JP2006114305A - Multipole field correction method and device - Google Patents

Multipole field correction method and device Download PDF

Info

Publication number
JP2006114305A
JP2006114305A JP2004299705A JP2004299705A JP2006114305A JP 2006114305 A JP2006114305 A JP 2006114305A JP 2004299705 A JP2004299705 A JP 2004299705A JP 2004299705 A JP2004299705 A JP 2004299705A JP 2006114305 A JP2006114305 A JP 2006114305A
Authority
JP
Japan
Prior art keywords
field
multipole
parasitic
correction
quadrupole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299705A
Other languages
Japanese (ja)
Inventor
Kazuhiro Honda
和広 本田
Natsuko Nakamura
奈津子 中村
Joachim Zach
ザッハ ヨアヒム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2004299705A priority Critical patent/JP2006114305A/en
Publication of JP2006114305A publication Critical patent/JP2006114305A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multipole field correction method and a device by the multipole field of an aberration corrector in which a regular operator can correct the distortion of a multipole electrode due to mechanical and electrical slippage without being conscious of the instrumental error of the multipole electrode with respect to an alignment automatic correction method and device on the multipole field correction method and device. <P>SOLUTION: In the device mounting an aberration corrector 6 consisting of multipole electrodes, when the surface of a sample is observed using charged particles, the device is constructed of a parasitic bipole field correction device 11a and a parasitic quadrupole field correction device 11b which are installed for correcting the parasitic bipole field and the parasitic quadrupole field generated by mechanical and electrical slippage of the multipole electrodes, a memory means 12 for storing the correction amount at the time the multipole field is shifted for a prescribed amount in X, Y direction in the stage where the aberration corrector is located, and a correction means 11 for correcting the parasitic bipole field and the parasitic quadrupole field using the correction amount stored in the memory means 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は多極子場補正方法及び装置に関する。   The present invention relates to a multipole field correction method and apparatus.

荷電粒子を用いた試料表面観察装置の一例として、走査型電子顕微鏡(SEM)を例にとって説明する。図2は従来装置の構成例を示す図である。この図は、収差補正器を搭載した走査電子顕微鏡を示している。エミッタ1より電子ビーム2が放出され、該電子ビーム2に作用するレンズ3によって収差補正器6に入射する前記電子ビーム2を制御し、前記収差補正器6から出た電子ビーム2を対物レンズ4によって試料5の表面に収束させる。   A scanning electron microscope (SEM) will be described as an example of a sample surface observation apparatus using charged particles. FIG. 2 is a diagram showing a configuration example of a conventional apparatus. This figure shows a scanning electron microscope equipped with an aberration corrector. An electron beam 2 is emitted from the emitter 1, and the electron beam 2 incident on the aberration corrector 6 is controlled by the lens 3 acting on the electron beam 2, and the electron beam 2 emitted from the aberration corrector 6 is used as the objective lens 4. To converge on the surface of the sample 5.

試料表面で前記電子ビーム2を走査し、走査と同期して前記試料表面から放出される二次電子7を二次電子検出器8で検出することにより、走査信号に同期してCRT13上に画像として表示させる。前記二次電子7の検出効率は通常は低いため、通常画像積算器9によってノイズが除去される。ノイズが除去された画像がCRT13に表示される。このような収差補正器の例として多極子を用いた技術が知られている(例えば非特許文献1参照)。   The electron beam 2 is scanned on the sample surface, and secondary electrons 7 emitted from the sample surface are detected by the secondary electron detector 8 in synchronization with the scanning, whereby an image is displayed on the CRT 13 in synchronization with the scanning signal. Display as. Since the detection efficiency of the secondary electrons 7 is usually low, noise is removed by the normal image integrator 9. The image from which the noise has been removed is displayed on the CRT 13. As an example of such an aberration corrector, a technique using a multipole is known (for example, see Non-Patent Document 1).

収差補正器6は、4段の多極子(例えば12極)から構成されている。図3は多極子の光軸に垂直な断面を示す図である。図において、6aが極子であり、#1〜#12までの12個の極子から構成されている例を示している。12極子は光軸を中心に角度はπ/6の位相差でそれぞれ配置されている。該12極子は、それぞれの極子6aに印加する電圧又は磁場の配分の仕方により、2極子場、4極子場、6極子場、8極子場を発生させることができる。また、位相をずらすことにより、それぞれの多極子場のX,Y方向を定義して発生させることができる。   The aberration corrector 6 includes four stages of multipole elements (for example, 12 poles). FIG. 3 is a diagram showing a cross section perpendicular to the optical axis of the multipole element. In the figure, 6a is a pole, and an example composed of 12 poles from # 1 to # 12 is shown. The twelve poles are arranged with a phase difference of π / 6 around the optical axis. The 12-pole element can generate a dipole field, a quadrupole field, a hexapole field, and an octupole field depending on how the voltage or magnetic field applied to each pole 6a is distributed. Further, by shifting the phase, the X and Y directions of each multipole field can be defined and generated.

図4はそれぞれの多極子の等ポテンシャル分布を示す図である。(a)は前記2極子の等ポテンシャル分布、(b)は前記4極子の等ポテンシャル分布、(c)は前記6極子の等ポテンシャル分布、(d)は前記8極子の等ポテンシャル分布を示す。同図に示すように、4つの異なる多極子場(更にX,Y方向を考慮して計8つの異なる多極子場)を同時に発生させることができる。   FIG. 4 is a diagram showing an equipotential distribution of each multipole. (A) shows the equipotential distribution of the dipole, (b) shows the equipotential distribution of the quadrupole, (c) shows the equipotential distribution of the hexapole, and (d) shows the equipotential distribution of the octupole. As shown in the figure, four different multipole fields (a total of eight different multipole fields in consideration of the X and Y directions) can be generated simultaneously.

これら複数の多極子場を組み合わせて、前記収差補正器6を通過する前記電子ビーム2の軌道を制御し、且つ収差の大きさを制御している。通常、前記2極子場は偏向器であり、前記多極子場のアライメントに使用される。   By combining these multiple multipole fields, the trajectory of the electron beam 2 passing through the aberration corrector 6 is controlled, and the magnitude of the aberration is controlled. Usually, the dipole field is a deflector and is used for alignment of the multipole field.

従来、これらのX方向及びY方向多極子場を発生させる極子に印加する電位又は磁位Vx,Vyは前記多極子場種別と極子番号の関数として、フーリエ級数展開して次式のように算出されている。 Conventionally, the potentials or magnetic potentials V x , V y applied to the poles that generate these X-direction and Y-direction multipole fields are expanded by Fourier series as a function of the multipole field type and the pole number as Has been calculated.

x(t,p)=α(t)・cos{t・(2π/n)・p} (1)
y(t,p)=α(t)・sin{t・(2π/n)・p} (2)
ここで、tは前記多極子場の種別を示す。
V x (t, p) = α (t) · cos {t · (2π / n) · p} (1)
V y (t, p) = α (t) · sin {t · (2π / n) · p} (2)
Here, t indicates the type of the multipole field.

t=1: 2極子
2: 4極子
3: 6極子
4: 8極子
また、pは前記多極子の極子番号を示す(p=0,1,2,…n−1)。nは極子数を示す。α(t)はt毎に持つ定数である。
t = 1: dipole 2: quadrupole 3: hexapole 4: octupole p represents the pole number of the multipole (p = 0, 1, 2,..., n−1). n represents the number of poles. α (t) is a constant for each t.

なお、6極子を備える電子光学系の3次光軸の像の変形を補正して、1次、2次及び3次の光軸の像の変形を補正する技術が知られている(例えば特許文献1参照)。
特表2001−516139号公報 Aberration correction in a low voltage SEM by multipole corrector(Nuclear Instrument and Methods in Physics Research A 363(1995)316-325)
It is to be noted that there is known a technique for correcting the deformation of the image of the third-order optical axis of an electron optical system having a hexapole to correct the deformation of the image of the first-order, second-order, and third-order optical axes (for example, patents). Reference 1).
Special table 2001-516139 gazette Aberration correction in a low voltage SEM by multipole corrector (Nuclear Instrument and Methods in Physics Research A 363 (1995) 316-325)

前述した多極子で構成される収差補正器では、複数の多極子場の中心は、機械的及び/又は電気的(以下、機械的・電気的と表記する)に若干のズレを持っているのが普通であり、また、機械的・電気的なズレによって理想的な多極子分布とならずゆがんでいるのが普通である。このような機械的・電気的なズレを持つ多極子場の大きさを変化させると、そのズレの程度に応じて、電子ビームは偏向される。   In the above-described aberration corrector composed of multipoles, the centers of the plurality of multipole fields have a slight shift in mechanical and / or electrical (hereinafter referred to as mechanical / electrical). In addition, it is normal that the ideal multipole distribution is not distorted due to mechanical / electrical deviation. When the magnitude of the multipole field having such mechanical / electrical deviation is changed, the electron beam is deflected according to the degree of the deviation.

従来、このような時は、操作員が2極子場を制御して電子ビームの偏向を補正している。また、機械的・電気的なズレによって寄生4極子場が発生し、同様に操作員が4極子場を制御して電子ビームの歪みを補正している。しかしながら、この作業は複雑な構成の収差補正器を操作するので非常に煩雑であり、十分に収差補正器の特性を理解した操作員でないと行えないという問題がある。また、たとえ熟練した操作員でも、制御するのに多大の時間を要するという問題がある。   Conventionally, in such a case, an operator controls the dipole field to correct the deflection of the electron beam. In addition, a parasitic quadrupole field is generated due to mechanical / electrical deviation, and similarly, an operator controls the quadrupole field to correct the distortion of the electron beam. However, this operation is very complicated because an aberration corrector having a complicated structure is operated, and there is a problem that it cannot be performed unless an operator who fully understands the characteristics of the aberration corrector. In addition, there is a problem that even a skilled operator takes a long time to control.

本発明はこのような課題に鑑みてなされたものであって、通常の操作員が多極子の機差を意識せずに、機械的・電気的なズレによる多極子のゆがみを補正することができる収差補正器の多極子場による多極子場補正方法及び装置を提供することを目的としている。   The present invention has been made in view of such a problem, and it is possible for a normal operator to correct the distortion of the multipole due to mechanical / electrical deviation without being aware of the difference in the multipole. An object of the present invention is to provide a multipole field correction method and apparatus using a multipole field of an aberration corrector that can be used.

(1)請求項1記載の発明は、多極子からなる収差補正器を搭載した装置において、荷電粒子を用いて試料表面を観察する場合において、多極子の機械的・電気的ズレによって生じる寄生2極子場と寄生4極子場による歪みを補正するために、寄生2極子場補正装置と寄生4極子場補正装置とを設ける工程と、前記収差補正器のある段のX,Y方向に多極子場を所定量ずらした時における補正値を予め記憶手段に記憶しておく工程と、前記記憶手段に記憶していた補正値を用いて寄生2極子場と寄生4極子場を補正する工程とからなることを特徴とする。   (1) According to the first aspect of the present invention, in the case of observing the sample surface using charged particles in an apparatus equipped with an aberration corrector composed of a multipole element, a parasitic element 2 caused by mechanical and electrical misalignment of the multipole element. A step of providing a parasitic dipole field correction device and a parasitic quadrupole field correction device in order to correct distortion due to the pole field and the parasitic quadrupole field; and a multipole field in the X and Y directions of a certain stage of the aberration corrector. Is stored in the storage means in advance, and the correction value stored in the storage means is used to correct the parasitic dipole field and the parasitic quadrupole field. It is characterized by that.

(2)請求項2記載の発明は、多極子からなる収差補正器を搭載した荷電粒子を用いて試料表面を観察する場合において、多極子の機械的・電気的ズレによって生じる寄生2極子場と寄生4極子場を補正するため設けられた、寄生2極子場補正装置,寄生4極子場補正装置と、前記収差補正器のある段のX,Y方向に多極子場を所定量ずらした時における補正値を予め記憶しておく記憶手段と、該記憶手段に記憶していた補正値を用いて寄生2極子場と寄生4極子場による歪みを補正する補正手段とを有することを特徴とする。   (2) According to the second aspect of the present invention, in the case of observing the sample surface using charged particles equipped with an aberration corrector comprising a multipole, a parasitic dipole field generated by mechanical and electrical misalignment of the multipole A parasitic dipole field correction device, a parasitic quadrupole field correction device, and a multipole field shifted by a predetermined amount in the X and Y directions of a certain stage of the aberration corrector provided to correct the parasitic quadrupole field. It is characterized by comprising storage means for storing correction values in advance and correction means for correcting distortion due to the parasitic dipole field and the parasitic quadrupole field using the correction values stored in the storage means.

(3)請求項3記載の発明は、前記寄生2極子場及び寄生4極子場を、それぞれ多極子の中心における角度に対するフーリエ級数展開で表現したことを特徴とする。
(4)請求項4記載の発明は、フーリエ級数展開項で表現された寄生2極子場と寄生4極子場とを重畳して補正値とすることを特徴とする。
(3) The invention described in claim 3 is characterized in that the parasitic dipole field and the parasitic quadrupole field are each expressed by Fourier series expansion with respect to an angle at the center of the multipole.
(4) The invention described in claim 4 is characterized in that a parasitic dipole field and a parasitic quadrupole field expressed by a Fourier series expansion term are superimposed to obtain a correction value.

(5)請求項5記載の発明は、前記寄生2極子場は、多極子場を微小変化させた時の像移動を補正する量としたことを特徴とする。
(6)請求項6記載の発明は、前記寄生4極子場は、多極子場を微小変化させた時の像歪みを補正する量としたことを特徴とする。
(5) The invention according to claim 5 is characterized in that the parasitic dipole field is an amount for correcting image movement when the multipole field is minutely changed.
(6) The invention according to claim 6 is characterized in that the parasitic quadrupole field is an amount for correcting image distortion when the multipole field is minutely changed.

(1)請求項1記載の発明によれば、通常の操作員が多極子の機差を意識せずに、機械的・電気的なズレによる多極子のゆがみを補正することができる収差補正器の多極子場による多極子場補正方法及び装置を提供することができる。   (1) According to the first aspect of the invention, an aberration corrector capable of correcting the distortion of the multipole due to mechanical / electrical displacement without a normal operator being aware of the difference between the multipoles. It is possible to provide a multipole field correction method and apparatus using a multipole field.

(2)請求項2記載の発明によれば、通常の操作員が多極子の機差を意識せずに、機械的・電気的なズレによる多極子のゆがみを補正することができる収差補正器の多極子場による多極子場補正方法及び装置を提供することができる。   (2) According to the invention described in claim 2, an aberration corrector capable of correcting the distortion of the multipole due to the mechanical / electrical deviation without causing a normal operator to be aware of the difference between the multipoles. It is possible to provide a multipole field correction method and apparatus using a multipole field.

(3)請求項3記載の発明によれば、寄生2極子場及び寄生4極子場をフーリエ級数展開で表現することで、補正処理を適切に行なうことができる。
(4)請求項4記載の発明によれば、寄生2極子場と4極子場をフーリエ級数展開項で表現することで、これら寄生2極子場と4極子場を重畳して補正値とすることができ、機械的・電気的なズレによる多極子のゆがみを補正することができる。
(3) According to the invention described in claim 3, the correction process can be appropriately performed by expressing the parasitic dipole field and the parasitic quadrupole field by Fourier series expansion.
(4) According to the invention described in claim 4, the parasitic dipole field and the quadrupole field are expressed by a Fourier series expansion term, and the parasitic dipole field and the quadrupole field are superimposed to obtain a correction value. It is possible to correct the distortion of the multipole due to the mechanical / electrical deviation.

(5)請求項5記載の発明によれば、前記寄生2極子場を多極子場を微小変化させた時の像移動を補正する量とすることができ、多極子による像移動を補正することができる。
(6)請求項6記載の発明によれば、前記寄生4極子場を多極子を微小変化させた時の像歪みを補正する量とすることができ、多極子のゆがみを補正することができる。
(5) According to the invention described in claim 5, the parasitic dipole field can be set to an amount for correcting the image movement when the multipole field is minutely changed, and the image movement due to the multipole is corrected. Can do.
(6) According to the invention described in claim 6, the parasitic quadrupole field can be set to an amount for correcting image distortion when the multipole is minutely changed, and distortion of the multipole can be corrected. .

以下、図面を参照して本発明の実施の形態例を詳細に説明する。
図1は本発明の一実施の形態例を示す構成図である。図2と同一のものは、同一の符号を付して示す。図において、1は荷電粒子ビームを放出するエミッタ、2は該エミッタ1から放出される電子ビーム、3は該電子ビーム2に作用するレンズ、6はレンズ作用を受けた電子ビーム2の各種補正を行なう収差補正器、4は電子ビーム2を試料5上に収束させる対物レンズ、5は試料、7は該試料5から放出される二次電子、8は該二次電子7を検出する二次電子検出器である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. The same components as those in FIG. 2 are denoted by the same reference numerals. In the figure, 1 is an emitter emitting a charged particle beam, 2 is an electron beam emitted from the emitter 1, 3 is a lens acting on the electron beam 2, and 6 is various corrections of the electron beam 2 subjected to the lens action. Aberration corrector 4 is an objective lens for converging the electron beam 2 on the sample 5, 5 is a sample, 7 is a secondary electron emitted from the sample 5, and 8 is a secondary electron for detecting the secondary electron 7. It is a detector.

9は二次電子像をノイズに強くするために画像を積算する画像積算器、10は収差補正器6に収差補正のための制御信号を与える収差補正制御器、11は収差補正制御器10に多極子場補正のための制御信号を与える多極子場補正装置である。該多極子場補正装置11としては、例えばコンピュータが用いられる。多極子場補正装置11において、11aは寄生2極子場補正装置、11bは寄生4極子場補正装置である。つまり、多極子場補正装置11は、寄生2極子場補正装置11aと寄生4極子場補正装置11bとから構成されている。   9 is an image accumulator for accumulating images in order to make the secondary electron image resistant to noise, 10 is an aberration correction controller for giving a control signal for aberration correction to the aberration corrector 6, and 11 is an aberration correction controller 10. This is a multipole field correction device that provides a control signal for multipole field correction. For example, a computer is used as the multipole field correction device 11. In the multipole field correction device 11, 11a is a parasitic dipole field correction device, and 11b is a parasitic quadrupole field correction device. That is, the multipole field correction device 11 includes a parasitic dipole field correction device 11a and a parasitic quadrupole field correction device 11b.

これら寄生2極子場補正装置11aと寄生4極子場補正装置11bは、収差補正器6を構成する多極子の機械的・電気的なズレによって生じる多極子場の寄生場を補正する。
13は画像積算器9と接続され、各種情報を表示するCRTである。12はある段のX,Y方向に多極子場を所定量ずらした時における補正値を予め記憶しておく補正値記憶部である。つまり、多極子場補正装置11によって補正された多極子の電磁場分布を記憶しておくものである。該補正値記憶部12は、多極子場補正装置11と接続され、また、収差補正制御器10と接続されている。このように構成された装置の動作を説明すれば、以下の通りである。
The parasitic dipole field correction device 11a and the parasitic quadrupole field correction device 11b correct the parasitic field of the multipole field caused by the mechanical and electrical misalignment of the multipoles constituting the aberration corrector 6.
A CRT 13 is connected to the image integrator 9 and displays various information. A correction value storage unit 12 stores in advance a correction value when the multipole field is shifted by a predetermined amount in the X and Y directions of a certain stage. That is, the electromagnetic field distribution of the multipole corrected by the multipole field correction device 11 is stored. The correction value storage unit 12 is connected to the multipole field correction device 11 and is also connected to the aberration correction controller 10. The operation of the apparatus configured as described above will be described as follows.

エミッタ1より電子ビーム2が放出され、該電子ビーム2に作用するレンズ3によって収差補正器6に入射する電子ビーム2を制御し、収差補正器6から出た電子ビーム2を対物レンズ4によって試料5の表面に収束させる。試料表面で前記電子ビーム2を走査し、走査と同期して試料表面から放出される二次電子7を二次電子検出器8で検出することにより、走査信号に同期してCRT13に画像として表示させる。前記二次電子7の検出効率は通常低いため、画像積算器9によってノイズが除去される。   An electron beam 2 is emitted from the emitter 1, the electron beam 2 incident on the aberration corrector 6 is controlled by the lens 3 acting on the electron beam 2, and the electron beam 2 emitted from the aberration corrector 6 is sampled by the objective lens 4. 5 converges on the surface. The electron beam 2 is scanned on the sample surface, and secondary electrons 7 emitted from the sample surface in synchronization with the scanning are detected by the secondary electron detector 8, so that they are displayed as an image on the CRT 13 in synchronization with the scanning signal. Let Since the detection efficiency of the secondary electrons 7 is usually low, noise is removed by the image integrator 9.

収差補正制御器10は、前記収差補正器6のレンズ強度を制御している。該収差補正器6の構成及び動作に関しては、前記非特許文献1に詳しく説明されている。多極子場補正装置11は、寄生2極子場補正装置11aと寄生4極子場補正装置11bとからなり、収差補正器6を構成する多極子の機械的・電気的なズレによって生じる多極子場の寄生場を補正する。補正値記憶部12には、前記多極子場補正装置11によって補正された多極子の電磁場分布を記憶しておく。以下、本発明による多極子場補正装置11の動作を詳細に説明する。   The aberration correction controller 10 controls the lens intensity of the aberration corrector 6. The configuration and operation of the aberration corrector 6 are described in detail in Non-Patent Document 1. The multipole field correction device 11 includes a parasitic dipole field correction device 11a and a parasitic quadrupole field correction device 11b. The multipole field correction device 11b is a multipole field generated by mechanical and electrical misalignment of the multipoles constituting the aberration corrector 6. Correct the parasitic field. The correction value storage unit 12 stores a multipole electromagnetic field distribution corrected by the multipole field correction device 11. Hereinafter, the operation of the multipole field correction apparatus 11 according to the present invention will be described in detail.

前記収差補正器6の例として、前記非特許文献1に公知技術である多極子による収差補正器6が詳述されている。この収差補正器6は、4段の多極子(例えば12極子)からなり、図3にその内の1段の中心付近の光軸に垂直な断面図を示す。これら12極子は、12個の極子6aからなり、光軸を中心としてπ/6の位相差でそれぞれ配置されている。これら12極子は、それぞれの極子6aに印加する電圧又は磁場の配分の仕方により、2極子場、4極子場、6極子場、8極子場を発生させることができる。また、位相をずらすことにより、それぞれの多極子場のX,Y方向を定義し、発生させることができる。   As an example of the aberration corrector 6, the non-patent document 1 details the aberration corrector 6 using a multipole, which is a known technique. The aberration corrector 6 is composed of four stages of multipoles (for example, twelve poles), and FIG. 3 shows a cross-sectional view perpendicular to the optical axis near the center of one stage. These 12-pole elements are composed of 12 pole elements 6a, and are arranged with a phase difference of π / 6 around the optical axis. These twelve poles can generate a dipole field, a quadrupole field, a hexapole field, and an octupole field depending on how the voltage or magnetic field applied to each pole 6a is distributed. Also, by shifting the phase, the X and Y directions of each multipole field can be defined and generated.

図4におのおのの多極子場の等ポテンシャル分布を示す。(a)は2極子場の等ポテンシャル分布を、(b)は4極子場の等ポテンシャル分布を、(c)は6極子場の等ポテンシャル分布を、(d)は8極子場の等ポテンシャル分布をそれぞれ示す。図に示すように、4つの異なる多極子場(更に、X,Y方向を考慮して計8つの異なる多極子場)を同時に発生させることができる。これら複数の多極子場を組み合わせて、前記収差補正器6を通過する電子ビーム2の軌道を制御し、かつ収差の大きさを制御している。通常、2極子場は偏向場であり、前記多極子場のアライメントに使用される。   FIG. 4 shows the equipotential distribution of each multipole field. (A) is a dipole field equipotential distribution, (b) is a quadrupole field equipotential distribution, (c) is a hexapole field equipotential distribution, and (d) is an octupole field equipotential distribution. Respectively. As shown in the figure, four different multipole fields (in addition, a total of eight different multipole fields considering the X and Y directions) can be generated simultaneously. By combining these multiple multipole fields, the trajectory of the electron beam 2 passing through the aberration corrector 6 is controlled, and the magnitude of the aberration is controlled. Usually, the dipole field is a deflection field and is used for alignment of the multipole field.

このように、多極子で構成される収差補正器6では、複数の多極子場の中心は機械的・電気的に若干のズレを持っているのが普通であり、また、機械的・電気的なズレによって理想的な多極子分布とならずゆがんでいるのが普通である。このような機械的・電気的なズレを持つ多極子場を変化させると、そのズレの程度に応じて電子ビームは偏向される。また、機械的・電気的なズレは寄生4極子場としても現れるため、このような寄生2極子場と寄生4極子場を補正する。   Thus, in the aberration corrector 6 composed of multipoles, the centers of the plurality of multipole fields usually have some mechanical and electrical misalignment, and mechanical and electrical It is normal that distortion is not ideal multipole distribution due to misalignment. When the multipole field having such a mechanical / electrical deviation is changed, the electron beam is deflected according to the degree of the deviation. Further, since the mechanical / electrical deviation also appears as a parasitic quadrupole field, such a parasitic dipole field and a parasitic quadrupole field are corrected.

今、6極子の寄生2極子場と寄生4極子場とを補正する方法を例に詳述する。前記収差補正器のある段のX方向6極子場をある値ΔHxだけずらすと、前記6極子が持つ機械的・電気的なズレによって像が移動し、かつ歪む。これを同じ段の2極子場で像を中心に戻し、かつ像の歪みを4極子場で補正する。この補正量を前記ΔHxで割って単位強度あたりの補正量に変換し、補正値記憶部12に記憶する。同様にして、各段(1段目から4段目まで)におけるX及びY方向4極子場、6極子場、8極子場の寄生2極子場、寄生4極子場を補正する単位強度当たりの補正量を求め、補正値記憶部12に記憶し、これらの補正量を純粋な多極子場に加えたものを例にとって新たにこの装置における多極子場とする。具体的な計算方法を以下に示す。   Now, a method of correcting the parasitic dipole field and the parasitic quadrupole field of the hexapole will be described in detail as an example. If the X-direction hexapole field at a certain stage of the aberration corrector is shifted by a certain value ΔHx, the image is moved and distorted due to the mechanical / electrical displacement of the hexapole. This is returned to the center with the same dipole field, and the distortion of the image is corrected with the quadrupole field. The correction amount is divided by the ΔHx to be converted into a correction amount per unit intensity and stored in the correction value storage unit 12. Similarly, correction per unit intensity for correcting the quadrupole field in the X and Y directions, the hexapole field, the parasitic dipole field of the octupole field, and the parasitic quadrupole field in each stage (from the first stage to the fourth stage). A quantity is obtained, stored in the correction value storage unit 12, and a new multipole field in this apparatus is newly obtained by adding these correction quantities to a pure multipole field as an example. A specific calculation method is shown below.

前記多極子場補正装置11では、X方向及びY方向多極子場を発生させる極子に印加する電位又は磁位Vx,Vyを多極子場種別番号tと極子番号pの関数としてフーリエ級数展開して、次式のように算出する。 In the multipole field correction device 11, Fourier series expansion is performed by using the potentials or magnetic potentials V x , V y applied to the poles that generate the X and Y direction multipole fields as a function of the multipole field type number t and the pole number p. Then, the following equation is calculated.

Figure 2006114305
Figure 2006114305

ここで、tは前記多極子場の種別を示す。
t=1: 2極子
2: 4極子
3: 6極子
4: 8極子
pは前記多極子の極子番号を示す(p=0,1,2,…10,11,…n−1)
nは極子数を示す。α(t)はt毎にもつ定数である。Ax(t)はX方向のt毎に持つ多極子場の大きさ、Ay(t)はY方向のt毎に持つ多極子場の大きさを示す。また、(3),(4)式における(補正項)x,(補正項)yはそれぞれ次式のように表される。
(補正項)x=(寄生2極子場補正項)x+(寄生4極子場補正項)x (5)
(補正項)y=(寄生2極子場補正項)y+(寄生4極子場補正項)y (6)
(5)式、(6)式における(寄生2極子場補正項)x,(寄生2極子場補正項)yと(寄生4極子場補正項)x,(寄生4極子場補正項)yは、前記寄生2極子場補正装置11aと寄生4極子場補正装置11bとでフーリエ級数展開し、次式によって算出する。
Here, t indicates the type of the multipole field.
t = 1: dipole 2: quadrupole 3: hexapole 4: octupole p represents the pole number of the multipole (p = 0, 1, 2,..., 10, 11,..., n−1).
n represents the number of poles. α (t) is a constant for each t. Ax (t) represents the magnitude of the multipole field possessed for each t in the X direction, and Ay (t) represents the magnitude of the multipole field possessed for each t in the Y direction. Further, (correction term) x and (correction term) y in the equations (3) and (4) are respectively expressed by the following equations.
(Correction term) x = (parasitic dipole field correction term) x + (parasitic quadrupole field correction term) x (5)
(Correction term) y = (parasitic dipole field correction term) y + (parasitic quadrupole field correction term) y (6)
In Equations (5) and (6), (parasitic dipole field correction term) x , (parasitic dipole field correction term) y and (parasitic quadrupole field correction term) x , (parasitic quadrupole field correction term) y are The parasitic dipole field correction device 11a and the parasitic quadrupole field correction device 11b perform Fourier series expansion, and are calculated by the following equation.

Figure 2006114305
Figure 2006114305

ここで、tx,tyはそれぞれX方向、Y方向の多極子場種別を示す。Dx,Dyは、多極子場を微小印加した結果、ずれた像をもとに戻すのに必要なX,Y方向の単位強度当たりの2極子場の大きさである。Qx,Qyは多極子場を微小印加した結果、歪んだ像を元に戻すのに必要なX,Y方向の単位強度当たりの4極子場の大きさである。 Here, t x and t y indicate multipole field types in the X direction and the Y direction, respectively. D x and D y are the magnitudes of the dipole field per unit intensity in the X and Y directions necessary to restore a shifted image as a result of applying a small amount of the multipole field. Q x and Q y are the magnitudes of the quadrupole field per unit intensity in the X and Y directions necessary to restore a distorted image as a result of applying a small amount of the multipole field.

このようにして、前記収差補正器6を構成する全ての段の多極子に対して(3)式〜(10)式を算出し、補正項を加えたものを新たにその装置の多極子場とする。また、(5)式〜(10)式で算出した補正項を前記補正値記憶部12に記憶しておき、使用する場合は(3)式,(4)式により多極子場を計算する。(7)式,(8)式で示される(寄生2極子場補正項)x,(寄生2極子場補正項)yを(3)式,(4)式に代入することで、寄生2極子場に基づく補正項を加えた形で電位分布又は磁位分布Vx,Vyを求めることができ、また(9),(10)式で示される(寄生4極子場補正項)x,(寄生4極子場補正項)yを(3)式,(4)式に代入することで、寄生4極子場に基づく補正項を加えた形で電位分布又は磁位分布Vx,Vyを求めることができる。また、(3)式、(4)式の補正項として、寄生2極子場の補正項と寄生4極子場の補正項を加えたものを用いることもできる。 In this way, the equations (3) to (10) are calculated for all stages of multipole elements constituting the aberration corrector 6, and a correction term added is newly added to the multipole field of the apparatus. And Further, the correction terms calculated by the equations (5) to (10) are stored in the correction value storage unit 12, and when used, the multipole field is calculated by the equations (3) and (4). By substituting (parasitic dipole field correction term) x and (parasitic dipole field correction term) y expressed by equations (7) and (8) into equations (3) and (4), parasitic dipoles are obtained. The potential distribution or the magnetic potential distribution V x , V y can be obtained by adding a correction term based on the field, and (parasitic quadrupole field correction term) x , ( Parasitic quadrupole field correction term) By substituting y into equations (3) and (4), the potential distribution or magnetic potential distribution V x , V y is obtained in the form of adding a correction term based on the parasitic quadrupole field. be able to. Further, as a correction term in the equations (3) and (4), a correction term for a parasitic dipole field and a correction term for a parasitic quadrupole field may be used.

このように、本発明によれば、通常の操作員が多極子の機差を意識せずに、機械的・電気的なズレによる多極子のゆがみを補正することができる。また、本発明によれば、寄生2極子場及び寄生4極子場をフーリエ級数展開で表現することで、補正処理を適切に行なうことができる。また、寄生2極子場と4極子場をフーリエ級数展開項で表現することで、これら寄生2極子場と4極子場とを重畳して補正値とすることができ、機械的・電気的なズレによる多極子のゆがみを補正することができる。また、寄生2極子場を多極子場を微小変化させた時の像移動を補正する量とすることができ、多極子のゆがみを補正することができる。また、寄生4極子場を多極子場を多極子を微小変化させた時の像の歪みを補正する量とすることができ、多極子のゆがみを補正することができる。   As described above, according to the present invention, the normal operator can correct the distortion of the multipole due to the mechanical / electrical deviation without being aware of the difference between the multipoles. Further, according to the present invention, the correction process can be appropriately performed by expressing the parasitic dipole field and the parasitic quadrupole field by Fourier series expansion. In addition, by expressing the parasitic dipole field and the quadrupole field with a Fourier series expansion term, the parasitic dipole field and the quadrupole field can be superimposed to obtain a correction value, and mechanical and electrical misalignment can be achieved. Can correct distortion of multipoles. Further, the parasitic dipole field can be set to an amount for correcting the image movement when the multipole field is slightly changed, and the distortion of the multipole can be corrected. Further, the parasitic quadrupole field can be set to an amount for correcting the distortion of the image when the multipole field is minutely changed, and the distortion of the multipole can be corrected.

本発明の効果を列挙すれば、以下の通りである。
1.多極子が持つ機械的・電気的なズレによって発生する寄生2極子場及び寄生4極子場を自動的に補正するため、多極子場の大きさを変えた時に像移動と像歪みが発生しなくなり、煩雑な調整が不要になる。
2.多極子場の大きさを変えた時に像移動と像歪みが発生しないため、装置の基本機能である自動焦点合わせ、自動非点合わせ等の機能が正常に動作するようになる。
3.多極子の機差を無くすことができる。
4.複雑な構成の多極子のビームアライメントが平易になる。
The effects of the present invention are enumerated as follows.
1. Because it automatically corrects the parasitic dipole field and parasitic quadrupole field generated by the mechanical and electrical misalignment of the multipole, image movement and image distortion do not occur when the magnitude of the multipole field is changed. This eliminates the need for complicated adjustments.
2. Since image movement and image distortion do not occur when the size of the multipole field is changed, functions such as automatic focusing and automatic astigmatism, which are basic functions of the apparatus, operate normally.
3. The difference between multipoles can be eliminated.
4). Beam alignment of multipoles with complicated configurations becomes easy.

本発明の一実施の形態例を示す構成図である。It is a block diagram which shows one embodiment of this invention. 従来装置の構成例を示す図である。It is a figure which shows the structural example of a conventional apparatus. 多極子の光軸に垂直な断面を示す図である。It is a figure which shows a cross section perpendicular | vertical to the optical axis of a multipole. それぞれの多極子の等ポテンシャル分布を示す図である。It is a figure which shows equipotential distribution of each multipole.

符号の説明Explanation of symbols

1 エミッタ
2 電子ビーム
3 レンズ
4 対物レンズ
5 試料
6 収差補正器
7 二次電子
8 二次電子検出器
9 画像積算器
10 収差補正制御器
11 多極子場補正装置
13 CRT
1 Emitter 2 Electron Beam 3 Lens 4 Objective Lens 5 Sample 6 Aberration Corrector 7 Secondary Electron 8 Secondary Electron Detector 9 Image Accumulator 10 Aberration Correction Controller 11 Multipole Field Correction Device 13 CRT

Claims (6)

多極子からなる収差補正器を搭載した装置において、荷電粒子を用いて試料表面を観察する場合において、多極子の機械的・電気的ズレによって生じる寄生2極子場と寄生4極子場を補正するために、寄生2極子場補正装置と寄生4極子場補正装置とを設ける工程と、
前記収差補正器のある段のX,Y方向に多極子場を所定量ずらした時における補正値を予め記憶手段に記憶しておく工程と、
前記記憶手段に記憶していた補正値を用いて寄生2極子場と寄生4極子場による歪みを補正する工程と、
からなることを特徴とする多極子場補正方法。
To correct a parasitic dipole field and a parasitic quadrupole field caused by mechanical and electrical misalignment of a multipole when a sample surface is observed using charged particles in an apparatus equipped with an aberration corrector composed of a multipole. A step of providing a parasitic dipole field correction device and a parasitic quadrupole field correction device;
Storing a correction value in advance in the storage means when the multipole field is shifted by a predetermined amount in the X and Y directions of a certain stage of the aberration corrector;
Correcting the distortion caused by the parasitic dipole field and the parasitic quadrupole field using the correction value stored in the storage means;
A multipole field correction method comprising:
多極子からなる収差補正器を搭載した装置において、荷電粒子を用いて試料表面を観察する場合において、多極子の機械的・電気的ズレによって生じる寄生2極子場と寄生4極子場を補正するため設けられた、寄生2極子場補正装置,寄生4極子場補正装置と、
前記収差補正器のある段のX,Y方向に多極子場を所定量ずらした時における補正値を予め記憶しておく記憶手段と、
該記憶手段に記憶していた補正値を用いて寄生2極子場と寄生4極子場による歪みを補正する補正手段と、
を有することを特徴とする多極子場補正装置。
To correct a parasitic dipole field and a parasitic quadrupole field caused by mechanical and electrical misalignment of a multipole when a sample surface is observed using charged particles in an apparatus equipped with an aberration corrector composed of a multipole. A parasitic dipole field correction device, a parasitic quadrupole field correction device,
Storage means for storing in advance a correction value when the multipole field is shifted by a predetermined amount in the X and Y directions of a certain stage of the aberration corrector;
Correction means for correcting distortion caused by the parasitic dipole field and the parasitic quadrupole field using the correction value stored in the storage means;
A multipole field correction device comprising:
前記寄生2極子場及び寄生4極子場を、それぞれ多極子の中心における角度に対するフーリエ級数展開で表現したことを特徴とする請求項2記載の多極子場補正装置。   3. The multipole field correction apparatus according to claim 2, wherein the parasitic dipole field and the parasitic quadrupole field are each expressed by Fourier series expansion with respect to an angle at the center of the multipole. フーリエ級数展開項で表現された寄生2極子場と寄生4極子場とを重畳して補正値とすることを特徴とする請求項3記載の多極子場補正装置。   4. The multipole field correction apparatus according to claim 3, wherein a parasitic dipole field and a parasitic quadrupole field expressed by a Fourier series expansion term are superimposed to obtain a correction value. 前記寄生2極子場は、多極子場を微小変化させた時の像移動を補正する量としたことを特徴とする請求項2記載の多極子場補正装置。   3. The multipole field correction apparatus according to claim 2, wherein the parasitic dipole field is an amount for correcting image movement when the multipole field is minutely changed. 前記寄生4極子場は、多極子場を微小変化させた時の像歪みを補正する量としたことを特徴とする請求項2記載の多極子場補正装置。   3. The multipole field correction device according to claim 2, wherein the parasitic quadrupole field is an amount for correcting image distortion when the multipole field is minutely changed.
JP2004299705A 2004-10-14 2004-10-14 Multipole field correction method and device Pending JP2006114305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299705A JP2006114305A (en) 2004-10-14 2004-10-14 Multipole field correction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299705A JP2006114305A (en) 2004-10-14 2004-10-14 Multipole field correction method and device

Publications (1)

Publication Number Publication Date
JP2006114305A true JP2006114305A (en) 2006-04-27

Family

ID=36382656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299705A Pending JP2006114305A (en) 2004-10-14 2004-10-14 Multipole field correction method and device

Country Status (1)

Country Link
JP (1) JP2006114305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015102A1 (en) * 2011-07-26 2013-01-31 株式会社日立ハイテクノロジーズ Charged particle beam device
WO2021100172A1 (en) * 2019-11-21 2021-05-27 株式会社日立ハイテク Charged particle beam device and aberration correction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192254A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Electrostatic-type deflector for charged particle rays
JPH03276547A (en) * 1990-03-27 1991-12-06 Jeol Ltd Electron lens integrated with lens asymmetry correcting device
JP2002042707A (en) * 2000-07-25 2002-02-08 Jeol Ltd Astigmatism correction device
JP2004265864A (en) * 2003-02-14 2004-09-24 Jeol Ltd Charged particle optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192254A (en) * 1982-05-07 1983-11-09 Hitachi Ltd Electrostatic-type deflector for charged particle rays
JPH03276547A (en) * 1990-03-27 1991-12-06 Jeol Ltd Electron lens integrated with lens asymmetry correcting device
JP2002042707A (en) * 2000-07-25 2002-02-08 Jeol Ltd Astigmatism correction device
JP2004265864A (en) * 2003-02-14 2004-09-24 Jeol Ltd Charged particle optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015102A1 (en) * 2011-07-26 2013-01-31 株式会社日立ハイテクノロジーズ Charged particle beam device
JP2013030278A (en) * 2011-07-26 2013-02-07 Hitachi High-Technologies Corp Charged particle beam device
CN103718267A (en) * 2011-07-26 2014-04-09 株式会社日立高新技术 Charged particle beam device
WO2021100172A1 (en) * 2019-11-21 2021-05-27 株式会社日立ハイテク Charged particle beam device and aberration correction method
JPWO2021100172A1 (en) * 2019-11-21 2021-05-27
DE112019007790T5 (en) 2019-11-21 2022-06-30 Hitachi High-Tech Corporation CHARGED PARTICLE BEAM DEVICE AND ABERRATION CORRECTION METHOD
JP7240525B2 (en) 2019-11-21 2023-03-15 株式会社日立ハイテク Charged particle beam device and aberration correction method

Similar Documents

Publication Publication Date Title
JP3985057B2 (en) Correction device for lens aberration correction of particle optical equipment
US20090014649A1 (en) Electron beam apparatus
US6191423B1 (en) Correction device for correcting the spherical aberration in particle-optical apparatus
US7619218B2 (en) Charged particle optical apparatus with aberration corrector
US10446361B2 (en) Aberration correction method, aberration correction system, and charged particle beam apparatus
JP2006054074A (en) Charged particle beam column
US9484181B2 (en) Charged particle beam apparatus and trajectory correction method in charged particle beam apparatus
EP1780763B1 (en) Charged particle beam system with higher-order aberration corrector
JP6037693B2 (en) Charged particle beam equipment
JP2010073695A (en) Distortion compensation method in particle-optical device
JP6647854B2 (en) Aberration correction method and charged particle beam device
JP6077960B2 (en) Spherical aberration correction device, spherical aberration correction method, and charged particle beam device
US7095031B2 (en) Method of automatically correcting aberrations in charged-particle beam and apparatus therefor
JP2008059881A (en) Aberration correction method and electron beam device
JP2006216299A (en) Charged particle beam device, and axis adjusting method of aberration correction device of the same
JP2019008880A (en) Distortion correction method and electron microscope
JP2005183085A (en) Aberration automatically correcting method and device
JP2006114305A (en) Multipole field correction method and device
JP4628076B2 (en) Aberration correction method and aberration correction apparatus
JP5559133B2 (en) Corrector, scanning electron microscope and scanning transmission electron microscope
JP4522203B2 (en) Method and apparatus for correcting chromatic aberration of charged particle beam apparatus and charged particle beam apparatus
JP7240525B2 (en) Charged particle beam device and aberration correction method
JP6438780B2 (en) Charged particle beam apparatus and aberration correction method
JP6163255B2 (en) Charged particle beam apparatus and spherical aberration correction method
JP7267319B2 (en) Aberration measurement method and electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005