JP2006105448A - Sludge and incinerated ash gasified melting method and gasifying melting furnace - Google Patents

Sludge and incinerated ash gasified melting method and gasifying melting furnace Download PDF

Info

Publication number
JP2006105448A
JP2006105448A JP2004290300A JP2004290300A JP2006105448A JP 2006105448 A JP2006105448 A JP 2006105448A JP 2004290300 A JP2004290300 A JP 2004290300A JP 2004290300 A JP2004290300 A JP 2004290300A JP 2006105448 A JP2006105448 A JP 2006105448A
Authority
JP
Japan
Prior art keywords
sludge
ash
incinerated ash
gasification
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004290300A
Other languages
Japanese (ja)
Other versions
JP4362428B2 (en
Inventor
Hideaki Yabe
英昭 矢部
Takafumi Kawamura
隆文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004290300A priority Critical patent/JP4362428B2/en
Publication of JP2006105448A publication Critical patent/JP2006105448A/en
Application granted granted Critical
Publication of JP4362428B2 publication Critical patent/JP4362428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge and incinerated ash gasifying melting method for giving high-efficiency and low-cost treatment to incinerated ash and sewage sludge by making maximally effective use of energy possessed by sludge itself. <P>SOLUTION: Dried sludge and incinerated ash produced by incinerating the sludge are blown into an air flow bed gasifying melting furnace while blowing and carrying an air flow with oxygen whose amount is 0.2-0.9 time a theoretical oxygen amount required for complete combustion and partially burnt at 1100-1700°C to convert ash components in the dried sludge and the incinerated ash into slug and convert organic materials in the dried sludge and the incinerated ash into combustible gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水の生物学的処理施設から発生する余剰の活性汚泥を焼却処理して発生する焼却灰を、同じく活性汚泥を乾燥させた後の乾燥汚泥と共にガス化溶融処理し、可燃性ガスおよびスラグへと転換する技術に関するものである。   The present invention gasifies and melts incinerated ash generated by incinerating surplus activated sludge generated from a biological treatment facility of sewage together with dry sludge after drying the activated sludge, and combustible gas. And technology for converting to slag.

下水を生物学的処理によって浄化する際に発生する余剰の活性汚泥(以下汚泥と略す)は、下水道の普及、また下水処理場における高度処理プロセス(窒素、リンの除去等)の導入等に伴って益々増加する傾向にある。これら汚泥は、現状ではその多くが減容化処理の後、単純に埋め立て処分されている。その際の汚泥の形態として、脱水処理後のいわゆる脱水ケーキ(水分含有量80質量%程度)の状態で埋め立てられているケースも依然として認められるものの、特に汚泥発生量の多い大都市圏では、汚泥を焼却炉において焼却減容化後にいわゆる焼却灰という形態で埋め立てられているケースが最も多い。   Surplus activated sludge (hereinafter abbreviated as sludge) generated when purifying sewage by biological treatment is accompanied by the spread of sewage and the introduction of advanced treatment processes (such as removal of nitrogen and phosphorus) at sewage treatment plants. It tends to increase more and more. Currently, most of these sludges are simply disposed of in landfills after volume reduction treatment. As the sludge form at that time, there is still a case where the so-called dehydrated cake after dehydration (water content of about 80% by mass) is still being reclaimed. In most cases, incinerators are landfilled in the form of so-called incineration ash after incineration volume reduction.

現在、汚泥焼却炉はいわゆる流動床式の焼却炉がその大部分を占めている。汚泥は乾燥状態においては6300〜21000kJ/kg−dry程度の発熱量を持つのが一般的であるが、通常の下水処理場における最終形態である脱水ケーキの状態においては依然として80質量%程度の大量の水分を含有しているため、熱損失(炉体からの放散熱、水の蒸発潜熱、燃焼用空気中の同伴窒素および水蒸気による持ち出し顕熱等)を加味すると汚泥自体の持つ発熱量のみで燃焼(すなわち自燃)させることは困難である。従って現状の流動床式汚泥焼却炉においては、何らかの方法(炉内へ直接添加する、空気予熱用燃料として使用する等)で補助燃料を使用することが必要不可欠である。   At present, the majority of sludge incinerators are so-called fluidized bed incinerators. Sludge generally has a calorific value of about 6300 to 21000 kJ / kg-dry in a dry state, but still a large amount of about 80% by mass in the state of a dehydrated cake which is the final form in a normal sewage treatment plant. Therefore, if heat loss (heat dissipated from the furnace body, latent heat of water evaporation, sensible heat brought out by entrained nitrogen and water vapor in the combustion air) is taken into account, only the calorific value of the sludge itself can be obtained. It is difficult to burn (i.e., self-combustion). Therefore, in the current fluidized bed sludge incinerator, it is indispensable to use auxiliary fuel by some method (added directly into the furnace, used as air preheating fuel, etc.).

また、近年では、埋め立て地の逼迫等の理由によって、焼却灰の更なる減容化あるいは有効利用を狙いとして、灰溶融処理が一部で実施されている。すなわち、焼却炉から発生した焼却灰を灰溶融炉へと投入し、焼却灰の溶融点以上の高温とすることによってスラグへと変換する技術である。灰溶融処理は、焼却灰の嵩密度の低減(減容化)、建設資材等としての有効利用の促進、また焼却灰中に含有される重金属の溶出防止等の観点から極めて有効な技術であり、電気式(アーク式)溶融炉または旋回溶融式溶融炉等いくつかの方式が既に実用化されている。   In recent years, ash melting treatment has been partially implemented with the aim of further reducing the volume of incinerated ash or using it effectively for reasons such as tightness in landfills. In other words, it is a technology for converting incineration ash generated from an incinerator into slag by putting it into an ash melting furnace and setting it to a high temperature above the melting point of the incineration ash. Ash melting treatment is an extremely effective technology from the viewpoints of reducing the bulk density of incinerated ash (volume reduction), promoting effective use as construction materials, etc., and preventing elution of heavy metals contained in incinerated ash. Some systems such as an electric (arc) melting furnace or a swirl melting furnace have already been put into practical use.

例えば、特許文献1においては、下水汚泥を初めとする廃棄物焼却灰を、燃料の燃焼用気体として純酸素を使用する旋回溶融炉内において溶融し、溶融スラグへと転換する灰の溶融方法が提案されている。
また、特許文献2においては、乾燥した汚泥を気流床の旋回式溶融炉において、酸素または酸素富化空気を用いてガス化することによって、可燃性ガスとスラグへと転換し、その高温の可燃性ガスの顕熱をボイラーにおいてスチームとして回収し、乾燥機の熱源とする汚泥焼却方法が提案されている。
特開平9-38620号公報 特開平11-159722号公報
For example, in Patent Document 1, there is an ash melting method in which waste incineration ash including sewage sludge is melted in a swirl melting furnace using pure oxygen as a fuel combustion gas and converted into molten slag. Proposed.
In Patent Document 2, dry sludge is converted into combustible gas and slag by gasifying it with oxygen or oxygen-enriched air in a swirl type melting furnace of an airflow bed, and its high temperature combustible A sludge incineration method has been proposed in which sensible heat of volatile gas is recovered as steam in a boiler and used as a heat source for a dryer.
JP-A-9-38620 JP-A-11-159722

図1に従来の汚泥焼却および灰溶融組み合わせプロセスの基本フローを示す。従来のプロセスにおいては、汚泥4を空気5によって燃焼させることによって減容化する汚泥焼却炉1の後段へ灰溶融炉2を設置する2段構成のプロセスとなっている。前記した通り、汚泥焼却炉1においては補助燃料6の投入が必要不可欠であるが、更に、汚泥焼却炉1において可燃分をほとんど燃焼させた後の焼却灰7を、次の灰溶融炉2内において溶融点以上の高温とするためには、当然何らかの必要熱源(電力、燃料)9を外部から添加してやる必要があるため、汚泥焼却炉1における消費エネルギーと合わせると、プロセス全体において莫大なエネルギーを消費しているのが現実である。特に、エネルギー源として化石燃料由来のエネルギーを用いた場合、天然資源の枯渇やCO排出に伴う地球温暖化進行の観点から非常に好ましくない。 FIG. 1 shows a basic flow of a conventional combined sludge incineration and ash melting process. The conventional process is a two-stage process in which the ash melting furnace 2 is installed downstream of the sludge incinerator 1 that reduces the volume by burning the sludge 4 with the air 5. As described above, in the sludge incinerator 1, it is indispensable to input the auxiliary fuel 6. Furthermore, the incinerated ash 7 after almost burning the combustible component in the sludge incinerator 1 is used in the next ash melting furnace 2. In order to make the temperature higher than the melting point in this case, of course, it is necessary to add some necessary heat source (electric power, fuel) 9 from the outside, so when combined with the energy consumed in the sludge incinerator 1, enormous energy is consumed in the entire process. The fact is that it is consuming. In particular, when energy derived from fossil fuel is used as an energy source, it is very undesirable from the viewpoint of global warming due to depletion of natural resources and CO 2 emission.

灰溶融炉2には電気を使用して灰を溶融する方法(例えばアーク式溶融炉)、燃料(例えば、重油、灯油、軽油、LPG、LNG、都市ガス、消化ガス等)を空気バーナーによって燃焼することによって灰を溶融する方法(例えば旋回溶融炉、表面溶融炉)が存在する。電気を使用する方式の灰溶融炉2は炉から排出される排ガス量を削減できるというメリットはあるものの、電気をエネルギー源とすることからコストの面で不利となる。また、電力製造に関わる効率(発電効率)も加味すると、エネルギー消費量が極めて多くなってしまうという問題もある。一方、燃料を使用する方式の灰溶融炉2は、エネルギー消費量およびエネルギーコスト自体は電気を使用する方式よりも削減できるものの、燃料を空気燃焼する関係上、炉から発生する排ガス8量が極めて多くなり、後段で必須となる排ガス処理設備3(脱塵、脱硫等)の規模が増大してしまうという問題がある。   In the ash melting furnace 2, a method for melting ash using electricity (for example, an arc-type melting furnace) and a fuel (for example, heavy oil, kerosene, light oil, LPG, LNG, city gas, digestion gas, etc.) are burned by an air burner. There exists a method (for example, a swirl melting furnace, a surface melting furnace) which melts ash by doing. The ash melting furnace 2 that uses electricity has a merit that the amount of exhaust gas discharged from the furnace can be reduced, but is disadvantageous in terms of cost because it uses electricity as an energy source. In addition, when the efficiency related to power production (power generation efficiency) is taken into account, there is also a problem that the amount of energy consumption becomes extremely large. On the other hand, the ash melting furnace 2 using the fuel can reduce the energy consumption and the energy cost itself as compared with the system using electricity, but the amount of the exhaust gas generated from the furnace is extremely small due to the air combustion of the fuel. There is a problem that the scale of the exhaust gas treatment equipment 3 (dedusting, desulfurization, etc.) that is essential in the later stage increases.

特許文献1においては、溶融炉内における燃料の燃焼に伴う窒素酸化物の発生量削減を目的として、純酸素を燃焼用気体として利用しているが、炉内が過大に昇温するのを防止するために、排ガス循環を行う必要があるため、結局、溶融炉から排ガス量は燃焼用気体として空気を用いた場合と同様に多くなってしまうという問題があった。また、溶融炉内における反応は部分酸化反応ではなく燃焼反応であるため、可燃性ガスを回収することも不可能である。   In Patent Document 1, pure oxygen is used as a combustion gas for the purpose of reducing the generation amount of nitrogen oxides accompanying combustion of fuel in the melting furnace, but it prevents the furnace from excessively rising in temperature. In order to achieve this, exhaust gas circulation must be performed, and as a result, the amount of exhaust gas from the melting furnace increases in the same manner as when air is used as the combustion gas. Further, since the reaction in the melting furnace is not a partial oxidation reaction but a combustion reaction, it is impossible to recover the combustible gas.

特許文献2においては、乾燥した汚泥を酸素または酸素富化空気でガス化して、可燃性ガスとスラグを回収することが可能である。しかし、乾燥汚泥のガス化のみを行う場合の炉内条件(温度、酸素量)では、汚泥を焼却した後の焼却灰を同一炉内で同時に溶融することはできない。すなわち、焼却灰を溶融温度(灰の溶流点以上)にまで昇温させるためには、単なる乾燥汚泥のガス化を行うために適切な酸素量以上の酸素を過剰に炉内へ投入する必要がある。特に、汚泥焼却炉において石灰のような脱硫剤を添加する場合には、焼却灰の溶融温度が極めて高温となるため、炉内条件を適切に管理することが重要になる。   In patent document 2, it is possible to gasify dry sludge with oxygen or oxygen enriched air, and to collect combustible gas and slag. However, the in-furnace conditions (temperature, oxygen amount) when only dry sludge is gasified cannot simultaneously melt incinerated ash after incineration of sludge in the same furnace. That is, in order to raise the temperature of the incinerated ash to the melting temperature (above the melting point of ash), it is necessary to excessively supply oxygen exceeding the appropriate amount of oxygen to gasify the dry sludge. There is. In particular, when a desulfurizing agent such as lime is added in a sludge incinerator, the melting temperature of the incineration ash becomes extremely high, so it is important to appropriately manage the in-furnace conditions.

本発明の目的は、汚泥自体の持つエネルギーを最大限有効利用することにより、高効率かつ低コストに焼却灰および下水汚泥を溶融処理することが可能な汚泥および焼却灰のガス化溶融方法およびガス化溶融炉を提供することである。   An object of the present invention is to provide a gasification and melting method and gas of sludge and incineration ash capable of melting incineration ash and sewage sludge at high efficiency and low cost by making maximum use of the energy of sludge itself. It is to provide a chemical melting furnace.

上記目的を達成するための本発明の要旨は次の通りである。
(1)下水の生物学的処理により発生し有機物を含有する、乾燥汚泥、および汚泥を焼却して発生した焼却灰を、完全燃焼に必要な理論酸素量の0.2〜0.9倍の酸素または酸素富化空気と共に気流床型のガス化溶融炉へ気流搬送で吹き込んで1100〜1700℃で部分燃焼し、乾燥汚泥および焼却灰中の灰分をスラグへと転換すると共に、乾燥汚泥および焼却灰中の有機物を可燃性ガスへ転換することを特徴とする汚泥および焼却灰のガス化溶融方法。
(2)前記焼却灰の粒径を0.1μm〜2mm、前記乾燥汚泥の粒径を0.1μm〜3mm、及び前記乾燥汚泥の水分含有量を20質量%以下とすることを特徴とする(1)記載の汚泥および焼却灰のガス化溶融方法。
(3)前記焼却灰を、前記乾燥汚泥と同一または上方の高さから前記ガス化溶融炉内へ吹き込むことを特徴とする(1)または(2)記載の汚泥および焼却灰のガス化溶融方法。
(4)前記ガス化溶融炉炉内において周方向に旋回円を描くように焼却灰および乾燥汚泥を吹き込むことを特徴とする(1)〜(3)項のいずれか1項に記載の汚泥および焼却灰のガス化溶融方法。
(5)(1)〜(4)のいずれか1項に記載の有機物の転換により生成した可燃性ガスを、前記焼却灰を発生させる汚泥焼却のための補助燃料として使用することを特徴とする汚泥および焼却灰のガス化溶融方法。
(6)気流搬送による原料供給ノズルを有する焼却灰および汚泥の気流床型ガス化溶融炉であって、当該原料供給ノズルが、ガス化溶融炉の炉内直径に対して1/2〜1/5の直径からなる炉と同軸の旋回円の接線方向に向けて、複数本設置されていることを特徴とする汚泥および焼却灰のガス化溶融炉。
なお、本発明におけるスラグとは、乾燥汚泥または焼却灰中の灰分を融点以上にまで昇温することによって溶融させた状態のもの、あるいはその溶融状態の灰を冷却することによって再度固化させた状態のものを指す。
In order to achieve the above object, the gist of the present invention is as follows.
(1) Dry sludge generated by biological treatment of sewage, containing organic matter, and incinerated ash generated by incineration of sludge, 0.2 to 0.9 times the theoretical oxygen amount required for complete combustion Blowing into oxygen gas or oxygen-enriched air into an air-flow bed type gasification and melting furnace by air conveyance and partial combustion at 1100 to 1700 ° C to convert dry sludge and ash in incinerated ash into slag, and dry sludge and incineration A method for gasifying and melting sludge and incinerated ash, characterized by converting organic matter in the ash into combustible gas.
(2) The particle size of the incinerated ash is 0.1 μm to 2 mm, the particle size of the dried sludge is 0.1 μm to 3 mm, and the moisture content of the dried sludge is 20% by mass or less ( 1) Gasification and melting method of sludge and incineration ash as described.
(3) The method for gasifying and melting sludge and incinerated ash according to (1) or (2), wherein the incinerated ash is blown into the gasification and melting furnace from the same height as or above the dried sludge. .
(4) Incineration ash and dry sludge are blown so as to draw a swirl circle in the circumferential direction in the gasification melting furnace, and the sludge according to any one of (1) to (3), Gasification and melting method for incineration ash.
(5) The combustible gas generated by the organic substance conversion described in any one of (1) to (4) is used as an auxiliary fuel for sludge incineration that generates the incinerated ash. Gasification and melting method of sludge and incineration ash.
(6) An incinerated ash and sludge air-bed type gasification and melting furnace having a raw material supply nozzle by air flow conveyance, wherein the raw material supply nozzle is 1/2 to 1/1 with respect to the furnace diameter of the gasification melting furnace. A gasification and melting furnace for sludge and incinerated ash, wherein a plurality of them are installed in a tangential direction of a turning circle coaxial with a furnace having a diameter of 5.
The slag in the present invention is a state in which the ash content in the dried sludge or incinerated ash is melted by raising the temperature to the melting point or higher, or a state in which the ash in the molten state is solidified again by cooling. Refers to things.

本発明により、下水の生物学的処理施設から発生する余剰の活性汚泥を焼却処理して発生する焼却灰および下水汚泥を、高効率かつ低コストに溶融処理することが可能となる。   According to the present invention, incineration ash and sewage sludge generated by incinerating surplus activated sludge generated from a biological treatment facility of sewage can be melted at high efficiency and at low cost.

以下、本発明を詳細に説明する。図2に本発明に関するフローシートの一例を示す。
下水の生物学的処理により、下水場の処理施設から排出された脱水ケーキ4は、流動床式等の汚泥焼却炉1において800〜900℃程度の温度で空気5によって燃焼される。脱水ケーキの組成は、下水処理場における処理方式の違い、また季節によっても異なるが、一般的には、水分70〜90質量%(脱水ケーキ全重量ベース)、灰分5〜40質量%(乾燥汚泥重量ベース)、有機物60〜95質量%(乾燥汚泥重量ベース)程度である。汚泥焼却炉1から放出された排ガス(燃焼排ガス)および焼却灰は廃熱回収器11によってガス顕熱を回収された後、サイクロン12において焼却灰7の大半を、排煙脱硫設備13によって排ガス中の汚染物資を除去され、更に、電気集塵機14において残存する微細な焼却灰7を除去された後に煙突から放散される。なお、サイクロン12や電気集塵機14の代わりに他の集塵設備(例えば金属フィルター、セラミックスフィルター、バグフィルター)を用いても構わない。
Hereinafter, the present invention will be described in detail. FIG. 2 shows an example of a flow sheet relating to the present invention.
The dewatered cake 4 discharged from the treatment facility of the sewage plant by the biological treatment of the sewage is burned by the air 5 at a temperature of about 800 to 900 ° C. in the sludge incinerator 1 such as a fluidized bed type. The composition of the dewatered cake varies depending on the treatment method in the sewage treatment plant and the season, but generally, the moisture content is 70 to 90% by mass (based on the total weight of the dehydrated cake), and the ash content is 5 to 40% by mass (dried sludge). Weight basis) and organic matter 60 to 95 mass% (dry sludge weight basis). The exhaust gas (combustion exhaust gas) and the incineration ash released from the sludge incinerator 1 are recovered from the gas sensible heat by the waste heat recovery unit 11, and then the majority of the incineration ash 7 in the cyclone 12 and the exhaust gas desulfurization equipment 13 in the exhaust gas. The polluted materials are removed, and the fine incineration ash 7 remaining in the electrostatic precipitator 14 is removed, and then, it is released from the chimney. Note that other dust collection equipment (for example, a metal filter, a ceramic filter, and a bag filter) may be used instead of the cyclone 12 and the electric dust collector 14.

一方、同じく下水処理場から排出された脱水ケーキ4の一部は、気流乾燥機等の汚泥乾燥設備16へ導入され、乾燥処理が行われる。
汚泥乾燥設備16から排出された乾燥汚泥17は、先の汚泥焼却炉1において発生した焼却灰7と共に、窒素または空気の気流搬送によって気流床型のガス化溶融炉20へ投入される。ガス化溶融炉20内において、乾燥汚泥17中の有機物(乾燥汚泥重量ベースで60〜95質量%程度含有)、および焼却灰7中に僅かに混入する有機物(未燃物であって、焼却灰重量ベースで0.1〜20質量%程度含有)は、酸素19あるいは酸素富化空気をガス化剤とした部分酸化反応(不完全燃焼)によって、1100〜1700℃の高温でガス化され、高温の可燃性ガス(主成分はH、CO、CH、CO、HO)へ転換する。また同時に、乾燥汚泥17中の灰分および焼却灰7中の灰分(焼却灰は灰分が90質量%程度と大部分を占める)は溶融しスラグへと転換する。スラグの大半はガス化溶融炉の底部より抜き出されるが、その一部はガス化溶融炉20から排出された高温の可燃性ガス中に飛散同伴するため、ガス化溶融炉20上部のガス冷却器21においてスプレー水あるいはクエンチガス22を吹き込んで1000℃以下にまで冷却し、飛散した溶融スラグを固化することによって灰付着トラブル(スラッギング)を防止する。
On the other hand, a part of the dewatered cake 4 discharged from the sewage treatment plant is introduced into a sludge drying facility 16 such as an air dryer and the drying process is performed.
The dried sludge 17 discharged from the sludge drying facility 16 is put together with the incinerated ash 7 generated in the previous sludge incinerator 1 into the gas bed type gasification and melting furnace 20 by air flow of nitrogen or air. In the gasification melting furnace 20, the organic matter in the dried sludge 17 (containing about 60 to 95% by mass based on the weight of the dried sludge) and the organic matter slightly mixed in the incineration ash 7 (unburned matter, incineration ash Is contained at a high temperature of 1100 to 1700 ° C. by a partial oxidation reaction (incomplete combustion) using oxygen 19 or oxygen-enriched air as a gasifying agent. (The main components are H 2 , CO, CH 4 , CO 2 , H 2 O). At the same time, the ash content in the dried sludge 17 and the ash content in the incineration ash 7 (incineration ash occupies most of the ash content of about 90% by mass) are melted and converted into slag. Most of the slag is extracted from the bottom of the gasification melting furnace, but a part of the slag is scattered in the high-temperature combustible gas discharged from the gasification melting furnace 20, so that the gas cooling at the top of the gasification melting furnace 20 is performed. Spraying water or quenching gas 22 is blown in the vessel 21 to cool to 1000 ° C. or less, and the scattered molten slag is solidified to prevent ash adhesion trouble (slagging).

ガス化溶融炉20から排出された高温の可燃性ガス23は汚泥焼却炉1へと投入され、補助燃料として利用される。この際、ガス冷却器21から排出された可燃性ガス23を直ちに汚泥焼却炉1へ投入することによって、可燃性ガス23の顕熱も汚泥焼却炉1内の温度維持のために効率良く(ダイレクトに)利用可能となる。なお、ガス化溶融炉20において生成する可燃性ガス23の性状(発熱量、発生量)は、様々なガス化条件(温度、汚泥性状、放熱量等)によって変化する。また、汚泥焼却炉1において、補助燃料で補う必要のある熱量も様々な焼却条件(温度、汚泥性状、放熱量等)によって変化する。従って、生成した可燃性ガス23のみでは汚泥焼却炉1で必要とする熱量を全て賄うことのできない場合には、別途補助燃料6を汚泥焼却炉1へ添加しても良く、また逆に可燃性ガスが余剰となる場合には、余った可燃性ガス24を他の用途に利用しても良い。   The high-temperature combustible gas 23 discharged from the gasification melting furnace 20 is input to the sludge incinerator 1 and used as auxiliary fuel. At this time, the combustible gas 23 discharged from the gas cooler 21 is immediately put into the sludge incinerator 1 so that the sensible heat of the combustible gas 23 can be efficiently maintained to maintain the temperature in the sludge incinerator 1 (direct). To be available). Note that the properties (heat generation amount, generated amount) of the combustible gas 23 generated in the gasification melting furnace 20 vary depending on various gasification conditions (temperature, sludge properties, heat release amount, etc.). Further, in the sludge incinerator 1, the amount of heat that needs to be supplemented with auxiliary fuel also varies depending on various incineration conditions (temperature, sludge properties, heat release amount, etc.). Therefore, if the generated combustible gas 23 alone cannot cover all the heat required by the sludge incinerator 1, the auxiliary fuel 6 may be added to the sludge incinerator 1 and conversely combustible. If the gas becomes surplus, the surplus combustible gas 24 may be used for other purposes.

無論、汚泥焼却炉1がガス化溶融炉20に近接していない等の理由によって、ガス化溶融炉20で生成した可燃性ガス23を汚泥焼却炉1の補助燃料として使用しない場合には、それらの可燃性ガス23をガス処理(廃熱回収、脱塵、脱硫等)後、各種有効利用用途(汚泥乾燥機燃料、発電燃料、メタノール等化学品合成原料、水素製造原料等)に使用しても構わない。
汚泥焼却炉1の方式としては、現在の下水汚泥焼却炉の大半を占める流動床式焼却炉(循環流動床式焼却炉を含む)、多段式焼却炉のいずれの方式であっても構わない。汚泥焼却炉1へ投入する燃焼用空気5は、あらかじめ廃熱回収器11を通すことによって、あるいは別の熱源を利用することによって、予熱を行っても構わない。
Of course, when the combustible gas 23 generated in the gasification melting furnace 20 is not used as an auxiliary fuel for the sludge incinerator 1 due to reasons such as the sludge incineration furnace 1 is not close to the gasification melting furnace 20, After being treated with gas (waste heat recovery, dedusting, desulfurization, etc.), various effective uses (sludge dryer fuel, power generation fuel, chemical synthesis raw materials such as methanol, hydrogen production raw materials, etc.) It doesn't matter.
The system of the sludge incinerator 1 may be either a fluidized bed incinerator (including a circulating fluidized bed incinerator) or a multistage incinerator that occupies most of the current sewage sludge incinerator. The combustion air 5 to be introduced into the sludge incinerator 1 may be preheated by passing through the waste heat recovery device 11 in advance or using another heat source.

汚泥乾燥設備16の熱源には廃熱回収器11において回収された熱を利用する。この際の汚泥乾燥設備16の方式として、高温の熱風と汚泥を直接接触させる直接加熱式の汚泥乾燥機(具体的には気流乾燥機、熱風粉砕乾燥機、流動層式乾燥機、攪拌機付回転ドラム式乾燥機等)を用いる場合には、廃熱回収器11としてはガス・ガス熱交換器タイプのものを採用する。また、蒸気等の熱媒体を熱源とし、加熱壁を介した伝導伝熱によって汚泥を乾燥する、いわゆる間接加熱式の汚泥乾燥機を用いる場合には、廃熱回収器11としてはボイラータイプのものを採用する。廃熱回収器11から供給される熱源だけでは汚泥乾燥設備16における必要熱量を賄うことのできない場合には、他の何らかの熱源と併用しても良い。
なお、汚泥乾燥機からは汚泥特有の臭気ガス26が発生するが、汚泥焼却炉1へこの臭気ガス26を投入し、脱臭処理することが望ましい。無論、別の脱臭装置(活性炭脱臭、生物脱臭等)を設置しても構わない。
The heat recovered in the waste heat recovery unit 11 is used as the heat source of the sludge drying facility 16. As a method of the sludge drying equipment 16 at this time, a direct heating type sludge dryer (specifically, an air dryer, a hot air pulverizer dryer, a fluidized bed dryer, a rotation with a stirrer) that directly contacts high temperature hot air and sludge. When using a drum dryer or the like, the waste heat recovery unit 11 is a gas / gas heat exchanger type. In addition, when using a so-called indirect heating type sludge dryer that uses a heat medium such as steam as a heat source and dries the sludge by conduction heat transfer through the heating wall, the waste heat recovery unit 11 is of the boiler type. Is adopted. When the heat quantity supplied from the waste heat recovery unit 11 alone cannot cover the necessary heat amount in the sludge drying facility 16, it may be used in combination with some other heat source.
The sludge dryer generates odor gas 26 peculiar to sludge, and it is desirable to introduce the odor gas 26 into the sludge incinerator 1 and perform deodorization treatment. Of course, you may install another deodorizing apparatus (activated carbon deodorization, biological deodorization, etc.).

このようにして汚泥乾燥設備16から排出された乾燥汚泥17は、発熱量が6300〜21000kJ/kg−dry程度である。この乾燥汚泥17をガス化溶融炉20へ吹き込む際は、粒径は0.1μm〜3mm程度とすることが好ましい。粒径が3mmよりも大きい場合でもガス化を行うことは可能であるが、粒子の比表面積が減少(酸素との接触面積の低下)あるいは昇温速度の低下に起因するガス化速度の低下に伴い、未燃物が多くなり、汚泥のガスへの転換率が低下する。一方、乾燥汚泥17の粒径を0.1μmより小さくするためには、多くの動力を消費する粉砕機が別途必要となり、また、0.1μmより小さな粒径は気流搬送する際の配管閉塞等の原因となるので、粒径は上記の範囲とすることが好ましい。   The dried sludge 17 discharged from the sludge drying facility 16 in this way has a calorific value of about 6300 to 21000 kJ / kg-dry. When the dried sludge 17 is blown into the gasification melting furnace 20, the particle size is preferably about 0.1 μm to 3 mm. Even if the particle size is larger than 3 mm, it is possible to perform gasification, but the specific surface area of the particles decreases (decrease in the contact area with oxygen) or the gasification rate decreases due to the decrease in the heating rate. Along with this, unburned materials increase, and the conversion rate of sludge into gas decreases. On the other hand, in order to make the particle size of the dried sludge 17 smaller than 0.1 μm, a pulverizer that consumes much power is separately required. Therefore, the particle size is preferably in the above range.

汚泥は主に微細な微生物あるいは細菌類の集合体であるため、熱風乾燥機等によって乾燥を行うだけで、あるいは乾燥後簡易な解砕機によって破砕するだけで、容易に0.1μm〜3mm程度の粒径となる。
なお、ガス化溶融炉20の蒸発潜熱による効率低下を防止するため、また、汚泥の粒径を3mm以下とするためには、汚泥中の水分含有量は極力20質量%以下とすることが望ましい。
Since sludge is mainly a collection of fine microorganisms or bacteria, it can be easily dried by a hot air drier, etc., or after crushing by a simple crusher after drying, it can be easily about 0.1 μm to 3 mm. The particle size.
In addition, in order to prevent the efficiency reduction due to the latent heat of vaporization of the gasification melting furnace 20 and to make the particle diameter of the sludge 3 mm or less, it is desirable that the water content in the sludge be 20 mass% or less as much as possible. .

一方、汚泥焼却炉1から発生した焼却灰7については、粒径が0.1μm〜2mmのものをガス化溶融炉20に吹き込むことが好ましい。すなわち、乾燥汚泥17と共にガス化溶融炉20へ投入する焼却灰7中に、灰粒子の焼結あるいは凝集等の理由によって見かけ上の粒径が2mm以上となった大粒子(いわゆるクリンカ灰)が含まれる場合には、ボールミルあるいはロールミルのような粉砕機を事前に利用することによって粒径を2mm以下とすることが望ましい。焼却灰7は乾燥汚泥17よりも粒子密度が大きいため、粒径が2mmより大きい場合にはガス化溶融炉20内投入後に炉内の気流に乗ることができずダイレクトに炉底へ落下してしまい、焼却灰7が充分に溶融するための炉内滞留時間を得ることができない。また、粒径の下限は特に規定しないが、0.1μmよりも小さな粒径は搬送系のホッパー内における棚つりの原因となるため好ましくない。特に、サイクロン5で捕集することができずに、更に後段の電気集塵機14で回収された微細の焼却灰(いわゆる飛灰)は、有害な重金属成分を高濃度で含有する場合もあるため、本プロセスの系外において別途処理しても良い。
ガス化溶融炉20内の温度は、焼却灰7および乾燥汚泥17中に含まれる灰分の融点に応じた温度に設定され、灰分の融点よりも高い温度とするので1000℃以上とするが、必要以上の高温とすることは、ガス化溶融炉20内の炉壁の寿命を極度に短縮し、かつ放熱による熱損失も増加するために好ましくないので1700℃以下とする。
On the other hand, as for the incineration ash 7 generated from the sludge incinerator 1, it is preferable to blow into the gasification melting furnace 20 having a particle diameter of 0.1 μm to 2 mm. That is, large particles (so-called clinker ash) having an apparent particle diameter of 2 mm or more due to reasons such as sintering or agglomeration of ash particles in the incinerated ash 7 put into the gasification melting furnace 20 together with the dried sludge 17. If included, it is desirable to make the particle size 2 mm or less by using a pulverizer such as a ball mill or a roll mill in advance. Since the incinerated ash 7 has a particle density larger than that of the dried sludge 17, when the particle size is larger than 2 mm, the incinerated ash 7 cannot fall on the airflow in the furnace after being put into the gasification melting furnace 20 and falls directly to the furnace bottom. Therefore, the residence time in the furnace for the incineration ash 7 to melt sufficiently cannot be obtained. Further, the lower limit of the particle size is not particularly defined, but a particle size smaller than 0.1 μm is not preferable because it causes shelves in the hopper of the transport system. In particular, fine incineration ash (so-called fly ash) that cannot be collected by the cyclone 5 and collected by the subsequent electrostatic precipitator 14 may contain harmful heavy metal components at a high concentration. You may process separately outside the system of this process.
The temperature in the gasification melting furnace 20 is set to a temperature corresponding to the melting point of the ash contained in the incinerated ash 7 and the dried sludge 17 and is set to a temperature higher than the melting point of the ash. The above high temperature is not preferable because it extremely shortens the life of the furnace wall in the gasification melting furnace 20 and increases heat loss due to heat dissipation, so the temperature is set to 1700 ° C. or lower.

ガス化の際にガス化剤として添加する酸素19は同伴窒素による持ち出し顕熱を削減する観点から、可能な限り高濃度酸素を用いることが好ましい。しかし、必要以上に高濃度の酸素19を製造することは酸素製造設備18における投入エネルギーの増大等デメリットが増すばかりであり、ガス化そのものに与える影響は少ないため、ここで用いる酸素19は一般的な酸素製造法(圧力スイング吸着法〈PSA〉、深冷分離法)によって製造可能な濃度(80%以上)で良い。   As the oxygen 19 added as a gasifying agent at the time of gasification, it is preferable to use oxygen as high as possible from the viewpoint of reducing the sensible heat brought out by the accompanying nitrogen. However, producing oxygen 19 having a concentration higher than necessary not only increases demerits such as an increase in input energy in the oxygen production facility 18, but has little influence on gasification itself, so that the oxygen 19 used here is generally used. A concentration (80% or more) that can be produced by a simple oxygen production method (pressure swing adsorption method <PSA>, cryogenic separation method).

ここで添加する酸素量は、乾燥汚泥17および焼却灰7中の有機物を完全燃焼させるために必要な酸素量(いわゆる理論酸素量)よりも少ない酸素量とする。その割合は汚泥発熱量およびガス化溶融炉20内温度を何度に設定するかによって異なるが、理論酸素量を1とした場合の割合で0.2〜0.9の範囲内で調整することが好適である。0.2未満の酸素比では、ガス化せずに未燃物へと転換する有機物が極めて多くなるため、また、0.9を超過する酸素比では、可燃性ガス(CO、H、CH等)へ転換する割合がほとんどなくなり、大部分が燃焼ガス(CO、HO)まで転換してしまうため、本発明の目的からして好ましくない。
また、ガス化溶融炉20内の温度制御の目的も兼ねて、ガス化剤としてスチームを酸素19と併用しても良い。
The amount of oxygen to be added here is less than the amount of oxygen necessary for completely burning the organic matter in the dried sludge 17 and the incinerated ash 7 (so-called theoretical oxygen amount). The ratio varies depending on how many times the sludge heat generation amount and the temperature in the gasification melting furnace 20 are set, but it should be adjusted within the range of 0.2 to 0.9 when the theoretical oxygen amount is 1. Is preferred. When the oxygen ratio is less than 0.2, the amount of organic matter that is converted into unburned material without being gasified becomes extremely large. When the oxygen ratio exceeds 0.9, combustible gases (CO, H 2 , CH 4 ) and the like, and most of them are converted to combustion gases (CO 2 , H 2 O), which is not preferable for the purpose of the present invention.
Further, for the purpose of controlling the temperature in the gasification melting furnace 20, steam may be used in combination with the oxygen 19 as a gasifying agent.

なお、ガス化溶融炉20内の圧力は特に規定しないが、大気圧よりも低い圧力とした場合には、外部からの空気の漏れ込みによる爆発の危険性があるため好ましくない。また、大気圧よりも高い加圧条件とする場合には、ガス化溶融炉20をコンパクトにすることのできるメリット、また生成した可燃性ガス23を、常圧程度の圧力で運転される汚泥焼却炉1へブロアーなしで投入できるメリットもある。   In addition, although the pressure in the gasification melting furnace 20 is not particularly defined, a pressure lower than the atmospheric pressure is not preferable because there is a risk of explosion due to leakage of air from the outside. Moreover, when it is set as the pressurization condition higher than atmospheric pressure, the merit which can make the gasification melting furnace 20 compact, and the produced | generated combustible gas 23 is sludge incineration which is drive | operated by the pressure of a normal pressure. There is also an advantage that it can be fed into the furnace 1 without a blower.

ガス化溶融炉20内の温度は、乾燥汚泥17の部分酸化反応に伴う反応熱(発熱反応)によって実質的に維持され、焼却灰7の炉内への投入は灰の昇温、溶解に伴う吸熱(すなわち温度低下)しか伴わない。ガス化溶融炉20内の垂直方向の温度分布は、乾燥汚泥17の吹き込み位置高さの温度を最高とする分布が生じるが、炉の底部においては、発生したスラグを排出口(スラグタップ)を介し安定して炉外へ抜き出すために特に高温で維持する必要がある。従って、焼却灰7と乾燥汚泥17をそれぞれ専用の搬送設備を使用して別々にガス化溶融炉20内へ吹き込む場合、焼却灰7の吹き込み位置を乾燥汚泥17の吹き込み位置よりも下部とすることは、炉の底部の温度低下すなわちスラグタップの閉塞の原因となるため好ましくない。   The temperature in the gasification melting furnace 20 is substantially maintained by the reaction heat (exothermic reaction) associated with the partial oxidation reaction of the dried sludge 17, and the incineration ash 7 is charged into the furnace as the ash is heated and dissolved. It is accompanied only by endotherm (ie, temperature drop). The vertical temperature distribution in the gasification melting furnace 20 has a distribution in which the temperature at the blowing position height of the dried sludge 17 is maximum, but the generated slag is discharged from the outlet (slag tap) at the bottom of the furnace. Therefore, it is necessary to maintain at a particularly high temperature in order to be stably extracted outside the furnace. Accordingly, when the incinerated ash 7 and the dried sludge 17 are separately blown into the gasification melting furnace 20 using dedicated transport equipment, the blowing position of the incinerated ash 7 should be lower than the blowing position of the dried sludge 17. Is not preferable because it causes a temperature drop at the bottom of the furnace, that is, a clogging of the slag tap.

また、乾燥汚泥17の吹き込み量に対し、多量の焼却灰7を吹き込み過ぎた場合、乾燥汚泥17の部分酸化反応に伴う反応熱のみでは、焼却灰7を溶融温度以上に昇温させることがもはや不可能となるため、本発明の目的からして好ましくない。乾燥汚泥17の吹き込み量に対して吹き込むことが可能な焼却灰7量は、種々の条件(溶融炉内温度、乾燥汚泥発熱量、焼却灰熱容量、炉体放熱量等)によって異なるため一概には規定できないが、乾燥汚泥17重量(乾燥ベース)に対して3倍以下、特に安定したガス化溶融炉20内状態(部分酸化反応、灰の溶融)を維持し、質の良い可燃性ガス23およびスラグ10を得るためには等倍以下とすることが望ましい。   Further, when a large amount of incinerated ash 7 is blown too much with respect to the amount of dry sludge 17 blown, it is no longer possible to raise the incinerated ash 7 to a melting temperature or higher only with the reaction heat associated with the partial oxidation reaction of the dry sludge 17. Since it becomes impossible, it is not preferable for the purpose of the present invention. The amount of incinerated ash 7 that can be blown into the amount of dry sludge 17 blown differs depending on various conditions (melting furnace temperature, dry sludge heat generation, incinerated ash heat capacity, furnace body heat release, etc.) Although not stipulated, the combustible gas 23 is of good quality while maintaining a state (partial oxidation reaction, melting of ash) in the gasification melting furnace 20 that is not more than 3 times the dry sludge 17 weight (dry basis), particularly stable. In order to obtain the slag 10, it is desirable to make it equal to or less than the same size.

乾燥汚泥17および焼却灰7は、ガス化溶融炉20内へ炉内の周方向に旋回を描くように吹き込むことにより炉内滞留時間を充分に確保することが望ましい。
図3に、ガス化溶融炉20における焼却灰7および乾燥汚泥17の吹き込み部の一例を示す。
吹き込み部には、気流搬送による原料供給ノズル27を有し、当該原料供給ノズル27が、ガス化溶融炉の炉内直径28に対して1/2〜1/5の直径からなる炉と同軸の旋回円29の接線方向に向けて、複数本設置されている。
Desirably, the dried sludge 17 and the incinerated ash 7 are sufficiently blown into the gasification and melting furnace 20 so as to make a swirl in the circumferential direction of the furnace to ensure a sufficient residence time in the furnace.
In FIG. 3, an example of the blowing part of the incinerated ash 7 and the dry sludge 17 in the gasification melting furnace 20 is shown.
The blowing portion has a raw material supply nozzle 27 by airflow conveyance, and the raw material supply nozzle 27 is coaxial with a furnace having a diameter of 1/2 to 1/5 with respect to the furnace inner diameter 28 of the gasification melting furnace. A plurality of pieces are installed in the tangential direction of the turning circle 29.

焼却灰7および乾燥汚泥17の吹き込み方向は、ガス化溶融炉20内における粒子滞留時間をできる限り長くし、有機物の部分酸化反応および灰の溶融(スラグ化)が充分に起きるように、旋回流とすることが好適である。そのためには、焼却灰7および乾燥汚泥17を各々の原料供給ノズル27(バーナー)から、旋回円29の接線方向に向けて吹き込むことが必要である。
その際の旋回円29径が、ガス化溶融炉20の炉内直径28に対して1/2よりも大きいと、ガス化溶融炉20壁面への粒子による浸食が生じる場合があるので望ましくない。また、逆に、旋回円29径が、ガス化溶融炉20の炉内直径28に対して1/5よりも小さい場合には、充分な粒子滞留時間を確保するための旋回流が生じない。従って、旋回円29径は、ガス化溶融炉20の炉内直径28に対して1/2〜1/5の範囲であることが好適である。
The blowing direction of the incinerated ash 7 and the dried sludge 17 is a swirl flow so that the particle residence time in the gasification melting furnace 20 is as long as possible, and the partial oxidation reaction of the organic matter and the ash melting (slagging) sufficiently occur. Is preferable. For that purpose, it is necessary to blow incineration ash 7 and dry sludge 17 from the respective raw material supply nozzles 27 (burners) in the tangential direction of the swirl circle 29.
If the diameter of the swirl circle 29 at that time is larger than 1/2 with respect to the in-furnace diameter 28 of the gasification melting furnace 20, erosion by particles on the wall of the gasification melting furnace 20 may occur, which is not desirable. Conversely, when the diameter of the swirl circle 29 is smaller than 1/5 with respect to the furnace diameter 28 of the gasification melting furnace 20, a swirl flow for ensuring a sufficient particle residence time does not occur. Therefore, the diameter of the turning circle 29 is preferably in the range of 1/2 to 1/5 with respect to the in-furnace diameter 28 of the gasification melting furnace 20.

なお、乾燥汚泥17と焼却灰7は、2系列の搬送設備(ホッパー、フィーダー、搬送配管)を用意し、専用の原料供給ノズル27から別々にガス化溶融炉20内へ吹き込む方式でも、また、両者を事前に混合後、同一の原料供給ノズル27からガス化溶融炉20内へ吹き込む方式のどちらでも構わない。両者を事前に混合して供給する方が、乾燥汚泥17の部分酸化反応(発熱反応)に付随して、焼却灰7の昇温速度を急速にすることができるという観点からは望ましい。しかし、乾燥汚泥17と焼却灰7の両者の間で粒径密度に大きな差がある場合には、一連の搬送供給系設備において閉塞等のトラブルが生じる可能性もあるため、ケースに応じて使い分けることが好ましい。   In addition, the dry sludge 17 and the incineration ash 7 are prepared by preparing two series of transport facilities (hopper, feeder, transport pipe) and separately blowing them into the gasification melting furnace 20 from the dedicated raw material supply nozzle 27. Either method may be employed in which both are mixed in advance and then blown into the gasification melting furnace 20 from the same raw material supply nozzle 27. It is desirable from the viewpoint that the temperature of the incinerated ash 7 can be increased rapidly in association with the partial oxidation reaction (exothermic reaction) of the dried sludge 17 to supply both in advance. However, when there is a large difference in particle size density between both the dried sludge 17 and the incinerated ash 7, there is a possibility that troubles such as blockage may occur in a series of conveyance supply system facilities. It is preferable.

ガス化溶融炉20内において必要なガス滞留時間は、乾燥汚泥17の性状(発熱量、粒径、水分含有量等)や温度によっても異なるが、0.2〜10secとすることが好適である。ガス滞留時間が0.2secよりも短い場合、乾燥汚泥17は充分にガス化することができず、また逆に10secより長い場合には、不必要にガス化溶融炉20の容積が大きくなり、設備コストの増大へつながるため好ましくない。このガス滞留時間は、以下の式の様に定義する。
(ガス滞留時間[sec])=(ガス化溶融炉20内容積[m])
/(ガス化溶融炉20出口ガス流量[m/sec])
The required gas residence time in the gasification melting furnace 20 varies depending on the properties (heat generation amount, particle size, moisture content, etc.) of the dried sludge 17 and the temperature, but is preferably 0.2 to 10 seconds. . When the gas residence time is shorter than 0.2 sec, the dried sludge 17 cannot be sufficiently gasified, and conversely when it is longer than 10 sec, the volume of the gasification melting furnace 20 becomes unnecessarily large. This is not preferable because it leads to an increase in equipment costs. This gas residence time is defined as in the following equation.
(Gas residence time [sec]) = (Internal volume of gasification melting furnace 20 [m 3 ])
/ (Gasification melting furnace 20 outlet gas flow rate [m 3 / sec])

本発明で使用する汚泥4として、下水汚泥以外に、産業排水の生物学的処理施設から発生する余剰の活性汚泥(例えば、コークス炉排水(安水)処理設備、ステンレス酸洗排水の処理設備、各種食品工場の排水処理設備から排出される余剰汚泥等)を用いても良い。
また、ガス化溶融炉20へ投入される焼却灰7としては、下水汚泥由来の焼却灰7のみに限定されるものではなく、各家庭から排出される一般廃棄物(生ゴミ等)由来の焼却灰7、建築廃材、シュレッダーダスト等産業廃棄物由来の焼却灰7、あるいは石炭燃焼ボイラーから発生する石炭由来の焼却灰7等どのような焼却灰7を用いても構わない。しかし、溶融温度が1600℃を超えるような焼却灰7を用いる場合、ガス化溶融炉20内の温度を更なる高温とする必要があり、炉の熱効率低下の原因となるため好ましくない。この場合には、何らかの融点降下剤(例えば、石灰、硫酸鉄あるいは塩化鉄のような鉄系凝集剤等)を事前に焼却灰7に添加することが望ましい。無論、焼却灰7の融点が1600℃以下である場合であっても、融点降下剤を添加することによって、ガス化溶融炉20内温度の低下すなわち熱効率の向上を図ってやっても良い。
As sludge 4 used in the present invention, in addition to sewage sludge, surplus activated sludge generated from biological wastewater treatment facilities (for example, coke oven wastewater (safe water) treatment equipment, stainless pickling wastewater treatment equipment, Excess sludge discharged from wastewater treatment facilities of various food factories) may be used.
In addition, the incineration ash 7 to be introduced into the gasification melting furnace 20 is not limited to the incineration ash 7 derived from sewage sludge, but incineration derived from general waste (eg, garbage) discharged from each household. Any incineration ash 7 such as ash 7, incineration ash 7 derived from industrial waste such as building waste, shredder dust, or coal-derived incineration ash 7 generated from a coal-fired boiler may be used. However, when the incinerated ash 7 having a melting temperature exceeding 1600 ° C. is used, the temperature in the gasification melting furnace 20 needs to be further increased, which is not preferable because it causes a decrease in the thermal efficiency of the furnace. In this case, it is desirable to add some melting point depressant (for example, iron-based flocculant such as lime, iron sulfate or iron chloride) to the incineration ash 7 in advance. Of course, even if the melting point of the incinerated ash 7 is 1600 ° C. or lower, the temperature inside the gasification melting furnace 20 may be lowered, that is, the thermal efficiency may be improved by adding a melting point depressant.

本発明は、既に稼働している汚泥焼却炉1に対して新たに灰溶融機能を付加させる必要が生じた際に適用することが好適である。すなわち、新たに汚泥乾燥設備16およびガス化溶融炉20等を設置すれば、従来の汚泥焼却プロセスに単なる灰溶融機能を追加するのは無論のこと、汚泥焼却炉1において必要な熱源供給機能も同時に追加することになり、補助燃料6使用量を削減することができる。言い換えれば、バイオマスである汚泥自体の持つエネルギー(発熱量)を有効に活用することによって、外部からの化石燃料由来の投入エネルギーを削減し、限りある貴重なエネルギー源である化石資源の余命延長に貢献することになる。   The present invention is preferably applied when a new ash melting function needs to be added to the already operating sludge incinerator 1. That is, if the sludge drying equipment 16 and the gasification melting furnace 20 are newly installed, it is natural that a simple ash melting function is added to the conventional sludge incineration process, and the heat source supply function necessary for the sludge incinerator 1 is also provided. At the same time, the amount of auxiliary fuel 6 used can be reduced. In other words, by effectively utilizing the energy (calorific value) of the sludge itself as biomass, the input energy derived from fossil fuels from outside is reduced, and the life expectancy of fossil resources, which are limited and valuable energy sources, is extended. Will contribute.

図4に示したフローに従って、本発明例を実施した。
使用した下水汚泥の分析値を表1に、また汚泥4中に含有される灰分の分析値を表2に示す。この汚泥4は下水処理場の脱水機から排出されたもの(脱水ケーキ)である。また、汚泥焼却炉1において焼却後の焼却灰7中には未燃の炭素分が3質量%−dry含有されていたが、灰分の組成については元の下水汚泥中灰分の組成(表2)と殆ど同様であった。
According to the flow shown in FIG.
The analysis values of the sewage sludge used are shown in Table 1, and the analysis values of ash contained in the sludge 4 are shown in Table 2. This sludge 4 is what was discharged | emitted from the dehydrator of the sewage treatment plant (dehydrated cake). Moreover, incinerated ash 7 after incineration in the sludge incinerator 1 contained 3% by mass of unburned carbon, but the composition of ash was the composition of ash in the original sewage sludge (Table 2). And almost the same.

Figure 2006105448
Figure 2006105448

Figure 2006105448
Figure 2006105448

下水汚泥(脱水ケーキ)100t/dayを汚泥乾燥設備8において乾燥後、生成した乾燥汚泥17(21t/day)(水分含有量5質量%、粒径7μm〜1.2mm(平均粒径220μm))を流動床式汚泥焼却炉1から発生した焼却灰7(4t/day)(粒径0.5μm〜350μm(平均粒径30μm))と共に、窒素による気流搬送によってガス化溶融炉20内へ投入した(焼却灰/乾燥汚泥=1.9)。乾燥汚泥17および焼却灰7は対向位置に設置されたそれぞれ2本ずつの原料供給ノズル27からガス化溶融炉20の直径に対して1/3の旋回円径を描くように投入された。全ての原料供給ノズル27(計4本)はガス化溶融炉200の同一高さレベルに設置され、乾燥汚泥17を吹き込むための2本の原料供給ノズル27はバーナー構造とし、その原料供給ノズル27を介し、乾燥汚泥17と共に酸素19を炉内へ投入するようにした。
なお、汚泥乾燥設備16における必要熱源には汚泥焼却炉1後段の廃熱ボイラー31で回収されたスチーム32を使用した。また、灰分の融点調整(融点降下)のため、灰組成の塩基度(CaO/SiO)が1.0となるように石灰30を乾燥汚泥および焼却灰に事前に添加した。
100 t / day of sewage sludge (dehydrated cake) is dried in the sludge drying facility 8 and then generated dry sludge 17 (21 t / day) (water content 5 mass%, particle size 7 μm to 1.2 mm (average particle size 220 μm)) Together with the incinerated ash 7 (4 t / day) (particle size 0.5 μm to 350 μm (average particle size 30 μm)) generated from the fluidized bed sludge incinerator 1 into the gasification and melting furnace 20 by air current conveyance using nitrogen. (Incineration ash / dry sludge = 1.9). The dried sludge 17 and the incinerated ash 7 were fed from two raw material supply nozzles 27 installed at opposing positions so as to draw a swirl circle diameter of 1/3 with respect to the diameter of the gasification melting furnace 20. All the raw material supply nozzles 27 (four in total) are installed at the same height level of the gasification melting furnace 200, and the two raw material supply nozzles 27 for blowing the dry sludge 17 have a burner structure. Then, oxygen 19 was introduced into the furnace together with the dried sludge 17.
In addition, the steam 32 collect | recovered with the waste-heat boiler 31 of the back | latter stage of the sludge incinerator 1 was used for the required heat source in the sludge drying equipment 16. In order to adjust the melting point of ash (melting point drop), lime 30 was added in advance to the dried sludge and incinerated ash so that the basicity (CaO / SiO 2 ) of the ash composition was 1.0.

ガス化溶融炉20内において、乾燥汚泥17および焼却灰7は酸素製造設備18において製造された酸素19(酸素濃度93%)と共に、温度1300℃でガス化溶融され、高温の可燃性ガスおよびスラグへと転換した。生成した高温の可燃性ガスはガス化溶融炉20の上部のガス冷却器21において水スプレー22によって900℃まで冷却された後、汚泥焼却炉1へ導入され、汚泥(脱水ケーキ)4を焼却するための熱源として利用された。汚泥焼却炉1から排出された燃焼後の排ガスはガス処理後(廃熱回収、脱塵、脱硫)後に、煙突から大気放散した。また、汚泥乾燥設備16から発生する排ガス(臭気ガス)は汚泥焼却炉1へ投入することによって、脱臭処理を行った。
本実施例に関して、スタートアップ時を除いては、外部から補助燃料を一切添加する必要がなかった。
In the gasification melting furnace 20, the dried sludge 17 and the incineration ash 7 are gasified and melted at a temperature of 1300 ° C. together with oxygen 19 (oxygen concentration 93%) produced in the oxygen production facility 18, and high-temperature combustible gas and slag are produced. Switched to. The generated high-temperature combustible gas is cooled to 900 ° C. by the water spray 22 in the gas cooler 21 at the upper part of the gasification melting furnace 20 and then introduced into the sludge incinerator 1 to incinerate the sludge (dehydrated cake) 4. Was used as a heat source. The exhaust gas after combustion discharged from the sludge incinerator 1 was released into the atmosphere from the chimney after gas treatment (waste heat recovery, dust removal, desulfurization). The exhaust gas (odor gas) generated from the sludge drying facility 16 was put into the sludge incinerator 1 for deodorization treatment.
Regarding this example, it was not necessary to add any auxiliary fuel from the outside except during startup.

表3に本発明例(実施例)および従来の汚泥焼却灰溶融プロセス((1)流動床式汚泥焼却炉+旋回溶融式灰溶融炉、(2)流動床式汚泥焼却炉+電気式灰溶融炉)における補助燃料使用量の比較を示す。本発明例においては、従来法よりも補助燃料使用量を大幅に削減でき、ランニングコストを従来法の7割とすることができた。また、従来法よりも設備構成が極めてシンプルかつコンパクトであるため、設備コストおよび設備設置スペースも大幅に削減可能であった。   Table 3 shows examples of the present invention (Examples) and conventional sludge incineration ash melting process ((1) fluidized bed sludge incinerator + slewing ash melting furnace, (2) fluidized bed sludge incinerator + electric ash melting A comparison of the amount of auxiliary fuel used in the furnace is shown. In the example of the present invention, the amount of auxiliary fuel used can be significantly reduced compared to the conventional method, and the running cost can be reduced to 70% of the conventional method. In addition, the equipment configuration is much simpler and more compact than the conventional method, so that the equipment cost and equipment installation space can be greatly reduced.

Figure 2006105448
Figure 2006105448

従来技術に関するフローシートである。It is the flow sheet regarding a prior art. 本発明に関するフローシートである。It is a flow sheet concerning the present invention. 本発明の乾燥汚泥および焼却灰のガス化溶融炉内への吹き込み方法を表す図である。It is a figure showing the blowing method in the gasification melting furnace of the dry sludge and incineration ash of this invention. 本発明の実施例におけるプロセスのマスバランス(試験結果)である。It is the mass balance (test result) of the process in the Example of this invention.

符号の説明Explanation of symbols

1 汚泥焼却炉 2 灰溶融炉
3 排ガス処理設備 4 汚泥(脱水ケーキ)
5 空気 6 補助燃料
7 焼却灰 8 排ガス
9 必要熱源(電力、燃料) 10 スラグ
11 廃熱回収器 12 サイクロン
13 排煙脱硫設備 14 電気集塵機
15 排ガス(煙突へ) 16 汚泥乾燥設備
17 乾燥汚泥 18 酸素製造設備
19 酸素 20 ガス化溶融炉
21 ガス冷却器 22 スプレー水またはクエンチガス
23 可燃性ガス 24 可燃性ガス(余剰分)
25 熱風またはスチーム 26 臭気ガス
27 原料供給ノズル 28 炉内直径
29 旋回円 30 石灰
31 廃熱ボイラー 32 スチーム
1 Sludge incinerator 2 Ash melting furnace 3 Exhaust gas treatment equipment 4 Sludge (dehydrated cake)
5 Air 6 Auxiliary fuel 7 Incinerated ash 8 Exhaust gas 9 Necessary heat source (electric power, fuel) 10 Slag 11 Waste heat recovery device 12 Cyclone 13 Flue gas desulfurization equipment 14 Electric dust collector 15 Exhaust gas (to chimney) 16 Sludge drying equipment 17 Dry sludge 18 Oxygen Production equipment 19 Oxygen 20 Gasification melting furnace 21 Gas cooler 22 Spray water or quench gas 23 Combustible gas 24 Combustible gas (excess)
25 Hot Air or Steam 26 Odor Gas 27 Raw Material Supply Nozzle 28 Furnace Diameter 29 Swirling Circle 30 Lime 31 Waste Heat Boiler 32 Steam

Claims (6)

下水の生物学的処理により発生し有機物を含有する、乾燥汚泥、および汚泥を焼却して発生した焼却灰を、完全燃焼に必要な理論酸素量の0.2〜0.9倍の酸素または酸素富化空気と共に気流床型のガス化溶融炉へ気流搬送で吹き込んで1100〜1700℃で部分燃焼し、乾燥汚泥および焼却灰中の灰分をスラグへと転換すると共に、乾燥汚泥および焼却灰中の有機物を可燃性ガスへ転換することを特徴とする汚泥および焼却灰のガス化溶融方法。 Oxygen or oxygen 0.2 to 0.9 times the theoretical oxygen amount necessary for complete combustion of dry sludge generated by biological treatment of sewage and containing organic matter, and incinerated ash generated by incineration of sludge It is blown into the gas bed type gasification melting furnace with enriched air by air flow conveyance and partially combusted at 1100-1700 ° C to convert the ash in the dried sludge and incinerated ash into slag, and in the dried sludge and incinerated ash A method for gasifying and melting sludge and incinerated ash, characterized by converting organic matter into combustible gas. 前記焼却灰の粒径を0.1μm〜2mm、前記乾燥汚泥の粒径を0.1μm〜3mm、及び前記乾燥汚泥の水分含有量を20質量%以下とすることを特徴とする請求項1記載の汚泥および焼却灰のガス化溶融方法。 The particle size of the incinerated ash is 0.1 μm to 2 mm, the particle size of the dried sludge is 0.1 μm to 3 mm, and the moisture content of the dried sludge is 20% by mass or less. Gasification and melting method of sludge and incinerated ash. 前記焼却灰を、前記乾燥汚泥と同一または上方の高さから前記ガス化溶融炉内へ吹き込むことを特徴とする請求項1または2記載の汚泥および焼却灰のガス化溶融方法。 The method for gasifying and melting sludge and incinerated ash according to claim 1 or 2, wherein the incinerated ash is blown into the gasification and melting furnace from the same height as or above the dried sludge. 前記ガス化溶融炉炉内において周方向に旋回円を描くように焼却灰および乾燥汚泥を吹き込むことを特徴とする請求項1〜3のいずれか1項に記載の汚泥および焼却灰のガス化溶融方法。 Incineration ash and dry sludge are blown so as to draw a swirl circle in the circumferential direction in the gasification melting furnace, gasification and melting of sludge and incineration ash according to any one of claims 1 to 3 Method. 請求項1〜4のいずれか1項に記載の有機物の転換により生成した可燃性ガスを、前記焼却灰を発生させる汚泥焼却のための補助燃料として使用することを特徴とする汚泥および焼却灰のガス化溶融方法。 The combustible gas produced | generated by conversion of the organic substance of any one of Claims 1-4 is used as an auxiliary fuel for the sludge incineration which generate | occur | produces the incineration ash of sludge and incineration ash characterized by the above-mentioned Gasification melting method. 気流搬送による原料供給ノズルを有する焼却灰および汚泥の気流床型ガス化溶融炉であって、当該原料供給ノズルが、ガス化溶融炉の炉内直径に対して1/2〜1/5の直径からなる炉と同軸の旋回円の接線方向に向けて、複数本設置されていることを特徴とする汚泥および焼却灰のガス化溶融炉。 An incinerated ash and sludge gas bed type gasification and melting furnace having a raw material supply nozzle by air flow conveyance, wherein the raw material supply nozzle has a diameter of 1/2 to 1/5 of the diameter of the gasification melting furnace in the furnace. A gasification and melting furnace for sludge and incinerated ash, wherein a plurality of them are installed toward the tangential direction of a swirling circle coaxial with the furnace made of
JP2004290300A 2004-10-01 2004-10-01 Treatment method of sludge and incineration ash Expired - Fee Related JP4362428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290300A JP4362428B2 (en) 2004-10-01 2004-10-01 Treatment method of sludge and incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290300A JP4362428B2 (en) 2004-10-01 2004-10-01 Treatment method of sludge and incineration ash

Publications (2)

Publication Number Publication Date
JP2006105448A true JP2006105448A (en) 2006-04-20
JP4362428B2 JP4362428B2 (en) 2009-11-11

Family

ID=36375408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290300A Expired - Fee Related JP4362428B2 (en) 2004-10-01 2004-10-01 Treatment method of sludge and incineration ash

Country Status (1)

Country Link
JP (1) JP4362428B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218334A (en) * 2010-04-14 2011-11-04 Sumitomo Heavy Ind Ltd System for treating food-industry wastewater
CN104154546A (en) * 2014-08-29 2014-11-19 凤阳海泰科能源环境管理服务有限公司 Sludge resource utilization system and method
JP2015209317A (en) * 2014-04-28 2015-11-24 住友重機械工業株式会社 Conveyance system of coal ash generated in coal burning boiler and conveyance method of coal ash generated in coal burning boiler
CN105546546A (en) * 2015-12-31 2016-05-04 成和环保科技股份有限公司 Harmless classification-free solid waste splitting decomposition device and splitting decomposition method
JP2018200150A (en) * 2017-05-29 2018-12-20 国立研究開発法人産業技術総合研究所 Combustion furnace for organic waste and processing system for organic waste using the combustion furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218334A (en) * 2010-04-14 2011-11-04 Sumitomo Heavy Ind Ltd System for treating food-industry wastewater
JP2015209317A (en) * 2014-04-28 2015-11-24 住友重機械工業株式会社 Conveyance system of coal ash generated in coal burning boiler and conveyance method of coal ash generated in coal burning boiler
CN104154546A (en) * 2014-08-29 2014-11-19 凤阳海泰科能源环境管理服务有限公司 Sludge resource utilization system and method
CN104154546B (en) * 2014-08-29 2016-05-25 凤阳海泰科能源环境管理服务有限公司 A kind of recycling sludge utilizes system and method
CN105546546A (en) * 2015-12-31 2016-05-04 成和环保科技股份有限公司 Harmless classification-free solid waste splitting decomposition device and splitting decomposition method
JP2018200150A (en) * 2017-05-29 2018-12-20 国立研究開発法人産業技術総合研究所 Combustion furnace for organic waste and processing system for organic waste using the combustion furnace

Also Published As

Publication number Publication date
JP4362428B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
CN111853801A (en) Garbage pyrolysis gasification incineration system and technology
JP2008132409A (en) Gasification melting method and apparatus of sludge
JP2009262047A (en) Method for utilizing waste material containing sludge in coal boiler for power generation
JP2007031492A (en) Method for producing hydrogen from sludge
JP4362428B2 (en) Treatment method of sludge and incineration ash
JP4156483B2 (en) Gasification and melting method of sludge
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP2001342476A (en) Method and facility for producing carbonized waste
JP2005249279A (en) Waste melting and treating method utilizing biomass
JP2007252992A (en) Inflammable gas from sludge, recovery process of slag, and gasification melting furnace of sludge
JP2005265273A (en) Sludge gasifying and melting method and device therefor
JP2007002825A (en) Waste power generation method
JP2011089672A (en) Waste melting treatment method
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
KR100482887B1 (en) Fluidized Bed Gasification and Melting Combustion Method and Apparatus
JP2007147270A (en) Processing method, and gasifying and melting device for waste
JP2006170609A (en) Gasification and gasification combustion method of solid waste
JPH0212324B2 (en)
JP3544953B2 (en) Waste treatment method and gasification and melting equipment
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP2004251618A (en) Processing method and gasifying and fusing apparatus for combustible material
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP3270456B2 (en) Waste treatment method and gasification and melting equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees