタ幕を開き、シャッタ速度に対応する露光時間が経過するとシャッタ幕を閉じる。   The subject luminous flux that has entered the camera body 10 through the photographing lens 20 (FIG. 1) is guided to an imaging device (not shown) configured by a CCD image sensor, a CMOS image sensor, or the like via the shutter unit 105. The shutter unit 105 opens the shutter curtain at a predetermined timing in accordance with a command from the CPU 101 during shooting, and closes the shutter curtain when an exposure time corresponding to the shutter speed has elapsed.

操作部材107はレリーズボタン11(図1)に連動するレリーズスイッチ、および各種設定を行う操作スイッチ群を含み、操作内容に応じた操作信号をCPU101へ出力する。たとえば、照明装置30に対する発光許可/発光禁止、および赤目軽減発光などの設定操作に応じて設定操作信号をCPU101へ出力する。   The operation member 107 includes a release switch interlocked with the release button 11 (FIG. 1) and an operation switch group for performing various settings, and outputs an operation signal corresponding to the operation content to the CPU 101. For example, a setting operation signal is output to the CPU 101 in accordance with setting operations such as light emission permission / light emission prohibition and red-eye reduction light emission for the lighting device 30.

測距装置102は、撮影レンズ20による焦点位置の調節状態を検出し、検出信号をCPU101へ出力する。焦点調節情報の取得は、たとえば、周知の位相差検出方式によって行う。具体的には、撮影レンズ20の異なる領域を介して入射される2つの焦点検出用光束について、それぞれ不図示のイメージセンサーアレイA、およびイメージセンサーアレイB上に結像させる。これらイメージセンサーアレイA、Bに結像した一対の被写体像は、撮影レンズ20が予定焦点面よりも前に被写体の鮮鋭像を結ぶいわゆる前ピン状態では互いに近づき、逆に予定焦点面より後ろに被写体の鮮鋭像を結ぶいわゆる後ピン状態では互いに遠ざかる。予定焦点面において被写体の鮮鋭像を結ぶ合焦時には、イメージセンサーアレイA、B上の一対の被写体像が相対的に一致する。したがって、一対の被写体像の相対位置ずれ量を求めることにより、撮影レンズ20の焦点調節状態、すなわちデフォーカス量が得られる。   The distance measuring device 102 detects the adjustment state of the focal position by the photographing lens 20 and outputs a detection signal to the CPU 101. The focus adjustment information is acquired by, for example, a known phase difference detection method. Specifically, two focus detection light beams incident through different regions of the photographing lens 20 are imaged on an image sensor array A and an image sensor array B (not shown), respectively. A pair of subject images formed on the image sensor arrays A and B approach each other in a so-called front pin state in which the photographing lens 20 forms a sharp image of the subject before the planned focal plane, and conversely behind the planned focal plane. In a so-called rear pin state that connects sharp images of the subject, they move away from each other. When focusing a sharp image of the subject on the planned focal plane, the pair of subject images on the image sensor arrays A and B relatively match. Therefore, the focus adjustment state of the photographic lens 20, that is, the defocus amount can be obtained by obtaining the relative positional deviation amount between the pair of subject images.

CPU101はレンズ駆動ユニット104へ指令を送り、上記デフォーカス量に応じて撮影レンズ20内のフォーカスレンズ(不図示)を光軸方向に進退駆動させ、撮影レンズ20の焦点位置を調節する。なお、測距装置102による焦点検出信号は主要被写体までの距離(撮影距離)に対応する距離情報となる。   The CPU 101 sends a command to the lens driving unit 104 to drive a focus lens (not shown) in the photographing lens 20 forward and backward in the optical axis direction according to the defocus amount, thereby adjusting the focal position of the photographing lens 20. The focus detection signal from the distance measuring device 102 is distance information corresponding to the distance to the main subject (shooting distance).

測光装置103は、撮影レンズ20を通して被写体光量を検出し、検出信号をCPU101へ出力する。CPU101は、この検出信号を用いて被写体輝度を算出し、算出した輝度情報を用いて露出演算を行う。   The photometric device 103 detects the amount of subject light through the photographing lens 20 and outputs a detection signal to the CPU 101. The CPU 101 calculates subject luminance using the detection signal, and performs exposure calculation using the calculated luminance information.

図3は、照明装置30の光学系について説明する図である。基板43上に複数の面発光素子(LED42)がアレイ状に実装されている。面発光素子を用いることで、広範囲に光を照射できる。LED42から発せられた光はコンデンサレンズL2bおよびL2aによって集光され、投射レンズL1を介して被写体方向へ投射される。一方、キセノン放電管32から発せられた光はフレネルレンズL3を介して被写体方向へ投射される。   FIG. 3 is a diagram illustrating the optical system of the illumination device 30. A plurality of surface light emitting elements (LEDs 42) are mounted on the substrate 43 in an array. By using a surface light emitting element, light can be irradiated over a wide range. The light emitted from the LED 42 is condensed by the condenser lenses L2b and L2a and projected toward the subject via the projection lens L1. On the other hand, the light emitted from the xenon discharge tube 32 is projected toward the subject via the Fresnel lens L3.

図4は、基板43およびLED42の拡大図である。図4において、赤色成分(R)の光を発するLED群が3つの発光素子42r1〜42r3によって構成される。緑色成分(G)の光を発するLED群が、3つの発光素子42g1〜42g3によって構成される。青色成分(B)の光を発するLED群が、3つの発光素子42b1〜42b3によって構成される。これらのLED群は、各素子による発光色が交互に並ぶように配設されている。LED群42r1〜42r3、LED群42g1〜42g3、およびLED群42b1〜42b3は、それぞれ各LED群ごと(すなわち、発光色ごと)に点灯および消灯が可能に構成されている。   FIG. 4 is an enlarged view of the substrate 43 and the LED 42. In FIG. 4, the LED group that emits red component (R) light includes three light emitting elements 42r1 to 42r3. An LED group that emits light of a green component (G) is configured by three light emitting elements 42g1 to 42g3. An LED group that emits light of a blue component (B) is configured by three light emitting elements 42b1 to 42b3. These LED groups are arranged so that the colors emitted by the respective elements are arranged alternately. The LED groups 42r1 to 42r3, the LED groups 42g1 to 42g3, and the LED groups 42b1 to 42b3 are configured to be turned on and off for each LED group (that is, for each emission color).

本実施の形態においては、照明装置30の発光が許可されている状態で主としてキセノン放電管32を発光させる。LED群42r(1〜3)、LED群42g(1〜3)、およびLED群42b(1〜3)は、キセノン放電管32による照明光の色温度補正を行う発光モードが設定されている場合に発光させる。色温度補正を行う発光モードの設定は、たとえば、カメラ本体10側のメニュー設定もしくは操作部材107による操作などによって行われる。   In the present embodiment, the xenon discharge tube 32 is mainly caused to emit light while the lighting device 30 is allowed to emit light. When the LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3) are set to a light emission mode for correcting the color temperature of illumination light by the xenon discharge tube 32 Make it emit light. The light emission mode for performing color temperature correction is set by, for example, menu setting on the camera body 10 side or operation by the operation member 107.

図5は、照明装置30の詳細なブロック構成図である。照明装置30は、昇圧回路35と、電圧検出回路34と、主コンデンサ33と、白色光発光部と、色温度補正光発光部と、調光・昇圧・輝度制御回路41とを含み、電池Eから供給される電力で駆動される。白色光発光部は、キセノン放電管32および発光制御回路39で構成される。色温度補正光発光部は、LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)、および各LED群にそれぞれ所定の電流を供給する電流供給回路40で構成される。各色のLED群42r、42gおよび42bは図2のLED42に対応する。   FIG. 5 is a detailed block diagram of the illumination device 30. The lighting device 30 includes a booster circuit 35, a voltage detection circuit 34, a main capacitor 33, a white light emitting unit, a color temperature correction light emitting unit, and a dimming / boosting / brightness control circuit 41, and a battery E It is driven by the power supplied from The white light emitting unit includes a xenon discharge tube 32 and a light emission control circuit 39. The color temperature correction light emitting unit includes an LED group 42r (1-3), an LED group 42g (1-3), an LED group 42b (1-3), and a current supply circuit that supplies a predetermined current to each LED group. 40. The LED groups 42r, 42g, and 42b for each color correspond to the LED 42 in FIG.

図5において、照明装置30のメインスイッチ(不図示)がオンされ、端子31を介して昇圧開始を指示する信号が照明装置30に入力されると、調光・昇圧・輝度制御回路41の指令により昇圧回路35が電池Eによる電圧を昇圧(たとえば、330V)する。主コンデンサ33は、昇圧後の電圧で充電される。電圧検出回路34は、主コンデンサ33の充電電圧が所定電圧(たとえば、270V)に達すると不図示のパイロットランプを点灯させるとともに、発光準備完了を示す信号を端子31を介してカメラ本体10のCPU101(図2)へ送信する。   In FIG. 5, when a main switch (not shown) of the lighting device 30 is turned on and a signal instructing the start of boosting is input to the lighting device 30 via the terminal 31, a command of the dimming / boosting / luminance control circuit 41 is provided. As a result, the booster circuit 35 boosts the voltage of the battery E (for example, 330 V). The main capacitor 33 is charged with the boosted voltage. When the charging voltage of the main capacitor 33 reaches a predetermined voltage (for example, 270 V), the voltage detection circuit 34 turns on a pilot lamp (not shown) and sends a signal indicating that the light emission preparation is completed via the terminal 31 to the CPU 101 of the camera body 10. (FIG. 2).

キセノン放電管32は以下のように放電制御される。カメラ本体10のCPU101から端子31を介して発光開始を指示する信号が送信されると、発光制御回路39がトリガー用の電圧を発生し、このトリガー電圧をキセノン放電管32のトリガー電極32Tへ印加する。印加されたトリガー電圧によってキセノン放電管32内で発光が始まり、この発光をトリガーにしてキセノン放電管32が閃光発光する。すなわち、主コンデンサ33内に蓄積されていた電気エネルギーがキセノン放電管32内で放電される。   The xenon discharge tube 32 is controlled to discharge as follows. When a signal instructing the start of light emission is transmitted from the CPU 101 of the camera body 10 via the terminal 31, the light emission control circuit 39 generates a trigger voltage and applies this trigger voltage to the trigger electrode 32T of the xenon discharge tube 32. To do. Light emission starts in the xenon discharge tube 32 by the applied trigger voltage, and the xenon discharge tube 32 flashes using this light emission as a trigger. That is, the electrical energy stored in the main capacitor 33 is discharged in the xenon discharge tube 32.

キセノン放電管32は、トリガー電圧が印加されると直ちに発光を開始し、その発光強度は最大値まで上昇する。発光強度は主コンデンサ33内の蓄積エネルギーの減少とともに低下し、主コンデンサ33の蓄積エネルギーが空になると発光が終了する。一般に、発光強度が最大値の1/2に減少するまでの時間が閃光時間と呼ばれ、放電発光が終了するまでの時間が全発光時間と呼ばれる。なお、実際の撮影時には、調光用測光装置(不図示)で検出される検出信号の積算値に基づいて発光量を制御する調光発光が行われる。この場合には、全発光時間が経過する前にキセノン放電管32への電力供給が停止されることにより、キセノン放電管32内の放電発光が停止され、キセノン放電管32が発する光量が所定光量に制御される。なお、キセノン放電管32の発光を停止させるための回路は図5において省略されている。   The xenon discharge tube 32 starts to emit light as soon as the trigger voltage is applied, and the emission intensity rises to the maximum value. The emitted light intensity decreases as the stored energy in the main capacitor 33 decreases, and the light emission ends when the stored energy in the main capacitor 33 becomes empty. In general, the time until the light emission intensity is reduced to ½ of the maximum value is called a flash time, and the time until the discharge light emission ends is called the total light emission time. In actual photographing, dimming light emission for controlling the light emission amount is performed based on an integrated value of detection signals detected by a dimming photometry device (not shown). In this case, the power supply to the xenon discharge tube 32 is stopped before the total emission time elapses, whereby the discharge light emission in the xenon discharge tube 32 is stopped, and the light amount emitted from the xenon discharge tube 32 is a predetermined light amount. Controlled. A circuit for stopping the light emission of the xenon discharge tube 32 is omitted in FIG.

LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)は、CPU101からの発光指示に応じて以下のように点灯制御される。カメラ本体10のCPU101から端子31を介して発光開始を指示する信号、および光量を指示する信号が送信されると、調光・昇圧・輝度制御回路41は、指示内容に基づいてLED群42r、42g、および42bへそれぞれ供給する電流値を決定する。調光・昇圧・輝度制御回路41はさらに、決定した電流値の電流を各色のLED群42r、42gおよび42bへ供給するように電流供給回路40へ指令を送る。   The LED groups 42r (1-3), the LED groups 42g (1-3), and the LED groups 42b (1-3) are controlled to be turned on in accordance with the light emission instruction from the CPU 101 as follows. When a signal for instructing the start of light emission and a signal for instructing the amount of light are transmitted from the CPU 101 of the camera body 10 via the terminal 31, the dimming / boosting / brightness control circuit 41 determines whether the LED group 42r, The current values to be supplied to 42g and 42b are determined. The dimming / boosting / brightness control circuit 41 further sends a command to the current supply circuit 40 so as to supply the current of the determined current value to the LED groups 42r, 42g and 42b of the respective colors.

周知のように、LEDはその定格範囲において駆動電流および発光輝度(発光強度)間に比例関係を有する電流制御型デバイスである。電流供給回路40が各LED群へ所定値の電流を供給することにより、各LED群が所定輝度で発光する。調光・昇圧・輝度制御回路41は、カメラ本体10のCPU101から端子31を介して発光終了を指示する信号が送信されると、各LED群42r、42gおよび42bに対する電流供給を終了するように電流供給回路40へ指令を送る。以上により、各色のLED群から発する光量が制御される。   As is well known, an LED is a current-controlled device having a proportional relationship between drive current and light emission luminance (light emission intensity) in its rated range. When the current supply circuit 40 supplies a predetermined value of current to each LED group, each LED group emits light with a predetermined luminance. The dimming / boosting / brightness control circuit 41 ends the current supply to the LED groups 42r, 42g, and 42b when a signal instructing the end of light emission is transmitted from the CPU 101 of the camera body 10 via the terminal 31. A command is sent to the current supply circuit 40. In this way, the amount of light emitted from each color LED group is controlled.

本実施の形態では、設定されているシャッタ速度に対応する露光時間の範囲において、各色のLED群42r、42gおよび42bをパルス発光させる。図6は、各LED群の発光パルス波形を表す図である。図6(1)はLED群42r(1〜3)の駆動パルス波形を表し、図6(2)はLED群42g(1〜3)の駆動パルス波形を表し、図6(3)はLED群42b(1〜3)の駆動パルス波形を表す。各LED群の駆動パルス幅(すなわち、発光パルス幅)は、発光素子における発熱によって発光波長および発光量にドリフトが発生しないように設定される。ここで、ドリフトとは発熱によって生じる発光波長の変動、発光輝度の低下をいう。各LED群による発光量は、発光輝度および発光時間の積で示される。調光・昇圧・輝度制御回路41は、色温度補正量に応じて各色ごとに発光量(すなわち、LED群への供給電流、パルス幅およびパルス数)を決定し、決定内容を電流供給回路40へ送信する。   In the present embodiment, the LED groups 42r, 42g, and 42b of each color are caused to emit pulses in an exposure time range corresponding to the set shutter speed. FIG. 6 is a diagram illustrating a light emission pulse waveform of each LED group. 6 (1) shows the drive pulse waveform of the LED group 42r (1-3), FIG. 6 (2) shows the drive pulse waveform of the LED group 42g (1-3), and FIG. 6 (3) shows the LED group. 42b (1-3) represents the drive pulse waveform. The drive pulse width (that is, the light emission pulse width) of each LED group is set so that no drift occurs in the light emission wavelength and the light emission amount due to heat generation in the light emitting element. Here, drift refers to fluctuations in emission wavelength caused by heat generation, and reduction in emission luminance. The amount of light emitted by each LED group is indicated by the product of light emission luminance and light emission time. The dimming / boosting / brightness control circuit 41 determines a light emission amount (that is, a supply current to the LED group, a pulse width, and the number of pulses) for each color according to the color temperature correction amount. Send to.

色温度を補正するために必要なデータは、調光・昇圧・輝度制御回路41内の不揮発性メモリ(不図示)に格納されている。たとえば、キセノン放電管32による照明光の測色データに基づいてあらかじめ色温度補正量が決定され、この色温度補正量を得るための各LED群(各色)の発光比率を示すデータが上記不揮発性メモリに格納されている。   Data necessary for correcting the color temperature is stored in a non-volatile memory (not shown) in the dimming / boosting / luminance control circuit 41. For example, the color temperature correction amount is determined in advance based on the colorimetric data of the illumination light from the xenon discharge tube 32, and the data indicating the light emission ratio of each LED group (each color) for obtaining this color temperature correction amount is non-volatile. Stored in memory.

また、LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)による発光輝度(すなわち供給電流)と発光時間(パルス幅×パルス数)との関係は、あらかじめ実測結果がテーブル化され、上記不揮発性メモリ(不図示)に格納されている。   Moreover, the relationship between the light emission brightness (namely, supply current) by LED group 42r (1-3), LED group 42g (1-3), LED group 42b (1-3), and light emission time (pulse width x number of pulses) is as follows. The actual measurement results are tabulated in advance and stored in the nonvolatile memory (not shown).

さらにまた、LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)による照射パターンについて、撮影レンズ20の複数の焦点距離に対応する複数組の照射パターンデータが上記不揮発性メモリに格納されている。焦点距離が短い広角レンズの場合と焦点距離が長い望遠レンズの場合とでは、被写体距離が同一であっても撮影画角が異なる。したがって、調光・昇圧・輝度制御回路41はカメラ本体10からレンズ情報として焦点距離を取得し、取得した焦点距離に対応する照射パターンデータを不揮発性メモリから読み出し、この照射パターンが得られるようにLED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)を発光させる。具体的には、LEDアレイの中央部付近の発光素子のみを点灯させると照射範囲が狭くなり、LEDアレイ全体の発光素子を点灯させると照射範囲が広くなる。照射範囲を可変にすることで、無駄な範囲への照射を防止できる。   Furthermore, a plurality of sets of irradiation patterns corresponding to a plurality of focal lengths of the photographing lens 20 with respect to the irradiation patterns by the LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3). Data is stored in the non-volatile memory. Even when the subject distance is the same, the shooting angle of view differs between a wide-angle lens with a short focal length and a telephoto lens with a long focal length. Therefore, the dimming / boosting / brightness control circuit 41 acquires the focal length as lens information from the camera body 10, reads the irradiation pattern data corresponding to the acquired focal length from the nonvolatile memory, and obtains this irradiation pattern. The LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3) are caused to emit light. Specifically, when only the light emitting elements near the center of the LED array are turned on, the irradiation range is narrowed, and when the light emitting elements of the entire LED array are turned on, the irradiation range is widened. By making the irradiation range variable, it is possible to prevent irradiation to a useless range.

調光・昇圧・輝度制御回路41は、上記不揮発性メモリに格納されている各データを参照して決定したLED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)の発光量を、カメラ本体10から取得される距離情報(主要被写体までの距離を示すデータ)に応じて加減する。   The dimming / boosting / brightness control circuit 41 refers to the LED groups 42r (1-3), the LED groups 42g (1-3), and the LED groups 42b () determined by referring to the data stored in the nonvolatile memory. 1-3) is adjusted according to the distance information (data indicating the distance to the main subject) acquired from the camera body 10.

図7は、このように決定された照射パターンを説明する図である。図7において、キセノン放電管32による照射範囲32Aは撮影範囲より広くされている。LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)による照射範囲42Aは、キセノン放電管32による照射範囲32Aよりさらに広くされている。なお、各LED群42r(1〜3)、LED群42g(1〜3)、およびLED群42b(1〜3)は、それぞれが共通の照射範囲42Aを照射するように構成される。   FIG. 7 is a diagram for explaining the irradiation pattern thus determined. In FIG. 7, the irradiation range 32A by the xenon discharge tube 32 is wider than the imaging range. The irradiation range 42A by the LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3) is made wider than the irradiation range 32A by the xenon discharge tube 32. In addition, each LED group 42r (1-3), LED group 42g (1-3), and LED group 42b (1-3) are comprised so that each may irradiate the common irradiation range 42A.

以上説明した実施形態によれば、次の作用効果が得られる。
(1)照明装置30の白色光発光部の発光体をキセノン放電管32で構成し、色温度補正光発光部の発光体を赤色成分光を発するLED群42r(1〜3)、緑色成分光を発するLED群42g(1〜3)、および青色成分光を発するLED群42b(1〜3)でそれぞれ構成し、キセノン放電管32による照明光の色温度をLED光で補正するようにした。この方式によれば、各LED群(各色)の発光比率を異ならせることにより、色温度を連続的に補正できるので、任意の色温度に補正した照明光が得られる。
According to the embodiment described above, the following operational effects can be obtained.
(1) An LED group 42r (1-3) that emits red component light from the illuminant of the white light emitting unit of the illumination device 30 is constituted by a xenon discharge tube 32, and the illuminant of the color temperature correction light emitting unit is green component light. LED group 42g (1-3) emitting blue light and LED group 42b (1-3) emitting blue component light, respectively, and the color temperature of the illumination light from the xenon discharge tube 32 is corrected by the LED light. According to this method, since the color temperature can be continuously corrected by changing the emission ratio of each LED group (each color), illumination light corrected to an arbitrary color temperature can be obtained.

(2)キセノン放電管32による照射範囲32Aを撮影範囲より広くし、LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)による照射範囲42Aは、キセノン放電管32による照射範囲32Aを含み、照射範囲32Aよりさらに広くした。したがって、照射範囲42Aの中央部と周辺部との間に生じる色温度補正光の輝度差に比べて、撮影範囲の中央部と周辺部との間に生じる色温度補正光の輝度差を小さく抑えられる。この結果、撮影範囲において赤色、緑色、および青色成分の色比率、ならびに発光輝度を略均一に制御でき、撮影範囲の全域で一様な色温度補正効果が得られるため、撮影範囲において色温度補正後の照明光の色むらを抑制できる。照明光の色むらは、照明光の輝度差に比べて人が感じる違和感が大きいため、色温度補正光発光部の発光体の照射画角を白色光発光部の発光体の照射画角より広くすることは大きな意味をもつ。とくに、照明光の照射画角が可変に構成されており、撮影レンズ20の焦点距離に応じて照射画角がワイドに設定される場合には、照射範囲の中央部と周辺部とで照射光の輝度差が生じやすくなることから効果が大きい。 (2) The irradiation range 32A by the xenon discharge tube 32 is made wider than the imaging range, and the irradiation range 42A by the LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3) Including the irradiation range 32A by the xenon discharge tube 32, the irradiation range was made wider than 32A. Therefore, the luminance difference of the color temperature correction light generated between the central portion and the peripheral portion of the photographing range is suppressed to be smaller than the luminance difference of the color temperature correction light generated between the central portion and the peripheral portion of the irradiation range 42A. It is done. As a result, the color ratio of the red, green, and blue components and the light emission luminance can be controlled almost uniformly in the shooting range, and a uniform color temperature correction effect can be obtained over the entire shooting range. The uneven color of the illumination light afterwards can be suppressed. The color unevenness of the illumination light has a greater sense of incongruity compared to the brightness difference of the illumination light, so the illumination angle of view of the light emitter of the color temperature correction light emitter is wider than that of the emitter of the white light emitter. Doing has a big meaning. In particular, when the illumination field angle of illumination light is configured to be variable and the illumination field angle is set to be wide according to the focal length of the photographic lens 20, the illumination light is emitted at the center and the periphery of the illumination range. The effect is great because the difference in luminance is likely to occur.

(3)LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)は、キセノン放電管32より長い時間連続して発光することが可能である。したがって、LED群による発光輝度がキセノン放電管32による発光輝度より低くても、LED群の発光時間をキセノン放電管32の閃光時間より長くすることにより、十分に色温度補正効果が得られる。ただし、LED群の発光時間(パルス幅×パルス数)はシャッタの全開時間以下とする。 (3) The LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3) can emit light continuously for a longer time than the xenon discharge tube 32. Therefore, even if the light emission luminance by the LED group is lower than the light emission luminance by the xenon discharge tube 32, the color temperature correction effect can be sufficiently obtained by making the light emission time of the LED group longer than the flash time of the xenon discharge tube 32. However, the light emission time (pulse width × number of pulses) of the LED group is not longer than the fully open time of the shutter.

上記の説明では、白色光発光部の発光体をキセノン放電管32で構成したが、キセノン放電管32の代わりに白色LEDを用いて構成してもよい。   In the above description, the light emitter of the white light emitting unit is configured by the xenon discharge tube 32, but a white LED may be used instead of the xenon discharge tube 32.

LED群42r(1〜3)、LED群42g(1〜3)、およびLED群42b(1〜3)をパルス発光させるようにしたが、パルス発光の代わりに連続発光させるようにしてもよい。この場合には、LED群を構成する発光素子に温度上昇によるドリフトが生じないように放熱措置を施すことが重要である。   Although LED group 42r (1-3), LED group 42g (1-3), and LED group 42b (1-3) were made to emit light in a pulse, you may make it make it emit continuously instead of pulse light emission. In this case, it is important to take heat dissipation measures so that the light emitting elements constituting the LED group do not drift due to temperature rise.

LED群42r(1〜3)、LED群42g(1〜3)、およびLED群42b(1〜3)による照射範囲42Aをレンズ情報(撮影レンズ20の焦点距離)に応じて可変にする構成例を説明した。この代わりに、最も焦点距離が短い撮影レンズ(広角レンズ)の撮影画角をカバーするように照射範囲を固定してもよい。この場合には、撮影レンズが広角であるか望遠であるかにかかわらず、常にワイドな照射画角へ色温度補正光を発する。照射範囲を固定にすることで、回路構成を簡単にすることができる。   Configuration example in which the irradiation range 42A by the LED group 42r (1-3), the LED group 42g (1-3), and the LED group 42b (1-3) is variable according to lens information (focal length of the photographing lens 20). Explained. Instead of this, the irradiation range may be fixed so as to cover the photographing field angle of the photographing lens (wide-angle lens) having the shortest focal length. In this case, the color temperature correction light is always emitted to a wide irradiation angle of view regardless of whether the photographing lens is wide-angle or telephoto. The circuit configuration can be simplified by fixing the irradiation range.

色温度補正光をR色成分、G色成分およびB色成分の光で構成する例を説明したが、必ずしも3色成分の光でなくてもよく、これらのうち2色成分の光で構成してもよいし、単色成分光のみで構成してもよい。   The example in which the color temperature correction light is composed of the light of the R color component, the G color component, and the B color component has been described, but it is not necessarily the light of the three color components. Alternatively, it may be composed of only monochromatic component light.

LED群は、各色それぞれ3個ずつのLED(発光ダイオード)で構成する例を示したが、発光素子数は上述した3個ずつに限らず、4個ずつでも20個ずつでも照射強度や照射範囲に応じて適宜変更してよい。   The LED group is shown as an example of three LEDs (light emitting diodes) for each color. However, the number of light emitting elements is not limited to three as described above, and irradiation intensity and irradiation range can be four or twenty. It may be changed appropriately according to the situation.

また、LED群を横一列に実装する例を示したが、2列であっても5列であってもよく、照射強度や照射範囲に応じて適宜変更してよい。   Moreover, although the example which mounts LED group in 1 horizontal row was shown, it may be 2 rows or 5 rows, and may change suitably according to irradiation intensity or irradiation range.

基板43上に実装するLED42を有機EL素子によって構成してもよい。LEDに比べて高輝度光が得られる。   You may comprise LED42 mounted on the board | substrate 43 by an organic EL element. High-intensity light can be obtained compared to LEDs.

以上の説明では、外付けタイプの照明装置30を例にあげて説明したが、照明装置をカメラ本体に内蔵させるようにしてもよい。   In the above description, the external illumination device 30 has been described as an example, but the illumination device may be built in the camera body.

上述したカメラ本体は、デジタルカメラでも銀塩カメラでもよい。   The camera body described above may be a digital camera or a silver salt camera.

特許請求の範囲における各構成要素と、発明を実施するための最良の形態における各構成要素との対応について説明する。第1の照射範囲は、たとえば、照射範囲32Aが対応する。照明光発光部は、たとえば、キセノン放電管32および発光制御回路39によって構成される。色温度補正光発光部は、たとえば、LED群42r(1〜3)、LED群42g(1〜3)、LED群42b(1〜3)、および電流供給回路40によって構成される。第2の照射範囲は、たとえば、照射範囲42Aが対応する。色温度補正指示は、CPU101による発光指示が対応する。発光制御手段は、たとえば、調光・昇圧・輝度制御回路41によって構成される。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。   Correspondence between each component in the claims and each component in the best mode for carrying out the invention will be described. The first irradiation range corresponds to, for example, the irradiation range 32A. The illumination light emitting unit is configured by, for example, a xenon discharge tube 32 and a light emission control circuit 39. The color temperature correction light emitting unit includes, for example, an LED group 42r (1-3), an LED group 42g (1-3), an LED group 42b (1-3), and a current supply circuit 40. For example, the irradiation range 42A corresponds to the second irradiation range. The color temperature correction instruction corresponds to the light emission instruction by the CPU 101. The light emission control means is constituted by a dimming / boosting / luminance control circuit 41, for example. In addition, as long as the characteristic function of this invention is not impaired, each component is not limited to the said structure.

本発明の実施形態による照明装置を装着したカメラシステムの外観図である。1 is an external view of a camera system equipped with a lighting device according to an embodiment of the present invention. 図1のカメラシステムの要部構成を説明するブロック図である。It is a block diagram explaining the principal part structure of the camera system of FIG. 照明装置の光学系について説明する図である。It is a figure explaining the optical system of an illuminating device. 基板およびLEDの拡大図である。It is an enlarged view of a board | substrate and LED. 照明装置の詳細なブロック構成図である。It is a detailed block block diagram of an illuminating device. (1)はLED群42rの駆動パルス波形を表す図、(2)はLED群42gの駆動パルス波形を表す図、(3)はLED群42bの駆動パルス波形を表す図である。(1) is a diagram showing the drive pulse waveform of the LED group 42r, (2) is a diagram showing the drive pulse waveform of the LED group 42g, and (3) is a diagram showing the drive pulse waveform of the LED group 42b. 照射パターンを説明する図である。It is a figure explaining an irradiation pattern.

符号の説明Explanation of symbols

10…カメラ本体
20…撮影レンズ
30…照明装置
32…キセノン放電管
33…主コンデンサ
34…電圧検出回路
35…昇圧回路
39…発光制御回路
40…電流供給回路
41…調光・昇圧・輝度制御回路
42(42r、42g、42b)…LED
43…基板
101…CPU
L1、L2a、L2b、L3…レンズ
DESCRIPTION OF SYMBOLS 10 ... Camera body 20 ... Shooting lens 30 ... Illuminating device 32 ... Xenon discharge tube 33 ... Main capacitor 34 ... Voltage detection circuit 35 ... Boosting circuit 39 ... Light emission control circuit 40 ... Current supply circuit 41 ... Dimming / boosting / luminance control circuit 42 (42r, 42g, 42b) ... LED
43 ... Board 101 ... CPU
L1, L2a, L2b, L3 ... Lens

Claims (7)

少なくとも撮影範囲より広い第1の照射範囲を有する照明光発光部と、
前記第1の照射範囲を含み、前記第1の照射範囲より広い第2の照射範囲を有する色温度補正光発光部と、
色温度補正指示に応じて、前記照明光発光部による照明光の色温度を補正するように前記色温度補正光発光部を発光制御する発光制御手段とを備えることを特徴とする撮影用照明装置。
An illumination light emitting unit having a first irradiation range wider than at least the imaging range;
A color temperature-correcting light emitting unit including the first irradiation range and having a second irradiation range wider than the first irradiation range;
An illumination apparatus for photographing, comprising: a light emission control means for controlling light emission of the color temperature correction light emitting unit so as to correct a color temperature of illumination light by the illumination light emitting unit according to a color temperature correction instruction. .
請求項1に記載の撮影用照明装置において、
前記発光制御手段は、撮影レンズの焦点距離に応じて前記第2の照射範囲を変化させることを特徴とする撮影用照明装置。
The illumination device for photographing according to claim 1,
The illuminating device for photographing, wherein the light emission control means changes the second irradiation range according to a focal length of a photographing lens.
請求項1に記載の撮影用照明装置において、
前記発光制御手段は、前記第2の照射範囲を広角撮影レンズ使用時の撮影範囲に対応する照射範囲に固定することを特徴とする撮影用照明装置。
The illumination device for photographing according to claim 1,
The light emission control means fixes the second irradiation range to an irradiation range corresponding to a shooting range when using a wide-angle shooting lens.
請求項1〜3のいずれか一項に記載の撮影用照明装置において、
前記色温度補正光発光部は、少なくとも単色成分光を発するLEDを備えることを特徴とする撮影用照明装置。
In the imaging | photography illumination device as described in any one of Claims 1-3,
The illuminating device for photographing, wherein the color temperature correction light emitting section includes an LED that emits at least a single color component light.
請求項1〜3のいずれか一項に記載の撮影用照明装置において、
前記色温度補正光発光部は、少なくとも単色成分光を発する面発光素子を備えることを特徴とする撮影用照明装置。
In the imaging | photography illumination device as described in any one of Claims 1-3,
The illuminating device for photographing according to claim 1, wherein the color temperature correction light emitting unit includes a surface light emitting element that emits at least single color component light.
請求項1〜3のいずれか一項に記載の撮影用照明装置において、
前記色温度補正光発光部は、少なくとも単色成分光を発する有機ELを備えることを特徴とする撮影用照明装置。
In the imaging | photography illumination device as described in any one of Claims 1-3,
The illuminating device for photographing, wherein the color temperature correction light emitting unit includes an organic EL that emits at least single color component light.
請求項1〜6のいずれか一項に記載の撮影用照明装置を備えることを特徴とするカメラ。   A camera comprising the photographing illumination device according to any one of claims 1 to 6.
JP2004326090A 2004-11-10 2004-11-10 Illuminator for photography and camera Pending JP2006138900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326090A JP2006138900A (en) 2004-11-10 2004-11-10 Illuminator for photography and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326090A JP2006138900A (en) 2004-11-10 2004-11-10 Illuminator for photography and camera

Publications (1)

Publication Number Publication Date
JP2006138900A true JP2006138900A (en) 2006-06-01

Family

ID=36619797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326090A Pending JP2006138900A (en) 2004-11-10 2004-11-10 Illuminator for photography and camera

Country Status (1)

Country Link
JP (1) JP2006138900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181544A (en) * 2008-02-01 2009-08-13 Sumitomo Electric Ind Ltd Device and method of image-processing for road traffic
DE102009024069A1 (en) * 2009-06-05 2010-12-09 Osram Opto Semiconductors Gmbh Optical lighting device and optical recording device
DE102009035698A1 (en) * 2009-07-30 2011-02-03 Joachim Renschke Flashgun for digital camera for fulgurous illumination of objects and scenes in professional photography, has discharge lamp and LED array for generating illumination flashes, respectively, where LED array outputs continuous light
JP2015028918A (en) * 2013-06-27 2015-02-12 株式会社半導体エネルギー研究所 Light-emitting device and camera
JP2020080319A (en) * 2013-08-20 2020-05-28 株式会社半導体エネルギー研究所 Light-emitting device and camera

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181544A (en) * 2008-02-01 2009-08-13 Sumitomo Electric Ind Ltd Device and method of image-processing for road traffic
DE102009024069A1 (en) * 2009-06-05 2010-12-09 Osram Opto Semiconductors Gmbh Optical lighting device and optical recording device
US8639104B2 (en) 2009-06-05 2014-01-28 Osram Opto Semiconductors Gmbh Optical lighting device and optical recording device
DE102009035698A1 (en) * 2009-07-30 2011-02-03 Joachim Renschke Flashgun for digital camera for fulgurous illumination of objects and scenes in professional photography, has discharge lamp and LED array for generating illumination flashes, respectively, where LED array outputs continuous light
DE102009035698B4 (en) * 2009-07-30 2011-09-15 Joachim Renschke Flashgun
JP2015028918A (en) * 2013-06-27 2015-02-12 株式会社半導体エネルギー研究所 Light-emitting device and camera
US10555386B2 (en) 2013-06-27 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and camera
US11172109B2 (en) 2013-06-27 2021-11-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and camera
JP2020080319A (en) * 2013-08-20 2020-05-28 株式会社半導体エネルギー研究所 Light-emitting device and camera
JP2022009198A (en) * 2013-08-20 2022-01-14 株式会社半導体エネルギー研究所 Light-emitting device
JP7185745B2 (en) 2013-08-20 2022-12-07 株式会社半導体エネルギー研究所 light emitting device

Similar Documents

Publication Publication Date Title
US7606480B2 (en) Photographic illuminating device and camera
JP5948050B2 (en) Imaging auxiliary light device and digital camera equipped with the same
JP5673599B2 (en) Illumination device for photography and camera
JP2006235254A (en) Imaging apparatus
JPWO2005078529A1 (en) Camera system
JP6611483B2 (en) Imaging system, illumination device, and focus detection method
JP5818488B2 (en) Imaging apparatus and camera system
JP2006138900A (en) Illuminator for photography and camera
US6377753B1 (en) Multiple-point automatic focusing camera
JP4661100B2 (en) Illumination device for photography and camera
JP2001174884A (en) Stroboscopic photographing device
JP3936131B2 (en) Flash AF auxiliary light system and multipoint AF camera
JP2006085000A (en) Lighting apparatus for photographing and camera
JP4623951B2 (en) Lighting equipment
JP2015001671A (en) Imaging device, luminaire, camera system and control method
JP2004252413A (en) Camera
JP2005148200A (en) Light quantity controller for photography
JP2003084194A (en) Camera
JP4810768B2 (en) camera
JP4754745B2 (en) Camera with strobe device
JPH0961896A (en) Stroboscopic device for camera
JPH1138308A (en) Auxiliary light projecting device
JP2006154458A (en) Camera
JP2005017812A (en) Electronic flash device
JP2005338277A (en) Illuminating device for photography and camera system