JP2006114227A - Sealing structure of fuel battery cell - Google Patents

Sealing structure of fuel battery cell Download PDF

Info

Publication number
JP2006114227A
JP2006114227A JP2004297217A JP2004297217A JP2006114227A JP 2006114227 A JP2006114227 A JP 2006114227A JP 2004297217 A JP2004297217 A JP 2004297217A JP 2004297217 A JP2004297217 A JP 2004297217A JP 2006114227 A JP2006114227 A JP 2006114227A
Authority
JP
Japan
Prior art keywords
elastic body
fuel cell
separator
electrode assembly
sealing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004297217A
Other languages
Japanese (ja)
Other versions
JP4998656B2 (en
Inventor
Shotaro Koga
正太郎 古賀
Yoshihiro Kurano
慶宏 蔵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2004297217A priority Critical patent/JP4998656B2/en
Publication of JP2006114227A publication Critical patent/JP2006114227A/en
Application granted granted Critical
Publication of JP4998656B2 publication Critical patent/JP4998656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing structure of a fuel battery cell capable of down-sizing and weight reduction of the stack by thinning the fuel battery cell. <P>SOLUTION: This is the sealing structure for tightly sealing a passage 4 formed between a membrane electrode assembly 1 and separators 2, 2 on both sides in thickness direction. An elastic body 3 which is arranged between respective separators 2, 2 so as to surround a passage forming region A is installed at the membrane electrode assembly 1 and a projection 22a which is pressure contacted to the elastic body 3 extending so as to surround the passage forming region A is formed at each separator 2. Since an excellent sealing performance is obtained at the surface pressure maximum part by the pressure contact of the projection 22a to the elastic body 3, formation of a seal lip is not necessary for the elastic body 3 and thinning of the fuel battery cell is possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池において、積層された燃料電池セル間のガス流路を密封するための密封構造に関する。   The present invention relates to a sealing structure for sealing a gas flow path between stacked fuel cells in a fuel cell.

燃料電池は、高分子電解質膜の両面に一対の触媒電極層を設けた膜電極複合体(Membrane Electrode Assembly:MEA)の厚さ方向両側を、セパレータで挟持した燃料電池セルを多数、多い場合は数百枚積層したスタック構造をとっている。そして、酸化ガス(酸素)が各セパレータの一方の面に形成された酸化ガス流路から一方の触媒電極層に供給され、燃料ガス(水素)が各セパレータの他方の面に形成された燃料ガス流路から他方の触媒電極層に供給され、水の電気分解の逆反応である電気化学反応、すなわち水素と酸素から水を生成する反応によって、電力を発生するものである。   A fuel cell has many fuel cell cells sandwiched between separators on both sides in the thickness direction of a membrane electrode assembly (MEA) provided with a pair of catalyst electrode layers on both sides of a polymer electrolyte membrane. It has a stack structure in which several hundreds are stacked. Then, an oxidizing gas (oxygen) is supplied to one catalyst electrode layer from an oxidizing gas passage formed on one surface of each separator, and a fuel gas (hydrogen) is formed on the other surface of each separator. Electric power is generated by an electrochemical reaction that is the reverse reaction of water electrolysis, that is, a reaction that generates water from hydrogen and oxygen, which is supplied from the flow path to the other catalyst electrode layer.

スタック内の各セルのガス流路を密封するためのガスケットは、弾性体からなるものであって、セパレータの表面に一体に設けて膜電極複合体の表面に密接させるものや、逆に、膜電極複合体の表面に一体に設けてセパレータの表面に密接させるものがある。後者の場合、膜電極複合体の両側にシールリップを形成してセパレータとの面圧を確保するのが一般的である(例えば特許文献1参照)。
特再2002−089240
The gasket for sealing the gas flow path of each cell in the stack is made of an elastic body, and is provided integrally on the surface of the separator so as to be in close contact with the surface of the membrane electrode assembly. Some are provided integrally on the surface of the electrode composite so as to be in close contact with the surface of the separator. In the latter case, it is common to form seal lips on both sides of the membrane electrode assembly to ensure the contact pressure with the separator (see, for example, Patent Document 1).
Tokurei 2002-089240

この種の燃料電池において、スタックの小型・軽量化を図るには、各セルの部材を薄肉にすることが不可欠である。しかし、膜電極複合体の表面に、弾性体によるシールリップを形成したものにおいて、シール機能の長期耐久性を確保する観点から、シールリップの高さをそれほど小さくすることができないので、スタックの小型化が困難であった。   In this type of fuel cell, in order to reduce the stack size and weight, it is indispensable to make each cell member thin. However, in the case where a sealing lip made of an elastic material is formed on the surface of the membrane electrode assembly, the height of the sealing lip cannot be made so small from the viewpoint of ensuring the long-term durability of the sealing function. It was difficult to convert.

また、シールリップにより密封機能を奏するガスケットは、各セルを積層することによるスタックの組立時や、密封対象流体(水素ガスや酸化ガス等)の加圧時に、シールリップの倒れも懸念される。   In addition, the gasket having a sealing function by the seal lip may cause the seal lip to collapse when the stack is assembled by stacking cells or when a fluid to be sealed (hydrogen gas, oxidizing gas, or the like) is pressurized.

更に、スタックの小型・軽量化には、セパレータを薄肉にすることが有効であるが、カーボン等で成形されたセパレータを薄肉にすると、その機械的強度が低下するため、シールリップの圧縮反力によって、セパレータが変形又は破損しやすくなることが懸念される。   Furthermore, to make the stack smaller and lighter, it is effective to make the separator thinner. However, if the separator made of carbon or the like is made thinner, its mechanical strength decreases, so the compression reaction force of the seal lip This may cause the separator to be easily deformed or damaged.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、燃料電池セルの薄肉化によるスタックの小型・軽量化が可能な燃料電池セルの密封構造を提供することにある。   The present invention has been made in view of the above points, and its technical problem is to provide a fuel cell sealing structure capable of reducing the size and weight of the stack by reducing the thickness of the fuel cell. There is.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る燃料電池セルの密封構造は、膜電極複合体とその厚さ方向両側のセパレータとの間に形成された流路を密封する構造であって、各セパレータの間に前記流路の形成領域を取り囲むように配置された弾性体が前記膜電極複合体に装着され、前記各セパレータに、前記流路の形成領域を取り囲むように延びて前記弾性体に圧接される突条が形成されたものである。このため、弾性体にはシールリップを形成する必要がなく、前記弾性体への突条の圧接による面圧極大部において、優れた密封性を奏する。   As a means for effectively solving the technical problem described above, a fuel cell sealing structure according to the invention of claim 1 includes a flow formed between a membrane electrode assembly and separators on both sides in the thickness direction. A structure that seals a path, and an elastic body that is disposed between the separators so as to surround the flow path forming region is attached to the membrane electrode assembly, and the flow channel forming region is attached to each separator. A ridge that extends so as to surround and is pressed against the elastic body is formed. For this reason, it is not necessary to form a seal lip on the elastic body, and an excellent sealing performance is achieved at the surface pressure maximum portion due to the pressure contact of the protrusion to the elastic body.

請求項2の発明に係る燃料電池セルの密封構造は、請求項1に記載の構成において、弾性体が、膜電極複合体の外周面に接合されたものである。この場合、弾性体の厚さを、膜電極複合体の厚さと同等あるいはそれ以下にすることによって、燃料電池セルの薄肉化を図ることができる。   A fuel cell sealing structure according to a second aspect of the present invention is the structure according to the first aspect, wherein the elastic body is joined to the outer peripheral surface of the membrane electrode assembly. In this case, the thickness of the elastic body can be reduced by making the thickness of the elastic body equal to or less than the thickness of the membrane electrode assembly.

請求項3の発明に係る燃料電池セルの密封構造は、請求項1に記載の構成において、各セパレータに形成された突条が、弾性体の両側で互いに異なる位置に形成されたものである。この場合、各突条間で弾性体や膜電極複合体が挟圧されることによる圧縮応力を緩和することができる。   According to a third aspect of the present invention, there is provided the fuel cell sealing structure according to the first aspect, wherein the protrusions formed on each separator are formed at different positions on both sides of the elastic body. In this case, the compressive stress due to the elastic body or the membrane electrode assembly being sandwiched between the protrusions can be alleviated.

請求項4の発明に係る燃料電池セルの密封構造は、請求項1に記載の構成において、セパレータが金属板からなり、突条が、前記金属板の屈曲部からなるものとすることによって、セパレータの薄肉化を図ったものである。   According to a fourth aspect of the present invention, there is provided the fuel cell sealing structure according to the first aspect, wherein the separator is made of a metal plate and the protrusion is made of a bent portion of the metal plate. Is intended to be thinner.

請求項1の発明に係る燃料電池セルの密封構造によれば、弾性体にシールリップを形成する必要がなくなるので、燃料電池セルの薄肉化によるスタックの小型・軽量化が実現される。また、シールリップの倒れといった問題が生じ得ないので、信頼性の高い密封構造を得ることができる。   According to the fuel cell sealing structure according to the first aspect of the present invention, it is not necessary to form a seal lip on the elastic body, so that the stack can be made smaller and lighter by reducing the thickness of the fuel cell. In addition, since a problem such as the fall of the seal lip cannot occur, a highly reliable sealing structure can be obtained.

請求項2の発明に係る燃料電池セルの密封構造によれば、請求項1による効果に加え、弾性体が、膜電極複合体の外周面に接合されることによって、膜電極複合体とセパレータ間の弾性体の介在による厚さの増大をなくすことができるので、燃料電池セルの一層の薄肉化を図り、スタックの小型・軽量化を実現することができる。   According to the fuel cell sealing structure of the second aspect of the invention, in addition to the effect of the first aspect, the elastic body is joined to the outer peripheral surface of the membrane electrode composite so that the membrane electrode composite is separated from the separator. Therefore, the thickness of the fuel cell can be further reduced, and the stack can be made smaller and lighter.

請求項3の発明に係る燃料電池セルの密封構造によれば、請求項1による効果に加え、各セパレータに形成された突条が、弾性体の両側で互いに異なる位置に圧接されるので、圧縮応力の集中を防止することができ、その結果、更なる燃料電池セルの薄肉化を図り、スタックの小型・軽量化を実現することができる。   According to the fuel cell sealing structure according to the invention of claim 3, in addition to the effect of claim 1, the protrusions formed on each separator are pressed against each other at different positions on both sides of the elastic body. Stress concentration can be prevented, and as a result, the fuel cell can be further thinned, and the stack can be made smaller and lighter.

請求項4の発明に係る燃料電池セルの密封構造によれば、請求項1による効果に加え、セパレータが金属板からなるものであるため、これによる燃料電池セルの薄肉化を図り、スタックの小型・軽量化を実現することができる。   According to the fuel cell sealing structure of the invention of claim 4, in addition to the effect of claim 1, since the separator is made of a metal plate, the thickness of the fuel battery cell can be reduced by this, and the stack can be made compact.・ Weight reduction can be realized.

以下、本発明に係る燃料電池セルの密封構造の好ましい実施の形態について、図面を参照しながら説明する。まず図1は、本発明の第一の形態を示す燃料電池セルの部分断面図で、この燃料電池セルにおいて、参照符号1は膜電極複合体、参照符号2は膜電極複合体1の厚さ方向両側に配置されたセパレータ、参照符号3は膜電極複合体1による発電領域を取り囲むように配置された弾性体である。   Hereinafter, a preferred embodiment of a fuel cell sealing structure according to the present invention will be described with reference to the drawings. First, FIG. 1 is a partial cross-sectional view of a fuel cell showing a first embodiment of the present invention. In this fuel cell, reference numeral 1 is a membrane electrode assembly, and reference numeral 2 is a thickness of the membrane electrode assembly 1. Separators arranged on both sides in the direction, reference numeral 3 is an elastic body arranged so as to surround a power generation region by the membrane electrode assembly 1.

膜電極複合体1は、高分子電解質膜11をその厚さ方向両側から一対の触媒電極12,12で挟み、更にそのその厚さ方向外側に、一対のガス拡散層13,13を配置したものである。ガス拡散層13は、水素又は酸素を触媒電極12に導くための通気性と、水素と酸素の電気化学反応により発生した電力をセパレータ2に導くための導電性とを有しており、例えばカーボン繊維等の多孔質体からなる。   The membrane electrode assembly 1 includes a polymer electrolyte membrane 11 sandwiched between a pair of catalyst electrodes 12 and 12 from both sides in the thickness direction, and a pair of gas diffusion layers 13 and 13 disposed on the outside in the thickness direction. It is. The gas diffusion layer 13 has air permeability for guiding hydrogen or oxygen to the catalyst electrode 12, and conductivity for guiding power generated by an electrochemical reaction between hydrogen and oxygen to the separator 2, for example, carbon. It consists of a porous material such as fiber.

セパレータ2は導電性を有する金属の薄板からなるものであって、各セパレータ2には、プレス成形によって、多数の溝21が形成されており、この溝21によって、ガス拡散層13との間に、燃料ガス(水素ガス)又は酸化ガス(酸素)を通すための流路4が形成されている。   The separator 2 is made of a conductive metal thin plate, and each separator 2 is formed with a large number of grooves 21 by press molding. The grooves 21 form a gap between the gas diffusion layer 13 and the separator 21. A flow path 4 is formed through which fuel gas (hydrogen gas) or oxidizing gas (oxygen) is passed.

弾性体3は、各セパレータ2と膜電極複合体1との間に介在して、流路4から燃料ガス又は酸化ガスが漏出するのを防止するものであって、膜電極複合体1の外周部に沿って断面コ字形をなすように、ゴム状弾性材料によって、この膜電極複合体1に一体的に成形されている。すなわち、この弾性体3は、膜電極複合体1の外周部におけるセパレータ2との対向面に接合された互いに平行な一対の弾性層31,31と、その外縁部間を連続して延びると共に膜電極複合体1の外周面を包囲する端壁部32からなる。   The elastic body 3 is interposed between each separator 2 and the membrane electrode assembly 1 to prevent leakage of fuel gas or oxidizing gas from the flow path 4. The membrane electrode assembly 1 is integrally formed of a rubber-like elastic material so as to form a U-shaped cross section along the portion. That is, the elastic body 3 includes a pair of parallel elastic layers 31 and 31 bonded to a surface facing the separator 2 in the outer peripheral portion of the membrane electrode assembly 1 and a continuous extension between the outer edge portions and the membrane. It consists of an end wall portion 32 surrounding the outer peripheral surface of the electrode assembly 1.

弾性体3のゴム状弾性材料は、VMQ(シリコーンゴム)、FKM(フッ素ゴム)、あるいはEPDM(エチレンプロピレンゴム)等から選択され、これを液状ゴムとして、多孔質のガス拡散層13,13に含浸させた状態で成形される。図中の参照符号33は、ガス拡散層13におけるゴム含浸層を示しており、このゴム含浸層33は弾性体3と連続するものである。   The rubber-like elastic material of the elastic body 3 is selected from VMQ (silicone rubber), FKM (fluorine rubber), EPDM (ethylene propylene rubber), etc., and this is used as a liquid rubber for the porous gas diffusion layers 13 and 13. Molded in an impregnated state. Reference numeral 33 in the drawing indicates a rubber-impregnated layer in the gas diffusion layer 13, and the rubber-impregnated layer 33 is continuous with the elastic body 3.

各セパレータ2には、流路4の形成領域(以下、流路形成領域という)Aの外周側に、弾性体3を膜電極複合体1の両側から包囲するようにフランジ部22が形成されており、このフランジ部22には山形(V字形)の突条22aが形成されている。すなわちこの突条22a,22aは、セパレータ2のプレス成形によって屈曲形成されたもので、流路形成領域Aを取り囲むように延びており、弾性体3の両側で互いに対応する位置にあって、膜電極複合体1の外周部におけるセパレータ2との対向面に接合された弾性層31,31に食い込むように圧接されている。   Each separator 2 is formed with a flange portion 22 on the outer peripheral side of a flow path 4 formation area (hereinafter referred to as a flow path formation area) A so as to surround the elastic body 3 from both sides of the membrane electrode assembly 1. The flange portion 22 is formed with a chevron (V-shaped) protrusion 22a. That is, the protrusions 22a and 22a are bent by press molding of the separator 2, extend so as to surround the flow path forming region A, and are located at positions corresponding to each other on both sides of the elastic body 3. The electrode assembly 1 is press-contacted so as to bite into the elastic layers 31 and 31 bonded to the surface facing the separator 2 in the outer peripheral portion of the electrode assembly 1.

以上の構成を備える燃料電池セルにおいて、膜電極複合体1の両側に形成された流路4,4のうち、一方には燃料ガス(水素)が供給され、他方には酸化ガス(酸素)が供給される。膜電極複合体1の触媒電極12,12のうち、ガス拡散層13を介して燃料ガスが供給される側(アノード)においては、水素分子を水素イオンと電子に分解する反応が行われ、ガス拡散層13を介して酸化ガスが供給される側(カソード)においては、酸素と水素イオンと電子により水を生成する反応が行われ、これによって起電力を発生する。   In the fuel cell having the above-described configuration, one of the flow paths 4 and 4 formed on both sides of the membrane electrode assembly 1 is supplied with fuel gas (hydrogen) and the other is oxidized gas (oxygen). Supplied. Of the catalyst electrodes 12 and 12 of the membrane electrode assembly 1, on the side (anode) to which the fuel gas is supplied via the gas diffusion layer 13, a reaction for decomposing hydrogen molecules into hydrogen ions and electrons is performed. On the side (cathode) to which the oxidizing gas is supplied through the diffusion layer 13, a reaction for generating water by oxygen, hydrogen ions, and electrons is performed, thereby generating an electromotive force.

各セパレータ2に形成された山形の突条22aは、流路形成領域Aを取り囲むように膜電極複合体1に一体成形された弾性体3の弾性層31,31に、燃料電池セルの積層状態において食い込むように圧接されるので、突条22aの頂部で弾性層31との面圧が極大となるので、流路4内を流通する燃料ガス又は酸化ガスに対する優れた密封性を奏すると共に、膜電極複合体1の外周部を弾性的に挟持する機能を有する。また、弾性体3は、その端壁部32が膜電極複合体1の外周面を包囲するように延びると共に、ガス拡散層13の外周部にゴム含浸層33を形成しているので、燃料ガス又は酸化ガスが、多孔質構造のガス拡散層13を厚さ方向と直交する方向へ透過して外周側へ漏洩することもない。   The chevron ridges 22a formed on each separator 2 are stacked on the elastic layers 31 and 31 of the elastic body 3 integrally formed with the membrane electrode assembly 1 so as to surround the flow path forming region A. Since the surface pressure with the elastic layer 31 is maximized at the top of the ridge 22a, it has excellent sealing properties against the fuel gas or the oxidizing gas flowing through the flow path 4, and the membrane. It has a function of elastically holding the outer periphery of the electrode composite 1. Further, the elastic body 3 extends so that the end wall portion 32 surrounds the outer peripheral surface of the membrane electrode assembly 1 and the rubber-impregnated layer 33 is formed on the outer peripheral portion of the gas diffusion layer 13. Alternatively, the oxidizing gas does not leak through the porous gas diffusion layer 13 in the direction perpendicular to the thickness direction and leak to the outer peripheral side.

そして、この形態によれば、上述のように、弾性体3(弾性層31)に各セパレータ2の突条22aを圧接させることによって、シールに有効な面圧極大部を形成しているので、弾性体3にシールリップを形成する必要がなく、このため燃料電池セルの肉厚を減少させることができ、ひいては、燃料電池セルの積層体であるスタックの小型・軽量化が可能となる。しかも、シールリップによる密封構造の場合は、各セルの積層時、あるいは密封対象の水素ガスや酸化ガス等の加圧時に、シールリップが倒れてしまうおそれがあるのに対し、上述の形態においては、そのようなことはない。   And according to this form, as mentioned above, since the protrusion 22a of each separator 2 is press-contacted to the elastic body 3 (elastic layer 31), the surface pressure maximum portion effective for sealing is formed. It is not necessary to form a seal lip on the elastic body 3, and thus the thickness of the fuel cell can be reduced, and as a result, the stack, which is a stack of fuel cells, can be reduced in size and weight. Moreover, in the case of the sealing structure using the sealing lip, the sealing lip may fall when each cell is stacked or when the hydrogen gas or oxidizing gas to be sealed is pressurized. That's not the case.

また、セパレータ2が、金属板のプレス成形体からなるものであるため、従来のようにカーボン等で成形されたセパレータを用いたものに比較して、十分に薄肉にすることができる。このため、膜電極複合体1、セパレータ2,2及び弾性体3からなる燃料電池セルの肉厚を減少させることができ、ひいては、燃料電池セルの積層体であるスタックの小型・軽量化が可能となる。   Moreover, since the separator 2 consists of a press-molded body of a metal plate, it can be made sufficiently thin as compared with a conventional separator using carbon or the like. For this reason, the thickness of the fuel battery cell composed of the membrane electrode assembly 1, the separators 2, 2 and the elastic body 3 can be reduced. As a result, the stack, which is a stack of fuel battery cells, can be reduced in size and weight. It becomes.

次に図2は、本発明の第二の形態を示す燃料電池セルの部分断面図で、この燃料電池セルにおいて、上述した図1の形態と異なるところは、突条22aの断面形状にある。その他の部分は図1の形態と同様に構成されているので、図1と同一又は対応する部分には同一の符号を付して、その説明は省略する。   Next, FIG. 2 is a partial cross-sectional view of a fuel battery cell showing a second embodiment of the present invention. In this fuel battery cell, the difference from the above-described embodiment of FIG. Since other parts are configured in the same manner as in the embodiment of FIG. 1, the same or corresponding parts as those in FIG.

すなわち、図2の形態においては、突条22aが断面円弧状をなすように形成されている。したがって、突条22aによる弾性層31との圧接部の面圧分布は、図1の形態に比較して緩やかに変化する。   That is, in the form of FIG. 2, the protrusion 22a is formed so as to have a circular arc shape in cross section. Therefore, the surface pressure distribution of the pressure contact portion between the protrusion 22a and the elastic layer 31 changes gently as compared with the embodiment shown in FIG.

次に図3は、本発明の第三の形態を示す燃料電池セルの部分断面図である。この燃料電池セルにおいて、先に説明した図1の形態と異なるところは、弾性体3の断面形状にある。その他の部分は図1の形態と同様に構成されているので、図1と同一又は対応する部分には同一の符号を付して、その説明は省略する。   Next, FIG. 3 is a partial cross-sectional view of a fuel cell showing a third embodiment of the present invention. In this fuel cell, the difference from the above-described form of FIG. 1 is the cross-sectional shape of the elastic body 3. Since other parts are configured in the same manner as in the embodiment of FIG. 1, the same or corresponding parts as those in FIG.

すなわち図3の形態において、弾性体3は、膜電極複合体1と略同等の肉厚を有する矩形断面状に成形されていて、高分子電解質膜11をその厚さ方向両側から触媒電極12,12で挟み、更にそのその厚さ方向外側にガス拡散層13,13を配置した積層構造の膜電極複合体1の外周面に、一体的に成形されている。   That is, in the embodiment of FIG. 3, the elastic body 3 is formed in a rectangular cross-section having a thickness substantially equal to that of the membrane electrode assembly 1, and the polymer electrolyte membrane 11 is separated from the catalyst electrodes 12, 12 and is integrally formed on the outer peripheral surface of the laminated membrane electrode assembly 1 in which the gas diffusion layers 13 and 13 are arranged on the outer side in the thickness direction.

弾性体3は、図1の形態と同様、液状ゴムを用いて成形されたものであって、このため多孔質のガス拡散層13,13の外周部における弾性体3との接合部には、弾性体3から連続したゴム含浸層33が形成されている。   The elastic body 3 is formed by using liquid rubber as in the embodiment of FIG. 1, and for this reason, at the joint portion with the elastic body 3 in the outer peripheral portion of the porous gas diffusion layers 13, 13, A rubber-impregnated layer 33 continuous from the elastic body 3 is formed.

金属の薄板からなる各セパレータ2には、弾性体3を厚さ方向両側から包囲するようにフランジ部22が形成されており、このフランジ部22には山形(V字形)の突条22aが形成されている。この突条22a,22aは、セパレータ2のプレス成形によって屈曲形成されたもので、流路形成領域Aを取り囲むように延びており、弾性体3の両側で互いに対応する位置にあって、弾性体3の両面に食い込むように圧接されている。   Each separator 2 made of a thin metal plate is formed with a flange portion 22 so as to surround the elastic body 3 from both sides in the thickness direction, and this flange portion 22 is formed with a chevron (V-shaped) protrusion 22a. Has been. The protrusions 22a and 22a are bent by press molding of the separator 2, extend so as to surround the flow path forming region A, are located at positions corresponding to each other on both sides of the elastic body 3, and the elastic body 3 is pressed to bite into both sides.

以上の構成を備える図3の燃料電池セルも、図1と同様の機能をもつものであって、各セパレータ2に形成された山形の突条22aは、流路形成領域Aを取り囲むように膜電極複合体1に一体成形された弾性体3に、燃料電池セルの積層状態において食い込むように圧接されるので、突条22aの頂部で弾性体3との面圧が極大となるので、流路4内を流通する燃料ガス又は酸化ガスに対する優れた密封性を奏すると共に、膜電極複合体1の外周部を、弾性体3を介して弾性的に支持する機能を有する。また、弾性体3は、膜電極複合体1の外周面を包囲するように延びると共に、ガス拡散層13の外周部にゴム含浸層33を形成しているので、燃料ガス又は酸化ガスが、多孔質構造のガス拡散層13を厚さ方向と直交する方向へ透過して外周側へ漏洩することもない。   The fuel cell of FIG. 3 having the above configuration also has the same function as that of FIG. 1, and the chevron ridges 22 a formed on each separator 2 are membranes so as to surround the flow path forming region A. Since the elastic body 3 integrally formed with the electrode assembly 1 is pressed against the elastic body 3 so as to bite in the stacked state of the fuel cells, the surface pressure with the elastic body 3 is maximized at the top of the protrusion 22a. 4 has an excellent sealing property against fuel gas or oxidant gas flowing through the inside, and has a function of elastically supporting the outer peripheral portion of the membrane electrode assembly 1 via the elastic body 3. In addition, since the elastic body 3 extends so as to surround the outer peripheral surface of the membrane electrode assembly 1, and the rubber-impregnated layer 33 is formed on the outer peripheral portion of the gas diffusion layer 13, the fuel gas or the oxidizing gas is porous. The gas diffusion layer 13 having a quality structure is transmitted in a direction orthogonal to the thickness direction and does not leak to the outer peripheral side.

また、図1の形態と同様の効果に加え、弾性体3は、膜電極複合体1と略同等の肉厚であって、膜電極複合体1の外周部の厚さ方向両側に図1のような弾性層31を形成するものではないため、燃料電池セルの肉厚を一層減少させ、スタックを小型・軽量化することができる。   In addition to the same effect as that of the embodiment of FIG. 1, the elastic body 3 has a thickness substantially the same as that of the membrane electrode assembly 1, and is formed on both sides in the thickness direction of the outer periphery of the membrane electrode assembly 1. Since such an elastic layer 31 is not formed, the thickness of the fuel cell can be further reduced, and the stack can be reduced in size and weight.

次に図3は、本発明の第四の形態を示す燃料電池セルの部分断面図で、この燃料電池セルは、突条22aの断面形状のみが、上述した図3の形態と異なる。その他の部分は図1の形態と同様に構成されているので、図3と同一又は対応する部分には同一の符号を付して、その説明は省略する。   Next, FIG. 3 is a partial cross-sectional view of a fuel cell showing a fourth embodiment of the present invention. This fuel cell differs from the above-described embodiment of FIG. 3 only in the cross-sectional shape of the protrusion 22a. Since other parts are configured in the same manner as in the embodiment of FIG. 1, the same or corresponding parts as those in FIG.

すなわち、図4の形態においては、突条22aが図2と同様、断面円弧状をなすように形成されている。したがって、突条22aによる弾性体3との圧接部の面圧分布は、図3の形態に比較して緩やかに変化する。   That is, in the form of FIG. 4, the ridge 22a is formed so as to have an arcuate cross section as in FIG. Therefore, the surface pressure distribution of the pressure contact portion between the protrusion 22a and the elastic body 3 changes gently as compared with the configuration shown in FIG.

次に図5は、本発明の第五の形態を示す燃料電池セルの部分断面図である。この燃料電池セルは、先に説明した図1の形態において、セパレータ2,2の断面山形の突条22a,22aが、弾性体3の両側で互いに異なる位置に形成されたものである。その他の部分は図1の形態と同様に構成されているので、図1と同一又は対応する部分には同一の符号を付して、その説明は省略する。すなわち、図5における上側のセパレータ2の突条22aは、下側のセパレータ2の突条22aに対して、相対的に外周寄りに位置して形成されており、したがって、弾性体3の弾性層31,31に対する突条22a,22aの圧接位置が、互いにずれている。   Next, FIG. 5 is a partial cross-sectional view of a fuel cell showing a fifth embodiment of the present invention. In this fuel cell, in the form of FIG. 1 described above, the protrusions 22 a and 22 a having a mountain-shaped cross section of the separators 2 and 2 are formed at different positions on both sides of the elastic body 3. Since other parts are configured in the same manner as in the embodiment of FIG. 1, the same or corresponding parts as those in FIG. That is, the protrusions 22a of the upper separator 2 in FIG. 5 are formed relatively closer to the outer periphery than the protrusions 22a of the lower separator 2, and therefore the elastic layer of the elastic body 3 is formed. The press contact positions of the protrusions 22a and 22a with respect to 31 and 31 are shifted from each other.

次に図6は、本発明の第六の形態を示す燃料電池セルの部分断面図である。この燃料電池セルも上述した図5と同様であって、先に説明した図2の形態における断面円弧状の突条22a,22aが、弾性体3の両側で互いに異なる位置に形成されたものである。その他の部分は図2の形態と同様に構成されているので、図2と同一又は対応する部分には同一の符号を付して、その説明は省略する。すなわち、図6における上側のセパレータ2の突条22aは、下側のセパレータ2の突条22aに対して、相対的に外周寄りに位置して形成されており、したがって、弾性体3の弾性層31,31に対する突条22a,22aの圧接位置が、互いにずれている。   Next, FIG. 6 is a partial cross-sectional view of a fuel cell showing a sixth embodiment of the present invention. This fuel battery cell is also the same as that in FIG. 5 described above, and the ridges 22a and 22a having a circular arc shape in the form of FIG. 2 described above are formed at different positions on both sides of the elastic body 3. is there. Since the other parts are configured in the same manner as in the embodiment of FIG. 2, the same or corresponding parts as those in FIG. That is, the ridge 22a of the upper separator 2 in FIG. 6 is formed relatively closer to the outer periphery than the ridge 22a of the lower separator 2, and therefore, the elastic layer of the elastic body 3 is formed. The press contact positions of the protrusions 22a and 22a with respect to 31 and 31 are shifted from each other.

図1又は図2の形態によれば、互いに対向する突条22a,22a間で、弾性体3の弾性層31,31及び膜電極複合体1のガス拡散層13,13が圧縮されるのに対し、図5又は図6の形態によれば、突条22a,22aが弾性体3の弾性層31,31に互いに異なる位置で圧接するので、弾性層31,31及びガス拡散層13,13に圧縮応力が集中しにくく、したがって、図1又は図2の形態に比較して、燃料電池セルの一層の薄肉化が可能となる。   1 or 2, the elastic layers 31 and 31 of the elastic body 3 and the gas diffusion layers 13 and 13 of the membrane electrode assembly 1 are compressed between the protrusions 22a and 22a facing each other. On the other hand, according to the form of FIG. 5 or FIG. 6, the protrusions 22 a and 22 a are pressed against the elastic layers 31 and 31 of the elastic body 3 at different positions, so that the elastic layers 31 and 31 and the gas diffusion layers 13 and 13 are in contact with each other. The compressive stress is less likely to concentrate, and therefore, the fuel cell can be made thinner than the embodiment of FIG. 1 or FIG.

次に図7は、本発明の第七の形態を示す燃料電池セルの部分断面図である。この燃料電池セルは、先に説明した図3の形態において、セパレータ2,2の断面山形の突条22a,22aが、弾性体3の両側で互いに異なる位置に形成されたものである。その他の部分は図3の形態と同様に構成されているので、図3と同一又は対応する部分には同一の符号を付して、その説明は省略する。すなわち、図7における上側のセパレータ2の突条22aは、下側のセパレータ2の突条22aに対して、相対的に外周寄りに位置して形成されており、したがって、弾性体3に対する突条22a,22aの圧接位置が、互いにずれている。   Next, FIG. 7 is a partial cross-sectional view of a fuel cell showing a seventh embodiment of the present invention. In this fuel cell, in the form of FIG. 3 described above, the ridges 22a and 22a having a mountain-shaped cross section of the separators 2 and 2 are formed at different positions on both sides of the elastic body 3. Since the other parts are configured in the same manner as in the embodiment of FIG. 3, the same or corresponding parts as those in FIG. That is, the ridge 22a of the upper separator 2 in FIG. 7 is formed so as to be relatively closer to the outer periphery than the ridge 22a of the lower separator 2, and therefore, the ridge to the elastic body 3. The pressure contact positions of 22a and 22a are shifted from each other.

次に図8は、本発明の第八の形態を示す燃料電池セルの部分断面図である。この燃料電池セルは、先に説明した図4の形態において、セパレータ2,2の断面円弧状の突条22a,22aが、弾性体3の両側で互いに異なる位置に形成されたものである。その他の部分は図4の形態と同様に構成されているので、図4と同一又は対応する部分には同一の符号を付して、その説明は省略する。すなわち、図8における上側のセパレータ2の突条22aは、下側のセパレータ2の突条22aに対して、相対的に外周寄りに位置して形成されており、したがって、弾性体3に対する突条22a,22aの圧接位置が、互いにずれている。   Next, FIG. 8 is a partial cross-sectional view of a fuel battery cell showing an eighth embodiment of the present invention. In this fuel cell, in the form of FIG. 4 described above, the protrusions 22a and 22a having a circular arc cross section of the separators 2 and 2 are formed at different positions on both sides of the elastic body 3. Since the other parts are configured in the same manner as in the embodiment of FIG. 4, the same or corresponding parts as those in FIG. That is, the ridge 22a of the upper separator 2 in FIG. 8 is formed so as to be relatively closer to the outer periphery than the ridge 22a of the lower separator 2, and therefore, the ridge to the elastic body 3. The pressure contact positions of 22a and 22a are shifted from each other.

図3又は図4の形態によれば、互いに対向する突条22a,22a間で、弾性体3が圧縮されるのに対し、図7又は図8の形態によれば、突条22a,22aが弾性体3の両面に互いに異なる位置で圧接するので、弾性体3が突条22a,22a間で圧縮応力の発生が生じにくく、したがって、図3又は図4の形態に比較して、弾性体3の一層の薄肉化、ひいては燃料電池セルの一層の薄肉化が可能となる。   3 or 4, the elastic body 3 is compressed between the ridges 22a and 22a facing each other, whereas the ridges 22a and 22a are compressed according to the embodiment of FIG. Since the elastic body 3 is pressed against both surfaces of the elastic body 3 at different positions, the elastic body 3 is less likely to generate compressive stress between the protrusions 22a and 22a. Therefore, the elastic body 3 is compared with the embodiment shown in FIG. 3 or FIG. Therefore, it is possible to further reduce the thickness of the fuel cell.

本発明に係る燃料電池セルの密封構造の第一の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 1st form of the sealing structure of the fuel cell concerning the present invention. 本発明に係る燃料電池セルの密封構造の第二の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel battery cell which shows the 2nd form of the sealing structure of the fuel battery cell which concerns on this invention. 本発明に係る燃料電池セルの密封構造の第三の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 3rd form of the sealing structure of the fuel cell concerning this invention. 本発明に係る燃料電池セルの密封構造の第四の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 4th form of the sealing structure of the fuel cell concerning this invention. 本発明に係る燃料電池セルの密封構造の第五の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 5th form of the sealing structure of the fuel cell concerning this invention. 本発明に係る燃料電池セルの密封構造の第六の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 6th form of the sealing structure of the fuel cell which concerns on this invention. 本発明に係る燃料電池セルの密封構造の第七の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 7th form of the sealing structure of the fuel cell concerning this invention. 本発明に係る燃料電池セルの密封構造の第八の形態を示す燃料電池セルの部分断面図である。It is a fragmentary sectional view of the fuel cell which shows the 8th form of the sealing structure of the fuel cell which concerns on this invention.

符号の説明Explanation of symbols

1 膜電極複合体
11 高分子電解質膜
12 触媒電極
13 ガス拡散層
2 セパレータ
21 溝
22 フランジ部
22a 突条
3 弾性体
31 弾性層
32 端壁部
33 ゴム含浸層
4 流路
A 流路形成領域
DESCRIPTION OF SYMBOLS 1 Membrane electrode complex 11 Polymer electrolyte membrane 12 Catalytic electrode 13 Gas diffusion layer 2 Separator 21 Groove 22 Flange 22a Projection 3 Elastic body 31 Elastic layer 32 End wall 33 Rubber impregnated layer 4 Channel A Channel formation region

Claims (4)

膜電極複合体(1)とその厚さ方向両側のセパレータ(2)との間に形成された流路(4)を密封する構造であって、各セパレータ(2)の間に前記流路(4)の形成領域(A)を取り囲むように配置された弾性体(3)が前記膜電極複合体(1)に装着され、前記各セパレータ(2)に、前記流路(4)の形成領域(A)を取り囲むように延びて前記弾性体(3)に圧接される突条(22a)が形成されたことを特徴とする燃料電池セルの密封構造。   A structure in which a flow path (4) formed between a membrane electrode assembly (1) and separators (2) on both sides in the thickness direction is sealed, and the flow path ( The elastic body (3) arranged so as to surround the formation region (A) of 4) is attached to the membrane electrode assembly (1), and the formation region of the flow path (4) is attached to each separator (2). (A) A fuel cell sealing structure, characterized in that a protrusion (22a) extending so as to surround (A) and pressed against the elastic body (3) is formed. 弾性体(3)が、膜電極複合体(1)の外周面に接合されたことを特徴とする請求項1に記載の燃料電池セルの密封構造。   The fuel cell sealing structure according to claim 1, wherein the elastic body (3) is joined to the outer peripheral surface of the membrane electrode assembly (1). 各セパレータ(2)に形成された突条(21)が、弾性体(3)の両側で互いに異なる位置に形成されたことを特徴とする請求項1に記載の燃料電池セルの密封構造。   The fuel cell sealing structure according to claim 1, wherein the protrusions (21) formed on each separator (2) are formed at different positions on both sides of the elastic body (3). セパレータ(2)が金属板からなり、突条(22a)が、前記金属板の屈曲部からなることを特徴とする請求項1に記載の燃料電池セルの密封構造。   The fuel cell sealing structure according to claim 1, wherein the separator (2) is made of a metal plate, and the protrusion (22a) is made of a bent portion of the metal plate.
JP2004297217A 2004-10-12 2004-10-12 Fuel cell sealing structure Active JP4998656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297217A JP4998656B2 (en) 2004-10-12 2004-10-12 Fuel cell sealing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297217A JP4998656B2 (en) 2004-10-12 2004-10-12 Fuel cell sealing structure

Publications (2)

Publication Number Publication Date
JP2006114227A true JP2006114227A (en) 2006-04-27
JP4998656B2 JP4998656B2 (en) 2012-08-15

Family

ID=36382588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297217A Active JP4998656B2 (en) 2004-10-12 2004-10-12 Fuel cell sealing structure

Country Status (1)

Country Link
JP (1) JP4998656B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329084A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Fuel cell
WO2009107872A1 (en) * 2008-02-29 2009-09-03 日産自動車株式会社 Seal structure of membrane electrode assembly for fuel cell
WO2010030654A1 (en) * 2008-09-09 2010-03-18 Bdf Ip Holdings Ltd. Low compressive load seal design for solid polymer electrolyte fuel cell
JP2012238556A (en) * 2011-05-13 2012-12-06 Nissan Motor Co Ltd Fuel cell
JP2013191474A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Fuel cell
JP2014032818A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Fuel cell
JP2014099409A (en) * 2008-08-11 2014-05-29 Dainippon Printing Co Ltd Electrolyte-membrane-catalyst-layer laminate with reinforcing sheet and polymer electrolyte fuel cell having the same
JP2016534515A (en) * 2013-08-27 2016-11-04 エルコマックス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing membrane electrode assembly having circumferential seal, and membrane electrode assembly
DE102016202010A1 (en) 2016-02-10 2017-08-10 Volkswagen Aktiengesellschaft Bipolar plate with asymmetric sealing sections, and fuel cell stack with such

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101837A (en) * 1991-10-07 1993-04-23 Mitsubishi Heavy Ind Ltd Seal structure of fuel cell
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JPH09199145A (en) * 1996-01-22 1997-07-31 Toyota Motor Corp Fuel cell and manufacture of fuel cell
JP2002175818A (en) * 2000-12-05 2002-06-21 Honda Motor Co Ltd Separator for fuel cell, and the fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101837A (en) * 1991-10-07 1993-04-23 Mitsubishi Heavy Ind Ltd Seal structure of fuel cell
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JPH09199145A (en) * 1996-01-22 1997-07-31 Toyota Motor Corp Fuel cell and manufacture of fuel cell
JP2002175818A (en) * 2000-12-05 2002-06-21 Honda Motor Co Ltd Separator for fuel cell, and the fuel cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329084A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Fuel cell
US8232023B2 (en) 2006-06-09 2012-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell and method of manufacturing same
US8283087B2 (en) 2008-02-29 2012-10-09 Nissan Motor Co., Ltd. Seal structure adopted in membrane electrode assembly for fuel cell
WO2009107872A1 (en) * 2008-02-29 2009-09-03 日産自動車株式会社 Seal structure of membrane electrode assembly for fuel cell
JP2014099409A (en) * 2008-08-11 2014-05-29 Dainippon Printing Co Ltd Electrolyte-membrane-catalyst-layer laminate with reinforcing sheet and polymer electrolyte fuel cell having the same
US20110159398A1 (en) * 2008-09-09 2011-06-30 Daimler Ag Low compressive load seal design for solid polymer electrolyte fuel cell
WO2010030654A1 (en) * 2008-09-09 2010-03-18 Bdf Ip Holdings Ltd. Low compressive load seal design for solid polymer electrolyte fuel cell
JP2012238556A (en) * 2011-05-13 2012-12-06 Nissan Motor Co Ltd Fuel cell
JP2013191474A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Fuel cell
JP2014032818A (en) * 2012-08-02 2014-02-20 Nippon Soken Inc Fuel cell
JP2016534515A (en) * 2013-08-27 2016-11-04 エルコマックス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing membrane electrode assembly having circumferential seal, and membrane electrode assembly
DE102016202010A1 (en) 2016-02-10 2017-08-10 Volkswagen Aktiengesellschaft Bipolar plate with asymmetric sealing sections, and fuel cell stack with such
WO2017137292A1 (en) 2016-02-10 2017-08-17 Volkswagen Ag Bipolar plate having asymmetrical sealing sections, and fuel cell stack having such a bipolar plate
US11228044B2 (en) 2016-02-10 2022-01-18 Volkswagen Ag Bipolar plate having asymmetrical sealing sections, and fuel cell stack having such a bipolar plate

Also Published As

Publication number Publication date
JP4998656B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5321801B2 (en) Fuel cell
US9178226B2 (en) Fuel cell sealing structure
US8486578B2 (en) Electrolyte membrane/electrode structure and fuel cell
CA2760979C (en) Sealing structure of fuel cell
JP5170376B2 (en) Fuel cell sealing structure
US9196911B2 (en) Fuel cell gas diffusion layer integrated gasket
JP2004311254A (en) Gas sealing structure of fuel cell
US9698433B2 (en) Fuel cell
US20140377682A1 (en) Fuel cell
JP3799038B2 (en) Separator for polymer electrolyte fuel cell
JP4998656B2 (en) Fuel cell sealing structure
US10003098B2 (en) Fuel cell
KR20130057716A (en) Separator for proton exchange membrane fuel cell and proton exchange membrane fuel cell using the same
JP4792213B2 (en) Separator for polymer electrolyte fuel cell and cell for polymer electrolyte fuel cell using the same
WO2013012026A1 (en) Gasket for fuel cell
JP2006040791A (en) Cell for solid polymer fuel battery
JP5447762B2 (en) Fuel cell parts
JP2006344434A (en) Fuel cell
US9350034B2 (en) Fuel cell gas diffusion layer integrated gasket
KR20120069094A (en) Gasket united construction of fuel battery
JP2011134559A (en) Solid polymer fuel cell
JP2020087564A (en) Fuel cell gasket
JP2007066847A (en) Sealing structure between plate body
JP2018156788A (en) Fuel cell stack
JP2005174642A (en) Separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4998656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250