JP2006112030A - Diaphragm wall - Google Patents

Diaphragm wall Download PDF

Info

Publication number
JP2006112030A
JP2006112030A JP2004297145A JP2004297145A JP2006112030A JP 2006112030 A JP2006112030 A JP 2006112030A JP 2004297145 A JP2004297145 A JP 2004297145A JP 2004297145 A JP2004297145 A JP 2004297145A JP 2006112030 A JP2006112030 A JP 2006112030A
Authority
JP
Japan
Prior art keywords
core
solidified
ground
support
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004297145A
Other languages
Japanese (ja)
Other versions
JP4343080B2 (en
Inventor
Taizo Shimomura
Yoshihisa Yamaguchi
泰造 下村
善久 山口
Original Assignee
Taisei Corp
大成建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, 大成建設株式会社 filed Critical Taisei Corp
Priority to JP2004297145A priority Critical patent/JP4343080B2/en
Publication of JP2006112030A publication Critical patent/JP2006112030A/en
Application granted granted Critical
Publication of JP4343080B2 publication Critical patent/JP4343080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diaphragm wall improved in stability of a wall body itself by providing a support function integrated with the wall body. <P>SOLUTION: The diaphragm wall 10 is formed of a solidified part 12 formed by agitating the ground 1 and a solidifying material, and columnar core materials 13 embedded in the solidified part 12. The columnar core materials 13A are provided with connecting parts 14 facing the outer face side of the wall body 11 at spaces in the width direction of the wall body 11, and support core materials 15 are connected to the connecting parts 14 and extended in a direction to project from the wall body 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地盤を掘削する際に山留めなどに使用される連続地中壁に関するものである。   The present invention relates to a continuous underground wall used for retaining a mountain when excavating the ground.
従来、図6に示すような地盤1を掘削する際に山留めとして使用される柱列式の連続地中壁7が知られている(特許文献1など参照)。   2. Description of the Related Art Conventionally, a columnar row continuous underground wall 7 used as a mountain stop when excavating the ground 1 as shown in FIG.
この連続地中壁7は、地盤1を円柱状に掘削、撹拌しながらセメント系の固化材を添加して固化部2を形成すると共に、硬化する前の流動化した固化部2にH型鋼芯材3を挿入して構築する。   The continuous underground wall 7 forms a solidified portion 2 by adding a cement-type solidified material while excavating and stirring the ground 1 into a columnar shape, and also forms an H-shaped steel core on the fluidized solidified portion 2 before hardening. The material 3 is inserted and constructed.
この固化部2は、隣接する円柱が重複するように連続して形成され、複数の円柱の略中央にH型鋼芯材3,・・・がそれぞれ埋設される。   The solidified portion 2 is continuously formed so that adjacent cylinders overlap each other, and H-shaped steel core materials 3,.
このように構築された連続地中壁7は、山留め壁として使用される。まず、連続地中壁7の内側面に沿って掘削を行なって掘削部6を形成し、連続地中壁7の内側面側にH型鋼材製の腹起4を横架させる。   The continuous underground wall 7 constructed in this way is used as a mountain retaining wall. First, excavation is performed along the inner side surface of the continuous underground wall 7 to form the excavation portion 6, and the protuberance 4 made of H-type steel is horizontally placed on the inner side surface side of the continuous underground wall 7.
この腹起4は、同じくH型鋼材製の切梁5,・・・によって支持させる。この切梁5,・・は、通常、対面する山留め壁との間に介在させて、連続地中壁7を掘削部6側から支持する部材であり、切梁5,・・・に発生する軸方向の力によって掘削部6側への外側面側地盤1の移動が制限される。   This bulge 4 is supported by the cut beams 5,. The cut beams 5,... Are members that support the continuous underground wall 7 from the excavation part 6 side, usually between the facing retaining walls, and are generated in the cut beams 5,. The movement of the outer surface side ground 1 to the excavation part 6 side is limited by the axial force.
さらに、油圧ジャッキを切梁5と腹起4との間に介在させて、変形が発生する前に予め油圧ジャッキを伸長させて、連続地中壁7に支圧力(プレロード)を与えて山留め壁の変形を抑える方法がある(特許文献2など参照)。   In addition, a hydraulic jack is interposed between the beam 5 and the abdomen 4, and the hydraulic jack is extended in advance before deformation occurs, and a supporting pressure (preload) is applied to the continuous underground wall 7 to There is a method for suppressing deformation (see Patent Document 2).
一方、地盤1に掘削した溝に鉄筋コンクリート製の剛性の高いコンクリート壁を構築して山留め壁とする場合もある。   On the other hand, there is a case where a concrete wall made of reinforced concrete is built in a groove excavated in the ground 1 to form a retaining wall.
また、掘削部6底盤となる地盤1を掘削する前に地盤改良をすることによって、山留め壁の倒壊や掘削部6底盤の盤膨れを防ぐ場合もある。さらに、連続地中壁7の根入れ部を地盤1の深部まで延長して山留め壁を安定させる場合もある。
特開平10−183607号公報(図8、0002段落) 特開平8−193330号公報(図7)
Further, by improving the ground before excavating the ground 1 that becomes the bottom of the excavation part 6, the mountain retaining wall may be prevented from collapsing or the bottom of the excavation part 6 may be prevented from swelling. Furthermore, the base wall 7 may be extended to the deep part of the ground 1 to stabilize the retaining wall.
JP-A-10-183607 (FIG. 8, paragraph 0002) JP-A-8-193330 (FIG. 7)
しかしながら、前記した従来の柱列式の連続地中壁7は、固化部2の中に不連続に埋設されるH型鋼芯材3,・・・と、地盤1と固化材を撹拌して形成された固化部2とによって構成されるため、比較的剛性が小さく、変形も大きくなる傾向にあるため、切梁5,・・・のサイズを大きくしたり、本数を増やしたりするなどして変形を抑える必要がある。   However, the above-described conventional columnar continuous underground wall 7 is formed by stirring the H-type steel core materials 3,... Embedded in the solidified portion 2 discontinuously, the ground 1 and the solidified material. Since it is composed of the solidified portion 2 formed, the rigidity is relatively small and the deformation tends to be large. Therefore, the size of the beams 5,... Is increased or the number of the beams is increased. It is necessary to suppress.
また、前記した油圧ジャッキを使用する方法では、切梁5,・・・毎に油圧ジャッキを設置する工程が発生し、手間がかかる。また、重量の大きな油圧ジャッキが掘削面の上空に配置されることになるため、安全面の配慮が必要である。   Further, in the method using the hydraulic jack described above, a step of installing the hydraulic jack is generated for each of the cut beams 5,. In addition, since a heavy hydraulic jack is disposed above the excavation surface, safety considerations are necessary.
さらに、切梁5,・・・を掘削部6に配置する山留め工法では、切梁5,・・・が掘削部6内でのその後の作業の支障になるため、作業効率が低下する。   Further, in the mountain fastening method in which the cut beams 5,... Are arranged in the excavation part 6, the work efficiency is lowered because the cut beams 5,.
そして、前記したコンクリート壁を使用する場合であっても、変形がほとんど発生しない状態にするには、壁厚を相当程度厚くして剛性を高める必要があるので材料費などの工費が増加する。   Even in the case of using the above-described concrete wall, in order to obtain a state in which almost no deformation occurs, it is necessary to increase the rigidity by increasing the wall thickness to a considerable extent, so that the construction cost such as the material cost increases.
また、予め地盤改良を行なう方法及び根入れ部を延長する方法では、地盤改良費用又は延長工事費用が別途、必要になる上に、工期が延長されることになり、工費及び工期が増加する。   In addition, in the method of performing ground improvement and the method of extending the base portion in advance, ground improvement costs or extension work costs are separately required, and the work period is extended, which increases the work cost and the work period.
そこで、本発明は、壁体に一体化された支持機能を設けることによって、壁体自体の安定性を向上させた連続地中壁を提供することを目的としている。   Then, this invention aims at providing the continuous underground wall which improved the stability of wall body itself by providing the support function integrated with the wall body.
前記目的を達成するために、請求項1の発明は、地盤と固化材が撹拌される又は掘削孔に液状固化材が充填されることによって形成される固化部と、その固化部に埋設される芯材部とによって形成される連続地中壁であって、壁体の幅方向に間隔を置いて、その壁体の内側面側又は外側面側に向けた連結部を前記芯材部に設け、その連結部に支持用芯材を連結して前記壁体から突出する方向に該支持用芯材を延設させた連続地中壁であることを特徴とする。   In order to achieve the above object, the invention of claim 1 is a solidified part formed by stirring the ground and the solidified material or filling the drilling hole with a liquid solidified material, and embedded in the solidified part. A continuous underground wall formed by the core member, and provided with a connecting portion on the inner surface side or the outer surface side of the wall member at an interval in the width direction of the wall member. The support core material is connected to the connecting portion, and the support core material extends in a direction protruding from the wall body.
また、請求項2に記載されたものは、前記支持用芯材は、地盤と固化材が撹拌される又は掘削孔に液状固化材が充填されることによって形成される支持用固化部に埋設された請求項1記載の連続地中壁であることを特徴している。   According to a second aspect of the present invention, the support core material is embedded in a support solidification portion formed by stirring the ground and the solidification material or filling a drilling hole with a liquid solidification material. It is the continuous underground wall of Claim 1 characterized by the above-mentioned.
さらに、請求項3に記載されたものは、前記芯材部は、並列に立設された複数の柱状芯材によって形成され、前記壁体の内側面側の地盤を掘削した際に、複数の柱状芯材に跨る横材を前記内側面側に配置し、前記連結部を設けた柱状芯材と該横材とを接合させた請求項1又は請求項2に記載の連続地中壁であることを特徴している。   Further, according to a third aspect of the present invention, the core portion is formed by a plurality of columnar core members standing in parallel, and when excavating the ground on the inner surface side of the wall body, It is the continuous underground wall of Claim 1 or Claim 2 which arrange | positioned the cross member straddling a columnar core material in the said inner surface side, and joined the columnar core material which provided the said connection part, and this horizontal member. It is characterized by that.
このように構成された請求項1の発明は、前記壁体の内側面側又は外側面側に、前記連結部を介して支持用芯材が連結され、その支持用芯材は前記壁体から突出する方向に延設されている。   In the invention of claim 1 configured as described above, a supporting core material is connected to the inner surface side or the outer surface side of the wall body via the connecting portion, and the supporting core material is formed from the wall body. It extends in the protruding direction.
ここで、前記壁体の外側面側に前記支持用芯材が延設されている場合は、その壁体は前記支持用芯材によって引き止められることになるため、掘削によって前記壁体に作用する土圧が増加しても壁体の変形を抑えることができる。   Here, when the supporting core material is extended on the outer surface side of the wall body, the wall body is held by the supporting core material, and thus acts on the wall body by excavation. Even if the earth pressure increases, the deformation of the wall can be suppressed.
さらに、前記支持用芯材の周囲に生じる摩擦抵抗によって、その支持用芯材周囲の地盤の土圧が低減され、前記壁体に作用する土圧が低減されるので、壁体の変形を抑えることができる。   Further, the frictional resistance generated around the supporting core material reduces the earth pressure of the ground around the supporting core material, and the earth pressure acting on the wall body is reduced, so that deformation of the wall body is suppressed. be able to.
また、前記壁体の内側面側に前記支持用芯材が延設されている場合は、前記壁体の前面が前記支持用芯材によって支えられることになるため、掘削によって上方から徐々に前記支持用芯材が撤去されていったとしても、前記壁体の前面下部が支えられることによって前記壁体の転倒を防ぐことができる。   Further, when the supporting core is extended on the inner surface side of the wall body, the front surface of the wall body is supported by the supporting core material. Even if the supporting core is removed, the wall body can be prevented from falling by supporting the lower part of the front surface of the wall body.
このように、前記壁体に一体化された支持機能を設けることによって連続地中壁の安定性を向上させることができる。   Thus, the stability of the continuous underground wall can be improved by providing a support function integrated with the wall body.
また、請求項2に記載されたものは、前記支持用芯材が支持用固化部に埋設されている。   According to a second aspect of the present invention, the supporting core material is embedded in the supporting solidified portion.
このように前記支持用芯材と地盤との間に前記支持用固化部を介在させることで、前記支持用芯材の周囲の付着力が増加すると共に、前記地盤との接触面積も増加するため、間接的に前記支持用芯材の摩擦抵抗を増加させることができる。   By interposing the supporting solidified portion between the supporting core material and the ground in this way, the adhesion force around the supporting core material increases and the contact area with the ground also increases. Indirectly, the frictional resistance of the supporting core can be increased.
このため、前記支持用芯材の前記壁体の変形を抑制する耐力が増加し、より大きな土圧に対しても前記壁体を安定させることができる。また、前記固化部と同じ方法によって支持用固化部を形成することができるので、施工機械を共用でき、作業の効率化、工費の削減を図ることができる。   For this reason, the proof stress which suppresses the deformation | transformation of the said wall body of the said supporting core increases, and the said wall body can be stabilized also with respect to a bigger earth pressure. In addition, since the supporting solidified portion can be formed by the same method as the solidified portion, the construction machine can be shared, the work efficiency can be improved, and the construction cost can be reduced.
さらに、請求項3に記載されたものは、前記芯材部が並列に立設された複数の柱状芯材によって形成されて、その内側面側に前記連結部を設けた柱状芯材と接合された横材が架け渡されている。   Further, in the present invention, the core portion is formed by a plurality of columnar core members erected in parallel, and is joined to the columnar core member provided with the connecting portion on the inner surface side thereof. A crossed timber is stretched over.
このため、前記支持用芯材と前記柱状芯材と前記横材が力学的に一体化されて土圧に対抗することになって、切梁を設置しなくとも前記壁体の変形を抑えることができる。この結果、掘削部に切梁が交錯することがなく、効率的に掘削部内での作業をおこなうことができる。   For this reason, the supporting core material, the columnar core material, and the cross member are mechanically integrated to resist earth pressure, and the deformation of the wall body is suppressed without installing a beam. Can do. As a result, there is no crossing of the beams in the excavation part, and the work in the excavation part can be performed efficiently.
以下、本発明の最良の実施の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.
なお、前記従来例と同一乃至均等な部分については、同一符号を付して説明する。   The same or equivalent parts as those in the conventional example will be described with the same reference numerals.
図1乃至図3は、本実施の形態による連続地中壁10の構成を示した図である。   FIG. 1 thru | or FIG. 3 is the figure which showed the structure of the continuous underground wall 10 by this Embodiment.
まず、構成から説明すると、このような本実施の形態の連続地中壁10は、固化部12とその固化部12に埋設される芯材部としての柱状芯材13,・・・とによって形成される壁体11と、その壁体11の幅方向に間隔を置いて壁体11の外側面側から突出する方向に延設される支持体18,・・・とから主に構成される。   First, from the configuration, the continuous underground wall 10 according to the present embodiment is formed by the solidified portion 12 and the columnar core members 13 as core portions embedded in the solidified portion 12. And a support body 18 extending in a direction protruding from the outer surface side of the wall body 11 with an interval in the width direction of the wall body 11.
この連続地中壁10は、地盤1の掘削を行なう前に予め地中に構築される。そして、この壁体11は、壁体11の内側面側の掘削部6と外側面側の地盤1とを仕切るように境界部に形成され、その下端は図3に示すように掘削完了時の掘削底面6aの位置よりも深くして、前記壁体11が転倒することのないように構築される。   This continuous underground wall 10 is constructed in advance in the ground before excavation of the ground 1. And this wall 11 is formed in a boundary part so that the excavation part 6 of the inner surface side of the wall 11 and the ground 1 of an outer surface side may be partitioned off, and the lower end is at the time of completion of excavation as shown in FIG. The wall body 11 is constructed so as not to fall down by being deeper than the position of the excavation bottom surface 6a.
さらに、壁体11の固化部12は、オーガスクリュー等によって地盤1を円柱状に掘削、撹拌し、その際にセメント系の固化材を添加して撹拌を続けることによって形成される。この添加される固化材は、粉状又は液状であって、撹拌直後の固化部12は流動化している。   Further, the solidified portion 12 of the wall body 11 is formed by excavating and stirring the ground 1 in a cylindrical shape with an auger screw or the like, and adding a cement-based solidified material at that time and continuing stirring. The added solidifying material is powdery or liquid, and the solidified portion 12 immediately after stirring is fluidized.
そこで、この固化部12が硬化する前に、柱状芯材13を円柱の略中央に挿入して埋設させる。この柱状芯材13には、例えばH型鋼材や鋼管等が使用される。   Therefore, before the solidified portion 12 is cured, the columnar core material 13 is inserted and embedded in the approximate center of the cylinder. For example, an H-shaped steel material or a steel pipe is used for the columnar core material 13.
この円柱状の撹拌と柱状芯材13の挿入は、円柱の一部が重複するように連続して行なわれ、円柱を連ねた形状の固化部12が形成される。   The cylindrical stirring and the insertion of the columnar core member 13 are continuously performed so that a part of the column overlaps, and the solidified portion 12 having a shape in which the columns are connected is formed.
また、この壁体11の幅方向に所定の間隔を置いた位置に埋設される柱状芯材13Aには、連結部14を設けておく。この連結部14は、一側端を柱状芯材13Aのフランジに溶接などによって接合させ、他側端には支持用芯材15を連結させるための継手部を設けておく。   In addition, a connecting portion 14 is provided in the columnar core member 13 </ b> A embedded at a predetermined interval in the width direction of the wall body 11. The connecting portion 14 has one end joined to the flange of the columnar core 13A by welding or the like, and a joint for connecting the supporting core 15 to the other end.
本実施の形態の支持体18は、連結部14に連結させる支持用芯材15と、その支持用芯材15を埋設させる支持用固化部16とから構成される。   The support 18 of the present embodiment includes a support core 15 that is connected to the connection portion 14 and a support solidifying portion 16 that embeds the support core 15.
この支持用固化部16は、前記壁体11の固化部12と同様に地盤1と固化材とをオーガスクリューで撹拌することによって形成される。そして、円柱を連ねた形状の支持用固化部16が形成される。   The supporting solidified portion 16 is formed by stirring the ground 1 and the solidified material with an auger screw in the same manner as the solidified portion 12 of the wall body 11. And the support solidification part 16 of the shape which connected the cylinder was formed.
また、支持用芯材15は、図1に示したように、断面ハット型の鋼矢板15aを、向きを反転させながら複数連結させて形成する。   Further, as shown in FIG. 1, the supporting core material 15 is formed by connecting a plurality of hat-shaped steel sheet piles 15a while reversing the direction.
次に、この連続地中壁10の構築方法について説明する。   Next, the construction method of this continuous underground wall 10 is demonstrated.
まず、山留め壁となる壁体11を構築する位置の地盤1を、オーガスクリューによって掘削、撹拌しながら固化材を添加して、固化部12を形成する。この撹拌直後の流動化した固化部12には、柱状芯材13を挿入する。   First, the solidified part 12 is formed by adding a solidifying material while excavating and stirring the ground 1 at a position where the wall 11 serving as a retaining wall is constructed with an auger screw. A columnar core 13 is inserted into the fluidized solidified portion 12 immediately after stirring.
さらに、この柱状芯材13を所定の本数挿入する毎に、連結部14を設けた柱状芯材13Aを、連結部14が壁体11の外側面側に向くようにして挿入する。ここで、この連結部14が配置される壁体11の外側面側には、壁体11の幅方向と直交する方向に支持用固化部16,・・・を延設する。   Further, every time a predetermined number of the columnar core members 13 are inserted, the columnar core member 13 </ b> A provided with the connecting portions 14 is inserted so that the connecting portions 14 face the outer surface side of the wall body 11. Here, on the outer surface side of the wall 11 where the connecting portion 14 is disposed, the supporting solidified portions 16 are extended in a direction orthogonal to the width direction of the wall 11.
そして、連結部14の鉤型の継手部と、支持用芯材15を構成する一本目の鋼矢板15aの鉤型の継手部を噛み合わせて連結させる。二本目以降の鋼矢板15a,・・・は、順次向きを反転させて支持用固化部16に挿入しながら連結していく。   Then, the hook-shaped joint portion of the connecting portion 14 and the hook-shaped joint portion of the first steel sheet pile 15 a constituting the supporting core material 15 are engaged and connected. The second and subsequent steel sheet piles 15 a,... Are connected while being reversed and inserted into the supporting solidifying portion 16.
また、この支持体18,・・・を設けた側と反対側の壁体11の内側面側には、横材17を設置する。この横材17を設置するために、まず所定の深さまで掘削部6を形成した後に一旦掘削を中断し、柱状芯材13,・・・の内側面側のフランジが露出するように固化部12を削り取る。   Moreover, the cross member 17 is installed in the inner surface side of the wall body 11 on the opposite side to the side on which the supports 18 are provided. In order to install the cross member 17, the excavation part 6 is first formed to a predetermined depth, and then excavation is temporarily interrupted, so that the solidified part 12 is exposed so that the flanges on the inner side surfaces of the columnar core members 13,. Scrape off.
さらに、露出した複数の柱状芯材13,・・・の前面にH型鋼材製の横材17を配置し、連結部14を設けた柱状芯材13Aの内側面側に接合する。この接合は、図3に示したように、横材17の上縁と下縁に溶接などによって接合部17a,17aを設けることによっておこなう。   Further, a cross member 17 made of an H-shaped steel material is disposed on the front surface of the exposed plurality of columnar core members 13... And joined to the inner side surface of the columnar core member 13 </ b> A provided with the connecting portion 14. As shown in FIG. 3, this joining is performed by providing joints 17a and 17a on the upper and lower edges of the cross member 17 by welding or the like.
そして、掘削と横材17の配置を繰り返し、所定の深さの掘削部6を形成する。図3は、3段の横材17,17,17を配置した掘削部6の断面図である。   Then, excavation and the arrangement of the cross member 17 are repeated to form the excavation part 6 having a predetermined depth. FIG. 3 is a cross-sectional view of the excavation part 6 in which three-stage cross members 17, 17, 17 are arranged.
次に、本実施の形態の連続地中壁10を使用した山留め工法について説明すると共に、その作用について説明する。   Next, the mountain fastening method using the continuous underground wall 10 of the present embodiment will be described and the operation thereof will be described.
図3は、掘削が掘削底面6aまで完了して掘削部6が形成された状態の断面図である。本実施の形態の山留め工法では、この状態に至るまでに、地盤1を掘削し、横材17を一段ずつ設置する作業を繰り返す。   FIG. 3 is a cross-sectional view of the state where the excavation part 6 is formed after excavation is completed up to the excavation bottom surface 6a. In the mountain fastening method of the present embodiment, the operation of excavating the ground 1 and installing the cross members 17 one by one is repeated until this state is reached.
このような山留め工法では、掘削が進行すると、連続地中壁10に作用する土圧が徐々に増加する。   In such a mountain retaining method, when excavation progresses, the earth pressure acting on the continuous underground wall 10 gradually increases.
本実施の形態の連続地中壁10の構成によれば、支持体18,・・・周辺の土圧は、支持体18,・・・との摩擦によって低減されるため、壁体11の外側面側に作用する土圧も低減される。図4に二点鎖線で示した放物線は、支持体18,18間に発生する土圧1aの想定線であるが、この支持体18がなければ放物線の頂点以上の大きさの土圧が壁体11全面に作用することになるので、この支持体18,・・・によって壁体11に作用する土圧を大幅に低減できたものといえる。   According to the configuration of the continuous underground wall 10 of the present embodiment, since the earth pressure around the support 18,... Is reduced by friction with the support 18,. Earth pressure acting on the side is also reduced. The parabola shown by a two-dot chain line in FIG. 4 is an assumed line of the earth pressure 1a generated between the supports 18 and 18, but if this support 18 is not present, the earth pressure larger than the apex of the parabola is a wall Since this acts on the entire surface of the body 11, it can be said that the earth pressure acting on the wall body 11 can be greatly reduced by the support bodies 18,.
また、壁体11の外側面側に作用した土圧は、壁体11内部を伝達して横材17に伝わり、そこから接合部17aを介して柱状芯材13Aに伝達される。   Moreover, the earth pressure which acted on the outer surface side of the wall 11 is transmitted to the cross member 17 through the inside of the wall 11, and is then transmitted to the columnar core member 13A through the joint portion 17a.
この柱状芯材13Aには、連結部14を介して支持用芯材15が連結されている。この支持用芯材15に掘削部6方向の引張力が作用すると、支持用芯材15の表面と支持用固化部16との付着による摩擦抵抗によって支持用芯材15は引き止められる。   A supporting core material 15 is connected to the columnar core material 13 </ b> A via a connecting portion 14. When a tensile force in the direction of the excavation part 6 acts on the support core material 15, the support core material 15 is stopped by the frictional resistance caused by adhesion between the surface of the support core material 15 and the support solidification part 16.
さらに、支持用芯材15を引き止める支持用固化部16は、その外周面と地盤1との付着による摩擦抵抗によって引き抜きが防止される。特に支持用固化部16の外周面は、円弧が連続した波状に形成されているため、地盤1との間の抵抗を高めることができる。   Furthermore, the supporting solidified portion 16 that holds the supporting core material 15 is prevented from being pulled out by the frictional resistance caused by the adhesion between the outer peripheral surface and the ground 1. In particular, since the outer peripheral surface of the supporting solidified portion 16 is formed in a wave shape with continuous arcs, the resistance with the ground 1 can be increased.
このため、支持体18は、掘削部6方向の引張力が壁体11から伝達されても、移動することがほとんどなく、壁体11の変形を効果的に抑制することができる。   For this reason, even if the tensile force of the excavation part 6 direction is transmitted from the wall body 11, the support body 18 hardly moves, and can suppress the deformation | transformation of the wall body 11 effectively.
このように構成された連続地中壁10を山留め壁として使用することで、山留め壁の支持部材として従来使用されてきた切梁5を省略、又は削減することができるので、交錯する切梁5が掘削や躯体の構築作業の支障となることがほとんどなく、作業効率を向上させることができる。   By using the continuous underground wall 10 configured in this way as a retaining wall, it is possible to omit or reduce the cutting beam 5 conventionally used as a supporting member for the retaining wall. However, there is almost no hindrance to excavation and building construction work, and work efficiency can be improved.
以下、前記した実施の形態の実施例について説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。   Examples of the above-described embodiment will be described below. The description of the same or equivalent parts as those described in the above embodiment will be given the same reference numerals.
前記実施の形態では、支持体18,・・・を壁体11の外側面側に設けた場合について説明したが、この実施例では、支持体22を壁体11の内側面側(掘削部6側)に設けた場合について図5に基づいて説明する。   In the above-described embodiment, the case where the support bodies 18 are provided on the outer surface side of the wall body 11 has been described. However, in this embodiment, the support body 22 is disposed on the inner surface side of the wall body 11 (excavation portion 6). The case where it is provided on the side) will be described based on FIG.
この実施例の連続地中壁23は、固化部12とその固化部12に埋設される芯材部としての柱状芯材13,・・・とによって形成される壁体11と、その壁体11の幅方向に間隔を置いて壁体11の内側面側から突出する方向に延設される支持体22,・・・とから主に構成される。   The continuous underground wall 23 of this embodiment includes a wall body 11 formed by the solidified portion 12 and a columnar core material 13 as a core material portion embedded in the solidified portion 12, and the wall body 11. Are mainly composed of support bodies 22 extending in a direction protruding from the inner surface side of the wall body 11 with an interval in the width direction.
図5に示すように、支持体22を連結させる柱状芯材13Bには、壁体11の内側面側に連結部19を設けておく。この連結部19には、断面ハット型の鋼矢板を複数連結させて形成される支持用芯材20を連結させる。   As shown in FIG. 5, a connecting portion 19 is provided on the inner surface side of the wall body 11 in the columnar core member 13 </ b> B that connects the support body 22. The connecting core 19 is connected to a supporting core 20 formed by connecting a plurality of hat-shaped steel sheet piles.
また、支持用芯材20は、地盤1と固化材を撹拌して形成された支持用固化部21に埋設される。   Further, the supporting core material 20 is embedded in a supporting solidified portion 21 formed by stirring the ground 1 and the solidified material.
次に、本実施例の連続地中壁23を使用した山留め工法について説明すると共に、その作用について説明する。   Next, the mountain fastening method using the continuous underground wall 23 of the present embodiment will be described and the operation thereof will be described.
この実施例では、掘削部6側の地盤1に支持体22が構築されているので、地盤1を掘削すると共に、掘削深さに相当する部分の支持体22(図5の二点鎖線部)の撤去もおこなう。   In this embodiment, since the support 22 is constructed on the ground 1 on the excavation unit 6 side, the ground 22 is excavated and the support 22 corresponding to the excavation depth (two-dot chain line portion in FIG. 5). Also remove.
通常、掘削部6の底盤の地盤が弱いと、壁体11の下部が掘削部6方向に押されて転倒する場合がある。また、掘削底面6aに作用する水圧によって掘削底面6aが膨れ上がる場合(盤膨れ)もある。   Usually, if the ground of the bottom of the excavation part 6 is weak, the lower part of the wall 11 may be pushed in the direction of the excavation part 6 and fall down. In some cases, the excavation bottom surface 6a swells due to water pressure acting on the excavation bottom surface 6a (board swelling).
このような地盤であっても、壁体11の内側面側に幅方向に間隔を置いて複数の支持体22,・・・を設けたことで、掘削部6の地盤が補強され、壁体11の転倒や盤膨れを抑えることができるので、連続地中壁23を安定させることができる。   Even in such a ground, the ground of the excavation part 6 is reinforced by providing a plurality of supports 22,... Therefore, the continuous underground wall 23 can be stabilized.
なお、他の構成及び作用効果については、前記実施の形態と略同様であるので説明を省略する。   Other configurations and operational effects are substantially the same as those in the above-described embodiment, and thus description thereof is omitted.
以上、図面を参照して、本発明の最良の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   Although the best embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention are possible. Are included in the present invention.
例えば、前記実施の形態及び実施例では、地盤と固化材を撹拌して固化部12又は支持用固化部16,21を形成したが、これに限定されるものではなく、例えば地盤1に掘削孔としての溝を掘削して、その中に液状固化材を充填することによって固化部を形成してもよい。   For example, in the embodiment and the examples, the ground and the solidified material are agitated to form the solidified portion 12 or the supporting solidified portions 16 and 21, but the present invention is not limited thereto. The solidified portion may be formed by excavating a groove as the above and filling the liquid solidified material therein.
また、前記実施の形態及び実施例では、柱状芯材13は、隣接するもの同士で互いに連結させることなく固化部12に埋設させたが、これに限定されるものではなく、例えば両側面に継手部を有する鋼管を柱状芯材として使用し、隣接するもの同士で互いに連結させながら柱状芯材を埋設させることで、一体の芯材部を形成することもできる。さらに、板状又はパネル状の幅方向に連続した芯材部を使用することもできる。   Moreover, in the said embodiment and Example, although the columnar core material 13 was embedded in the solidification part 12 without mutually connecting mutually, it is not limited to this, For example, it is a joint on both sides | surfaces. An integral core member can be formed by using a steel pipe having a portion as a columnar core and burying the columnar core while connecting adjacent ones. Furthermore, a core part continuous in a plate-like or panel-like width direction can also be used.
そして、前記実施の形態及び実施例では、支持用芯材15,20を複数の鋼矢板を連結させることによって形成したが、これに限定されるものではなく、例えば両側面に継手部を有する鋼管を連結させたものや、波型に一体成形された部材を支持用芯材とすることができる。   And in the said embodiment and Example, although the supporting core materials 15 and 20 were formed by connecting several steel sheet piles, it is not limited to this, For example, the steel pipe which has a joint part on both sides | surfaces And a member integrally formed with a corrugated shape can be used as the supporting core material.
また、前記実施の形態及び実施例では、硬化する前の支持用固化部16,21に支持用芯材15,20を挿入して設置したが、これに限定されるものではなく、支持用芯材15,20を地盤1に直接、圧入して設置することもできる。   Moreover, in the said embodiment and Example, although the support core materials 15 and 20 were inserted and installed in the solidification parts 16 and 21 for support before hardening, it is not limited to this, A support core The materials 15 and 20 can be directly press-fitted and installed in the ground 1.
本発明の最良の実施の形態の連続地中壁の構成を説明する斜視図である。It is a perspective view explaining the structure of the continuous underground wall of the best embodiment of this invention. 本発明の最良の実施の形態の連続地中壁の構成を説明する平面図である。It is a top view explaining the structure of the continuous underground wall of the best embodiment of this invention. 本発明の最良の実施の形態の連続地中壁を使用した山留め工法を説明する断面図である。It is sectional drawing explaining the mountain fastening method using the continuous underground wall of the best embodiment of this invention. 本発明の最良の実施の形態の連続地中壁に作用する土圧を説明する平面図である。It is a top view explaining the earth pressure which acts on the continuous underground wall of the best embodiment of this invention. 実施例の連続地中壁の構成を説明する断面図である。It is sectional drawing explaining the structure of the continuous underground wall of an Example. 従来の柱列式の連続地中壁を使用した山留め工法を説明する平面図である。It is a top view explaining the mountain fastening method using the conventional columnar line type continuous underground wall.
符号の説明Explanation of symbols
1 地盤
10,23 連続地中壁
11 壁体
12 固化部
13 柱状芯材(芯材部)
14,19 連結部
15,20 支持用芯材
16,21 支持用固化部
17 横材
17a 接合部
18,22 支持体
DESCRIPTION OF SYMBOLS 1 Ground 10, 23 Continuous underground wall 11 Wall body 12 Solidification part 13 Columnar core material (core material part)
Reference numerals 14 and 19 Connection parts 15 and 20 Supporting core materials 16 and 21 Support solidifying part 17 Cross member 17a Joint parts 18 and 22 Support body

Claims (3)

  1. 地盤と固化材が撹拌される又は掘削孔に液状固化材が充填されることによって形成される固化部と、その固化部に埋設される芯材部とによって形成される連続地中壁であって、
    壁体の幅方向に間隔を置いて、その壁体の内側面側又は外側面側に向けた連結部を前記芯材部に設け、その連結部に支持用芯材を連結して前記壁体から突出する方向に該支持用芯材を延設させたことを特徴とする連続地中壁。
    A continuous underground wall formed by a solidified portion formed by stirring the ground and the solidified material or filling a drilling hole with a liquid solidified material, and a core material portion embedded in the solidified portion. ,
    The wall body is provided with a connecting portion facing the inner surface side or the outer surface side of the wall body at an interval in the width direction of the wall body, and a supporting core material is connected to the connecting portion. A continuous underground wall characterized in that the supporting core material is extended in a direction protruding from the wall.
  2. 前記支持用芯材は、地盤と固化材が撹拌される又は掘削孔に液状固化材が充填されることによって形成される支持用固化部に埋設されたことを特徴とする請求項1に記載の連続地中壁。   2. The support core material according to claim 1, wherein the support core material is embedded in a support solidification portion formed by stirring the ground and the solidification material or filling a drilling hole with a liquid solidification material. Continuous underground wall.
  3. 前記芯材部は、並列に立設された複数の柱状芯材によって形成され、前記壁体の内側面側の地盤を掘削した際に、複数の柱状芯材に跨る横材を前記内側面側に配置し、前記連結部を設けた柱状芯材と該横材とを接合させたことを特徴とする請求項1又は請求項2に記載の連続地中壁。
    The core portion is formed by a plurality of columnar core members erected in parallel. The continuous underground wall according to claim 1 or 2, wherein the columnar core member provided with the connecting portion and the cross member are joined to each other.
JP2004297145A 2004-10-12 2004-10-12 Continuous underground wall Expired - Fee Related JP4343080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297145A JP4343080B2 (en) 2004-10-12 2004-10-12 Continuous underground wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297145A JP4343080B2 (en) 2004-10-12 2004-10-12 Continuous underground wall

Publications (2)

Publication Number Publication Date
JP2006112030A true JP2006112030A (en) 2006-04-27
JP4343080B2 JP4343080B2 (en) 2009-10-14

Family

ID=36380781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297145A Expired - Fee Related JP4343080B2 (en) 2004-10-12 2004-10-12 Continuous underground wall

Country Status (1)

Country Link
JP (1) JP4343080B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222870A (en) * 2009-03-24 2010-10-07 Takenaka Komuten Co Ltd Soil-cement column earth-retaining wall
KR100989945B1 (en) * 2010-01-05 2010-10-26 이형훈 Structure construction method using block-pile
JP2011012503A (en) * 2009-07-06 2011-01-20 Hirose & Co Ltd Construction method for free-standing soil-retaining wall and soil-retaining structure in cutting ground
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
CN102713079A (en) * 2010-02-20 2012-10-03 朴康浩 Reinforced self-supported retaining wall structure making use of the arching effect and a construction method of excavations using the same
JP2014224456A (en) * 2010-07-16 2014-12-04 鹿島建設株式会社 Shaft construction method and shaft structure on sloped ground
JP2015031119A (en) * 2013-08-06 2015-02-16 東日本旅客鉄道株式会社 Ground reinforcement structure
CN104790430A (en) * 2015-04-13 2015-07-22 上海远方基础工程有限公司 Underground diaphragm wall construction method
JP2017036566A (en) * 2015-08-07 2017-02-16 株式会社大林組 Earth retaining wall support structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501778A (en) * 2020-04-27 2020-08-07 苏州中车建设工程有限公司 Integrated construction method for underground structure side wall and inner wall by adopting underground continuous wall

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222870A (en) * 2009-03-24 2010-10-07 Takenaka Komuten Co Ltd Soil-cement column earth-retaining wall
JP2011012503A (en) * 2009-07-06 2011-01-20 Hirose & Co Ltd Construction method for free-standing soil-retaining wall and soil-retaining structure in cutting ground
KR100989945B1 (en) * 2010-01-05 2010-10-26 이형훈 Structure construction method using block-pile
CN102713079A (en) * 2010-02-20 2012-10-03 朴康浩 Reinforced self-supported retaining wall structure making use of the arching effect and a construction method of excavations using the same
JP2013514472A (en) * 2010-02-20 2013-04-25 ホオ パク、ガン Reinforced self-supporting earth retaining structure using arching effect and underground excavation method using it
JP2014224456A (en) * 2010-07-16 2014-12-04 鹿島建設株式会社 Shaft construction method and shaft structure on sloped ground
JP2012102573A (en) * 2010-11-11 2012-05-31 Takenaka Komuten Co Ltd Construction method of horizontal force transmission structure
JP2015031119A (en) * 2013-08-06 2015-02-16 東日本旅客鉄道株式会社 Ground reinforcement structure
CN104790430A (en) * 2015-04-13 2015-07-22 上海远方基础工程有限公司 Underground diaphragm wall construction method
JP2017036566A (en) * 2015-08-07 2017-02-16 株式会社大林組 Earth retaining wall support structure

Also Published As

Publication number Publication date
JP4343080B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
KR100866162B1 (en) Chair-type self-supported earth retaining wall constructing method
JP4691690B2 (en) Joint structure and joining method of pedestal
KR101324173B1 (en) Construction method for underground tunnel using guiding shape steel
KR100633796B1 (en) Connecting structure of mid supporting beam for temporary soil sheathing work
KR100917044B1 (en) Concrete retaining wall construction method with dual wall jointed by anchor
JP2004197403A (en) Steel pipe sheet pile well foundation
KR100654964B1 (en) Reinforcing Member of Pile with an Extended Head
KR100657655B1 (en) Assembly pile for method of ground improvement
KR20090091460A (en) Soil retaining method for two rows pile using earth anchor
JP2005226326A (en) Reinforcing structure for existing pier foundation and reinforcing method for the existing pier foundation
JP3701280B2 (en) Yamadome support
KR20170005991A (en) soil retaining wall using PHC pile and its construction method
JP2013136922A (en) Earth retaining wall supporting method, earth retaining wall supporting structure, and underground skeleton constructing method
JP6613358B2 (en) Ground improvement foundation structure
KR20170065165A (en) Strut apparatus for wall shoring structure
JP2007051541A (en) Retaining wall and construction method therefor
JP4820276B2 (en) Construction method and structure of mountain retaining support
JP2008180082A (en) Construction method of wall structure having permanent anchor and wall structure having permanent anchor
KR101973565B1 (en) Sheathing method for constructing both sheathing wall and cutoff collar by welding cutoff plate to phc pile with longitudinal plate
EP2570553A1 (en) Steel wall and construction method for steel wall
KR20140055639A (en) A execution method of architecture beam
KR20100068597A (en) A shoring method using arch plate pile and h-pile
JP2005213904A (en) Bearing capacity increasing method, construction method of sheet pile foundation, sheet pile foundation and bridge
KR20170102397A (en) The Tunnel construction method to use retangular pipe
JP2005120663A (en) Structure of earth retaining wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4343080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees