JP2006132079A - 過剰間隙水圧逸散工法 - Google Patents
過剰間隙水圧逸散工法 Download PDFInfo
- Publication number
- JP2006132079A JP2006132079A JP2004318702A JP2004318702A JP2006132079A JP 2006132079 A JP2006132079 A JP 2006132079A JP 2004318702 A JP2004318702 A JP 2004318702A JP 2004318702 A JP2004318702 A JP 2004318702A JP 2006132079 A JP2006132079 A JP 2006132079A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- shaped drainage
- drainage material
- ground
- water pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Foundations (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
【課題】 既存の建造物の基礎部分における地盤の液状化を簡便且つ確実に防止することが出来る過剰間隙水圧逸散工法の提供。
【解決手段】 建造物(T)下方の領域(G)に自在ボーリング可能なマシン(7)を用いて地上(G1)から掘削孔(80t、80)を削孔する削孔工程と、掘削孔内にパイプ状排水材(90、90C)を配置するパイプ状排水材設置工程とを有し、パイプ状排水材を設置した掘削孔により建造物下方の領域の過剰間隙水圧を地上側に逃す経路(水道80)を構成し、前記パイプ状排水材設置工程では、表面に開口部(12a)が形成されたシース部材(12)を掘削孔内に挿入し、シース部材内にパイプ状排水材(90、90C)を配置している。
【選択図】 図1
【解決手段】 建造物(T)下方の領域(G)に自在ボーリング可能なマシン(7)を用いて地上(G1)から掘削孔(80t、80)を削孔する削孔工程と、掘削孔内にパイプ状排水材(90、90C)を配置するパイプ状排水材設置工程とを有し、パイプ状排水材を設置した掘削孔により建造物下方の領域の過剰間隙水圧を地上側に逃す経路(水道80)を構成し、前記パイプ状排水材設置工程では、表面に開口部(12a)が形成されたシース部材(12)を掘削孔内に挿入し、シース部材内にパイプ状排水材(90、90C)を配置している。
【選択図】 図1
Description
本発明は、軟弱地盤の液状化防止のために、軟弱地盤から過剰間隙水圧を軟弱地盤外へ逸散させる過剰間隙水圧逸散工法に関する。
近年において、地盤の液状化の問題に対する関心が高まっている。
地盤の液状化は、地震等により地盤の繰り返し剪断力が作用した場合に、当該地盤が液状化してしまう現象であり、埋立地の様な砂地盤等で生じ易い。そして、係る地盤の液状化現象に対する関心が高くなっていることに伴い、各種建造物に対しても、液状化防止対策が要求される様になっている。
ここで、既に建造されてしまった建造物の基礎部分の地盤が液状化することを防止するためには、従来、いわゆる「薬液注入工法」が施工される場合が存在した。
地盤の液状化は、地震等により地盤の繰り返し剪断力が作用した場合に、当該地盤が液状化してしまう現象であり、埋立地の様な砂地盤等で生じ易い。そして、係る地盤の液状化現象に対する関心が高くなっていることに伴い、各種建造物に対しても、液状化防止対策が要求される様になっている。
ここで、既に建造されてしまった建造物の基礎部分の地盤が液状化することを防止するためには、従来、いわゆる「薬液注入工法」が施工される場合が存在した。
すなわち、各種手法により既存建造物の基礎部分に対応する領域に固化材(薬液)を注入し、固化材を注入された領域の強度を向上することにより、地盤の液状化を防止するのである。
しかし、既設建造物を損傷すること無く、当該建造物直下領域の地盤改良(を行って液状化を防止)するのは、困難であった。
また、従来技術によって、仮に既設建造物の損傷を最低限になったとしても、当該既設建造物の領域に存在する既存施設の稼動を停止すること無く、液状化防止のための地盤改良を行うことは、従来技術では不可能である。
さらに、液状化防止のための地盤改良を行うに際して、削孔作業が必要となるが、既存建造物直下の各種障害物を避けて、その様な削孔作業を行うことは、従来技術では不可能であった。
しかし、既設建造物を損傷すること無く、当該建造物直下領域の地盤改良(を行って液状化を防止)するのは、困難であった。
また、従来技術によって、仮に既設建造物の損傷を最低限になったとしても、当該既設建造物の領域に存在する既存施設の稼動を停止すること無く、液状化防止のための地盤改良を行うことは、従来技術では不可能である。
さらに、液状化防止のための地盤改良を行うに際して、削孔作業が必要となるが、既存建造物直下の各種障害物を避けて、その様な削孔作業を行うことは、従来技術では不可能であった。
地盤の液状化を防止するためのその他の従来技術としては、構造物の基礎構造を工夫して、地盤液状化による被害を抑制する技術が存在する(例えば、特許文献1)。
しかし、基礎構造を工夫するのでは、既存建造物の基礎部分が築造されている地盤の液状化を防止することは出来ない。
特開2004−92048号公報
しかし、基礎構造を工夫するのでは、既存建造物の基礎部分が築造されている地盤の液状化を防止することは出来ない。
本発明は上述した従来技術の問題点に鑑み提案されたもので、特に既存の建造物の基礎部分直下の地盤の液状化を簡便且つ確実に防止することが出来る過剰間隙水圧逸散工法を提供することを目的としている。
本発明の過剰間隙水圧逸散工法では、建造物(T)下方の領域(G)に自在ボーリング可能なマシン(7)を用いて地上(G1)から掘削孔(80t、80)を削孔する削孔工程と、該削孔工程で削孔された掘削孔(80t、80)内にパイプ状排水材(透水性ドレン90、例えば合成樹脂製ドレン90C)を配置するパイプ状排水材設置工程とを有し、パイプ状排水材(90、90C)を設置した掘削孔により建造物下方の領域の過剰間隙水圧を地上側に逃す経路(水道80)を構成し、前記パイプ状排水材設置工程では表面に開口部(12a)が形成されたシース部材(12)を掘削孔内に挿入し、シース部材(12)の内部にはパイプ状排水材(90、90C)が配置されていることを特徴としている(請求項1)。
本発明の過剰間隙水圧逸散工法において、前記削孔工程で削孔された掘削孔(80t)を拡径する工程を有し、前記パイプ状排水材設置工程では拡径された掘削孔(80)内にパイプ状排水材(90、90C)が配置されるのが好ましい(請求項2)。
前記拡径する工程と前記パイプ状排水材設置工程とは同時に行うことも出来るし、前記拡径工程が完了した後に前記パイプ状排水材設置工程を施工しても良い。
前記拡径する工程と前記パイプ状排水材設置工程とは同時に行う場合、本発明の過剰間隙水圧逸散工法は、建造物(T)下方の領域(G)に自在ボーリング可能なマシン(7)を用いて地上(G1)から掘削孔(80t、80)を削孔する削孔工程と、該削孔工程で削孔された掘削孔(80t)を拡径すると共に、拡径された掘削孔(80)内にパイプ状排水材(透水性ドレン90、例えば合成樹脂製ドレン90C)を配置する拡径及びパイプ状排水材設置工程とを有し、パイプ状排水材(90、90C)を設置した掘削孔により建造物下方の領域の過剰間隙水圧を地上側に逃す経路(水道80)を構成し、前記拡径及びパイプ状排水材設置工程では、掘削孔が拡径されると同時に、表面に開口部(12a)が形成されたシース部材(12)が拡径された掘削孔内に挿入され、シース部材(12)の内部にはパイプ状排水材(90、90C)が配置されていることを特徴とすることになる。
また、本発明の過剰間隙水圧逸散工法は、前記パイプ状排水材(90、90C)の壁面に付着した土粒子(M)を除去する清掃工程を有している(請求項3:図27〜図32)。
前記パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程では、土粒子(M)を除去するべき領域に少なくとも2個の膨張部材(パッカ20)を挿入しその膨張部材(パッカ20)を膨張させ、その2個の膨張部材(パッカ20)に挟まれた領域(E)に水を供給して当該領域(E)を膨張せしめた後、前記水を当該領域(E)から排出する際に前記パイプ状部材(90C)の壁面に付着した土粒子(M)を除去する(請求項4:図27〜図30)。
又は、前記パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程では、パイプ状排水材(90C)の土粒子(M)を除去するべき領域に高圧水を噴射する機構(高圧水ジェット噴射機構等)を挿入し、該機構に地上(G1)側から高圧水を供給し供給された高圧水を地上(G1)側方向で且つ半径方向(矢印r方向)へ噴射して(矢印Jwr:すなわち、地上側から供給された高圧水を前記高圧水を噴射する機構において反転せしめ、そして矢印Jwrへ噴射して)、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する(請求項5:図31)。
或いは、前記パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程では、可撓性を有する線条部材(ワイヤ、ロープ60等)を前記パイプ状排水材(90C)に挿入し、該線条部材(ワイヤ、ロープ60等)に清掃手段(ブラシ70、高圧水噴射機構(図31)等)を介装して線条部材(ワイヤ、ロープ60等)を移動することにより前記パイプ状部材(90C)の壁面に付着した土粒子(M)を除去する(請求項6:図32)。
前記パイプ状排水材設置工程において、パイプ状排水材(90、90C)としては、多数の孔が穿孔されている有孔管、ポーラス構造の材料製のパイプ、スポンジのような連泡構造の材料性のパイプや、ポーラスドレン工法で使用されるドレン材で製造されたパイプが使用可能である。また、ポーラス材料の砕石を、網や袋状部材などで包んで、パイプ状排水材を構成することも可能である。
本発明の過剰間隙水圧逸散工法によれば、パイプ状排水材(90、90C)を設置した掘削孔(80)により建造物(T)下方の領域(G)の過剰間隙水圧(P)を地上側(Gf)に逃す経路(水道80)(みずみち)を構成しているので、土壌粒子(例えば、砂粒子)同士の変位を許容して、間隙水圧の上昇を抑制することが出来る。そのため、有効応力が低下してしまうことも無い。従って、液状化現象が発生しない。
換言すれば、パイプ状排水材(90、90C)を設置した掘削孔(80)により建造物(T)下方の領域(G)の過剰間隙水圧(P)を地上側(Gf)に逃す経路(水道80)を構成したので、経路(80)により地震発生時における土粒子間の水の圧力(間隙水圧)を逃がし、間隙水圧の上昇及び過剰間隙水圧の発生を防止しているのである。
ここで、掘削孔(80)の長さが長いと、パイプ状排水材(90、90C)を一方から引っ張ると、途中で破断してしまう可能性がある。これに対して、本発明において、表面に開口部(12a)が形成されたシース部材(12)にパイプ状排水材(90C)を収容し、拡径された掘削孔(80)内にシース部材(12)とパイプ状排水材(90C)とを同時に挿入する様に構成しているので、引っ張り力はシース部材(12)が受け持つので、パイプ状排水材(90C)が破断してしまう恐れは無くなる。
ここで、微細な土粒子(M)であれば、パイプ状排水材(90、90C)の透水性の高い部材を通過して、内部に沈殿、堆積してしまう可能性がある。それを放置した場合には、パイプ状排水材(90、90C)の透水性が劣化して、土壌中の水がパイプ状排水材(90、90C)内部に侵入できなくなり、圧力を地上側に逃すことが出来なくなる。
これに対して、本発明の過剰間隙水圧逸散工法では、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程を有する様に構成しており、パイプ状排水材(90C)の内部に侵入して、堆積した微細な土粒子(M)を除去して、パイプ状排水材(90C)の透水性を保持できる(請求項3参照)。
これに対して、本発明の過剰間隙水圧逸散工法では、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程を有する様に構成しており、パイプ状排水材(90C)の内部に侵入して、堆積した微細な土粒子(M)を除去して、パイプ状排水材(90C)の透水性を保持できる(請求項3参照)。
詳細には、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程では、土粒子(M)を除去するべき領域に少なくとも2個の膨張部材(パッカ20)を挿入しその膨張部材(パッカ20)を膨張させ、その2個の膨張部材(パッカ20)に挟まれた領域(E)に水を供給して当該領域(E)を膨張せしめた後、前記水を当該領域(E)から排出しその排出の際に、前記パイプ状部材(90C)の壁面に付着した土粒子(M)を除去することが出来る(請求項4参照)。
又は、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程では、パイプ状排水材(90C)の土粒子(M)を除去するべき領域に高圧水を噴射する機構(高圧水ジェット噴射機構等)を挿入し、該機構に地上(G1)側から高圧水を供給し、供給された高圧水を地上(G1)側方向で且つ半径方向(矢印r方向)へ(当該噴射する機構において反転せしめた後に、矢印Jwrで示す方向へ)噴射することによって、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去することが出来る(請求項5参照)。
或いは、パイプ状排水材(90C)の壁面に付着した土粒子(M)を除去する清掃工程では、可撓性を有する線条部材(ワイヤ、ロープ60等)を前記パイプ状排水材(90C)に挿入し、該線条部材(ワイヤ、ロープ60等)に清掃手段(ブラシ70、高圧水噴射機構(図38)等)を介装して線条部材(ワイヤ、ロープ60等)を移動することにより前記パイプ状部材(90C)の壁面に付着した土粒子(M)を除去することが出来る(請求項6参照)。
そして、本発明の過剰間隙水圧逸散工法の施工は、従来の施工、例えば、軟弱地盤(例えば砂地盤)における建造物の基礎部分が存在する領域全体に固化材を注入することに比較して、遥かに容易で、且つ、必要とするコストを抑制することが出来る。
また本発明の過剰間隙水圧逸散工法によれば、自在ボーリング可能なマシン(7)を使用して、いわゆる「曲がりボーリング」を行うので、施工しようとする領域から外れた領域であって、所定の位置に自在ボーリング可能なマシン(7)を設置して、いわゆる「曲がりボーリング」を行うことが出来る。
そのため、建造物の投影部分を避けて、本発明の過剰間隙水圧逸散工法を実行することが可能となる。すなわち、例えば既存建造物が隣接している現場のように、建造物の敷地の関係でボーリング用の機器の設置に制限があるような場合においても、本発明であれば施工可能である。
そのため、建造物の投影部分を避けて、本発明の過剰間隙水圧逸散工法を実行することが可能となる。すなわち、例えば既存建造物が隣接している現場のように、建造物の敷地の関係でボーリング用の機器の設置に制限があるような場合においても、本発明であれば施工可能である。
次に、図1〜図10を参照して、本発明の第1実施形態を説明する。
先ず、図1及び図2を参照して、本発明に係る液状化防止の概要(原理)を説明する。
先ず、図1及び図2を参照して、本発明に係る液状化防止の概要(原理)を説明する。
図2(a)で示す様に、砂地盤Gにおいては、砂粒子M内に水Wが取り込まれている。ここで、砂粒子M同士は有効応力で結合した状態或いは噛み合った状態になっている。
地震により砂地盤Gの砂粒子に対して振動が作用すると、図2(b)で示す様に、間隙水圧が上昇し、砂粒子M同士の噛み合いが外れ、砂粒子M間の有効応力が低下する。
地震により砂地盤Gの砂粒子に対して振動が作用すると、図2(b)で示す様に、間隙水圧が上昇し、砂粒子M同士の噛み合いが外れ、砂粒子M間の有効応力が低下する。
砂粒子M間の有効応力が低下する結果、砂地盤Gは泥水状態となり、砂粒子Mは浮遊状態となり、砂粒子M相互に有効応力が作用しない状態となってしまう。すなわち、地盤Gの液状化が生じる。
ここで、粘土は粒子の形状が多様化しているので、相互の結合が強く、間隙水圧が上昇しても、粒子間の有効応力が低下しにくく、粒子が水に浮遊した状態とはならない。そのため、粘土地盤は液状化現象が生じないのである。
ところで、 全応力=有効応力+間隙水圧 という関係が成り立っており、地震で土壌Gが揺すられて、間隙水圧が上昇すると、その分、有効応力が低下する。
そこで、間隙水圧の上昇を押さえれば、有効応力が低下せず、液状化現象は発生しない。
ところで、 全応力=有効応力+間隙水圧 という関係が成り立っており、地震で土壌Gが揺すられて、間隙水圧が上昇すると、その分、有効応力が低下する。
そこで、間隙水圧の上昇を押さえれば、有効応力が低下せず、液状化現象は発生しない。
そのため、図1で示す様に、間隙水圧の上昇を防止するべき領域(例えば、既存建造物Tの基盤となる領域G)から地上側まで、水道(みずみち)80が付けてあれば、当該「水道」80により土壌中の間隙水が地上側に逃げることを許容し、以って、地震時に砂地盤に生じる過剰間隙水圧(符号P)の上昇を抑制する。
そして、過剰間隙水圧が上昇しないため、図2で示されている様に、粒子M間のかみ合いが外れることは無く、粒子M間の有効応力は低下しなくなる。すなわち、液状化が防止できる。
そして、過剰間隙水圧が上昇しないため、図2で示されている様に、粒子M間のかみ合いが外れることは無く、粒子M間の有効応力は低下しなくなる。すなわち、液状化が防止できる。
係る「水道」80を形成するために、透水性の良い部材であるパイプ状排水材(ドレン)90、好ましくは合成樹脂ドレン90Cを、図1において、既存建造物Tの基盤となる領域Gから地上側まで配置する。これは、透水性の良いパイプ状排水材90により間隙水を逃すことにより、土壌粒子(例えば、砂粒子)間の圧力を逃して、粒子間の有効応力が低下することが防止されるからである。
換言すれば、透水性の良いパイプ状排水材(ドレン材)90により水を逃してやることにより、地震発生時における土粒子M間の水Wに作用する圧力を逃がし、過剰間隙水圧の上昇及び砂粒子M相互間の有効応力が低下する事態の発生を防止しているのである。
そして、砂粒子M相互間の有効応力が低下する事態を防ぐことが出来れば、粒子(砂地盤であれば、砂粒子)M(図2)が浮遊状態になってしまうことも防止される。
そして、砂粒子M相互間の有効応力が低下する事態を防ぐことが出来れば、粒子(砂地盤であれば、砂粒子)M(図2)が浮遊状態になってしまうことも防止される。
図1において、水道となる経路80には、例えば透水性の良いパイプ状排水材(ドレン材)90が配置されており、地中からの圧力(過剰間隙水圧)Pが当該経路80を介して、地上Gf側に逃げるような構造であれば良い。間隙水圧が上昇してしまう領域から地上Gf側まで、過剰間隙水圧が抜ける経路或いは水道80が付けてあれば、液状化が防止できる。
次に、図3〜図5を参照して、液状化防止工法の第1実施形態の一実施例(第1実施例)を説明する。
過剰間隙水圧が抜ける経路80或いは水道を形成するに際しては、例えば、図3〜図5で示す様に施工する。
先ず、図3において、ボーリングマシン7の可撓性ロッド7a(曲りボーリング)で、地上G1から、液状化を防止するべき領域、すなわち、地上の既存建造物Tの基礎となる領域Gを介して、再び地上G2まで到達するような湾曲した掘削孔80tを削孔する。
過剰間隙水圧が抜ける経路80或いは水道を形成するに際しては、例えば、図3〜図5で示す様に施工する。
先ず、図3において、ボーリングマシン7の可撓性ロッド7a(曲りボーリング)で、地上G1から、液状化を防止するべき領域、すなわち、地上の既存建造物Tの基礎となる領域Gを介して、再び地上G2まで到達するような湾曲した掘削孔80tを削孔する。
次に、図4において、可撓性ロッド7aで掘削されたのみでは前記掘削孔80tは、径が細すぎて、パイプ状排水材(ドレン材)90(図1参照)等を配置できない。すなわち、径の細い掘削孔80tでは水圧を逃すのに不適当である。そこで、例えば、リーマ7r等で拡径する(拡径した掘削孔が、符号「80」で示されている)。
図5では、拡径された掘削孔80にパイプ状排水材90(例えば、合成樹脂製ドレン90C)を挿入する。
第4実施形態以降で詳述するが、拡径された掘削孔80内にパイプ状排水材90を挿入するためには、表面に多数の貫通小孔を有するシース部材(シース部材12:図26参照)にパイプ状排水材90を挿入して、そのシース部材を拡径した掘削孔80に挿入する様に構成されている。
第4実施形態以降で詳述するが、拡径された掘削孔80内にパイプ状排水材90を挿入するためには、表面に多数の貫通小孔を有するシース部材(シース部材12:図26参照)にパイプ状排水材90を挿入して、そのシース部材を拡径した掘削孔80に挿入する様に構成されている。
図3〜図5の第1実施形態の第1実施例によれば、従来技術のような薬液注入による液状化対策に比較して、コストが大変安い。
液状化対策が要求される地盤は、例えば砂地盤の様に崩落し易い。
掘削孔の削孔或いは拡径のみを行ったのでは、地盤が崩落して当該掘削孔が閉塞されてしまう。
そのため、図4で示す工程に際して、可撓性ロッド7aを引抜き、リーマ7rで拡径を行いつつ、例えば図示しないベントナイトのような安定化液を拡径された掘削孔80内に充填することにより、該安定化液によって砂地盤等の崩落が防止され、掘削孔80の安定が確保される。
掘削孔の削孔或いは拡径のみを行ったのでは、地盤が崩落して当該掘削孔が閉塞されてしまう。
そのため、図4で示す工程に際して、可撓性ロッド7aを引抜き、リーマ7rで拡径を行いつつ、例えば図示しないベントナイトのような安定化液を拡径された掘削孔80内に充填することにより、該安定化液によって砂地盤等の崩落が防止され、掘削孔80の安定が確保される。
また、第1実施形態の第2実施例では、図6〜図8で示す様に、リーマ7rで拡径すると同時に、透水性の良い部材であるパイプ状排水材(ドレン材)90をリーマにより、矢印Y方向に引っ張り込めれば、透水性のパイプ状排水材(例えばドレン材)90の配置と、地盤G中に作用する圧力を逃す経路(水道)80の形成(拡径工程)、という2つの工程を同時に済ませることが出来る。
図6〜図8で示す第2実施例では、先ず、図6で示す様に、或いは、図3で示すのと同様に、曲がりボーリングのボーリングマシン7の可撓性ロッド7aで、地上G1から地上の既存建造物Tの基礎となる領域Gを貫通して再び地上G2に到達する湾曲した掘削孔80tを削孔する。
次に、図7で示す様に、可撓性ロッド7aで掘削された掘削孔80tをリーマ7r等で拡径する(拡径した掘削孔が、符号「80」で示されている)のと同時に、パイプ状排水材(ドレン材)90をリーマにより矢印Y方向に引っ張り込む。これにより、透水性のパイプ状排水材(例えばドレン材)90の配置と、掘削孔80tの拡径という2つの作業を同時に行う。
リーマ7rによる拡径が終了して、既存建造物Tの基礎となる領域Gにパイプ状排水材90が配置された状態が、図8で示されている。なお、図8は、図5と同一である。
リーマ7rによる拡径が終了して、既存建造物Tの基礎となる領域Gにパイプ状排水材90が配置された状態が、図8で示されている。なお、図8は、図5と同一である。
図9、図10(第1実施形態の変形例:第1実施形態の第3実施例)で示す様に、リーマ7rによる拡径および安定液、例えばベントナイト11の充填(図9)と、パイプ状排水材90の配置(図10)とを別工程で行っても良い。
図10で示すパイプ状排水材配置工程は、図3〜図5で示す様に、掘削孔80tの拡径と、透水性のパイプ状排水材(例えばドレン材)90の配置とを、別々の工程で行う場合の実施例である。図10の実施例では、パイプ状排水材90先端にガイド部材100を設け、該ガイド部材100をワイヤ110及び牽引手段(リールその他)120で牽引して行っている。ここで、ワイヤ110及び牽引手段は、ボーリングマシン7とは別途設けられている。
図10で示すパイプ状排水材配置工程は、図3〜図5で示す様に、掘削孔80tの拡径と、透水性のパイプ状排水材(例えばドレン材)90の配置とを、別々の工程で行う場合の実施例である。図10の実施例では、パイプ状排水材90先端にガイド部材100を設け、該ガイド部材100をワイヤ110及び牽引手段(リールその他)120で牽引して行っている。ここで、ワイヤ110及び牽引手段は、ボーリングマシン7とは別途設けられている。
さらに、過剰間隙水圧を効果的に逃すためには、図11、図12(第1実施形態の別の変形例:第1実施形態の第4実施例)で示す様に、水平方向及び垂直方向について、過剰間隙水圧を逃す経路(水道)80を配置させることが好ましい。
或いは、図11に対して、図13(第1実施形態の更に別の変形例:第1実施形態の第5実施例)に示すように、さらに45度の角度を持ってクロスする2層の掘削孔列80Aを加えて形成することも可能である。
或いは、図11に対して、図13(第1実施形態の更に別の変形例:第1実施形態の第5実施例)に示すように、さらに45度の角度を持ってクロスする2層の掘削孔列80Aを加えて形成することも可能である。
図11〜図13に示した様に、複数のドレン孔を設置すれば、排水或いは間隙水圧消散の効率が向上する。
図3〜図13で示す第1実施形態では、何れの実施例(変形例)も、可撓性ロッド7aで掘削された掘削孔80tをリーマ7r等で拡径しているが、図14〜図15で示す第2実施形態では、係る拡径作業を省略している。
図14において、可撓性ロッド7aよりも大径で且つ先端に掘削ビット80bを有する掘削ロッド7Lを用いて、地上側(G1側)から、既存の建造物Tの基礎地盤Gを介して再び地上側(G2側)に到達する湾曲した大径の掘削孔80Lを削孔する。
ここで、掘削ロッド7Lを用いて大径の掘削孔80Lを削孔するためのボーリングマシンは、図14において符号7Pで示されている。
なお、比較的大径の掘削孔80Lを削孔する技術としては、従来、公知の技術、例えばパイプルーフ工法等で使用されている従来技術を適用すれば良い。
ここで、掘削ロッド7Lを用いて大径の掘削孔80Lを削孔するためのボーリングマシンは、図14において符号7Pで示されている。
なお、比較的大径の掘削孔80Lを削孔する技術としては、従来、公知の技術、例えばパイプルーフ工法等で使用されている従来技術を適用すれば良い。
比較的大径の掘削孔80Lを削孔したならば、掘削ロッド7L内にパイプ状排水材90を挿入し、その後、掘削ロッド7Lを回収する。ただし、基礎地盤Gが強固であれば、削孔ロッド7Lを回収した後、パイプ状排水材90を挿入しても良い。
パイプ状排水材90を掘削ロッド7L内に挿入するために、図15の場合には、ボーリングマシン7Pに設けられたリール手段85で巻き取り可能に構成された線条部材87を、パイプ状排水材90の先端(図15では右端)と結合している。そして、リール手段85で線条部材87を巻き取れば、パイプ状排水材90は掘削ロッド7L内に引き込まれて、配置される(図16参照)。
次に、図17〜図25を参照して、第3実施形態について説明する。
第3実施形態は、曲がりボーリングの段階では施工地盤を貫通しないで所定箇所まで掘削した後、該掘削位置から引き抜く実施形態の1種である。
第3実施形態は、曲がりボーリングの段階では施工地盤を貫通しないで所定箇所まで掘削した後、該掘削位置から引き抜く実施形態の1種である。
図17〜図22は、第3実施形態の施工工程を説明する工程図である。同図に基づいて、施工に要する設備・機械の構成及び工程を、順を追って説明する。
図17は可撓性のロッドによる削孔工程(いわゆる「曲がりボーリング」)を示している。
地上側G1には掘削機7が所定の角度(掘削開始の角度)で配置されている。図17で示す状態は、所定の角度で掘削機7から繰り出される可撓性のロッド(曲がりボーリング)7aで、所定の深さまで斜め前方に堀り進み、以降、当該の施工地盤領域Gを水平に掘り進み、到達点まで掘削孔(ボーリング孔)8を掘り進んだ状態を示している。
地上側G1には掘削機7が所定の角度(掘削開始の角度)で配置されている。図17で示す状態は、所定の角度で掘削機7から繰り出される可撓性のロッド(曲がりボーリング)7aで、所定の深さまで斜め前方に堀り進み、以降、当該の施工地盤領域Gを水平に掘り進み、到達点まで掘削孔(ボーリング孔)8を掘り進んだ状態を示している。
図18及び図19で示す鞘管挿入工程では、図17で示す可撓性のロッド7aをガイドとして、当該可撓性ロッド7aを包囲する様な鞘管(以降、鞘管を特殊ケーシングという)400を挿入する。
特殊ケーシング400は、詳細を図23に示すように、両端に突起状の接手部材41を有する要素管40同士が、前記突起状の接続部材41で噛合って全体の特殊ケーシング400として構成されている。当該特殊ケーシング400の先端部は、前記要素管40を長手方向の中心で切断し(切断され残った半分の要素管を符号42で示す)、その切断部に図24及び図25に詳細を示すノズル部材43が取り付けられている。
また、特殊ケーシング400は、引っ張りとトルクは伝達出来るように構成されている。尚、樹脂などで特殊ケーシングを構成することも可能である。
また、特殊ケーシング400は、引っ張りとトルクは伝達出来るように構成されている。尚、樹脂などで特殊ケーシングを構成することも可能である。
前記ノズル部材43は図24に詳細を示すように、噴孔の向きを前方に向けた切削流体噴射ノズル44aと、その切削流体噴射ノズル44aの背面には噴孔の向きを前記切削用流体噴射ノズル44aの噴孔の向きと離反する方向に向けた排泥用流体噴射ノズル44bが取り付けられている。
前記切削流体噴射ノズル44aは、切削流体供給ホース45によって図示しない地上側の切削流体供給手段と接続されている。また、排泥用流体噴射ノズル44bは、地上側の図示しない例えば、コンプレッサとエアホース46を介して接続されており、高圧エアが供給されるように構成されている。
前記切削流体噴射ノズル44aは、切削流体供給ホース45によって図示しない地上側の切削流体供給手段と接続されている。また、排泥用流体噴射ノズル44bは、地上側の図示しない例えば、コンプレッサとエアホース46を介して接続されており、高圧エアが供給されるように構成されている。
特殊ケーシング400の挿入に際しては、特殊ケーシング400先端の前記切削用流体噴射ノズル44aから切削流体(例えば切削用泥水Jw2)を噴射して、可撓性ロッド7a周辺の地盤Gを特殊ケーシング400の横断面形状(環状)に掘削しながら、特殊ケーシング400を挿入する(図18参照)。
ここで、可撓性ロッド7aによる削孔と同時に、可撓性ロッド7aを包囲、収容しつつ特殊ケーシング400を挿入しても良い。
ここで、可撓性ロッド7aによる削孔と同時に、可撓性ロッド7aを包囲、収容しつつ特殊ケーシング400を挿入しても良い。
特殊ケーシング400は、掘削孔の崩落防止のために必要である。
特殊ケーシング400の先端で大きい径のボーリング孔80を削孔するため、図24で示す様に、特殊ケーシング400は、先端の切削用流体噴射ノズル(ジェットノズル)44a、排泥用流体噴射ノズル44b及び削孔用泥水供給ホース45、排泥用流体(例えば高圧エア)供給用ホース46を有している。
特殊ケーシング400の先端で大きい径のボーリング孔80を削孔するため、図24で示す様に、特殊ケーシング400は、先端の切削用流体噴射ノズル(ジェットノズル)44a、排泥用流体噴射ノズル44b及び削孔用泥水供給ホース45、排泥用流体(例えば高圧エア)供給用ホース46を有している。
特殊ケーシング400による掘削、特殊ケーシング400の挿入(ボーリング孔8の先端部までの挿入)が完了したならば、図20で示す様に、可撓性ロッド7aを地上側に引き抜く(可撓性ロッド引抜工程)。
可撓性ロッド7aで削孔された孔8のみでは、例えば崩落等により後述するパイプ状排水材90を挿入できなくなる可能性がある。これに対して、特殊ケーシング400を挿入すれば、崩落等が生じても、特殊ケーシング400内部空間が確保されるので、当該内部空間に後述するパイプ状排水材90を挿入して、切羽側まで移動させることが可能となる。
図20において、特殊ケーシング400は、ボーリング孔8(拡径された孔80)の先端まで挿入されている。
可撓性ロッド7aで削孔された孔8のみでは、例えば崩落等により後述するパイプ状排水材90を挿入できなくなる可能性がある。これに対して、特殊ケーシング400を挿入すれば、崩落等が生じても、特殊ケーシング400内部空間が確保されるので、当該内部空間に後述するパイプ状排水材90を挿入して、切羽側まで移動させることが可能となる。
図20において、特殊ケーシング400は、ボーリング孔8(拡径された孔80)の先端まで挿入されている。
図25に示すように、特殊ケーシング400には、その先端から後方に向って流体を噴射するための流体噴射ノズル44bが設けられている。流体噴射ノズル44bから噴射されたスラリー排出用流体(例えば、高圧エア)Ja2によって、特殊ケーシング400の内側に侵入した砂等を除去するためである。
すなわち、特殊ケーシング400の内側に砂等が侵入すると、可撓性ロッド7aを地上側へ引抜く際に、特殊ケーシング400と可撓性ロッド7aとの間の空間で砂等が詰まってしまい、いわゆる「ジャーミング」を生じてしまい、可撓性ロッド7aを引抜けなくなる恐れが存在する。これに対して、流体噴射ノズル44bからスラリー排出用流体Ja2を噴射すれば、ジャーミングの原因となる砂等を除去して、当該砂等が詰まってしまう事態を未然に防止できる。
すなわち、特殊ケーシング400の内側に砂等が侵入すると、可撓性ロッド7aを地上側へ引抜く際に、特殊ケーシング400と可撓性ロッド7aとの間の空間で砂等が詰まってしまい、いわゆる「ジャーミング」を生じてしまい、可撓性ロッド7aを引抜けなくなる恐れが存在する。これに対して、流体噴射ノズル44bからスラリー排出用流体Ja2を噴射すれば、ジャーミングの原因となる砂等を除去して、当該砂等が詰まってしまう事態を未然に防止できる。
特殊ケーシング400内から可撓性ロッド7aが引き抜かれたならば、図21で示す様に、前記特殊ケーシング400内にパイプ状排水材90を挿入して、特殊ケーシング400先端(拡径された孔80の先端)まで挿入する(パイプ状排水材設置工程)。
図21においては、特殊ケーシング400の内部にパイプ状排水材90が挿入されている状態を明示するため、特殊ケーシング400にはハッチングを付していない。
図21においては、特殊ケーシング400の内部にパイプ状排水材90が挿入されている状態を明示するため、特殊ケーシング400にはハッチングを付していない。
特殊ケーシング400の先端までパイプ状排水材90が到達した後、矢印Y1で示す様に、特殊ケーシング400を地上側に引抜く(図22)。
上述の第3実施形態によれば、可撓性を有する掘削ロッド(いわゆる「曲がりボーリング」7a)を用いて(湾曲部分及び水平方向に延在した領域を含む任意の経路に沿って)ボーリング孔8を削孔する工程(可撓性のロッド7aによる削孔工程;図17)と、特殊ケーシング400が可撓性を有する掘削ロッド7aを収容しつつ当該掘削ロッド7aの周辺の地盤Gを掘削しながらボーリング孔8に沿って挿入される工程(鞘管挿入工程;図18、図19)と、特殊ケーシング400内にパイプ状排水材90を挿入する工程(パイプ状排水材設置工程;図21)とを有しているため、崩落し易い砂地盤であっても、削孔先が地表側に開口していない「盲孔」を形成して、パイプ状排水材90を配置することが出来る。
上述した様に、第3実施形態によれば、可撓性ロッド7aによる削孔と同時に、可撓性ロッド7aを包囲、収容しつつ特殊ケーシング400を挿入することも可能である。
すなわち、第3実施形態によれば、可撓性を有する掘削ロッド(いわゆる「曲がりボーリング」7a)を用いて(湾曲部分及び水平方向に延在した領域を含む任意の経路に沿って)ボーリング孔8を削孔する(可撓性のロッド7aによる削孔;図17)と共に、特殊ケーシング400が可撓性を有する掘削ロッド7aを収容しつつ当該掘削ロッド7aの周辺の地盤Gを掘削しながらボーリング孔8に沿って挿入される(鞘管挿入;図18、図19)工程と、特殊ケーシング400内にパイプ状排水材90を挿入する工程(パイプ状排水材設置工程;図21)とを有して構成することも出来る。
すなわち、第3実施形態によれば、可撓性を有する掘削ロッド(いわゆる「曲がりボーリング」7a)を用いて(湾曲部分及び水平方向に延在した領域を含む任意の経路に沿って)ボーリング孔8を削孔する(可撓性のロッド7aによる削孔;図17)と共に、特殊ケーシング400が可撓性を有する掘削ロッド7aを収容しつつ当該掘削ロッド7aの周辺の地盤Gを掘削しながらボーリング孔8に沿って挿入される(鞘管挿入;図18、図19)工程と、特殊ケーシング400内にパイプ状排水材90を挿入する工程(パイプ状排水材設置工程;図21)とを有して構成することも出来る。
係る構成を具備する第3実施形態によれば、発進立孔、到達立孔を掘削する必要が無い。
また、貫通孔を削孔出来ない様な現場でも施工が可能である。
さらに、水平方向に延在する領域が長くても、施工可能である。
また、貫通孔を削孔出来ない様な現場でも施工が可能である。
さらに、水平方向に延在する領域が長くても、施工可能である。
図14〜図25の実施形態(第2実施形態〜第3実施形態)は、本発明のパイプ状排水材の設置工程の例示であり、本発明(の過剰間隙水圧逸散工法)の技術的範囲を限定する趣旨の記述ではない。
例えば、図示の実施形態に係るパイプ状排水材の設置工程では、前記パイプ状排水材(ドレンパイプ)90としては、多数の孔が穿孔されている有孔管を用いても良いし、ポーラス構造の材料製のパイプ、スポンジのような連泡構造の材料性のパイプや、ポーラスドレン工法で使用されるドレン材で製造されたパイプ等も使用可能である。また、ポーラス材料の砕石を、網や袋状部材などで包んで、パイプ状排水材を構成することも可能である。
例えば、図示の実施形態に係るパイプ状排水材の設置工程では、前記パイプ状排水材(ドレンパイプ)90としては、多数の孔が穿孔されている有孔管を用いても良いし、ポーラス構造の材料製のパイプ、スポンジのような連泡構造の材料性のパイプや、ポーラスドレン工法で使用されるドレン材で製造されたパイプ等も使用可能である。また、ポーラス材料の砕石を、網や袋状部材などで包んで、パイプ状排水材を構成することも可能である。
上述した通り、透水性の良いパイプ状排水部材(ドレン)90としては、合成樹脂ドレン90Cが好適である。
しかし、係る合成樹脂ドレン90Cは、特に使用する長さが長い場合には、合成樹脂ドレン90Cを一方から引っ張って所定位置へ配置しようとすると、合成樹脂ドレン90Cが途中で破断してしまう恐れがある。
しかし、係る合成樹脂ドレン90Cは、特に使用する長さが長い場合には、合成樹脂ドレン90Cを一方から引っ張って所定位置へ配置しようとすると、合成樹脂ドレン90Cが途中で破断してしまう恐れがある。
そこで、第4実施形態として、係る合成樹脂ドレン90Cを、拡径された掘削孔80内に配置するためには、図26に示すように、表面部の開口率(シース12外表面に穿孔された多数の小孔12aの開口面積が全外表面面積に占める割合)が所定値以上であり、一定以上の靭性を備え且つ必要な可撓性を備えたシース部材12に合成樹脂ドレン90Cを挿入して、シース部材12を外部から引っ張り、且つシース部材12の引っ張り側とは反対側の端部で合成樹脂ドレン90Cを押すように構成すれば良い。
即ち、シース12の引っ張り側の端部には蓋部材13が形成され、その前面には牽引用フック14が形成されている。またシース12の後端部には底部材16が形成され、その底部材16の内部平面に、合成樹脂ドレン90Cが当接する様に収容されている。尚、図26中、符号15は牽引用のケーブルを示す。
図示はしないが、図26の第4実施形態の第2変形例として、シース部材に、合成樹脂ドレンを二重にして外側の合成樹脂ドレン(大径の合成樹脂ドレン)はカバーとしてのみ使うことが可能である。
また、所定の開口率で開口部(例えば小孔)を多数形成した塩化ビニールのような合成樹脂製のパイプを結合して、シース部材を構成しても良い。或いは、開口を形成したガス用の配管を流用することも可能である。
また、所定の開口率で開口部(例えば小孔)を多数形成した塩化ビニールのような合成樹脂製のパイプを結合して、シース部材を構成しても良い。或いは、開口を形成したガス用の配管を流用することも可能である。
ここで、シース部材に所定以上の開口率が必要なのは、シース部材12が合成樹脂ドレン90Cと一緒に掘削孔80内に埋め殺しとなるので、シース部材12表面に開口(小孔)12aが形成されていなければ、圧力は合成樹脂ドレン90Cの内部に到達せず、間隙水が合成樹脂ドレン90C経由で逃げることが許容されず、間隙水或いは過剰間隙水圧が地上側まで逃げないからである。
上述した様な圧力が逃げる経路或いは水道80(図1〜図22参照)を、液状化防止が必要な領域Gから地上側まで形成しても、時間の経過により、パイプ状排水材である透水性ドレン(例えば合成樹脂ドレン90C)の内側下方に、微細な土粒子Mが沈殿、積層してしまう場合がある。
沈殿、積層した微細な土粒子Mは、間隙水或いは過剰間隙水が、パイプ状排水材である透水性ドレン90の内側領域(圧力が逃げる経路或いは水道80)に到達することを阻害してしまう。
沈殿、積層した微細な土粒子Mは、間隙水或いは過剰間隙水が、パイプ状排水材である透水性ドレン90の内側領域(圧力が逃げる経路或いは水道80)に到達することを阻害してしまう。
そのため、図27〜図30で示す様な第5実施形態により、沈殿、積層した微細な土粒子Mを除去することが出来る。
図27〜図30を参照して、第5実施形態の構成及び作用を説明する。
図27〜図30を参照して、第5実施形態の構成及び作用を説明する。
先ず、図27において、透水性ドレン90Cの壁面に土粒子Mが付着している領域に、複数のパッカ20を配置する。
各パッカ20は供給管22によって貫通され、その供給管22は各パッカ20間の領域で、ドレン90C内に水を噴射する複数の噴射孔22aが形成されている。パッカ20内では、パッカ20内と供給管22内部とは液密及び気密に保たれている。
さらに各パッカ20は吸気管24と連通して(パッカ20内で吸気管24は排気口24aが形成されて)おり、地上側から圧縮空気が送り込まれ、パッカ20が膨張する様に構成されている。
各パッカ20は供給管22によって貫通され、その供給管22は各パッカ20間の領域で、ドレン90C内に水を噴射する複数の噴射孔22aが形成されている。パッカ20内では、パッカ20内と供給管22内部とは液密及び気密に保たれている。
さらに各パッカ20は吸気管24と連通して(パッカ20内で吸気管24は排気口24aが形成されて)おり、地上側から圧縮空気が送り込まれ、パッカ20が膨張する様に構成されている。
次の図28では、パッカ20を膨らませて、微細な土粒子Mが付着している領域の前後を閉塞させる。
そして、供給管22に設けられた噴射孔22aから、パッカ20で閉鎖された領域Eに大量の水(及びエア)Jを供給して、当該領域Eを膨脹させ(図29)、収縮させる。
これに加えて、空気も供給してやると、膨脹、収縮による脈動と、空気の流動により、付着した微細な土粒子Mがドレン90C壁面から剥がれる(図30参照)。
そして、供給管22に設けられた噴射孔22aから、パッカ20で閉鎖された領域Eに大量の水(及びエア)Jを供給して、当該領域Eを膨脹させ(図29)、収縮させる。
これに加えて、空気も供給してやると、膨脹、収縮による脈動と、空気の流動により、付着した微細な土粒子Mがドレン90C壁面から剥がれる(図30参照)。
尚、当該閉塞領域Eへの空気の供給は、図示しない空気専用の供給管によって供給することも可能であるが、前記供給管22によって、水と空気の混合流体を供給してもよい。
時間が経過し、透水性ドレン90Cの壁から水(及び空気)が抜けると、図28の状態に戻る
図29と図30とを繰り返せば、パッカ20で閉鎖された領域Eが膨張、膨張解除を繰り返すので、透水性ドレン90C壁面に付着した微細な土粒子Mが透水性ドレン90C壁面から剥離する。
剥離された土粒子Mについては、図30に示すように、吸入管26を別途挿入して、パッカ20で閉鎖された領域Eの水と共に吸引することが可能である。
これにより、目詰まりは解消する。
これにより、目詰まりは解消する。
次に、図31を参照して、第6実施形態を説明する。
第5実施形態では、パッカ20で閉鎖した領域E内の堆積した土粒子Mしか除去出来ない。
それに対して、第6実施形態は、図31で示す様に、ノズルNによって、進行方向へ高圧水Jwを供給し、供給された高圧水Jwを、ノズルNの前方に配置され、供給方向側が縮径する円錐状の反射板30によって反転させて、地上側G1方向且つ半径方向(矢印r方向)に向けて、高圧水ジェットJwrを噴射させている。
第5実施形態では、パッカ20で閉鎖した領域E内の堆積した土粒子Mしか除去出来ない。
それに対して、第6実施形態は、図31で示す様に、ノズルNによって、進行方向へ高圧水Jwを供給し、供給された高圧水Jwを、ノズルNの前方に配置され、供給方向側が縮径する円錐状の反射板30によって反転させて、地上側G1方向且つ半径方向(矢印r方向)に向けて、高圧水ジェットJwrを噴射させている。
高圧水ジェットJwrは合成樹脂の透水性ドレン90C壁面に衝突して、堆積した土粒子Mを剥離せしめて除去する。
前記反射板30は、高圧水ジェットJwの反力により、地上側G1とは反対方向へ進行する。
尚、図31において、符号32は反射板30をノズルN側に支持するための支持部材である。
前記反射板30は、高圧水ジェットJwの反力により、地上側G1とは反対方向へ進行する。
尚、図31において、符号32は反射板30をノズルN側に支持するための支持部材である。
次に、図32を参照して第7実施形態を説明する。
図32の第7実施形態は、合成樹脂の透水性ドレン90Cと、清掃手段(ブラシ70等)を取り付けたロープ60と、地上Gf側のリール機構62とで構成されている。
なお、ロープ60には、監視カメラ50及び監視カメラ用の信号伝達ラインを平行に取り付けることも出来る。
図32の第7実施形態は、合成樹脂の透水性ドレン90Cと、清掃手段(ブラシ70等)を取り付けたロープ60と、地上Gf側のリール機構62とで構成されている。
なお、ロープ60には、監視カメラ50及び監視カメラ用の信号伝達ラインを平行に取り付けることも出来る。
上述の様に構成された第7実施形態では、監視カメラ50で、合成樹脂の透水性ドレン90C内を監視している。そして、土の堆積等により、透水性が確保出来ない領域があれば、堆積した土をブラシ70等の清掃手段で除去する。
ブラシ70に代えて、図31の高圧水ジェット噴射機構を採用することも可能である。
ブラシ70に代えて、図31の高圧水ジェット噴射機構を採用することも可能である。
ワイヤ或いはロープ60等の端部同士を接続して、循環機構を構成しても良い。
或いは、1本のワイヤ或いはロープ60を、合成樹脂の透水性ドレン90C内に入れて、両端部が地上側に位置するようにしておけば良い。清掃時や監視カメラ50の移動時等は、ワイヤ或いはロープ60の端同士を結合し、循環機構を構成すれば良い。
これにより、パッカ20、カメラ50、その他を、普段は地上側で管理し、必要な場合に、地盤G中の合成樹脂の透水性ドレン90Cが挿入された圧力が逃げる経路(水道)80内に配置させることが可能である。
或いは、1本のワイヤ或いはロープ60を、合成樹脂の透水性ドレン90C内に入れて、両端部が地上側に位置するようにしておけば良い。清掃時や監視カメラ50の移動時等は、ワイヤ或いはロープ60の端同士を結合し、循環機構を構成すれば良い。
これにより、パッカ20、カメラ50、その他を、普段は地上側で管理し、必要な場合に、地盤G中の合成樹脂の透水性ドレン90Cが挿入された圧力が逃げる経路(水道)80内に配置させることが可能である。
図示のパイプ状排水材90、90C及び土粒子除去する清掃工程に係る実施形態(第4〜第7実施形態)も例示であり、本発明の過剰間隙水圧逸散工法における技術的範囲を限定する趣旨の記載ではない。
7・・・自在ボーリング可能なマシン
7a・・・ボーリングロッド、又は曲がりボーリング
7r・・・リーマ
12・・・シース
16・・・底部材
20・・・パッカ
22・・・供給手段
26・・・吸入管
40・・・要素管
50・・・監視カメラ
60・・・ロープ
70・・・ブラシ
80・・・(拡径された)掘削孔
85、120・・・牽引手段(リール等)
90・・・パイプ状排水材/ドレン
90C・・・合成樹脂ドレン
100・・・ガイド
110・・・ワイヤ
400・・・鞘管/特殊ケーシング
M・・・土粒子
Jw・・・高圧水
7a・・・ボーリングロッド、又は曲がりボーリング
7r・・・リーマ
12・・・シース
16・・・底部材
20・・・パッカ
22・・・供給手段
26・・・吸入管
40・・・要素管
50・・・監視カメラ
60・・・ロープ
70・・・ブラシ
80・・・(拡径された)掘削孔
85、120・・・牽引手段(リール等)
90・・・パイプ状排水材/ドレン
90C・・・合成樹脂ドレン
100・・・ガイド
110・・・ワイヤ
400・・・鞘管/特殊ケーシング
M・・・土粒子
Jw・・・高圧水
Claims (6)
- 建造物下方の領域に自在ボーリング可能なマシンを用いて地上から掘削孔を削孔する削孔工程と、該削孔工程で削孔された掘削孔内にパイプ状排水材を配置するパイプ状排水材設置工程とを有し、パイプ状排水材を設置した掘削孔により建造物下方の領域の過剰間隙水圧を地上側に逃す経路を構成し、前記パイプ状排水材設置工程では表面に開口部が形成されたシース部材を掘削孔内に挿入し、該シース部材の内部にはパイプ状排水材を配置されていることを特徴とする過剰間隙水圧逸散工法。
- 前記削孔工程で削孔された掘削孔を拡径する工程を有し、前記パイプ状排水材設置工程では拡径された掘削孔内にパイプ状排水材が配置される請求項1の過剰間隙水圧逸散工法。
- 前記パイプ状排水材の壁面に付着した土粒子を除去する清掃工程を有する請求項1、2の何れかの過剰間隙水圧逸散工法。
- 前記パイプ状排水材の壁面に付着した土粒子を除去する清掃工程では、土粒子を除去するべき領域に少なくとも2個の膨張部材を挿入しその膨張部材を膨張させ、その2個の膨張部材に挟まれた領域に水を供給して当該領域を膨張せしめた後、前記水を当該領域から排出しその排出の際に前記パイプ状部材の壁面に付着した土粒子を除去する請求項3の過剰間隙水圧逸散工法。
- 前記パイプ状排水材の壁面に付着した土粒子を除去する清掃工程では、パイプ状排水材の土粒子を除去するべき領域に高圧水を噴射する機構を挿入し、該機構に地上側から高圧水を供給し、供給された高圧水を地上側方向で且つ半径方向へ噴射して、パイプ状排水材の壁面に付着した土粒子を除去する請求項3の過剰間隙水圧逸散工法。
- 前記パイプ状排水材の壁面に付着した土粒子を除去する清掃工程では、可撓性を有する線条部材を前記パイプ状排水材に挿入し、該線条部材に清掃手段を介装して線条部材を移動することにより前記パイプ状部材の壁面に付着した土粒子を除去することを特徴とする請求項3、請求項5の何れかの過剰間隙水圧逸散工法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004318702A JP2006132079A (ja) | 2004-11-02 | 2004-11-02 | 過剰間隙水圧逸散工法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004318702A JP2006132079A (ja) | 2004-11-02 | 2004-11-02 | 過剰間隙水圧逸散工法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006132079A true JP2006132079A (ja) | 2006-05-25 |
Family
ID=36725876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004318702A Pending JP2006132079A (ja) | 2004-11-02 | 2004-11-02 | 過剰間隙水圧逸散工法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006132079A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191984A (ja) * | 2006-01-23 | 2007-08-02 | Hazama Corp | 既設構造物の下部地盤の液状化抑制工法 |
JP2008261139A (ja) * | 2007-04-12 | 2008-10-30 | Kajima Corp | 免震構造および免震構造施工方法 |
CN107916662A (zh) * | 2017-11-28 | 2018-04-17 | 武汉大学 | 软土地基排水固结方法 |
JP2019112836A (ja) * | 2017-12-25 | 2019-07-11 | 鹿島建設株式会社 | 液状化対策方法 |
JP7034224B1 (ja) | 2020-09-17 | 2022-03-11 | 芦森工業株式会社 | 地下水位低下工法及び地下水位低下用設備敷設システム |
-
2004
- 2004-11-02 JP JP2004318702A patent/JP2006132079A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191984A (ja) * | 2006-01-23 | 2007-08-02 | Hazama Corp | 既設構造物の下部地盤の液状化抑制工法 |
JP2008261139A (ja) * | 2007-04-12 | 2008-10-30 | Kajima Corp | 免震構造および免震構造施工方法 |
CN107916662A (zh) * | 2017-11-28 | 2018-04-17 | 武汉大学 | 软土地基排水固结方法 |
JP2019112836A (ja) * | 2017-12-25 | 2019-07-11 | 鹿島建設株式会社 | 液状化対策方法 |
JP7034224B1 (ja) | 2020-09-17 | 2022-03-11 | 芦森工業株式会社 | 地下水位低下工法及び地下水位低下用設備敷設システム |
JP2022050249A (ja) * | 2020-09-17 | 2022-03-30 | 芦森工業株式会社 | 地下水位低下工法及び地下水位低下用設備敷設システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010101062A (ja) | 地下水の排水構造及びその排水構造を備えたトンネルの構築方法 | |
JP2009179945A (ja) | 道路用井戸暗渠及びその施行方法 | |
JP4846249B2 (ja) | 横井戸形成方法及び短井戸管並びに横井戸による地下水循環型汚染土壌浄化方法及び装置 | |
JP2006132079A (ja) | 過剰間隙水圧逸散工法 | |
JP3940764B2 (ja) | ドレーンパイプ工法および地盤穿孔装置 | |
JP4563838B2 (ja) | 管内土砂掘削・排出装置及び管内土砂掘削・排出工法 | |
JP2018091038A (ja) | 既設井戸の抜管方法 | |
JP2006169930A (ja) | 水抜きボーリングの総合排水システム | |
KR100690396B1 (ko) | 가요성 압송관을 이용한 지하수 집수정의 유공관 주변여과재 설치공법 | |
JP4732287B2 (ja) | 井戸掘削装置 | |
KR100373927B1 (ko) | 굴착공의 지표수 유입차단장치 및 공법 | |
JP2005120738A (ja) | 取水装置 | |
JP2013023971A (ja) | 地盤の液状化抑止工法 | |
JP2002242240A (ja) | 井戸の揚水方法及び井戸の揚水ポンプ装置 | |
JPH07247551A (ja) | 不透水層を有する高水位地盤の掘削方法 | |
JP6480745B2 (ja) | 注水井戸の設置方法 | |
JP3690490B2 (ja) | 止水壁設置井戸及び施工法並びに地下水処理機構 | |
KR102097924B1 (ko) | 지향성압입공법 굴착용 제트펌프 | |
JP5183431B2 (ja) | 油汚染土壌の油回収方法 | |
JP3403028B2 (ja) | 管状井戸材料の敷設方法 | |
JP5295038B2 (ja) | 水抜き工法 | |
KR101517156B1 (ko) | 지하수 관정 개발공법 | |
JP6837364B2 (ja) | 暗渠排水管合流排水マスの修復方法 | |
JP2005281972A (ja) | リバースサーキュレーションドリル | |
JPS60242207A (ja) | 水面下に充填物を建造する方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20071015 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20091007 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091009 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100218 |