JP2006131732A - Phenol resin molded product, material for molding and method for producing the same - Google Patents

Phenol resin molded product, material for molding and method for producing the same Download PDF

Info

Publication number
JP2006131732A
JP2006131732A JP2004321731A JP2004321731A JP2006131732A JP 2006131732 A JP2006131732 A JP 2006131732A JP 2004321731 A JP2004321731 A JP 2004321731A JP 2004321731 A JP2004321731 A JP 2004321731A JP 2006131732 A JP2006131732 A JP 2006131732A
Authority
JP
Japan
Prior art keywords
phenol resin
phenol
resin molded
molded product
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004321731A
Other languages
Japanese (ja)
Inventor
Tadashi Yamada
正 山田
Akitaka Kikuchi
彰隆 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2004321731A priority Critical patent/JP2006131732A/en
Publication of JP2006131732A publication Critical patent/JP2006131732A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenol resin molded product having low shrinkability, high strength and high-performance flame retardance. <P>SOLUTION: The phenol resin molded product is obtained by using a phenol resin having ≤8 wt.% of free phenol content. Thereby, the amount of pores in a curing molding step can be reduced and formation of micropores can be suppressed by using an inorganic filler trapping a volatile component or free water and having a specific particle size distribution. Thereby, the resultant phenol resin molded product has ≤0.20 ml/g pore volume within the range of approximate diameter of 100-10,000 Å. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築用部材、車両用部材をはじめとする各種成型体として使用されるレゾール型フェノール樹脂成型体とその成型用材料およびその製法に関するものである。   The present invention relates to a resol-type phenolic resin molded body used as various molded bodies including a building member and a vehicle member, a molding material thereof, and a manufacturing method thereof.

フェノール樹脂成型用材料は液状レゾール型フェノール樹脂、無機充填剤、また必要に応じて硬化性調整剤、離型剤などを混ぜたペーストをガラス繊維に含浸させてシート状にし、必要に応じて熟成処理を行い半硬化させた成型用材料である。通常、このフェノール樹脂成型用材料を金型により加熱加圧成型することにより成型体が得られる。このようにして得られた成型体は、その優れた耐久性、機械強度、軽量性から、建築用材料、車両用材料をはじめとする各種成型体として広く用いられる。近年、特に難燃性、低発煙性の要求が高まり、難燃性、低発煙性に優れたフェノール樹脂を用いた成型体と材料の研究、開発は盛んに行われている。   The phenol resin molding material is made into a sheet by impregnating glass fiber with a paste mixed with liquid resol type phenol resin, inorganic filler, and curing adjuster, mold release agent, etc., if necessary, and aged as necessary It is a molding material that has been processed and semi-cured. Usually, a molding is obtained by heating and pressing the phenol resin molding material with a mold. The molded body thus obtained is widely used as various molded bodies including building materials and vehicle materials because of its excellent durability, mechanical strength and light weight. In recent years, especially the demand for flame retardancy and low smoke generation has increased, and research and development of moldings and materials using phenolic resins excellent in flame retardancy and low smoke generation have been actively conducted.

一例として、特開平4−1259公報ではカルボン酸基含有成分を含むレゾール型フェノール樹脂をベースとした増粘性、成型時の型内流動性及び長期の保存安定性を有するレゾール型フェノール樹脂成型用材料が開示されている。
しかし、これらフェノール樹脂成型用材料の欠点としては、樹脂硬化時の縮合反応等によって起こる反り及び変形等の寸法安定性の問題がある。そのため、寸法安定性の改良として低収縮剤を添加する方法がある。一例として、特開平8−269297号公報ではポリ酢酸ビニルを添加した低収縮性で且つ高難燃性のフェノール樹脂成型用材料が開示されている。しかしこの公報記載の技術では低収縮性を達成しうるが、車両用難燃性試験では「極難燃性」相当を示すものの車両用天井材、床材に求められる高性能の「不燃性」レベルまでの難燃性を達成することは難しい。
特開平4−1259号公報 特開平8−269297号公報
As an example, Japanese Patent Laid-Open No. 4-1259 discloses a resole-type phenol resin molding material having a thickening property, in-mold fluidity during molding, and long-term storage stability based on a resole-type phenol resin containing a carboxylic acid group-containing component. Is disclosed.
However, the disadvantages of these phenol resin molding materials are problems of dimensional stability such as warpage and deformation caused by a condensation reaction during resin curing. Therefore, there is a method of adding a low shrinkage agent as an improvement in dimensional stability. As an example, JP-A-8-269297 discloses a low-shrinkage and highly flame-retardant phenol resin molding material to which polyvinyl acetate is added. However, although the technology described in this publication can achieve low shrinkage, the vehicle flame retardant test shows "extremely flame retardant" equivalent, but the high performance "non-flammability" required for vehicle ceiling materials and floor materials. It is difficult to achieve flame retardancy to the level.
Japanese Patent Laid-Open No. 4-1259 JP-A-8-269297

本発明は、上記の事情を背景に、低収縮性を有するとともに、高強度で高性能の難燃性であるフェノール樹脂成型体とその成型用材料およびその製法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a phenol resin molded body having low shrinkage, high strength and high performance flame retardancy, a molding material thereof, and a production method thereof.

本発明者らは、以上のような現状を背景に、上記課題を解決するために鋭意研究した結果、フリーフェノール含有量が8重量%以下であるフェノール樹脂を使用することにより硬化成型工程での細孔量を低減でき、また揮発成分またはフリーの水をトラップする特定粒度分布の無機充填材を併用することにより微細孔の生成を抑えることができることを見出し、そして100〜10000オングストロームの近似直径範囲の細孔容積が0.20ml/g以下であるフェノール樹脂成型体において、低収縮性に特に優れた成型体が得られることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems in the background of the present situation as described above, the present inventors have used a phenol resin having a free phenol content of 8% by weight or less in the curing molding process. It has been found that the generation of micropores can be suppressed by using an inorganic filler having a specific particle size distribution that traps volatile components or free water, and the approximate diameter range of 100 to 10000 angstroms It was found that a molded product particularly excellent in low shrinkage can be obtained in a phenol resin molded product having a pore volume of 0.20 ml / g or less, and the present invention has been completed.

従来技術では反り及び変形について、低収縮剤として例えばポリ酢酸ビニルを添加して解決しようとしているが、鋭意研究した結果、フェノール樹脂成型体における反り及び変形は成型体に内在する細孔構造に起因していることを明らかにした。すなわちフェノール樹脂の硬化反応が不十分な場合、あるいは揮発成分が多く残存する場合には成型体構造に微細孔が多く存在するためにそこに水分等が吸着及び脱離することで材料の寸法変化を引き起こす問題が発生していた。この点に鑑み、本発明では100〜10000オングストロームの近似直径範囲の細孔容積が0.20ml/g以下である細孔構造をもつフェノール樹脂成型体において、環境変化および長期での寸法変化を小さくすることができることを見出し、達成したものである。より望ましくは細孔容積が0.15ml/g以下である。   The conventional technology tries to solve the warpage and deformation by adding, for example, polyvinyl acetate as a low shrinkage agent. However, as a result of intensive research, warpage and deformation in the phenol resin molded body are caused by the pore structure inherent in the molded body. Clarified that In other words, when the phenol resin curing reaction is insufficient, or when a large amount of volatile components remain, the molded body structure has many micropores, so moisture and other substances are adsorbed and desorbed to change the dimensions of the material. There was a problem causing it. In view of this point, in the present invention, in the phenol resin molded body having a pore structure in which the pore volume in the approximate diameter range of 100 to 10000 angstroms is 0.20 ml / g or less, environmental change and long-term dimensional change are reduced. We have found and achieved what we can do. More desirably, the pore volume is 0.15 ml / g or less.

この成型体を製造する一例としては、フリーフェノール含有量が8重量%以下であるフェノール樹脂を使用することにより硬化成型工程での細孔量を低減できる。フリーフェノールはガスクロマトグラフィにより定量化した単量体のフェノールである。このフリーフェノール含有量が8%より多い樹脂を原料とした場合では成型体の硬化性を低下させるので、成型体に残存する細孔量が多くなる傾向がある。なお、従来は強度などへの影響は小さいため、フリーフェノールが15%程度含有されるフェノール樹脂が使用されていた。
もちろん、このフリーフェノール量の低減は有効な方法であるが、フリーフェノール成分を低減することのみでは完全には低収縮性に特に優れた成形体を達成することは難しい。そこで、われわれは、揮発成分またはフリーの水をトラップする特定粒度分布の無機充填材を併用することにより微細孔の生成を抑えることができることを見出し、目標とする寸法安定性を達成することができた。
As an example for producing this molded body, the amount of pores in the curing molding process can be reduced by using a phenol resin having a free phenol content of 8% by weight or less. Free phenol is monomeric phenol quantified by gas chromatography. When a resin having a free phenol content of more than 8% is used as a raw material, the curability of the molded body is lowered, so that the amount of pores remaining in the molded body tends to increase. Conventionally, a phenol resin containing about 15% of free phenol has been used because the influence on strength and the like is small.
Of course, this reduction in the amount of free phenol is an effective method, but it is difficult to achieve a molded article that is completely excellent in low shrinkage only by reducing the free phenol component. Therefore, we have found that the formation of micropores can be suppressed by using an inorganic filler with a specific particle size distribution that traps volatile components or free water, and the target dimensional stability can be achieved. It was.

本発明において使用される無機充填材の粒度分布は2μm〜10μmの範囲である。フェノールの硬化反応は脱水縮合であるため、多量に発生する水分を樹脂構造より排出することが重要である。そこで発生する水分を樹脂構造よりも移動しやすい無機充填材粒子間に捕捉することで、好ましい細孔構造が得られ、製品寸法変化を小さくできることを見出し、達成したものである。そのため無機充填材の粒度分布は平均粒径で2〜10μmの範囲で、好ましくは4〜8μmである。平均粒径が小さく、すなわち粒子表面積が大きいほど、フェノール脱水縮合で生成する水分を粒子間に捕捉させることができる。しかしながら粒子表面積がより大きく、平均粒径が2μmよりも小さくなるとシートモールディングコンパウンド(以下SMCと略称)などを作成する際のペースト粘度が上昇してガラス繊維への含浸性が低下するため、2μm以上の平均粒径が好ましく、また10μmより大きくなると先の水分を捕捉する効果が小さくなる。請求の範囲である平均粒径の無機充填材が水分の補足性ならびに含浸性の両方を満足する範囲に適しているものである。   The particle size distribution of the inorganic filler used in the present invention is in the range of 2 μm to 10 μm. Since the curing reaction of phenol is dehydration condensation, it is important to discharge a large amount of generated moisture from the resin structure. Thus, it has been found and achieved that the moisture generated is trapped between the inorganic filler particles that move more easily than the resin structure, whereby a preferable pore structure can be obtained and the change in product dimensions can be reduced. Therefore, the particle size distribution of the inorganic filler is an average particle size in the range of 2 to 10 μm, preferably 4 to 8 μm. The smaller the average particle size, that is, the larger the particle surface area, the more moisture generated by phenol dehydration condensation can be trapped between the particles. However, if the particle surface area is larger and the average particle size is smaller than 2 μm, the viscosity of the paste when making a sheet molding compound (hereinafter abbreviated as “SMC”) is increased and the impregnation property into glass fibers is decreased, so that it is 2 μm or more. The average particle diameter is preferably greater than 10 μm, and the effect of capturing the moisture is reduced. The inorganic filler having an average particle diameter as claimed is suitable for a range satisfying both the water-capturing property and the impregnating property.

本発明において使用されるレゾール型フェノール樹脂量は10〜30重量部である。従来技術では30重量部以上の樹脂を使用する製法が多いものであったが、本発明ではフリーフェノールの少ないフェノール樹脂を使用し、かつ無機充填材粒径の最適化により少ない樹脂量でも高強度を達成することができる。この樹脂量を30重量部以下にすることで、寸法変化量もより小さくなりかつ、燃焼試験でも性能を改善することができる。また、10重量部より少なくなると成型体強度が十分ではない。   The amount of the resol type phenol resin used in the present invention is 10 to 30 parts by weight. In the prior art, there are many production methods using a resin of 30 parts by weight or more, but in the present invention, a phenol resin with a small amount of free phenol is used, and the inorganic filler particle size is optimized to achieve a high strength even with a small amount of resin. Can be achieved. By setting the amount of resin to 30 parts by weight or less, the dimensional change amount becomes smaller and the performance can be improved even in a combustion test. On the other hand, when the amount is less than 10 parts by weight, the strength of the molded body is not sufficient.

本発明において使用される無機充填剤としては、カオリンクレイのほかに水酸化アルミニウム、炭酸カルシウム、けい砂、マイカ、タルク、珪酸カルシウム水和物、水酸化マグネシウム、水酸化カルシウムが挙げられ、これらの中で特にカオリンクレイが好ましく、無機充填材の中で3割以上はカオリンクレイを使用するとよい。またカオリンクレイ、水酸化アルミニウムの組み合わせは難燃性、成型性、流動性の点からより好ましい。
本発明で使用される他の材料には内部離型剤として一般に使用されるステアリン酸亜鉛等が使用される。
本発明において使用される繊維補強材はガラス繊維、カーボン繊維、アラミド繊維等であり、その繊維長さは通常1.5〜50mmのものが使用される。繊維補強材の使用量は成型用材料全体の10〜50重量%である。
Examples of the inorganic filler used in the present invention include aluminum hydroxide, calcium carbonate, silica sand, mica, talc, calcium silicate hydrate, magnesium hydroxide, and calcium hydroxide in addition to kaolin clay. Among them, kaolin clay is particularly preferable, and kaolin clay is preferably used for 30% or more of the inorganic fillers. A combination of kaolin clay and aluminum hydroxide is more preferable from the viewpoint of flame retardancy, moldability, and fluidity.
Other materials used in the present invention include zinc stearate, which is generally used as an internal mold release agent.
The fiber reinforcement used in the present invention is glass fiber, carbon fiber, aramid fiber or the like, and the fiber length is usually 1.5 to 50 mm. The amount of the fiber reinforcement used is 10 to 50% by weight of the entire molding material.

次に代表的な製造例を挙げれば、上述フェノール樹脂ペーストを上下に配置されたキャリアフィルムにSMC用ペーストの厚みが0.3mm以上、10mm以下の範囲の厚みでほぼ均一な厚さとなるように塗布し、下部のキャリアフィルムに塗布されたペースト上に所定のサイズに切断されたガラス繊維を散布し、上下のキャリアフィルム上のペーストでガラス繊維を挟み込み、次いで全体を含浸ロール間に通してSMC用ペーストをガラス繊維に含浸させ、必要に応じて熟成処理をすることによってSMCが作製される。ここでキャリアフィルムとしてはポリエチレンフィルムや、ポリプロピレンフィルムを用いるのが一般的である。また、熟成処理とは成型前の前処理の一つで、20℃から90℃で、1時間から20日間程度の範囲で熱処理を行うことが好ましい。   Next, as a typical production example, the thickness of the SMC paste on the carrier film in which the above-mentioned phenol resin paste is arranged above and below is approximately uniform within a thickness range of 0.3 mm or more and 10 mm or less. The glass fibers cut to a predetermined size are spread on the paste applied to the lower carrier film, the glass fibers are sandwiched between the pastes on the upper and lower carrier films, and then the whole is passed between the impregnating rolls. The SMC is produced by impregnating the glass paste with glass fiber and aging as necessary. Here, a polyethylene film or a polypropylene film is generally used as the carrier film. The aging treatment is one of pretreatments before molding, and it is preferable to perform heat treatment at 20 ° C. to 90 ° C. for about 1 hour to 20 days.

上記のようにして得られたフェノール樹脂成型用材料は高温で加圧することにより容易に成型でき、建築用部材、車両用部材および自動車用部材等として使用される種々の成型体にすることができる。特に本発明のフェノール樹脂成型用材料を用いた成型体は低収縮性かつ高強度で非常に高い難燃特性を有することから、新幹線など鉄道用車両内装材のうち天井材、床材など不燃材用パネルとして非常に適している。   The phenol resin molding material obtained as described above can be easily molded by pressurizing at a high temperature, and can be formed into various molded bodies used as building members, vehicle members, automobile members and the like. . In particular, the molded body using the phenol resin molding material of the present invention has a low shrinkage, high strength, and extremely high flame retardancy. Therefore, non-combustible materials such as ceiling materials and floor materials among railway vehicle interior materials such as Shinkansen Very suitable as a panel.

本発明によって、従来のフェノール樹脂成型用材料の欠点である反り、変形等が改良された、低収縮性かつ高強度で高難燃性のフェノール樹脂成型用材料を提供することができ、産業上大いに有用である。車両用難燃性試験で「不燃性」レベルが達成でき、鉄道車両天井材、床材等の部材に使用できる繊維補強フェノール樹脂成型体が得られる。   According to the present invention, a low-shrinkage, high-strength, high-flame-retardant phenolic resin molding material having improved warpage, deformation, etc., which are disadvantages of conventional phenolic resin molding materials can be provided. It is very useful. A "flammability" level can be achieved in the flame retardant test for vehicles, and a fiber-reinforced phenolic resin molded body that can be used for members such as railcar ceiling materials and floor materials is obtained.

以下、実施例、比較例に基づいて更に本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example and a comparative example, this invention is not limited to these Examples.

実施例、比較例における物性の評価、流動性、成型性の評価は以下の方法で行った。
(1)難燃性
難燃性は国交省鉄運81号に定める「国交省法」に準じて測定した。
(2)曲げ強度
実施例、比較例で得られた平板から3点曲げ試験用サンプルを切り出し、万能試験機(ミネベア(株)製、TCM−500型万能引張圧縮試験機)を用いて、JIS K7017に従い3点曲げによる曲げ強度測定を行った。
(3)反り
反りはJISK6911に準じて測定した。
(4)フリーフェノール含有量
フリーフェノールの測定はガスクロマトグラフィーで測定した。
(5)細孔容積
水銀ポロシ法により測定した。
[実施例1、2、参考例1]
Evaluation of physical properties, fluidity, and moldability in Examples and Comparative Examples were performed by the following methods.
(1) Flame retardance Flame retardancy was measured in accordance with the “Ministry of Land, Infrastructure, Transport and Tourism Act” defined in the MLIT No. 81.
(2) Bending strength A three-point bending test sample was cut out from the flat plates obtained in the examples and comparative examples, and JIS was used using a universal testing machine (manufactured by Minebea Co., Ltd., TCM-500 universal tensile compression testing machine). The bending strength was measured by 3-point bending according to K7017.
(3) Warpage Warpage was measured according to JISK6911.
(4) Free phenol content Free phenol was measured by gas chromatography.
(5) Pore volume It measured by the mercury porosi method.
[Examples 1 and 2 and Reference Example 1]

レゾール系フェノール樹脂(旭有機材工業(株)製 フリーフェノール5.5%)、またはレゾール系フェノール樹脂(コーロン社製 フリーフェノール8%、KRP−25L)、硬化性調整剤として水酸化カルシウム(和光純薬工業(株)製 試薬特級)、内部離型剤としてステアリン酸亜鉛(関東化学(株)製 試薬1級)、無機充填材として水酸化アルミニウム(昭和電工(株)製 ハイジライトH32)及びカオリンクレイ(ENGELHARD社製 ASP−400P)、シランカップリング剤として3−グリシドキシプロピルトリメトキシシラン(以下、エポキシシランと言う。)(信越化学(株)製 KBM−403)をハンドミキサーにて約10分間混合攪拌してSMC用ペーストを得た。キャリアフィルムに厚み40μmのポリプロピレン製フィルム(サン・トックス(株)製、サン・トックスCP)を用い、SMC製造装置を用いて上記SMCペースト75重量部に対してガラス繊維(日東紡績(株)製、RS240PB−548AC、平均繊維径11μm、平均繊維長25mm、Eガラス)25重量部の割合で散布してペーストの間にはさみ込み含浸させ、その後、60℃で15時間熟成処理を行い、フェノール樹脂成型用材料を得た。次に金型温度180℃で真空引きと同時に加圧を行い、引き続き同温度で圧力1.17×10Paの条件下で3分間圧縮成型して150mm×150mm×2mmの成型体を得た。
[比較例1、2]
Resol type phenol resin (Asahi Organic Materials Co., Ltd. free phenol 5.5%) or resol type phenol resin (Coron free phenol 8%, KRP-25L), calcium hydroxide (Japanese Reagent special grade manufactured by Kojun Pharmaceutical Co., Ltd., zinc stearate (reagent grade 1 manufactured by Kanto Chemical Co., Ltd.) as an internal mold release agent, aluminum hydroxide (Hijilite H32 manufactured by Showa Denko KK) as an inorganic filler, and Kaolin clay (ASPEL-400P manufactured by ENGELHARD) and 3-glycidoxypropyltrimethoxysilane (hereinafter referred to as epoxy silane) as a silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) with a hand mixer The mixture was stirred for about 10 minutes to obtain an SMC paste. Using a polypropylene film having a thickness of 40 μm (San Tox Co., Ltd., Sun Tox CP) as a carrier film, using an SMC production apparatus, glass fiber (manufactured by Nittobo Co., Ltd.) with respect to 75 parts by weight of the SMC paste , RS240PB-548AC, average fiber diameter of 11 μm, average fiber length of 25 mm, E glass), sprayed at a ratio of 25 parts by weight, impregnated between pastes, and then aged at 60 ° C. for 15 hours, phenol resin A molding material was obtained. Next, pressurization was performed simultaneously with evacuation at a mold temperature of 180 ° C., and then compression molding was performed for 3 minutes at the same temperature under a pressure of 1.17 × 10 7 Pa to obtain a molded body of 150 mm × 150 mm × 2 mm. .
[Comparative Examples 1 and 2]

レゾール系フェノール樹脂(旭有機材工業(株)製)、またはレゾール系フェノール樹脂(昭和高分子工業(株)製 フリーフェノール13%)、硬化性調整剤として水酸化カルシウム(和光純薬工業(株)製 試薬特級)、内部離型剤としてステアリン酸亜鉛(関東化学(株)製 試薬1級)、無機充填材として水酸化アルミニウム(昭和電工(株)製 ハイジライトH32)及びカオリンクレイ(平均粒径 12μm)、シランカップリング剤としてエポキシシラン(信越化学(株)製 KBM−403)をハンドミキサーにて約10分間混合攪拌してSMC用ペーストを得た。キャリアフィルムに厚み40μmのポリプロピレン製フィルム(サン・トックス(株)製、サン・トックスCP)を用い、SMC製造装置を用いて上記SMCペースト75重量部に対してガラス繊維(日東紡績(株)製、RS240PB−548AC、平均繊維径11μm、平均繊維長25mm、Eガラス)25重量部の割合で散布してペーストの間にはさみ込み含浸させ、その後、60℃で15時間熟成処理を行い、フェノール樹脂成型用材料を得た。次に金型温度180℃で真空引きと同時に加圧を行い、引き続き同温度で圧力1.17×10Paの条件下で3分間圧縮成型して150mm×150mm×2mmの成型体を得た。 Resol phenolic resin (Asahi Organic Materials Co., Ltd.) or resole phenolic resin (Showa Polymer Industries Co., Ltd. 13% free phenol), calcium hydroxide as a curability adjuster (Wako Pure Chemical Industries, Ltd.) Reagent grade), zinc stearate (reagent grade 1 manufactured by Kanto Chemical Co., Ltd.) as internal mold release agent, aluminum hydroxide (Heidilite H32, Showa Denko Co., Ltd.) and kaolin clay (average grain) as inorganic filler An epoxy silane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent was mixed and stirred with a hand mixer for about 10 minutes to obtain an SMC paste. Using a polypropylene film having a thickness of 40 μm (San Tox Co., Ltd., Sun Tox CP) as a carrier film, using an SMC production apparatus, glass fiber (manufactured by Nittobo Co., Ltd.) with respect to 75 parts by weight of the SMC paste , RS240PB-548AC, average fiber diameter of 11 μm, average fiber length of 25 mm, E glass), sprayed at a ratio of 25 parts by weight, impregnated between pastes, and then aged at 60 ° C. for 15 hours, phenol resin A molding material was obtained. Next, pressurization was performed simultaneously with evacuation at a mold temperature of 180 ° C., and then compression molding was performed for 3 minutes at the same temperature under a pressure of 1.17 × 10 7 Pa to obtain a molded body of 150 mm × 150 mm × 2 mm. .

Figure 2006131732
寸法安定性の評価結果からフリーフェノール含有率の低いフェノール樹脂を使用することで寸法安定性は著しく向上することがわかる(実施例1〜2、比較例1)。またフリーフェノール含有量の低いフェノール樹脂を使用しても粒度の粗いカオリンを使用した場合には寸法安定性は低下している(参考例)難燃性の評価結果から、フリーフェノール含有量の高いフェノール樹脂を使用し、樹脂含有量の多い成型体では不燃性の向上は見られない(比較例1)。フリーフェノール含有量も多く、かつ無機充填材の平均粒径を大きくした場合にはさらに寸法安定性は低下している(比較例2)。
これらのことより、フリーフェノール含有率の低いフェノール樹脂を使用し、特定粒度のカオリンクレイを無機充填剤として組み合わせることによって寸法安定性と同時に難燃性が飛躍的に向上することがわかった。
Figure 2006131732
From the evaluation results of the dimensional stability, it is understood that the dimensional stability is remarkably improved by using a phenol resin having a low free phenol content (Examples 1 and 2 and Comparative Example 1). In addition, even when a phenol resin with a low free phenol content is used, the dimensional stability is reduced when using coarse-grained kaolin (reference example). From the evaluation results of flame retardancy, the free phenol content is high. A molded article using a phenol resin and having a high resin content does not show any improvement in nonflammability (Comparative Example 1). When the free phenol content is large and the average particle size of the inorganic filler is increased, the dimensional stability is further reduced (Comparative Example 2).
From these facts, it was found that by using a phenol resin having a low free phenol content and combining kaolin clay with a specific particle size as an inorganic filler, dimensional stability and flame retardancy are dramatically improved.

本発明は、建築用部材、車両用部材をはじめとする各種成型体として好適に使用される。
The present invention is suitably used as various molded bodies including building members and vehicle members.

Claims (5)

100〜10000オングストロームの近似直径範囲の細孔容積が0.20ml/g以下であることを特徴とするフェノール樹脂成型体 Phenol resin molded article having a pore volume in an approximate diameter range of 100 to 10,000 angstroms of 0.20 ml / g or less フェノール樹脂、補強繊維、無機充填材からなり、フェノール樹脂のフリーフェノール含有量が8重量%以下であることを特徴とするフェノール樹脂成型用材料 A phenol resin molding material comprising a phenol resin, a reinforcing fiber, and an inorganic filler, wherein the phenol resin has a free phenol content of 8% by weight or less. 無機充填材の粒度分布が2μm〜10μmの範囲であることを特徴とする請求項2記載のフェノール樹脂成型用材料 The phenol resin molding material according to claim 2, wherein the particle size distribution of the inorganic filler is in the range of 2 µm to 10 µm. フェノール樹脂量が10〜30重量部、補強繊維量が10〜50重量%および無機充填材量が20〜80重量%であることを特徴とする請求項2乃至3記載のフェノール樹脂成型用材料 4. The phenol resin molding material according to claim 2, wherein the phenol resin amount is 10 to 30 parts by weight, the reinforcing fiber amount is 10 to 50% by weight, and the inorganic filler amount is 20 to 80% by weight. 請求項2乃至4記載のフェノール樹脂成型用材料を使用して加熱加圧成型してなることを特徴とするフェノール樹脂成型体の製法 A method for producing a phenol resin molded article, which is formed by heating and pressing using the phenol resin molding material according to claim 2.
JP2004321731A 2004-11-05 2004-11-05 Phenol resin molded product, material for molding and method for producing the same Pending JP2006131732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321731A JP2006131732A (en) 2004-11-05 2004-11-05 Phenol resin molded product, material for molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321731A JP2006131732A (en) 2004-11-05 2004-11-05 Phenol resin molded product, material for molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006131732A true JP2006131732A (en) 2006-05-25

Family

ID=36725569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321731A Pending JP2006131732A (en) 2004-11-05 2004-11-05 Phenol resin molded product, material for molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006131732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248083A (en) * 2007-03-30 2008-10-16 Asahi Organic Chem Ind Co Ltd Thermosetting resin composition, fiber reinforced molding compound, and molded article
CN111399269A (en) * 2019-01-02 2020-07-10 海信视像科技股份有限公司 Liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233927A (en) * 1990-08-02 1992-08-21 Borden Inc Retarder for curable phenolic resol resin
JPH04300949A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Production of molded article of lignocellulose-phenolic resin
JPH0681405A (en) * 1992-09-02 1994-03-22 Ig Tech Res Inc Fire-resistant heat insulation plate
JPH0925392A (en) * 1995-07-11 1997-01-28 Sumitomo Bakelite Co Ltd Phenol resin composition excellent in heat resistance
JP2000072905A (en) * 1998-08-31 2000-03-07 Kyocera Corp Conductive resin composite material
JP2002097455A (en) * 2000-09-22 2002-04-02 Hitachi Chem Co Ltd Friction material composition and friction material obtained by using the same
JP2004181584A (en) * 2002-12-04 2004-07-02 Showa Denko Kk Polishing composite material, grinding wheel, grinding material, polishing material, working method of electronic part, and working method of silicon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233927A (en) * 1990-08-02 1992-08-21 Borden Inc Retarder for curable phenolic resol resin
JPH04300949A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Production of molded article of lignocellulose-phenolic resin
JPH0681405A (en) * 1992-09-02 1994-03-22 Ig Tech Res Inc Fire-resistant heat insulation plate
JPH0925392A (en) * 1995-07-11 1997-01-28 Sumitomo Bakelite Co Ltd Phenol resin composition excellent in heat resistance
JP2000072905A (en) * 1998-08-31 2000-03-07 Kyocera Corp Conductive resin composite material
JP2002097455A (en) * 2000-09-22 2002-04-02 Hitachi Chem Co Ltd Friction material composition and friction material obtained by using the same
JP2004181584A (en) * 2002-12-04 2004-07-02 Showa Denko Kk Polishing composite material, grinding wheel, grinding material, polishing material, working method of electronic part, and working method of silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248083A (en) * 2007-03-30 2008-10-16 Asahi Organic Chem Ind Co Ltd Thermosetting resin composition, fiber reinforced molding compound, and molded article
CN111399269A (en) * 2019-01-02 2020-07-10 海信视像科技股份有限公司 Liquid crystal display device

Similar Documents

Publication Publication Date Title
AU2006253252B2 (en) Expandable resol-type phenolic resin molding material and phenolic resin foam
JP2002265212A (en) Impregnated body made of expanded graphite
JP2007070508A (en) Phenol resin-foamed article and method for producing the same
AU2009304675B2 (en) Method for producing air-permeable composite sheet
JP2006131732A (en) Phenol resin molded product, material for molding and method for producing the same
KR101254307B1 (en) Heat reserving cover for duct with excellent fire retardant and method of manufacturing the same
US20080193736A1 (en) Resin-impregnated porous filler
JP2009023095A (en) Method for producing wood board
JPH10306203A (en) Resin molded product and resin composition containing inorganic material
NO811173L (en) STRENGTH OF ARMED PLASTIC AND PROCEDURE FOR THE PREPARATION OF SUCH GOODS
KR101333838B1 (en) Phenolic resin foam
KR101544918B1 (en) Higa water-resistant hard-core panel and preparation method thereof
JPH0912840A (en) Phenol resin molding material
JP2016175970A (en) Prepreg and laminate sheet using the same
KR102282012B1 (en) Aqueous thermosetting binder composition
Hu et al. Epoxy-organoclay nanocomposites: morphology, moisture absorption behavior and thermo-mechanical properties
WO2018062606A1 (en) Honeycomb panel filled with eco-friendly semi-incombustible foam
KR101293271B1 (en) Pulp board for thermal insulation and sound absorption by thermosetting powder, its manufacturing method
CN112592581A (en) Resin composite material
US20230407081A1 (en) Method of thickening phenolic resin and use thereof to form vehicle components
KR20230172286A (en) Fibrous material bound using an aqueous thermosetting binder composition
KR101339836B1 (en) Rubber foam heat insulating materials with excellent heat insulation and fire retardant
JP2004263023A (en) Flame-retardant bulk molding compound
WO2023235378A1 (en) Sheet molding composition and articles formed therefrom with high char strength
JP2022143868A (en) Fiber-reinforced resin molding and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070906

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100409

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101012

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02