JP2006135367A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2006135367A
JP2006135367A JP2006042186A JP2006042186A JP2006135367A JP 2006135367 A JP2006135367 A JP 2006135367A JP 2006042186 A JP2006042186 A JP 2006042186A JP 2006042186 A JP2006042186 A JP 2006042186A JP 2006135367 A JP2006135367 A JP 2006135367A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor
light
layer
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006042186A
Other languages
Japanese (ja)
Inventor
Yukio Shakuda
幸男 尺田
Toshio Nishida
敏夫 西田
Masayuki Sonobe
雅之 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2006042186A priority Critical patent/JP2006135367A/en
Publication of JP2006135367A publication Critical patent/JP2006135367A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device that, when plural light-emitting parts are monolithically formed on one substrate, has a high reliability, without the occurrence of the breakage etc. of a wiring, and a structure where, even if defects such as shortage occurs in a part of the plural light-emitting parts, the remaining parts can operate as light-emitting device. <P>SOLUTION: Plurality of light-emitting parts 1 are formed, by electrically isolating a semiconductor lamination 17 laminated so as to form light-emitting layer on a substrate 1, into plural pieces, and they are connected in series and parallel, respectively. The electrical isolation of the plurality of light-emitting parts 1 is formed by the isolation trenches 17a formed in the semiconductor lamination 17 and an insulating film 21 embedded in the isolation trenches 17a, the isolation trenches 17a are formed at positions, where the surfaces of the semiconductor laminations 17 sandwiching the isolation trenches 17a become substantially coplanar, and wiring films 3 are formed on the isolation trenches 17a via the insulating film 21. In addition, a fuse element is connected in series by each group of light-emitting parts connected in series. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は基板上に複数個の発光部が形成され、直並列に接続されることにより、たとえば100Vの商用交流電源で照明用の電灯や蛍光管の代りに使用し得るような半導体発光装置に関する。さらに詳しくは、半導体積層部の表面側に設けられる配線膜により複数個の発光部を接続しながら、各発光部を電気的に分離する分離溝による配線膜の断線が生じにくい構造にした半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device in which a plurality of light emitting portions are formed on a substrate and connected in series and parallel, so that it can be used in place of a lighting lamp or a fluorescent tube with a commercial AC power supply of 100 V, for example. . More specifically, the semiconductor light emitting device has a structure in which a plurality of light emitting portions are connected by a wiring film provided on the surface side of the semiconductor laminated portion, and the wiring film is not easily broken by a separation groove for electrically separating each light emitting portion. Relates to the device.

近年、青色系発光ダイオード(LED)の出現により、ディスプレイの光源や信号装置の光源などにLEDが用いられ、さらに電灯や蛍光管の代りにLEDが用いられるようになってきている。この電灯や蛍光管に代ってLEDを用いる場合、100Vの交流駆動でそのまま動作することが好ましく、たとえば図11に示されるように、LEDを直並列に接続し、交流電源71に接続する構成のものが知られている。なお、Sはスイッチを示す(たとえば特許文献1参照)。   In recent years, with the advent of blue light emitting diodes (LEDs), LEDs have been used as light sources for displays and signal devices, and LEDs have been used in place of electric lamps and fluorescent tubes. When an LED is used in place of the lamp or the fluorescent tube, it is preferable to operate as it is with an AC drive of 100 V. For example, as shown in FIG. 11, the LEDs are connected in series and parallel and connected to an AC power source 71. Things are known. S represents a switch (see, for example, Patent Document 1).

一方、このようなLED部を直並列に接続した発光装置をモノリシックに集積化することも考えられている(たとえば特許文献2参照)。この構造は、たとえば図12に示されるように、サファイア基板60上にi−GaN層61、n−GaNコンタクト層62、n−AlGaNクラッド層63、InGaN多重量子井戸からなる活性層64、p−AlGaNクラッド層65、p−GaNコンタクト層66が順次積層され、n−GaNコンタクト層62が露出するように半導体積層部の一部をエッチングすると共に、さらに隣接するLEDの境界部をi−GaN層61に達するまでエッチングして溝70を形成し、その溝70内にSiO2膜67を形成し、p−GaNコンタクト層66上に透明電極68を形成し、n−GaNコンタクト層62と透明電極68とを連結するように金属電極69を設けることにより、形成されている。そして、この各電極を1個おきに第1の電源配線と第2の電源配線に接続することにより交流電源71に接続し、1個ごと逆向きにして並列接続することが開示されている。
特開平10−083701号公報(図3) 特開2000−101136号公報(図6)
On the other hand, it is also considered to monolithically integrate light emitting devices in which such LED units are connected in series and parallel (see, for example, Patent Document 2). For example, as shown in FIG. 12, this structure has an i-GaN layer 61, an n-GaN contact layer 62, an n-AlGaN cladding layer 63, an active layer 64 composed of an InGaN multiple quantum well, p− The AlGaN cladding layer 65 and the p-GaN contact layer 66 are sequentially stacked, and a part of the semiconductor stacked portion is etched so that the n-GaN contact layer 62 is exposed, and further, the boundary portion of the adjacent LED is the i-GaN layer. The trench 70 is formed by etching until reaching 61, the SiO 2 film 67 is formed in the trench 70, the transparent electrode 68 is formed on the p-GaN contact layer 66, the n-GaN contact layer 62 and the transparent electrode The metal electrode 69 is provided so as to be connected to 68. Then, every other electrode is connected to the first power supply wiring and the second power supply wiring to connect to the AC power supply 71, and each electrode is connected in parallel in the reverse direction.
Japanese Patent Laid-Open No. 10-083701 (FIG. 3) JP 2000-101136 A (FIG. 6)

前述のように、複数個のLEDを直並列に接続した発光装置をモノリシックにより形成するには、1つの基板上に半導体層を積層した後に、各発光部を電気的に分離するため分離溝を形成し、その分離溝内に絶縁膜を埋め込んで各発光部を電気的に分離し、その上に金属電極を形成することにより、隣接する発光部が接続されている。この場合、基板としてサファイア基板が用いられていること、上部で配線膜により各発光部が接続されることなどの点から、半導体積層部の下層の導電形半導体層に接続する電極は、半導体積層部の一部をエッチング除去して露出する下層の半導体層に接続して形成されている。そのため、前述の分離溝も下層を露出させるエッチングに引き続き、境界部のみをさらにエッチングすることにより分離溝70が形成されている。その結果、図12に示されるように、分離溝を越えて接続される金属電極69は、下層のn−GaNコンタクト層62から、半導体積層部表面に設けられる透明電極68まで、垂直な立上り部分を有している。   As described above, in order to monolithically form a light emitting device in which a plurality of LEDs are connected in series and parallel, after a semiconductor layer is stacked on one substrate, a separation groove is formed to electrically isolate each light emitting portion. The adjacent light emitting portions are connected by forming and embedding an insulating film in the separation groove to electrically isolate each light emitting portion and forming a metal electrode thereon. In this case, the electrode connected to the conductive semiconductor layer below the semiconductor laminated portion is a semiconductor laminated layer from the viewpoint that a sapphire substrate is used as a substrate and each light emitting portion is connected by a wiring film on the upper part. A part of the part is connected to a lower semiconductor layer exposed by etching away. Therefore, the separation groove 70 is formed by further etching only the boundary portion following the etching for exposing the lower layer of the above-described separation groove. As a result, as shown in FIG. 12, the metal electrode 69 connected across the isolation groove is a vertical rising portion from the lower n-GaN contact layer 62 to the transparent electrode 68 provided on the surface of the semiconductor stacked portion. have.

この半導体積層部の下層半導体層と上層半導体層との段差は、0.4〜1μm程度であるが、配線膜の立上りが非常に急峻であること、配線膜の厚さは0.2μm程度と非常に薄いこと、分離溝70は3〜6μmの深さがあり、絶縁膜が溝内に落ち込むため凹みやすいこと、などの理由により、ステップカバレッジが悪く、断線が生じる場合があるという問題がある。この問題は、発光部の数が、多くなるほど深刻な問題であり、とくに発光部を直列に何個も接続する場合には、そのうちの1箇所に断線が生じると、その直列部分に接続された全ての発光部が使用不可となるため、非常に深刻な問題となる。しかも、このように発光部をモノリシックに複数個形成し、それぞれを直列および/または並列に接続すると、一部の発光部にショートなどの異常が発生すると残りの発光部の発光特性にも影響するし、また、サージなどに対しても全体の発光部が破壊されやすいという問題がある。   The level difference between the lower semiconductor layer and the upper semiconductor layer of this semiconductor laminate is about 0.4 to 1 μm, but the rise of the wiring film is very steep, and the thickness of the wiring film is about 0.2 μm. There is a problem that the step coverage is poor and disconnection may occur due to the fact that it is very thin, the separation groove 70 has a depth of 3 to 6 μm, and the insulating film falls into the groove and is easily recessed. . This problem becomes more serious as the number of light emitting parts increases. Especially when many light emitting parts are connected in series, if one of them is disconnected, the light is connected to the series part. Since all the light emitting units are unusable, this is a very serious problem. In addition, when a plurality of light emitting portions are formed monolithically and connected in series and / or in parallel as described above, if an abnormality such as a short circuit occurs in some of the light emitting portions, the light emission characteristics of the remaining light emitting portions are also affected. In addition, there is a problem that the entire light emitting portion is easily destroyed even by a surge or the like.

本発明はこのような問題を解決するためになされたもので、電灯や蛍光管などの代りに用いることができる半導体発光装置を1つの基板上に複数個の発光部を形成してモノリシックにより形成する場合において、配線の断線などが生じないで信頼性が高いと共に、複数個の発光部の一部に短絡などの不良が発生しても、残部で照明装置として動作し得る構造の半導体発光装置を提供することを目的とする。   The present invention has been made to solve such problems. A semiconductor light emitting device that can be used in place of an electric lamp or a fluorescent tube is formed monolithically by forming a plurality of light emitting portions on one substrate. In such a case, the semiconductor light emitting device has a structure that can operate as an illuminating device in the remaining portion even when a defect such as a short circuit occurs in a part of the plurality of light emitting portions while the wiring is not broken and the reliability is high. The purpose is to provide.

本発明のさらに他の目的は、複数個の発光部が直並列に接続されながら、サージなどが入力しても破壊しにくい構造の半導体発光装置を提供することにある。   Still another object of the present invention is to provide a semiconductor light emitting device having a structure in which a plurality of light emitting portions are connected in series and parallel and are not easily destroyed even when a surge is input.

本発明のさらに他の目的は、発光した光の発射面側に直並列接続をする配線膜が形成される場合でも、電極や配線による遮光をできるだけ排除し、光取出し効率(外部量子効率)の優れた半導体発光装置を提供することにある。   Still another object of the present invention is to eliminate light shielding by electrodes and wiring as much as possible even when a wiring film that is connected in series and parallel is formed on the emission surface side of emitted light, and to improve light extraction efficiency (external quantum efficiency). An object of the present invention is to provide an excellent semiconductor light emitting device.

本発明による半導体発光装置は、基板と、該基板上に発光層を形成するように半導体層を積層して半導体積層部が形成され、該半導体積層部が複数個に電気的に分離されると共に、それぞれに一対の導電形層に電気的に接続される一対の電気的接続部が設けられる複数個の発光部と、前記複数個の発光部を、それぞれ直列および/または並列に接続するために前記電気的接続部に接続される配線膜とを有し、前記複数個の発光部を形成するための電気的分離が、前記半導体積層部に形成される分離溝および該分離溝内に埋め込まれる絶縁膜により形成され、該分離溝は、該分離溝を挟んだ半導体積層部の表面が実質的に同一面になる場所に形成され、該分離溝上に前記絶縁膜を介して前記配線膜が形成され、かつ、前記直列に接続される発光部の群れごとに、ヒューズ素子が直列に接続されている。   A semiconductor light emitting device according to the present invention includes a substrate and a semiconductor layer stacked to form a light emitting layer on the substrate to form a semiconductor stacked portion, and the semiconductor stacked portion is electrically separated into a plurality of portions. A plurality of light emitting portions each provided with a pair of electrical connection portions electrically connected to a pair of conductivity type layers, and the plurality of light emitting portions for connecting in series and / or in parallel, respectively. A wiring film connected to the electrical connection portion, and electrical isolation for forming the plurality of light emitting portions is embedded in the isolation trench formed in the semiconductor stacked portion and the isolation trench Formed by an insulating film, and the separation groove is formed at a location where the surface of the semiconductor stacked portion sandwiching the separation groove is substantially the same surface, and the wiring film is formed on the separation groove via the insulating film And the light emission connected in series Each herd, the fuse elements are connected serially.

ここに実質的に同一面とは、完全な同一面であることを意味するものではなく、配線膜を形成する際に段差によるステップカバレッジの問題が生じない程度の段差以下であることを意味し、具体的には、両面の差が0.3μm程度以下であることを意味する。また、電気的接続部とは、半導体層とオーミックコンタクトが得られるように設けられた金属電極や透光性導電層などを意味し、配線膜と電気的に接続し得るように発光部に形成された接続部を意味する。   Here, “substantially the same surface” does not mean that they are completely the same surface, but means that they are below the level difference that does not cause a step coverage problem due to the level difference when forming the wiring film. Specifically, it means that the difference between both surfaces is about 0.3 μm or less. The electrical connection means a metal electrode or a light-transmitting conductive layer provided so that an ohmic contact with the semiconductor layer can be obtained, and is formed in the light emitting part so as to be electrically connected to the wiring film. Means connected.

本発明による半導体発光装置の他の形態は、基板と、該基板上に発光層を形成するように半導体層を積層して半導体積層部が形成され、該半導体積層部が複数個に電気的に分離されると共に、それぞれに一対の導電形層に電気的に接続される一対の電気的接続部が設けられる複数個の発光部と、前記複数個の発光部を、それぞれ直列および/または並列に接続するために前記電気的接続部に接続される配線膜とを有し、前記複数個の発光部を形成するための電気的分離が、前記半導体積層部に形成される分離溝および該分離溝内に埋め込まれる絶縁膜により形成され、該分離溝は、該分離溝を挟んだ半導体積層部の表面が実質的に同一面になる場所に形成され、該分離溝上に前記絶縁膜を介して前記配線膜が形成され、かつ、前記直列および/または並列に接続された複数の発光部の外部電源と接続される一対の電極パッド間にサージを吸収するキャパシタが並列に接続されている。   In another embodiment of the semiconductor light emitting device according to the present invention, a semiconductor laminated portion is formed by laminating a semiconductor layer so as to form a light emitting layer on the substrate, and the semiconductor laminated portion is electrically connected to a plurality of semiconductor laminated portions. A plurality of light emitting units that are separated and each provided with a pair of electrical connection portions that are electrically connected to a pair of conductivity type layers, and the plurality of light emitting units are connected in series and / or in parallel, respectively. A wiring film connected to the electrical connection portion for connection, and an electrical isolation for forming the plurality of light emitting portions is formed in the semiconductor stacked portion and the isolation trench The isolation groove is formed in a place where the surface of the semiconductor stacked portion sandwiching the isolation groove is substantially flush with the insulating film via the insulating film. A wiring film is formed, and the series and Or a capacitor for absorbing the surge between a pair of electrode pads connected to the external power supply of a plurality of light emitting units connected in parallel are connected in parallel.

前記複数個の発光部を形成するための分離溝が、前記半導体積層部に0.6〜5μmの幅で形成されてなる請求項1記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein a separation groove for forming the plurality of light emitting portions is formed in the semiconductor laminated portion with a width of 0.6 to 5 [mu] m.

前記配線膜のうち、少なくとも前記上部電極と接続される導電形の半導体層の表面上に形成される部分は、透光性導電膜により形成されることが、配線の直列抵抗をそれ程増大させることなく、光を有効に取り出すことができるため好ましい。   Of the wiring film, at least a portion formed on the surface of the conductive type semiconductor layer connected to the upper electrode is formed of a translucent conductive film, which increases the series resistance of the wiring so much. It is preferable because light can be extracted effectively.

本発明によれば、半導体積層部を複数の発光部に分割して、配線膜により各発光部間を直列や並列に接続することにより、たとえば100VのAC駆動をし得るようなモノリシック構造の半導体発光装置を形成する場合に、各発光部間を分離する分離溝が、分離溝を挟んだ両側の半導体層が実質的に同一面になるような場所に形成されているため、その分離溝に起因する段差による配線膜の断線の問題や、断線しなくても膜厚が薄くなるという信頼性の問題を解消することができる。しかも、ヒューズやキャパシタからなる安全装置やサージプロテクタが直列または並列に接続されているため、サージなどの入力に対しても発光部を保護することができるし、一部の発光部にショートなどの不良が発生しても、他の発光部への影響を最小限に留めることができる。   According to the present invention, a semiconductor having a monolithic structure capable of AC driving of 100 V, for example, by dividing a semiconductor laminated portion into a plurality of light emitting portions and connecting the light emitting portions in series or in parallel by a wiring film. When forming a light emitting device, the separation grooves that separate the light emitting parts are formed at locations where the semiconductor layers on both sides of the separation groove are substantially flush with each other. It is possible to solve the problem of disconnection of the wiring film due to the difference in level and the reliability problem that the film thickness becomes thin without disconnection. In addition, since safety devices and surge protectors consisting of fuses and capacitors are connected in series or in parallel, the light-emitting part can be protected against inputs such as surges. Even if a defect occurs, the influence on other light emitting portions can be minimized.

前述の配線膜の信頼性向上に関してさらに詳細に説明すると、このような発光部間を直列または並列に接続する配線膜は、下層の半導体層に接続される電気的接続部(半導体層と直接または他の導電層を介してオーミックコンタクトし、配線膜と電気的に接続される部分を意味し、以下、単に電極ともいう)は低い位置にあり、上層の半導体層に接続される電極は高い位置にあり、その両電極を接続するには、段差が生じる。しかも、隣接する発光部間を電気的に分離するため、分離溝が形成されるが、分離溝は、下層の半導体層を露出させた表面から境界部に形成するのが効率的であるため、通常は分離溝の部分に大きな段差が形成されると共に、半導体積層部の表面から見ると分離溝と下層の露出部とが連続して広い幅でエッチングされ、絶縁膜を形成しても半導体積層部の表面との段差はなくならない。そのため、配線膜もその分離溝を跨ぎながら段差に沿って形成され、段差の角部で配線膜が薄くなって断線しやすいという問題を有している。しかしながら、本発明では、その分離溝が、半導体層表面が実質的に同一な面になる部分に形成されているため、その分離溝の幅をたとえば1μm程度と電気的絶縁が得られる程度の非常に狭い溝にすることにより、絶縁膜を形成する際に分離溝の少なくとも表面側は多少の凹みが生じても殆ど埋まる。その結果、その上に形成される配線膜は、分離溝を跨いで形成される部分でも、段差は殆どなく、ステップカバレッジの問題で配線膜の断線や肉厚が薄くなるという問題が発生することはない。   The wiring film connecting the light emitting parts in series or in parallel will be described in more detail regarding the above-described improvement in the reliability of the wiring film. The wiring film connected in series or in parallel is electrically connected to the lower semiconductor layer (directly with the semiconductor layer or This means a portion that is in ohmic contact with another wiring layer and is electrically connected to the wiring film. Hereinafter, it is also simply referred to as an electrode), and the electrode connected to the upper semiconductor layer is at a high position. In order to connect the two electrodes, there is a step. Moreover, a separation groove is formed to electrically separate adjacent light emitting portions, but it is efficient to form the separation groove from the exposed surface of the lower semiconductor layer to the boundary portion. Normally, a large step is formed in the isolation groove, and when viewed from the surface of the semiconductor stacked portion, the isolation groove and the exposed portion of the lower layer are continuously etched with a wide width. The level difference from the surface of the part is not lost. Therefore, the wiring film is also formed along the step while straddling the separation groove, and there is a problem that the wiring film becomes thin at the corner of the step and is easily disconnected. However, in the present invention, since the separation groove is formed in a portion where the surface of the semiconductor layer is substantially the same surface, the width of the separation groove is about 1 μm, for example, so that electrical insulation can be obtained. By forming a narrow groove, at least the surface side of the separation groove is almost filled even when a slight dent occurs when the insulating film is formed. As a result, the wiring film formed on the wiring film has almost no steps even in the portion formed across the isolation trench, and there is a problem that the wiring film is disconnected or thinned due to the step coverage problem. There is no.

この場合、一対の電極の間には高さの差があるが、たとえば下部電極の厚さを厚く形成したり、半導体積層部の一部にダミー領域を形成し、そのダミー領域で傾斜面を形成することにより、段差部分に配線を形成する必要がなくなり、ステップカバレッジの問題による断線は生じない。   In this case, although there is a difference in height between the pair of electrodes, for example, the lower electrode is formed thick, or a dummy region is formed in a part of the semiconductor stacked portion, and the inclined surface is formed in the dummy region. By forming the wiring, it is not necessary to form a wiring in the step portion, and disconnection due to a step coverage problem does not occur.

つぎに、図面を参照しながら本発明の半導体発光装置について説明をする。本発明による半導体発光装置は、図1にその基本構造部の断面説明図が示されるように、基板1上に発光層を形成するように半導体層を積層して半導体積層部17が形成され、その半導体積層部17が複数個に電気的に分離されると共に、それぞれに一対の導電形層への電気的接続部(電極19、20)が設けられることにより複数個の発光部1が形成され、この複数個の発光部1が、配線膜3によりそれぞれ直列および/または並列に接続されている。本発明では、この複数個の発光部1をそれぞれ電気的に分離する構造が、半導体積層部17に形成される分離溝17aおよびその分離溝17a内に埋め込まれる絶縁膜21により形成され、その分離溝17aは、分離溝17aを挟んだ半導体積層部17の表面が実質的に同一面になる場所に形成され、その分離溝17a上に絶縁膜21を介して配線膜3が形成されている。そして、図7に示されるように、直列に接続される発光部の群れごとに、ヒューズ素子8やキャパシタのような安全装置が直列または並列に接続されていることに特徴がある。   Next, the semiconductor light emitting device of the present invention will be described with reference to the drawings. In the semiconductor light emitting device according to the present invention, as shown in a cross-sectional explanatory view of the basic structure portion in FIG. 1, a semiconductor stacked portion 17 is formed by stacking semiconductor layers so as to form a light emitting layer on the substrate 1. The semiconductor laminated portion 17 is electrically separated into a plurality of parts, and a plurality of light emitting parts 1 are formed by providing each of the electrical connection parts (electrodes 19 and 20) to a pair of conductivity type layers. The plurality of light emitting portions 1 are connected in series and / or in parallel by the wiring film 3, respectively. In the present invention, the structure for electrically separating the plurality of light emitting portions 1 is formed by the separation groove 17a formed in the semiconductor stacked portion 17 and the insulating film 21 embedded in the separation groove 17a. The groove 17a is formed in a place where the surface of the semiconductor stacked portion 17 with the separation groove 17a interposed therebetween is substantially the same surface, and the wiring film 3 is formed on the separation groove 17a via the insulating film 21. As shown in FIG. 7, a safety device such as a fuse element 8 or a capacitor is connected in series or in parallel for each group of light emitting units connected in series.

図1に示される例では、青色発光の発光部1(以下、単にLEDともいう)が窒化物半導体の積層により形成され、その表面に図示しない、たとえばYAG(イットリウム・アルミニウム・ガーネット)蛍光体やSr-Zn-La蛍光体などからなる発光色変換部材が設けられることにより、白色光を発光する発光装置として形成されている。そのため、半導体層積層部は、窒化物半導体層の積層により形成されている。しかし、赤、緑、青の3原色の発光部を形成して白色光になるようにすることもできるし、必ずしも白色光にする必要はなく、所望の発光色の発光部に形成することができる。   In the example shown in FIG. 1, a blue light emitting section 1 (hereinafter also simply referred to as an LED) is formed of a nitride semiconductor stack, and a YAG (yttrium aluminum garnet) phosphor (not shown) is formed on the surface thereof. By providing an emission color conversion member made of Sr—Zn—La phosphor or the like, a light emitting device that emits white light is formed. Therefore, the semiconductor layer stacked portion is formed by stacking nitride semiconductor layers. However, it is possible to form a light emitting portion of the three primary colors of red, green, and blue so as to be white light, and it is not always necessary to make white light, and it is possible to form the light emitting portion of a desired light emitting color. it can.

ここに窒化物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部または全部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物(窒化物)からなる半導体をいう。   Here, the nitride semiconductor means a compound in which a group III element Ga and a group V element N or a part or all of a group III element Ga is substituted with other group III elements such as Al and In, and / or Alternatively, it refers to a semiconductor made of a compound (nitride) in which a part of N of the group V element is substituted with another group V element such as P or As.

基板11としては、窒化物半導体を積層するには、サファイア(Al2 3 単結晶)またはSiCが用いられるが、図1に示される例では、サファイア(Al2 3 単結晶)が用いられている。しかし、基板は積層される半導体層に応じて格子定数や熱膨張係数などの観点から選ばれる。 As the substrate 11, sapphire (Al 2 O 3 single crystal) or SiC is used to stack a nitride semiconductor, but in the example shown in FIG. 1, sapphire (Al 2 O 3 single crystal) is used. ing. However, the substrate is selected from the viewpoint of the lattice constant and the thermal expansion coefficient according to the semiconductor layer to be laminated.

サファイア基板11上に積層される半導体積層部17は、たとえばGaNからなる低温バッファ層12が0.005〜0.1μm程度、ついでアンドープのGaNからなる高温バッファ層13が1〜3μm程度、その上にSiをドープしたn形GaNからなるコンタクト層およびn形AlGaN系化合物半導体層からなる障壁層(バンドギャップエネルギーの大きい層)などにより形成されるn形層14が1〜5μm程度、バンドギャップエネルギーが障壁層のそれよりも小さくなる材料、たとえば1〜3nmのIn0.13Ga0.87Nからなるウェル層と10〜20nmのGaNからなるバリア層とが3〜8ペア積層される多重量子井戸 (MQW)構造の活性層15が0.05〜0.3μm程度、p形のAlGaN系化合物半導体層からなるp形障壁層(バンドギャップエネルギーの大きい層)とp形GaNからなるコンタクト層とによるp形層16が合せて0.2〜1μm程度、それぞれ順次積層されることにより形成されている。 The semiconductor laminated portion 17 laminated on the sapphire substrate 11 has, for example, a low temperature buffer layer 12 made of GaN of about 0.005 to 0.1 μm, and a high temperature buffer layer 13 of undoped GaN of about 1 to 3 μm. The n-type layer 14 formed by a contact layer made of n-type GaN doped with Si and a barrier layer made of an n-type AlGaN-based compound semiconductor layer (layer having a large band gap energy) has a band gap energy of about 1 to 5 μm. Multi-quantum well (MQW) in which 3 to 8 pairs of a material having a thickness smaller than that of the barrier layer, for example, a well layer made of 1 to 3 nm In 0.13 Ga 0.87 N and a barrier layer made of 10 to 20 nm GaN A p-type barrier layer having an active layer 15 having a structure of about 0.05 to 0.3 μm and comprising a p-type AlGaN compound semiconductor layer The p-type layer 16 composed of (a layer having a large band gap energy) and a contact layer made of p-type GaN are sequentially laminated to a thickness of about 0.2 to 1 μm.

図1に示される例では、アンドープで、半絶縁性のGaNからなる高温バッファ層13が形成されている。基板がサファイアのような絶縁性基板からなる場合には、必ずしも半絶縁になっていなくても基板まで後述する分離溝を形成すれば支障はないが、アンドープにした方が積層する半導体層の結晶性が良くなるため、さらには、半絶縁性半導体層が設けられていることにより、各発光部に電気的分離する際に、基板表面までを完全にエッチングしなくても、電気的に分離することができるため好ましい。基板11がSiCのような半導体基板からなる場合には、隣接する発光部間を電気的に分離させるため、アンドープで半絶縁性の高温バッファ層13が形成されることが各発光部を独立させるために必要となる。   In the example shown in FIG. 1, a high-temperature buffer layer 13 made of undoped and semi-insulating GaN is formed. When the substrate is made of an insulating substrate such as sapphire, there is no problem if a separation groove described later is formed up to the substrate even if it is not semi-insulating. In addition, since a semi-insulating semiconductor layer is provided, when the light emitting portions are electrically separated, they are electrically separated without completely etching up to the substrate surface. This is preferable. When the substrate 11 is made of a semiconductor substrate such as SiC, an undoped, semi-insulating high-temperature buffer layer 13 is formed so that the adjacent light emitting portions are electrically separated from each other, thereby making each light emitting portion independent. It is necessary for.

また、n形層14およびp形層16は、障壁層とコンタクト層の2種類で構成する例であったが、キャリアの閉じ込め効果の点から活性層6側にAlを含む層が設けられることが好ましいものの、GaN層だけでもよい。また、これらを他の窒化物半導体層で形成することもできるし、他の半導体層がさらに介在されてもよい。さらに、この例では、n形層14とp形層16とで活性層15が挟持されたダブルヘテロ接合構造であるが、n形層とp形層とが直接接合するpn接合構造のものでもよい。また、活性層15上に直接p形AlGaN系化合物層を成長したが、数nm程度のアンドープAlGaN系化合物層を成長することにより、活性層15の下側にピット発生層を形成して活性層15にできたピットを埋め込みながら、p形層とn形層との接触によるリークを防止することもできる。   In addition, the n-type layer 14 and the p-type layer 16 are two types of barrier layers and contact layers. However, a layer containing Al is provided on the active layer 6 side from the viewpoint of the carrier confinement effect. However, only the GaN layer may be used. Moreover, these can also be formed with another nitride semiconductor layer, and another semiconductor layer may further intervene. Furthermore, in this example, the active layer 15 is sandwiched between the n-type layer 14 and the p-type layer 16, but a pn junction structure in which the n-type layer and the p-type layer are directly joined is also possible. Good. In addition, a p-type AlGaN compound layer is grown directly on the active layer 15, but a pit generation layer is formed below the active layer 15 by growing an undoped AlGaN compound layer of about several nm. Leakage due to contact between the p-type layer and the n-type layer can also be prevented while embedding the pits formed in 15.

半導体積層部17上には、たとえばZnOなどからなり、p形半導体層16とオーミックコンタクトをとることができる透光性導電層18が0.01〜0.5μm程度設けられている。この透光性導電層18は、ZnOに限定されるものではなく、ITOやNiとAuとの2〜100nm程度の薄い合金層でも、光を透過させながら、電流をチップ全体に拡散することができる。この半導体積層部17の一部がエッチングにより除去されてn形層14が露出され、さらにそのn形層14の露出部の近傍で間隔dだけ離間してエッチングにより分離溝17aが形成されている。この離間する部分は発光領域(長さL1の部分)としては寄与せずダミー領域5となり、後述するように熱放散部、配線などの形成スペースなどとすることができ、目的に応じて間隔dは1〜50μm程度の範囲内で設定される。この分離溝17aは、ドライエッチングなどにより形成されるが、電気的に分離できる範囲で、できるだけ狭い幅wで形成され、0.6〜5μm程度、たとえば1μm程度(深さは5μm程度)に形成される。   On the semiconductor laminated portion 17, a light-transmitting conductive layer 18 made of, for example, ZnO and capable of making ohmic contact with the p-type semiconductor layer 16 is provided in a thickness of about 0.01 to 0.5 μm. The translucent conductive layer 18 is not limited to ZnO, and even a thin alloy layer of about 2 to 100 nm of ITO or Ni and Au can diffuse current throughout the chip while transmitting light. it can. A part of the semiconductor laminated portion 17 is removed by etching to expose the n-type layer 14, and a separation groove 17 a is formed by etching at a distance d in the vicinity of the exposed portion of the n-type layer 14. . This separated portion does not contribute to the light emitting region (the portion of length L1) and becomes the dummy region 5, and can be used as a space for forming a heat dissipating part, wiring, etc., as will be described later. Is set within a range of about 1 to 50 μm. The separation groove 17a is formed by dry etching or the like, and is formed with a width w as narrow as possible within a range where it can be electrically separated, and is formed with a thickness of about 0.6 to 5 μm, for example, about 1 μm (depth is about 5 μm). Is done.

そして、透光性導電層18上の一部に、TiとAuとの積層構造により、p側電極(上部電極)19が形成され、半導体積層部17の一部がエッチングにより除去されて露出するn形層14にオーミックコンタクト用のn側電極(下部電極)20が、Ti-Al合金などにより形成されている。図1に示される例では、この下部電極20が、0.4〜0.6μm程度の厚さに形成され、上部電極19とほぼ同程度の高さになるように形成されている。しかし、上部電極19とほぼ同じ高さにならなくても、配線膜3は真空蒸着などにより下部電極20上に堆積されるため、それ程段差は形成されず、通常の高さのままでもよい。しかし、下部電極20の厚さが上部電極19の厚さより厚く形成されれば配線膜の信頼性が向上し、上部電極19と同程度の高さになればより好ましい。なお、この例では、透光性導電層18とp側電極19の両方がp形層16への電気的接続部になっているが、後述するように、配線膜3の材料によっては、透光性導電層18のみで電気的接続部とすることができる。n形層14への電気的接続部はn側電極20になる。   Then, a p-side electrode (upper electrode) 19 is formed on a part of the translucent conductive layer 18 by a laminated structure of Ti and Au, and a part of the semiconductor laminated part 17 is removed by etching and exposed. An n-side electrode (lower electrode) 20 for ohmic contact is formed on the n-type layer 14 from a Ti—Al alloy or the like. In the example shown in FIG. 1, the lower electrode 20 is formed to a thickness of about 0.4 to 0.6 μm, and is formed to have a height substantially the same as that of the upper electrode 19. However, even if the height is not substantially the same as that of the upper electrode 19, the wiring film 3 is deposited on the lower electrode 20 by vacuum vapor deposition or the like. However, if the thickness of the lower electrode 20 is formed to be greater than the thickness of the upper electrode 19, the reliability of the wiring film is improved, and it is more preferable that the thickness is as high as that of the upper electrode 19. In this example, both the translucent conductive layer 18 and the p-side electrode 19 are electrically connected to the p-type layer 16, but depending on the material of the wiring film 3, as will be described later. Only the photoconductive layer 18 can be used as an electrical connection portion. The electrical connection to the n-type layer 14 becomes the n-side electrode 20.

そして、この上部電極19および下部電極20の表面が露出するように半導体積層部17の露出する表面および分離溝17a内に、たとえばSiO2などからなる絶縁膜21が設けられている。その結果、分離溝17aで区切られた発光部1が基板11上に複数個形成されている。その絶縁膜21の表面で、1個の発光部1aのn側電極20とその発光部1aと隣接する発光部1bのp側電極19とが配線膜3により接続されている。この配線膜3は、AuまたはAlなどの金属膜を真空蒸着またはスパッタリングなどにより0.3〜1μm程度の厚さに形成されている。この配線膜3は、各発光部1が直列または並列の所望の接続になるように形成される。 An insulating film 21 made of, for example, SiO 2 is provided on the exposed surface of the semiconductor laminated portion 17 and the isolation groove 17a so that the surfaces of the upper electrode 19 and the lower electrode 20 are exposed. As a result, a plurality of light emitting portions 1 separated by the separation grooves 17 a are formed on the substrate 11. On the surface of the insulating film 21, the n-side electrode 20 of one light emitting unit 1 a and the p side electrode 19 of the light emitting unit 1 b adjacent to the light emitting unit 1 a are connected by the wiring film 3. The wiring film 3 is formed to a thickness of about 0.3 to 1 μm by vacuum deposition or sputtering of a metal film such as Au or Al. The wiring film 3 is formed so that each light emitting unit 1 has a desired connection in series or in parallel.

たとえば、図1に示されるように、分離溝17aで分離された1つの発光部1aのn側電極20と隣接する発光部1bのp側電極19とを順次接続していけば、直列に接続することができ、1個当り3.5〜5Vの動作電圧の合計が100V近く(厳密には抵抗やキャパシタを直列に接続することにより調整できる)になるまで接続して、その組を並列に、しかもpnの接続方向が逆方向になるように並列に接続することにより、100VのAC駆動をする明るい光源にすることができる。また、図3に発光部1の配置例の一部が示されるように、pn関係が逆方向に並列接続された2個1組の発光部を直列に接続して、合計の動作電圧が100Vに近くなるまで直列接続しもよい。このような配置の等価回路図は図4に示されるようになる。なお、この接続で明るさが充分ではない場合には、さらにこれらの組を並列に形成して接続することもできる。図3に示されるように、2個の発光部を逆並列に接続して1組としたものをさらに直列に接続する場合、縦方向ではなく、横方向に隣接する発光部1間でn側電極20とp側電極19とを配線膜3により接続する必要があり、配線膜3の形成場所が発光部1間に必要となる。このスペースとして、前述のダミー領域5を必要な幅で形成することができる。   For example, as shown in FIG. 1, if the n-side electrode 20 of one light emitting unit 1a separated by the separation groove 17a and the p-side electrode 19 of the adjacent light emitting unit 1b are sequentially connected, they are connected in series. And connect them in parallel until the total operating voltage of 3.5-5V per unit is close to 100V (strictly, it can be adjusted by connecting resistors and capacitors in series). In addition, by connecting in parallel so that the connection direction of pn is opposite, it is possible to obtain a bright light source that is 100V AC driven. Further, as shown in FIG. 3 as a part of the arrangement example of the light emitting section 1, a set of two light emitting sections whose pn relationships are connected in parallel in the opposite direction are connected in series, and the total operating voltage is 100V. It may be connected in series until it is close to. An equivalent circuit diagram of such an arrangement is as shown in FIG. If the brightness is not sufficient by this connection, these sets can be formed in parallel and connected. As shown in FIG. 3, when two light emitting units are connected in reverse parallel to form a set and further connected in series, the n side between the light emitting units 1 adjacent in the horizontal direction instead of the vertical direction is used. It is necessary to connect the electrode 20 and the p-side electrode 19 by the wiring film 3, and a place for forming the wiring film 3 is required between the light emitting portions 1. As this space, the aforementioned dummy region 5 can be formed with a necessary width.

つぎに、図1に示される構造の半導体発光装置の製法について説明をする。有機金属化学気相成長法(MOCVD法)により、キャリアガスのH2 と共にトリメチリガリウム(TMG)、アンモニア(NH3)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMIn)などの反応ガスおよびn形にする場合のドーパントガスとしてのSiH4 、p形にする場合のドーパントガスとしてのシクロペンタジエニルマグネシウム(Cp2 Mg)またはジメチル亜鉛(DMZn)などの必要なガスを供給して順次成長する。 Next, a method for manufacturing the semiconductor light emitting device having the structure shown in FIG. 1 will be described. Reactive gases such as trimethyl gallium (TMG), ammonia (NH 3 ), trimethylaluminum (TMA), trimethylindium (TMIn), and n-type, together with carrier gas H 2 , by metalorganic chemical vapor deposition (MOCVD) SiH 4 as a dopant gas in the case of forming a p-type gas, and a necessary gas such as cyclopentadienyl magnesium (Cp 2 Mg) or dimethyl zinc (DMZn) as a dopant gas in the case of a p-type is supplied to sequentially grow.

まず、たとえばサファイアからなる基板11上に、たとえば400〜600℃程度の低温で、GaN層からなる低温バッファ層12を0.005〜0.1μm程度成膜した後、温度を600〜1200℃程度の高温に上げて、アンドープのGaNからなる半絶縁性の高温バッファ層13を1〜3μm程度、Siをドープしたn形GaNおよびAlGaN系化合物半導体からなるn形層14を1〜5μm程度成膜する。   First, on the substrate 11 made of sapphire, for example, a low-temperature buffer layer 12 made of a GaN layer is formed at a low temperature of about 400 to 600 ° C., for example, about 0.005 to 0.1 μm, and then the temperature is about 600 to 1200 ° C. The semi-insulating high-temperature buffer layer 13 made of undoped GaN is formed to about 1 to 3 μm, and the n-type layer 14 made of Si-doped n-type GaN and AlGaN compound semiconductor is formed to about 1 to 5 μm. To do.

つぎに、成長温度を400〜600℃の低温に下げて、たとえば1〜3nmのIn0.13Ga0.87Nからなるウェル層と10〜20nmのGaNからなるバリア層とが3〜8ペア積層される多重量子井戸 (MQW)構造の活性層6を0.05〜0.3μm程度成膜する。 Next, the growth temperature is lowered to a low temperature of 400 to 600 ° C., and, for example, 3 to 8 pairs of well layers made of In 0.13 Ga 0.87 N of 1 to 3 nm and barrier layers made of GaN of 10 to 20 nm are stacked. An active layer 6 having a quantum well (MQW) structure is formed to a thickness of about 0.05 to 0.3 μm.

ついで、成長装置内の温度を600〜1200℃程度に上げ、p形のAlGaN系化合物半導体層およびGaNからなるp形層16を合せて0.2〜1μm程度積層する。   Next, the temperature in the growth apparatus is raised to about 600 to 1200 ° C., and the p-type AlGaN compound semiconductor layer and the p-type layer 16 made of GaN are combined and laminated to about 0.2 to 1 μm.

その後、表面にSi34などの保護膜を設けてp形ドーパントの活性化のため、400〜800℃程度で10〜60分程度のアニールを行い、たとえばZnO層をMBE、スパッタ、真空蒸着、PLD、イオンプレーティングなどの方法により0.1〜0.5μm程度成膜することにより透光性導電層18を形成する。ついで、n側電極20を形成するため、n形層14が露出するように、積層された半導体積層部17の一部を塩素ガスなどによる反応性イオンエッチングによりエッチングする。さらに引き続き、n形層14を露出させた近傍で、発光部1間を電気的に分離するため、n形層14の露出部と離間して半導体積層部17を1μm程度の幅wで、同様にドライエッチングにより半導体積層部17の高温バッファ層13に至るまでエッチングする。n形層14の露出部と分離溝17aとの間隔dは、たとえば1μm程度になるように形成される。 Thereafter, a protective film such as Si 3 N 4 is provided on the surface, and annealing is performed at about 400 to 800 ° C. for about 10 to 60 minutes to activate the p-type dopant. For example, a ZnO layer is subjected to MBE, sputtering, or vacuum deposition. The light-transmitting conductive layer 18 is formed by forming a film of about 0.1 to 0.5 μm by a method such as PLD or ion plating. Next, in order to form the n-side electrode 20, a part of the stacked semiconductor stacked portion 17 is etched by reactive ion etching using chlorine gas or the like so that the n-type layer 14 is exposed. Further, in order to electrically isolate the light emitting portions 1 in the vicinity where the n-type layer 14 is exposed, the semiconductor laminated portion 17 is spaced apart from the exposed portion of the n-type layer 14 with a width w of about 1 μm. Etching is performed by dry etching until reaching the high temperature buffer layer 13 of the semiconductor stacked portion 17. The distance d between the exposed portion of the n-type layer 14 and the separation groove 17a is formed to be about 1 μm, for example.

つぎに、露出したn形層14の表面にTiとAlを、それぞれ0.1μm程度と、0.3μm程度、スパッタリングまたは真空蒸着により連続して付着し、RTA加熱により600℃程度で5秒間の熱処理をすることにより合金化して、n側電極20を形成する。なお、n側電極はリフトオフ法により形成すれば、マスクを除去することにより所定の形状のn側電極を形成することができる。その後、p側電極19のために透光性導電層18上にTiとAuをそれぞれ0.1μmと0.3μm程度づつ真空蒸着することにより、p側電極19を形成する。その後、全面にSiO2などの絶縁膜21を形成し、p側電極19およびn側電極20の表面が露出するように絶縁膜21の一部をエッチング除去する。そして、露出するp側電極19およびn側電極20を接続する部分のみ開口したレジスト膜を設けてAu膜またはAl膜などを真空蒸着などにより設けてからレジスト膜を除去するリフトオフ法などにより所望の配線膜3を形成し、複数個の発光部1からなる発光部群ごとにウェハからチップ化することにより、図3に示される半導体発光装置のチップが得られる。なお、配線膜3を形成する際に、図3に示されるように、配線膜3と同じ材料で同時に外部と接続用の電極パッド4を形成する。 Next, Ti and Al are successively deposited on the exposed surface of the n-type layer 14 by about 0.1 μm and about 0.3 μm, respectively, by sputtering or vacuum deposition, and by RTA heating at about 600 ° C. for 5 seconds. The n-side electrode 20 is formed by alloying by heat treatment. Note that if the n-side electrode is formed by a lift-off method, the n-side electrode having a predetermined shape can be formed by removing the mask. Thereafter, Ti and Au are vacuum-deposited on the translucent conductive layer 18 for the p-side electrode 19 by about 0.1 μm and 0.3 μm, respectively, thereby forming the p-side electrode 19. Thereafter, an insulating film 21 such as SiO 2 is formed on the entire surface, and a part of the insulating film 21 is removed by etching so that the surfaces of the p-side electrode 19 and the n-side electrode 20 are exposed. Then, a resist film having an opening only in a portion connecting the exposed p-side electrode 19 and the n-side electrode 20 is provided, an Au film or an Al film is provided by vacuum deposition or the like, and then the resist film is removed by a lift-off method or the like. By forming the wiring film 3 and making chips from the wafer for each light emitting unit group composed of a plurality of light emitting units 1, a chip of the semiconductor light emitting device shown in FIG. 3 is obtained. When forming the wiring film 3, as shown in FIG. 3, the electrode pad 4 for connection to the outside is formed simultaneously with the same material as the wiring film 3.

図1に示される例によれば、n側電極20を形成するためのn形層14の露出部と、発光部1間を分離するための分離溝17aとが、近傍であっても(目的に応じてダミー領域5の幅を広くすることができる)別の部分に形成されており、さらにn側電極20が高く形成されているため、隣接する発光部1間のn側電極20とp側電極19とを接続する配線膜3は、分離溝17aを介して形成されていても、大きな段差を経て接続する必要がない。すなわち、分離溝17aの深さは、3〜6μm程度あるが、その幅は0.6〜5μm程度、たとえば1μm程度と電気的分離が得られる程度の非常に狭い間隔であり、絶縁膜21が完全に埋め込まれていなくても、表面は殆ど塞がり、その表面に形成される配線膜3には、多少の凹みは生じても大きな段差は生じない。そのため、ステップカバレッジの問題は一切なく、非常に信頼性のある配線膜3を有する半導体発光装置が得られる。   According to the example shown in FIG. 1, even if the exposed portion of the n-type layer 14 for forming the n-side electrode 20 and the separation groove 17a for separating the light emitting portions 1 are in the vicinity (purpose) The width of the dummy region 5 can be increased according to the difference), and the n-side electrode 20 is formed higher, so that the n-side electrode 20 between the adjacent light emitting portions 1 and p Even if the wiring film 3 connected to the side electrode 19 is formed via the separation groove 17a, it is not necessary to connect through a large step. That is, the depth of the isolation groove 17a is about 3 to 6 μm, but its width is about 0.6 to 5 μm, for example, about 1 μm, which is a very narrow interval that can provide electrical isolation, and the insulating film 21 Even if it is not completely buried, the surface is almost blocked, and the wiring film 3 formed on the surface does not have a large step even if a slight dent occurs. Therefore, there is no problem of step coverage, and a semiconductor light emitting device having a highly reliable wiring film 3 can be obtained.

なお、前述の例では、n側電極20を透光性導電層18の上に露出するように高く形成したが、前述のように、必ずしも透光性導電層18の上に露出してp側電極19とほぼ同一面になっていなくても、n側電極20の位置は分離溝17aを経て隣接する発光部のp側電極19に至る段差よりは小さく、さらにn側電極20の上に配線膜3が積層されてp側電極19と接続されるため、段差の問題は余り生じない。そのため、n側電極20は特別に高く形成されなくても、断線などは生じにくく、非常に安定した配線膜3が得られる。若干でも高く形成されていれば、より一層信頼性が向上する点で好ましい。すなわち、分離溝17aの部分で段差が生じないように実質的に同一面の場所に分離溝17aが形成されていればよい。   In the above-described example, the n-side electrode 20 is formed so as to be exposed on the translucent conductive layer 18, but as described above, the n-side electrode 20 is not necessarily exposed on the translucent conductive layer 18 and is p-side. Even if it is not substantially flush with the electrode 19, the position of the n-side electrode 20 is smaller than the step reaching the p-side electrode 19 of the adjacent light emitting part via the separation groove 17 a, and the wiring is formed on the n-side electrode 20. Since the film 3 is laminated and connected to the p-side electrode 19, the problem of a step difference does not occur much. Therefore, even if the n-side electrode 20 is not formed to be particularly high, disconnection or the like hardly occurs, and a very stable wiring film 3 can be obtained. If it is formed slightly higher, it is preferable in terms of further improving the reliability. In other words, it is only necessary that the separation groove 17a is formed at a location on the substantially same plane so that no step is generated in the separation groove 17a.

前述の例は、n形層14の露出部と、分離溝17aを異なる場所に形成することにより、分離溝17aを挟んだ半導体層の表面を実質的に同一面になるようにしたが、n形層14を露出させた露出部に分離溝17aが形成されていても、傾斜面を有するダミー領域(中間領域)を設けることにより、断線の問題を防止することができる。その例が、図2に同様の断面説明図で示されている。   In the above example, the exposed portion of the n-type layer 14 and the separation groove 17a are formed at different locations so that the surface of the semiconductor layer sandwiching the separation groove 17a is substantially the same surface. Even if the separation groove 17a is formed in the exposed portion where the shape layer 14 is exposed, the problem of disconnection can be prevented by providing a dummy region (intermediate region) having an inclined surface. An example of this is shown in FIG.

図2において、半導体積層部17は図1に示される例と同じであるので、同じ部分には同じ符号を付してその説明を省略する。この例では、分離溝17aが半導体積層部17の表面から形成されるのではなく、n形層14の露出面からさらに高温バッファ層13に至るように分離溝17aが形成されている。ただし、分離溝17aを挟んでn側電極20を形成する側と反対側にもn形層14の露出部が形成され、そのn形層14から半導体積層部17上の透光性導電層18の表面に達する傾斜面を有するダミー領域5が形成されていることに特徴がある。   In FIG. 2, the semiconductor stacked portion 17 is the same as the example shown in FIG. 1, and thus the same portions are denoted by the same reference numerals and description thereof is omitted. In this example, the separation groove 17 a is not formed from the surface of the semiconductor stacked portion 17, but is formed so as to extend from the exposed surface of the n-type layer 14 to the high temperature buffer layer 13. However, an exposed portion of the n-type layer 14 is also formed on the side opposite to the side where the n-side electrode 20 is formed across the separation groove 17a, and the translucent conductive layer 18 on the semiconductor stacked portion 17 is formed from the n-type layer 14. A feature is that a dummy region 5 having an inclined surface reaching the surface is formed.

このダミー領域5は、1つの発光部1aとその隣の発光部1bとの間に形成されており、その幅L2は、10〜50μm程度に形成される。なお、このときの発光部1の幅L1は、60μm程度である。また、このダミー領域5は、図2に示されるように、n形層14の露出部から半導体積層部17の表面に至る傾斜面17cが形成されている。図2には模式的に構造図が示されているだけで、寸法的には正確な図になっていないが、透光性導電層18の表面とn形層14との段差は、前述のように、0.5〜1μm程度で、n形層14の露出面から、分離溝17aの底までの寸法は3〜6μm程度ある。しかし、この分離溝17aの幅wは、前述のように、1μm程度であり、少なくとも分離溝17aの表面は、少々の窪みはできても殆ど絶縁膜21により埋められている。したがって、このダミー領域5のn形層14の露出面を経て配線膜3を形成すれば、殆どステップカバレッジの問題をなくすることができるが、図2に示される例では、このダミー領域5に傾斜面17cが形成されている。これにより、絶縁膜21および配線膜3は緩やかな勾配になり、より一層配線膜3の信頼性を向上させることができる。   This dummy region 5 is formed between one light emitting portion 1a and the adjacent light emitting portion 1b, and its width L2 is formed to be about 10 to 50 μm. At this time, the width L1 of the light emitting unit 1 is about 60 μm. Further, as shown in FIG. 2, the dummy region 5 has an inclined surface 17 c that extends from the exposed portion of the n-type layer 14 to the surface of the semiconductor stacked portion 17. FIG. 2 is a schematic structural diagram only, and is not a dimensional accurate diagram. However, the step between the surface of the translucent conductive layer 18 and the n-type layer 14 is the same as that described above. Thus, the dimension from the exposed surface of the n-type layer 14 to the bottom of the separation groove 17a is about 3 to 6 μm at about 0.5 to 1 μm. However, the width w of the separation groove 17a is about 1 μm as described above, and at least the surface of the separation groove 17a is almost completely filled with the insulating film 21 even if a slight depression is formed. Therefore, if the wiring film 3 is formed through the exposed surface of the n-type layer 14 in the dummy region 5, the problem of step coverage can be almost eliminated. However, in the example shown in FIG. An inclined surface 17c is formed. As a result, the insulating film 21 and the wiring film 3 have a gentle gradient, and the reliability of the wiring film 3 can be further improved.

このような傾斜面17cを形成するには、たとえば傾斜面を形成する場所以外のところをレジスト膜などによりマスクし、基板11を斜めに傾けてドライエッチングなどによりエッチングすることにより、図2に示されるような系斜面17cを形成することができる。その後は、前述の図1に示される例と同様に、p側およびn側の電極19、20を形成し、その電極表面が露出するように絶縁膜21を形成し、配線膜3を形成することにより、図2に示される構造の半導体発光装置を得ることができる。   In order to form such an inclined surface 17c, for example, a portion other than a place where the inclined surface is formed is masked with a resist film or the like, and the substrate 11 is inclined and etched by dry etching or the like, as shown in FIG. A system slope 17c as described above can be formed. Thereafter, as in the example shown in FIG. 1, the p-side and n-side electrodes 19 and 20 are formed, the insulating film 21 is formed so that the electrode surfaces are exposed, and the wiring film 3 is formed. Thus, the semiconductor light emitting device having the structure shown in FIG. 2 can be obtained.

このダミー領域5が形成されることにより、前述のような傾斜面17cを形成することができる他に、ダミー領域5自身は発光には寄与しないが、隣接する発光部1で発光した光が半導体層を伝ってこのダミー領域5の表面や側面から光を放射させることができ、発光部1が連続して形成される場合よりも、その発光効率(入力に対する出力)が向上する。また、発光部1が連続して形成されていると、通電により発熱した熱が逃げにくくて、結局は発光効率が低下したり、信頼性の低下を来す恐れがあるが、このような発光させないダミー領域5が形成されることにより、発熱しないで熱放散をしやすいため、信頼性の面からも好ましい。さらに、前述の図3に示されるように、横側に並ぶ2つの発光部1を配線膜3で連結する場合、配線膜3の形成場所が必要となるが、このダミー領域5に配線膜3を形成することができるし、後述するインダクタやキャパシタや抵抗(直列抵抗が100Vに適合させるのに用いる場合がある)などの付属部品を形成するスペースとして利用することができる。また、自由に配線膜を形成するスペースがあるため、発光部1自身の構造を四角形状ではなく円形形状(上面図の形状)など、光の取出し構造を考慮した所望の形状にしやすいというメリットもある。すなわち、配線膜の断線防止のみならず、種々のメリットが付随する。このダミー領域5の利用は、図1の例でも同じである。   By forming the dummy region 5, the inclined surface 17 c as described above can be formed, and the dummy region 5 itself does not contribute to light emission, but the light emitted from the adjacent light emitting unit 1 is a semiconductor. Light can be emitted from the surface and side surfaces of the dummy region 5 through the layers, and the light emission efficiency (output with respect to input) is improved as compared with the case where the light emitting unit 1 is continuously formed. In addition, if the light emitting portion 1 is continuously formed, the heat generated by energization is difficult to escape, and eventually the light emission efficiency may be lowered or the reliability may be lowered. Since the dummy region 5 that is not to be formed is formed, it is easy to dissipate heat without generating heat, which is preferable from the viewpoint of reliability. Further, as shown in FIG. 3 described above, when two light emitting portions 1 arranged side by side are connected by the wiring film 3, a place for forming the wiring film 3 is required. And can be used as a space for forming an accessory such as an inductor, a capacitor, or a resistor (which may be used to adjust the series resistance to 100 V). In addition, since there is a space for freely forming a wiring film, the light emitting unit 1 itself has a merit that the structure of the light emitting unit 1 itself can be easily formed into a desired shape in consideration of the light extraction structure, such as a circular shape (a shape in a top view). is there. That is, not only the disconnection of the wiring film but also various merits are accompanied. The use of the dummy area 5 is the same in the example of FIG.

図2に示される例では、このダミー領域5と半導体積層部17の高い側で隣接する発光部1とのあいだにも、その表面から高温バッファ層13に至る第2の分離溝17bが形成されている。この第2の分離溝17bも、半導体積層部表面がほぼ同じ面の場所に形成されており、しかも前述と同様の電気的に分離し得る範囲で、できるだけ狭い間隔、すなわち1μm程度の幅で形成されている。そのため、この第2の分離溝17b上に絶縁膜21を介して配線膜3が形成されても、断線などの問題は生じない。この第2の分離溝17bは無くても構わないが、第2の分離溝17bが設けられることにより、エッチングのバラツキにより分離溝17aが完全に高温バッファ層13に達していない場合が生じても、隣接する発光部1間の電気的分離を確実にすることができ、その信頼性を向上させることができる。   In the example shown in FIG. 2, a second separation groove 17 b extending from the surface to the high-temperature buffer layer 13 is also formed between the dummy region 5 and the light emitting unit 1 adjacent on the higher side of the semiconductor stacked unit 17. ing. The second separation groove 17b is also formed at a location where the surface of the semiconductor stacked portion is substantially the same, and is as narrow as possible, that is, with a width of about 1 μm, as long as it can be electrically separated as described above. Has been. Therefore, even if the wiring film 3 is formed on the second isolation groove 17b via the insulating film 21, problems such as disconnection do not occur. The second separation groove 17b may not be provided, but the provision of the second separation groove 17b may cause a case where the separation groove 17a does not completely reach the high temperature buffer layer 13 due to variations in etching. The electrical separation between the adjacent light emitting units 1 can be ensured, and the reliability can be improved.

図5は、このような半導体発光装置の応用例で、発光特性を向上させる例である。すなわち、前述のように、本発明の半導体発光装置は、LEDを相互に逆方向に接続しておいて、交流で直接駆動する構造になっている。そのため、一方向に接続されるLED群は、交流の半波でのみ発光し、他方向に接続されるLED群は交流の残りの半波でのみ発光する。したがって、図5(b)に時間tに対する出力Poが示されるように、発光出力は半波の出力が繰り返されることになり、100(50×2)または120(60×2)Hzの繰返し周期のパルスとなる。この程度の繰返しでは、人間の目の感覚には、通常余り意識されないが、それでも敏感な目にはチラツキの現象が現れる。このような問題を解決するもので、蛍光体膜6が発光面に設けられている。   FIG. 5 shows an example of improving the light emission characteristics as an application example of such a semiconductor light emitting device. That is, as described above, the semiconductor light emitting device of the present invention has a structure in which LEDs are connected in opposite directions and directly driven by alternating current. Therefore, the LED group connected in one direction emits light only in an alternating half wave, and the LED group connected in the other direction emits light only in the remaining half wave of alternating current. Accordingly, as shown in FIG. 5 (b), the output Po with respect to time t is shown, and the light emission output is a half-wave output, and the repetition period is 100 (50 × 2) or 120 (60 × 2) Hz. It becomes the pulse of. In this degree of repetition, the human eye is usually not very aware of the senses, but still a flickering phenomenon appears in sensitive eyes. In order to solve such a problem, the phosphor film 6 is provided on the light emitting surface.

図5(a)には、図1に示される発光装置の表面に形成された電極パッド4を、回路基板31の配線32上に直接ハンダ付けなどにより接続するフリップチップタイプの例が示されている。すなわち、サファイア基板11の裏面を光の放射面として上向きにし、各発光部1が図示しない配線膜により接続された部分を回路基板31側にしてマウントされた例が示されている。そして、サファイア基板11の露出面に蛍光体膜6が設けられている。蛍光体材料としては、余り残光時間が長いと消灯した場合にいつまでも明るく違和感を生じるので、残光時間(強度が1/10程度になる時間)が10msec(ミリ秒)から1sec程度のものが好ましく、たとえばZnS:Cu、Y23、ZnS:Alなどを用いることができ、このような蛍光体材料を、樹脂材料と混合してサファイア基板11の表面に塗布することによりチラツキなどのない発光装置とすることができる。しかし、蛍光体膜6の形成は、このような基板裏面に限定されるものではなく、表面側に形成することもできる。 FIG. 5A shows an example of a flip chip type in which the electrode pad 4 formed on the surface of the light emitting device shown in FIG. 1 is directly connected to the wiring 32 of the circuit board 31 by soldering or the like. Yes. In other words, an example is shown in which the back surface of the sapphire substrate 11 is directed upward with the light emitting surface facing upward, and each light emitting section 1 is mounted with the portion connected by a wiring film (not shown) facing the circuit board 31. A phosphor film 6 is provided on the exposed surface of the sapphire substrate 11. As a phosphor material, when the afterglow time is too long, it will be bright and uncomfortable when it is extinguished, so that the afterglow time (time for which the intensity is about 1/10) is from 10 msec (milliseconds) to 1 sec. Preferably, for example, ZnS: Cu, Y 2 O 3 , ZnS: Al or the like can be used, and such a phosphor material is mixed with a resin material and applied to the surface of the sapphire substrate 11 so that there is no flicker. A light-emitting device can be obtained. However, the formation of the phosphor film 6 is not limited to such a back surface of the substrate, but can be formed on the front surface side.

蛍光材料として、たとえば青色光を吸収して黄色に変換し、その黄色の光がLEDチップから発せられる青色光と混色して白色光に変換するYAG(イットリウム・アルミニウム・ガーネット)のような発光色変換部材(1/10残光時間は150〜200nsec)を用いることにより、青色光または紫外光のLEDと発光色変換蛍光材料とにより電灯などに適した白色光の発光装置とすることができ、前述の残光時間が10msec以上の蛍光体材料と混ぜることにより、残光による目のチラツキを解消しながら、所望の発光色の半導体発光装置とすることができる。このような蛍光体膜の被膜は、前述のサファイア基板11の裏面に設ける場合に限らず、LEDの発光面側に設けられれば、その構造には限定されない。   As a fluorescent material, for example, YAG (yttrium, aluminum, garnet) that absorbs blue light and converts it into yellow, and the yellow light mixes with blue light emitted from the LED chip to convert it into white light. By using a conversion member (1/10 afterglow time is 150 to 200 nsec), a blue light or ultraviolet light LED and a light emitting color conversion fluorescent material can be used as a white light emitting device suitable for an electric lamp, By mixing with the phosphor material having an afterglow time of 10 msec or more, it is possible to obtain a semiconductor light emitting device having a desired emission color while eliminating flickering of eyes due to afterglow. Such a coating of the phosphor film is not limited to the structure as long as it is provided not only on the back surface of the sapphire substrate 11 but also on the light emitting surface side of the LED.

図6は、図5の例をさらに変形したもので、蛍光体膜6の表面にさらに蓄光ガラス膜7が形成された例である。蓄光ガラスとは、テルビウムなどの蓄光材がガラス体内に混入されたもので、このようなガラスを粉末状にして透明樹脂に取り込むことにより、塗布により所望の場所に設けることができる。このような蓄光ガラス膜7が設けられることにより、前述の交流駆動によるチラツキをさらに確実に解消することができると共に、電源をオフにしてからもさらに30〜120分程度は光っているため、誘導灯として使用することができ、停電時の非常用照明として機能する。なお、この蓄光ガラスを直接LEDチップに設けてもよいが、図6に示されるように、蛍光体膜6上に設けることにより、蛍光体材料にもよるが、蓄光が主な発光になったときに、光の吸収が少なくなるというメリットがある。   FIG. 6 is a further modification of the example of FIG. 5, in which a phosphorescent glass film 7 is further formed on the surface of the phosphor film 6. The phosphorescent glass is a glass in which a phosphorescent material such as terbium is mixed, and can be provided in a desired place by coating by taking such glass into a transparent resin. By providing such a phosphorescent glass film 7, it is possible to more reliably eliminate the above-described flicker caused by alternating current driving, and even after the power is turned off, it will shine for about 30 to 120 minutes. It can be used as a light and functions as an emergency light during a power outage. Although this phosphorescent glass may be provided directly on the LED chip, as shown in FIG. 6, by providing on the phosphor film 6, depending on the phosphor material, the phosphorescence becomes the main light emission. Sometimes, there is a merit that light absorption is reduced.

図7は、本発明の半導体発光装置の一実施形態を示す説明図である。すなわち、通常の電灯であれば、フィラメントが断線すれば点灯しなくなるだけで、電灯を交換すれば何ら不都合はないが、LEDの場合には、ショート不良が起こる場合がある。直列接続されたLEDが全てショート不良になることは稀であるかもしれないが、1個がショートすると他の発光部への印加電圧が高くなり、可能性としてはあり得ることであり、完全な安全性は保たれていない。しかも後述するように、並列接続されている場合、一部がショート不良になると、他の発光部も発光しなくなる。そこで、図7に示されるように、直列接続された発光部1(LED)群と直列にヒューズ素子8が接続されている。このような構成にすることにより、LED群でショート不良が発生しても、ヒューズ素子8が安全装置となる。なお、同じ100Vでも明るい発光装置にするには、図7(b)に示されるように、直列に接続された発光部群が、さらに並列に複数組接続されるが、このような場合には、それぞれの直列接続された発光部群ごとにヒューズ素子8が直列に接続されることにより、一列の発光部群がオフになっても、残りの発光部群で発光することができ、暗くはなるが照明装置としては機能するので好ましい。   FIG. 7 is an explanatory view showing an embodiment of the semiconductor light emitting device of the present invention. That is, in the case of a normal electric lamp, if the filament is disconnected, it will not light up. If the electric lamp is replaced, there will be no inconvenience, but in the case of an LED, a short circuit failure may occur. It may be rare for all LEDs connected in series to be short-circuited, but if one LED is short-circuited, the voltage applied to the other light-emitting section increases, which is possible. Safety is not maintained. In addition, as will be described later, when a part is short-circuited when connected in parallel, the other light emitting units also do not emit light. Therefore, as shown in FIG. 7, a fuse element 8 is connected in series with a group of light emitting units 1 (LEDs) connected in series. With such a configuration, even if a short circuit failure occurs in the LED group, the fuse element 8 becomes a safety device. In addition, in order to make a bright light emitting device even at the same 100V, as shown in FIG. 7B, a plurality of light emitting unit groups connected in series are further connected in parallel. In such a case, By connecting the fuse element 8 in series for each light emitting unit group connected in series, even if one row of light emitting unit groups is turned off, the remaining light emitting unit groups can emit light. Although it functions as a lighting device, it is preferable.

図8は、本発明の半導体発光装置の他の実施形態を示す説明図で、サージが入力しても保護することができるサージプロテクトとして、キャパシタ9が組み込まれた例である。すなわち、直並列接続された発光部1群のAC電源に接続される電極パッド4a、4b間にキャパシタ9が接続されたものである。このキャパシタ9は、たとえば10〜20pF程度あれば通常の静電破壊を防止することができるので、図8(b)および8(c)に平面説明図および断面説明図が示されるように、配線膜33上に、たとえばSi34からなる絶縁膜35を、5nm程度の厚さで、面積が60μm×60μm程度の大きさに形成すれば、上記容量を形成することができ、サージを一旦キャパシタ9で吸収し、時間をかけて放電することができるため、サージに対して発光部1を保護することができる。 FIG. 8 is an explanatory view showing another embodiment of the semiconductor light emitting device of the present invention, and is an example in which a capacitor 9 is incorporated as surge protection that can protect even if a surge is input. That is, the capacitor 9 is connected between the electrode pads 4a and 4b connected to the AC power source of the light emitting unit 1 group connected in series and parallel. For example, if the capacitor 9 has a capacitance of about 10 to 20 pF, normal electrostatic breakdown can be prevented. Therefore, as shown in FIG. 8B and FIG. If the insulating film 35 made of, for example, Si 3 N 4 is formed on the film 33 with a thickness of about 5 nm and an area of about 60 μm × 60 μm, the capacitance can be formed, and a surge is temporarily generated. Since it absorbs with the capacitor 9 and can discharge over time, the light emission part 1 can be protected with respect to a surge.

図9は、同様にサージプロテクタの例で、この例は、インダクタ10を挿入した例である。すなわち、図9(a)に示される例は、たとえば前述の図2に示されるダミー領域5表面のスペースを利用して、配線膜3により渦巻きを形成した例である。このような渦巻きが形成されることにより、インダクタンスが1〜10nH程度に形成され、サージが入力しても減衰させる作用をする。この発光部1間に形成するインダクタ10は、電極パッドに近い部分に形成することが好ましく、数個程度のインダクタを形成すれば通常のサージを減衰させることができるため、全ての発光部間に設ける必要はない。なお、渦巻きの中心の端部は、図示しない絶縁膜を介して設けられる配線膜により一方の発光部と接続される。   FIG. 9 shows an example of a surge protector, which is an example in which an inductor 10 is inserted. That is, the example shown in FIG. 9A is an example in which a spiral is formed by the wiring film 3 using, for example, the space on the surface of the dummy region 5 shown in FIG. By forming such a spiral, the inductance is formed to about 1 to 10 nH, and it acts to attenuate even if a surge is input. The inductor 10 formed between the light emitting portions 1 is preferably formed in a portion close to the electrode pad. If several inductors are formed, a normal surge can be attenuated. There is no need to provide it. Note that an end portion at the center of the spiral is connected to one light emitting portion by a wiring film provided via an insulating film (not shown).

図9(b)は、インダクタ形成例の他の例で、この例は、直列接続される発光部1自体が渦巻き状になるように配線膜により接続されたものである。この両端の発光部1が、電極パッド4に接続されることにより、電極パッド4間にサージが入力しても、サージの立上り時の小電流が渦巻き状に接続された発光部1を流れることにより磁界が形成され、そのときのインダクタンスによりサージを減衰させることができる。   FIG. 9B is another example of the inductor formation example. In this example, the light emitting units 1 connected in series are connected by a wiring film so as to form a spiral shape. By connecting the light emitting portions 1 at both ends to the electrode pads 4, even if a surge is input between the electrode pads 4, a small current at the rising of the surge flows through the light emitting portions 1 connected in a spiral shape. Thus, a magnetic field is formed, and the surge can be attenuated by the inductance at that time.

図10は、本発明の応用例を示す図で、この例は、各発光部1で発光する光をできるだけ外部に取り出しやすくする例である。すなわち、この例は、発光部1上(透光性導電層18上)の配線膜をZnO層などの透光性導電層36により形成したものである。配線膜3が短くて直列抵抗が問題にならない程度であれば、全ての配線膜を透光性導電層36で形成することもできるが、前述のインダクタを配線膜により形成する場合のように、配線膜が長くなる場合には、少なくとも発光領域(活性層5に電流が流れる部分)上の配線膜を透光性導電層36により形成されればよい。ZnOといえども、AuやAlなどに比べると抵抗値が大きいからである。このように発光分部の上側に光を遮断する金属膜が設けられないようにすることにより、有効に発光した光を取り出すことができる。   FIG. 10 is a diagram showing an application example of the present invention, and this example is an example in which the light emitted from each light emitting unit 1 is easily extracted to the outside as much as possible. That is, in this example, the wiring film on the light emitting portion 1 (on the translucent conductive layer 18) is formed by the translucent conductive layer 36 such as a ZnO layer. If the wiring film 3 is short and the series resistance is not a problem, all the wiring films can be formed of the light-transmitting conductive layer 36, but as in the case where the above-described inductor is formed of the wiring film, When the wiring film becomes long, at least the wiring film on the light emitting region (the portion where the current flows in the active layer 5) may be formed by the translucent conductive layer 36. This is because even ZnO has a larger resistance value than Au, Al, or the like. Thus, by not providing a metal film for blocking light on the upper side of the light emitting portion, it is possible to extract light that is emitted effectively.

前述の各例では、絶縁膜を形成するのに、SiO2などをCVD法などにより形成したが、たとえばクラリアント・ジャパン株式会社の商品名spinfil 130のように、スピンコートして200℃10分、400℃10分の硬化処理することにより400℃程度の高温に耐え、透明な絶縁性を有する絶縁膜を形成すれば、分離溝などの凹部を埋めて、ある程度平坦な絶縁膜を形成することができる。しかも熱処理をするため、鋭い凸凹も丸くなり、その上に形成する配線膜の断線は生じにくくなると共に、配線の薄い部分もなくなるため、全体として動作電圧が低くなり好ましい。しかし、この方法では、余り厚く形成すると、配線のための穴形成時の段差が大きくなり、その部分の配線膜の断線が生じる、という問題も生じる。 In each of the above examples, SiO 2 or the like was formed by a CVD method or the like to form the insulating film. For example, as in the product name spinfil 130 of Clariant Japan Co., Ltd., spin coating was performed at 200 ° C. for 10 minutes. By forming a transparent insulating film that can withstand a high temperature of about 400 ° C. by curing at 400 ° C. for 10 minutes, it is possible to fill a recess such as a separation groove and form a flat insulating film to some extent. it can. In addition, since heat treatment is performed, sharp irregularities are also rounded, and disconnection of the wiring film formed thereon is less likely to occur, and a thin portion of the wiring is eliminated, so that the operating voltage is lowered as a whole, which is preferable. However, in this method, if the layer is formed too thick, there is a problem in that a step at the time of forming a hole for wiring becomes large and the wiring film in that portion is disconnected.

本発明による半導体発光装置の基本構造部分である半導体積層部の断面説明図である。It is sectional explanatory drawing of the semiconductor lamination part which is the basic structure part of the semiconductor light-emitting device by this invention. 本発明による半導体発光装置の基本構造部分の他の例を示す断面説明図である。It is sectional explanatory drawing which shows the other example of the basic structure part of the semiconductor light-emitting device by this invention. 本発明による半導体発光装置の発光部の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the light emission part of the semiconductor light-emitting device by this invention. 図3の等価回路図を示す図である。It is a figure which shows the equivalent circuit schematic of FIG. 図1または2に示される半導体発光装置の応用例を示す図である。It is a figure which shows the application example of the semiconductor light-emitting device shown by FIG. 図1または2に示される半導体発光装置の他の応用例を示す図である。It is a figure which shows the other application example of the semiconductor light-emitting device shown by FIG. 本発明による半導体発光装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the semiconductor light-emitting device by this invention. 本発明による半導体発光装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the semiconductor light-emitting device by this invention. 図1または2に示される半導体発光装置の他の応用例を示す図である。It is a figure which shows the other application example of the semiconductor light-emitting device shown by FIG. 本発明による半導体発光装置の応用例を示す図である。It is a figure which shows the application example of the semiconductor light-emitting device by this invention. LEDを用いて照明装置を形成する従来の回路例を示す図である。It is a figure which shows the example of the conventional circuit which forms an illuminating device using LED. LEDを用いて照明装置を形成する従来の構造例を示す図である。It is a figure which shows the example of the conventional structure which forms an illuminating device using LED.

符号の説明Explanation of symbols

1 発光部
3 配線膜
4 電極パッド
5 ダミー領域
6 蛍光体膜
7 蓄光ガラス膜
8 ヒューズ素子
9 キャパシタ
10 インダクタ
11 基板
13 高温バッファ層
14 n形層
15 活性層
16 p形層
17 半導体積層部
17a 分離溝
18 透光性導電層
19 p側電極(上部電極)
20 n側電極(下部電極)
21 絶縁膜
DESCRIPTION OF SYMBOLS 1 Light emission part 3 Wiring film | membrane 4 Electrode pad 5 Dummy area | region 6 Phosphor film | membrane 7 Photoluminescent glass film 8 Fuse element 9 Capacitor 10 Inductor 11 Substrate 13 High temperature buffer layer 14 N-type layer 15 Active layer 16 P-type layer 17 Semiconductor laminated part 17a Separation Groove 18 Translucent conductive layer 19 P-side electrode (upper electrode)
20 n-side electrode (lower electrode)
21 Insulating film

Claims (5)

基板と、該基板上に発光層を形成するように半導体層を積層して半導体積層部が形成され、該半導体積層部が複数個に電気的に分離されると共に、それぞれに一対の導電形層に電気的に接続される一対の電気的接続部が設けられる複数個の発光部と、前記複数個の発光部を、それぞれ直列および/または並列に接続するために前記電気的接続部に接続される配線膜とを有し、前記複数個の発光部を形成するための電気的分離が、前記半導体積層部に形成される分離溝および該分離溝内に埋め込まれる絶縁膜により形成され、該分離溝は、該分離溝を挟んだ半導体積層部の表面が実質的に同一面になる場所に形成され、該分離溝上に前記絶縁膜を介して前記配線膜が形成され、かつ、前記直列に接続される発光部の群れごとに、ヒューズ素子が直列に接続されてなる半導体発光装置。   A semiconductor laminated portion is formed by laminating a semiconductor layer so as to form a light emitting layer on the substrate, and the semiconductor laminated portion is electrically separated into a plurality of layers, and a pair of conductivity type layers are respectively provided A plurality of light emitting portions provided with a pair of electrical connection portions electrically connected to each other, and the plurality of light emitting portions connected to the electrical connection portions in order to connect the plurality of light emitting portions in series and / or in parallel, respectively. The electrical isolation for forming the plurality of light emitting portions is formed by an isolation groove formed in the semiconductor stacked portion and an insulating film embedded in the isolation trench, and the isolation The groove is formed in a place where the surface of the semiconductor stacked portion sandwiching the separation groove is substantially the same surface, the wiring film is formed on the separation groove via the insulating film, and connected in series For each group of light emitting parts to be The semiconductor light emitting device formed by connecting a column. 基板と、該基板上に発光層を形成するように半導体層を積層して半導体積層部が形成され、該半導体積層部が複数個に電気的に分離されると共に、それぞれに一対の導電形層に電気的に接続される一対の電気的接続部が設けられる複数個の発光部と、前記複数個の発光部を、それぞれ直列および/または並列に接続するために前記電気的接続部に接続される配線膜とを有し、前記複数個の発光部を形成するための電気的分離が、前記半導体積層部に形成される分離溝および該分離溝内に埋め込まれる絶縁膜により形成され、該分離溝は、該分離溝を挟んだ半導体積層部の表面が実質的に同一面になる場所に形成され、該分離溝上に前記絶縁膜を介して前記配線膜が形成され、かつ、前記直列および/または並列に接続された複数の発光部の外部電源と接続される一対の電極パッド間にサージを吸収するキャパシタが並列に接続されてなる半導体発光装置。   A semiconductor laminated portion is formed by laminating a semiconductor layer so as to form a light emitting layer on the substrate, and the semiconductor laminated portion is electrically separated into a plurality of layers, and a pair of conductivity type layers are respectively provided A plurality of light emitting portions provided with a pair of electrical connection portions electrically connected to each other, and the plurality of light emitting portions connected to the electrical connection portions in order to connect the plurality of light emitting portions in series and / or in parallel, respectively. The electrical isolation for forming the plurality of light emitting portions is formed by an isolation groove formed in the semiconductor stacked portion and an insulating film embedded in the isolation trench, and the isolation The groove is formed at a location where the surface of the semiconductor stacked portion sandwiching the separation groove is substantially flush, the wiring film is formed on the separation groove via the insulating film, and the series and / or Or outside of multiple light emitting units connected in parallel The semiconductor light-emitting device in which the capacitor for absorbing the surge is connected in parallel between a pair of electrode pads connected to the power supply. 前記直列および/または並列に接続された複数の発光部の外部電源と接続される電極パッド間にサージを吸収するキャパシタが並列に接続されてなる請求項1記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein a capacitor for absorbing surge is connected in parallel between electrode pads connected to an external power source of the plurality of light emitting units connected in series and / or in parallel. 前記複数個の発光部を形成するための分離溝が、前記半導体積層部に0.6〜5μmの幅で形成されてなる請求項1、2または3記載の半導体発光装置。   4. The semiconductor light emitting device according to claim 1, wherein the separation grooves for forming the plurality of light emitting portions are formed in the semiconductor laminated portion with a width of 0.6 to 5 μm. 前記配線膜のうち、前記発光部の上層側の導電形層に電気的に接続して設けられる電気的接続部に接続される配線膜の少なくとも一部は、透光性導電膜により形成されてなる請求項1、2、3または4記載の半導体発光装置。   Of the wiring film, at least a part of the wiring film connected to the electrical connection portion provided in electrical connection with the conductive layer on the upper side of the light emitting portion is formed of a light-transmitting conductive film. The semiconductor light-emitting device according to claim 1, 2, 3, or 4.
JP2006042186A 2006-02-20 2006-02-20 Semiconductor light-emitting device Pending JP2006135367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042186A JP2006135367A (en) 2006-02-20 2006-02-20 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042186A JP2006135367A (en) 2006-02-20 2006-02-20 Semiconductor light-emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004255802A Division JP3904571B2 (en) 2004-09-02 2004-09-02 Semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008235503A Division JP4981005B2 (en) 2008-09-12 2008-09-12 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2006135367A true JP2006135367A (en) 2006-05-25

Family

ID=36728565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042186A Pending JP2006135367A (en) 2006-02-20 2006-02-20 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2006135367A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165983A (en) * 2009-01-19 2010-07-29 Sharp Corp Light-emitting chip integrated device and method for manufacturing the same
JP2011009717A (en) * 2009-06-26 2011-01-13 Intel Corp Light-emitting device having controllable light-emitting element
WO2012023662A1 (en) * 2010-08-16 2012-02-23 한국광기술원 Light emitting diode having multi-cell structure and manufacturing method thereof
US8399890B2 (en) 2008-10-17 2013-03-19 Lg Innotek Co., Ltd. Semiconductor light emitting device and light emitting apparatus having thereof
JP2013236049A (en) * 2012-05-04 2013-11-21 Chi Mei Lighting Technology Corp Light emitting diode structure and manufacturing method of the same
JP2014225628A (en) * 2013-01-30 2014-12-04 日亜化学工業株式会社 Semiconductor light-emitting element
WO2017046261A1 (en) * 2015-09-17 2017-03-23 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component
CN110277379A (en) * 2013-06-26 2019-09-24 晶元光电股份有限公司 Light-emitting component and its manufacturing method
JP2022002289A (en) * 2020-06-20 2022-01-06 アルディーテック株式会社 Semiconductor light emitting device chip integration device and manufacturing method thereof
KR20230058007A (en) * 2020-09-16 2023-05-02 알디텍 가부시키가이샤 Semiconductor light emitting device chip integrated device and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399890B2 (en) 2008-10-17 2013-03-19 Lg Innotek Co., Ltd. Semiconductor light emitting device and light emitting apparatus having thereof
JP2010165983A (en) * 2009-01-19 2010-07-29 Sharp Corp Light-emitting chip integrated device and method for manufacturing the same
JP2011009717A (en) * 2009-06-26 2011-01-13 Intel Corp Light-emitting device having controllable light-emitting element
WO2012023662A1 (en) * 2010-08-16 2012-02-23 한국광기술원 Light emitting diode having multi-cell structure and manufacturing method thereof
JP2013236049A (en) * 2012-05-04 2013-11-21 Chi Mei Lighting Technology Corp Light emitting diode structure and manufacturing method of the same
JP2014225628A (en) * 2013-01-30 2014-12-04 日亜化学工業株式会社 Semiconductor light-emitting element
CN110277379B (en) * 2013-06-26 2024-04-16 晶元光电股份有限公司 Light-emitting element and method for manufacturing same
CN110277379A (en) * 2013-06-26 2019-09-24 晶元光电股份有限公司 Light-emitting component and its manufacturing method
WO2017046261A1 (en) * 2015-09-17 2017-03-23 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component
US10879136B2 (en) 2015-09-17 2020-12-29 Osram Oled Gmbh Method for producing an optoelectronic device
JP2022002289A (en) * 2020-06-20 2022-01-06 アルディーテック株式会社 Semiconductor light emitting device chip integration device and manufacturing method thereof
KR20230058007A (en) * 2020-09-16 2023-05-02 알디텍 가부시키가이샤 Semiconductor light emitting device chip integrated device and manufacturing method thereof
KR102638029B1 (en) 2020-09-16 2024-02-16 알디텍 가부시키가이샤 Semiconductor light emitting device chip integration device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3904571B2 (en) Semiconductor light emitting device
JP3802911B2 (en) Semiconductor light emitting device
JP4359263B2 (en) Semiconductor light emitting device
JP5193048B2 (en) Light emitting device having vertically stacked light emitting diodes
US8030669B2 (en) Semiconductor light emitting device
JP2006135367A (en) Semiconductor light-emitting device
US20060169993A1 (en) Micro-LED based high voltage AC/DC indicator lamp
EP2330642A2 (en) Light emitting device, method of manufacturing the same, light emitting device package, and lighting system
KR20130045507A (en) Light emitting device
JP5736479B2 (en) Light emitting device and light emitting device manufacturing method
JP4728788B2 (en) Semiconductor light emitting device
JP2006303525A (en) Semiconductor light emitting device
JP4981005B2 (en) Semiconductor light emitting device
JP6878406B2 (en) Light emitting element and light emitting element package containing it
KR20140023512A (en) Nitride light emitting device
KR101646261B1 (en) Light emitting device and method for fabricating the same
KR101628384B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
KR102362306B1 (en) Light emitting device
US20180013034A1 (en) Light-emitting device and lighting system comprising same
JP4995432B2 (en) Semiconductor light emitting device
KR102131309B1 (en) Phosphor and light emitting device package including the same
KR20140112177A (en) Light emitting device and light emitting device package
KR20120063953A (en) Light emitting device and light emitting device package having the same
KR20190095749A (en) Semiconductor device package
KR20170040921A (en) Light emitting device and lighting apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080924

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081031