JP2006100394A - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP2006100394A
JP2006100394A JP2004282164A JP2004282164A JP2006100394A JP 2006100394 A JP2006100394 A JP 2006100394A JP 2004282164 A JP2004282164 A JP 2004282164A JP 2004282164 A JP2004282164 A JP 2004282164A JP 2006100394 A JP2006100394 A JP 2006100394A
Authority
JP
Japan
Prior art keywords
light emitting
layer
general formula
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004282164A
Other languages
English (en)
Inventor
Itaru Ozaka
格 尾坂
Tatsuya Igarashi
達也 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004282164A priority Critical patent/JP2006100394A/ja
Publication of JP2006100394A publication Critical patent/JP2006100394A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 発光効率に優れ、耐久性が良好な発光素子を提供する。
【解決手段】 一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、該有機化合物層の少なくとも一層に下記一般式(1)で表される化合物を含有することを特徴とする有機電界発光素子。
【化1】
Figure 2006100394

(R1は置換基を表し、Ar1はアリール基を表し、n11は0以上の整数、n12は4以上の整数を表し、Q1は芳香族へテロ環を形成する原子群を表す。)
【選択図】 なし

Description

本発明は、電気エネルギーを光に変換して発光できる発光素子、特に、有機電界発光素子に関する。
有機電界発光(EL)素子は、低電圧で高輝度の発光を得ることができるため、有望な表示素子として注目されている。この有機電界発光素子の重要な特性値として、外部量子効率がある。外部量子効率は、「外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数」で算出され、この値が大きいほど消費電力の点で有利な素子と言える。
有機電界発光素子の外部量子効率は、「外部量子効率φ=内部量子効率×光取り出し効率」で決まる。有機化合物からの蛍光発光を利用する有機EL素子においては、内部量子効率の限界値が25%であり、光取り出し効率が約20%であることから、外部量子効率の限界値は約5%とされている。
有機電界発光素子のホスト材料として、含窒素ヘテロ環化合物を用いることが報告されている(例えば、特許文献1及び2参照。)。特許文献1の一般式(IV)および特許文献
2の一般式(I)では、3つの含窒素ヘテロ環の窒素原子が結合した芳香環が例示されて
いる。
しかしながら、外部量子効率、及び耐久性の点で十分満足できるものではなくホスト材料のさらなる改良が望まれていた。
特開2002−338579号公報 特開2003−335753号公報
本発明の目的は、発光効率に優れ、耐久性が良好な発光素子の提供にある。
前記実情に鑑み本発明者らは、鋭意研究を行ったところ、発光素子の有機層に特定の化合物(少なくとも4つの含窒素ヘテロ環の窒素原子が結合した芳香環)を用いることにより、上記課題を解決しうることを見出し本発明を完成した。
即ち、本発明は下記の手段により達成されるものである。
<1> 一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、該有機化合物層の少なくとも一層に下記一般式(1)で表される化合物を含有することを特徴とする有機電界発光素子。
Figure 2006100394
(一般式(1)中、R1は置換基を表し、Ar1はアリール基を表し、n11は0以上の整数、n12は4以上の整数を表し、Q1は芳香族へテロ環を形成する原子群を表す。)
<2> 前記一般式(1)で表される化合物が、下記一般式(2)で表されることを特徴とする上記<1>に記載の有機電界発光素子。
Figure 2006100394
(一般式(2)中、R2は置換基を表し、n21は0〜2の整数、n22は4〜6の整数を表し(ただし、n21 +n22≦6)。n21 が複数の場合は、複数のR2は同じであっても異なっていても良い。Q2は芳香族へテロ環を形成する原子群を表す。)
<3> 前記一般式(1)で表される化合物が、下記一般式(3)で表されることを特徴とする上記<1>に記載の有機電界発光素子。
Figure 2006100394
(一般式(3)中、Q31〜Q36はそれぞれ独立に芳香族へテロ環を形成する原子群を表す。)
<4> 前記発光層に前記一般式(1)で表される化合物を含有することを特徴とする上記<1>に記載の有機電界発光素子。
<5> 前記発光層にさらにりん光発光材料を含有することを特徴とする上記<4>に記載の有機電界発光素子。
本発明によれば、発光効率に優れ、耐久性が良好な発光素子を提供することができる。
本発明の有機電界発光素子は、一対の電極間に発光層を含む少なくとも一層の有機化合物層(以下、「有機層」ともいう。)を有する有機電界発光素子(以下、「本発明の素子」、「発光素子」、又は「EL素子」ともいう。)であって、該有機化合物層の少なくとも一層に、前記一般式(1)で表される化合物を含有することを特徴とする。
本発明の有機電界発光素子における前記有機化合物層が、該一般式(1)で表される化合物を含有することにより発光効率及び耐久性が良好な発光素子とすることできる。
<一般式(1)で表される化合物>
前記一般式(1)について説明する。
1で表される置換基としては、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
1 はアルキル基、アリール基、ヘテロアリール基、アルケニル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、含ケイ素ヘテロ環を形成する基、ヒドロキシ基、メルカプト基、ハロゲン原子が好ましく、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基がより好ましく、アルキル基、アリール基、ヘテロアリール基、ヒドロキシ基、メルカプト基、ハロゲン原子がさらに好ましい。
11は0以上の整数、n12は4以上の整数を表し、n11が複数の場合は、複数のR1は同じであっても異なっていても良い。
1は芳香族ヘテロ環を形成する原子群を表すが、中でも、含窒素芳香族ヘテロ環を形成する原子群であることが好ましい。複数のQ1は同じであっても異なっていても良い。
1で形成される環構造としては特に限定されないが、5員〜7員の含窒素芳香環が挙げられ、好ましくは5員もしくは7員の含窒素芳香環が挙げられ、例えば、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、及び、これらの縮環、及び、互変異性体などが挙げられる(例えばベンズイミダゾール環、ベンズピラゾール環など)。
1で形成される含窒素芳香族へテロ環としては、ピロール環、ピラゾール環、トリアゾール環、イミダゾール環、ベンズイミダゾール環、イミダゾピリジン環、ベンズピラゾール環、ベンゾトリアゾール環、プリン環、インドール環、カルバゾール環、カルボリン環、トリベンズアゼピン環が好ましく、ピラゾール環、イミダゾール環、ベンズイミダゾール環、イミダゾピリジン環、ベンズピラゾール環、カルバゾール環、トリベンズアゼピン環、プリン環がより好ましく、ピラゾール環、ベンズピラゾール環、ベンズイミダゾール環、イミダゾピリジン環、プリン環がさらに好ましく、ベンズイミダゾール環、イミダゾピリジン環が特に好ましい。
前記Q1上に置換基を有してもよく、該置換基としては特に限定されないが、アルキル基、アリール基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、アリールオキシ基、シリル基が好ましく、アルキル基、アリール基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基がより好ましく、アルキル基、アリール基がさらに好ましい。これらの各置換基は、相当するR1の置換基の好ましい範囲、及び例と同様である。
Ar1はアリール基を表すが、該置換基は相当するR1の置換基の好ましい範囲、及び例と同様である。
本発明における前記一般式(1)の化合物は、前記一般式(2)で表されることが好ましい。
前記一般式(2)について説明する。
2の置換基としては例えば、R1で説明した基が挙げられ、好ましい範囲も同じである。
21は0〜2の整数、n22は4〜6の整数を表す(ただし、n21 +n22≦6)。n21 が複数の場合は、複数のR2は同じであっても異なっていても良い。
2は含窒素ヘテロ環を形成する原子群を表し、複数のQ2は同じであっても異なっていても良い。形成される環構造としては、特に限定されないが、例えばQ1で説明した環構造が挙げられ、好ましい範囲も同じである。
本発明における前記一般式(1)の化合物は、前記一般式(3)で表されることが好ましい。
一般式(3)について説明する。
31〜Q36は芳香族へテロ環を形成する原子群を表し、芳香族へテロ環Q31〜Q36で形成される芳香族へテロ環は同じであっても異なっていてもよい。形成される環構造としては、特に限定されないが、例えばQ1で説明した環構造が挙げられ、好ましい範囲も同じである。
次に、本発明における前記一般式(1)〜(3)の化合物例を示すが、これに限定されないものではない。
Figure 2006100394
Figure 2006100394
Figure 2006100394
Figure 2006100394
Figure 2006100394
Figure 2006100394
Figure 2006100394
Figure 2006100394
一般式(1)で表される化合物は、例えば「Heterocycles,Vol.35,No.1(1993)p.415−426」に記載されている合成法によって得ることができる。
本発明における前記一般式(1)で表される化合物の膜状態でのT1レベル(最低三重項励起状態のエネルギーレベル)は、60Kcal/mol以上(251.4KJ/mol以上)、90Kcal/mol以下(377.1KJ/mol以下)が好ましく、62Kcal/mol以上(259.78KJ/mol以上)、85Kcal/mol以下(356.15KJ/mol以下)がより好ましく、65Kcal/mol以上(272.35KJ/mol以上)、80Kcal/mol以下(335.2KJ/mol以下)がさらに好ましい。
1レベルは、化合物の膜状態でのりん光スペクトルを測定し、スペクトルの短波端の波長から求めることができ、本発明においてはこの方法により求めた値を用いる。
[有機電界発光素子]
本発明の発光素子は、陽極、陰極の一対の電極間に発光層を含む少なくとも一層の有機化合物層(有機化合物膜)を形成した素子であり、発光層のほか正孔注入層、電子輸送層を有することが好ましい態様である。
更に、正孔輸送層、電子注入層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成には後述のそれぞれの材料を用いることができる。
本発明の発光素子は、前記一般式(1)の化合物を少なくとも一層の有機化合物層に含有するが、そのシステム、駆動方法、利用形態などは特に問わない。
該一般式(1)の化合物は、電子輸送層若しくは発光層に含まれていることが好ましく、発光層に含有することがより好ましい。該化合物は、一つの有機層に含まれていても、複数の有機層に含まれてもよい。
本発明の発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸ハ゜ターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
本発明の発光素子の外部量子効率としては、5%以上が好ましく、10%以上がより好ましく、13%以上がさらに好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100〜300cd/m2付近(好ましくは200〜300cd/m2)での外部量子効率の値を用いることができる。
本発明における外部量子効率の数値は、20℃で素子を駆動したときの外部量子効率の最大値をその値とした。
本発明においては、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加し発光させ、その輝度をトプコン社製輝度計BM−8を用いて測定し、200cd/m2における外部量子効率を算出した値を用いる。
本発明においては、素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出する。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を発光したフォトン数に換算した。これらから外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算する。
該発光スペクトルは、浜松ホトニクス社製のマルチ・チャンネル・アナライザーPMA−11を用いて測定することができる。
また、本発明の発光素子の内部量子効率としては、30%以上が好ましく、50%以上がさらに好ましく、70%以上がさらに好ましい。素子の内部量子効率は「内部量子効率=外部量子効率/光取り出し効率」で算出される。
通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能で有る。
本発明の発光素子は、陽極側から発光を取り出す、いわゆる、トップエミッション方式(特開2003−208109,2003−248441,2003−257651,2003−282261などに記載)であっても良い。
本発明の発光素子における有機化合物層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法(スプレーコート法、ディップコート法、含浸法、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法、スピンコート法、フローコート法、バーコート法、マイクログラビアコート法、エアードクターコート、ブレードコート法、スクイズコート法、トランスファーロールコート法、キスコート法、キャストコート法、エクストルージョンコート法、ワイヤーバーコート法、スクリーンコート法等)、インクジェット法、印刷法、転写法などの方法が用いられ、特性面、製造面で抵抗加熱蒸着、コーティング法、転写法が好ましい。
<基材>
本発明の発光素子で用いられる基材は、特に限定されないが、ジルコニア安定化イットリウム、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルや、ポリエチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)、テフロン(登録商標)、ポリテトラフルオロエチレン−ポリエチレン共重合体等の高分子量材料であっても良い。
<陽極>
陽極は正孔注入層、正孔輸送層、発光層などに正孔を供給するものであり、金属、合金、金属酸化物、電気伝導性化合物、またはこれらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料である。
陽極の材料の具体例としては酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、あるいは金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、およびこれらとITOとの積層物などが挙げられ、好ましくは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からITOが好ましい。陽極の膜厚は材料により適宜選択可能であるが、通常10nm〜5μmの範囲のものが好ましく、より好ましくは50nm〜1μmであり、更に好ましくは100nm〜500nmである。
陽極は通常、ソーダライムガラス、無アルカリガラス、透明樹脂基板などの上に層形成したものが用いられる。ガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合、シリカなどのバリアコートを施したものを使用することが好ましい。基板の厚みは、機械的強度を保つのに十分であれば特に制限はないが、ガラスを用いる場合には、通常0.2mm以上、好ましくは0.7mm以上のものを用いる。
陽極の作製には材料によって種々の方法が用いられるが、例えばITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾルーゲル法など)、酸化インジウムスズの分散物の塗布などの方法で膜形成される。
陽極は洗浄その他の処理により、素子の駆動電圧を下げたり、発光効率を高めることも可能である。例えばITOの場合、UV−オゾン処理、プラズマ処理などが効果的である。
<陰極>
陰極は電子注入層、電子輸送層、発光層などに電子を供給するものであり、電子注入層、電子輸送層、発光層などの負極と隣接する層との密着性やイオン化ポテンシャル、安定性等を考慮して選ばれる。陰極の材料としては金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物、またはこれらの混合物を用いることができ、具体例としてはアルカリ金属(例えばLi、Na、K等)及びそのフッ化物または酸化物、アルカリ土類金属(例えばMg、Ca等)及びそのフッ化物または酸化物、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金またはそれらの混合金属、リチウム−アルミニウム合金またはそれらの混合金属、マグネシウム−銀合金またはそれらの混合金属、インジウム、イッテリビウム等の希土類金属等が挙げられ、好ましくは仕事関数が4eV以下の材料であり、より好ましくはアルミニウム、リチウム−アルミニウム合金またはそれらの混合金属、マグネシウム−銀合金またはそれらの混合金属等である。陰極は、上記化合物及び混合物の単層構造だけでなく、上記化合物及び混合物を含む積層構造を取ることもできる。例えば、アルミニウム/フッ化リチウム、アルミニウム/酸化リチウム の積層構造が好ましい。陰極の膜厚は材料により適宜選択可能であるが、通常10nm〜5μmの範囲のものが好ましく、より好ましくは50nm〜1μmであり、更に好ましくは100nm〜1μmである。
陰極の作製には電子ビーム法、スパッタリング法、抵抗加熱蒸着法、コーティング法、転写法などの方法が用いられ、金属を単体で蒸着することも、二成分以上を同時に蒸着することもできる。さらに、複数の金属を同時に蒸着して合金電極を形成することも可能であり、またあらかじめ調整した合金を蒸着させてもよい。
陽極及び陰極のシート抵抗は低い方が好ましく、数百Ω/□以下が好ましい。
(発光層)
本発明における発光層は発光材料を含有するが、特に限定されるものではない。該発光材料とは、発光層において実質的に発光する機能を担う化合物であり、発光は蛍光であってもりん光であっても、その両方を発光しても良いが、発光層において実質的にりん光を発光する化合物であることが好ましい。
本発明の発光素子は、発光層が蛍光発光化合物を含有せず、りん光発光化合物が実質的に発光する素子であることがより好ましい。
前記りん光発光化合物としては、特に限定されないが、遷移金属錯体が好ましく、イリジウム錯体、白金錯体、レニウム錯体、ルテニウム錯体、パラジウム錯体、ロジウム錯体、又は希土類錯体がより好ましく、イリジウム錯体、白金錯体がさらに好ましい。
また、特開2002−235076、特開2002−170684、特開2003−123982、特開2003−133074に記載のジフルオロフェニルピリジン配位子を有するオルトメタル化イリジウム錯体が好ましい。
また、US6303238 B1、US6097147、WO 00/57676、WO 00/70655、WO 01/08230、WO 01/39234 A2、WO 01/41512 A1、WO 02/02714 A2、WO 02/15645 A1、特開2001−247859、特願2000−33561、特開2002−117978、特願2001−248165、特開2002−235076、特願2001−239281、特開2002−170684、EP 1211257、特開2002−26495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−173674、特開2002−203678、特開2002−203679等の特許文献に記載のりん光発光化合物も好適に用いることができる。
発光層の材料としては、電界印加時に陽極または正孔注入層、正孔輸送層から正孔を注入することができると共に陰極または電子注入層、電子輸送層から電子を注入することができる機能や、注入された電荷を移動させる機能、正孔と電子の再結合の場を提供して発光させる機能を有する層を形成することができるものであれば何でもよい。
その具体例としては、本発明における前記一般式(1)の化合物、前記発光材料のほか、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ペリレン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、8−キノリノールの金属錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、イリジウムトリスフェニルピリジン錯体、及び、白金ポルフィリン錯体に代表される遷移金属錯体、及び、それらの誘導体等が挙げられる。
前記りん光発光化合物のりん光寿命(室温)は特に限定されないが、1ms以下であることが好ましく、100μs以下であることがより好ましく、10μs以下であることがさらに好ましい。
前記りん光発光化合物のT1レベル(最低三重項励起状態のエネルギーレベル)は、60 Kcal/mol以上(251.4KJ/mol以上)、90Kcal/mol以下(377.1KJ/mol以下)が好ましく、62Kcal/mol以上(259.78KJ/mol以上)、85Kcal/mol以下(356.15KJ/mol以下)がより好ましく、65Kcal/mol 以上(272.35KJ/mol以上)、80Kcal/mol以下(335.2KJ/mol以下)がさらに好ましい。
発光層中の発光材料の濃度は、特に限定されないが、主成分であるホスト材料と同等かそれ以下であることが好ましく、全固形成分質量に対して、0.1質量%以上50質量%以下であることがより好ましく、0.2質量%以上30質量%以下であることがさらに好ましく、0.3質量%以上20質量%以下であることが特に好ましく、0.5質量%以上10質量%以下が最も好ましい。
電荷輸送機能と発光機能を分離してより優れた性能を得るため、あるいは高濃度の発光材料中で凝集が起こり励起状態が無輻射失活する現象(濃度消光)を防ぐために、発光材料をドーパントとしてホスト材料(電荷輸送材料)中にドープすることが好ましく行われる。
該ホスト材料としては、含窒素へテロ環化合物、芳香族炭化水素化合物、金属錯体、有機珪素化合物、アニリン誘導体が挙げられ、中でも、耐久性の観点から含窒素へテロ環化合物、金属錯体、芳香族炭化水素化合物が好ましい。
発光層に含まれる該ホスト材料のガラス転移点は90℃以上400℃以下であることが好ましく、100℃以上380℃以下であることがより好ましく、120℃以上370℃以下であることがさらに好ましく、140℃以上360℃以下であることが特に好ましい。
発光層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。
発光層の形成方法は、特に限定されるものではなく、前記有機層の形成方法を用いることができ、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法、LB法、転写法などの方法が用いられ、好ましくは抵抗加熱蒸着、コーティング法である。
発光層は単一層であっても複数層であっても良く、複数層の各層が異なる発光色で発光して、例えば、白色を発光しても良い。単一の発光層から白色を発光しても良い。
発光層は、積層構造を少なくとも一つ有していても良い。積層数は2層以上50層以下が好ましく、4層以上30層以下がより好ましく、6層以上20層以下がさらに好ましい。
該発光層の積層を構成する各層の膜厚は特に限定されないが、0.2nm以上、20nm以下が好ましく、0.4nm以上、15nm以下がより好ましく、0.5nm以上10nm以下がさらに好ましく、1nm以上5nm以下が特に好ましい。
発光層は、複数のドメイン構造を有していても良い。発光層中に他のドメイン構造を有していても良い。例えば、発光層が、ホスト材料A及び蛍光材料Bの混合物からなる約1nm3の領域と、ホスト材料C及び蛍光材料Dの混合物からなる約1nm3の領域で構成されていても良い。各ドメインの径は、0.2nm以上10nm以下が好ましく、0.3nm以上5nm以下がより好ましく、0.5nm以上3nm以下がさらに好ましく、0.7nm以上2nm以下が特に好ましい。
発光層に隣接する層(ホール輸送層、電子輸送層、電荷ブロック層、励起子ブロック層など)のT1レベル(最低三重項励起状態のエネルギーレベル)は、60Kcal/mol以上(251.4KJ/mol以上)、90Kcal/mol以下(377.1KJ/mol以下)が好ましく、62 Kcal/mol以上(259.78KJ/mol以上)、85Kcal/mol以下(356.15KJ/mol以下)がより好ましく、65Kcal/mol以上(272.35KJ/mol以上)、80Kcal/mol以下(335.2KJ/mol 以下)がさらに好ましい。
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層の材料は、陽極から正孔を注入する機能、正孔を輸送する機能、陰極から注入された電子を障壁する機能のいずれか有しているものであればよい。その具体例としては、本発明における前記一般式(1)の化合物のほか、カルバゾール、トリアゾール、オキサゾール、オキサジアゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン、本発明における化合物、及び、それらの誘導体等が挙げられる。
正孔注入層、正孔輸送層の材料のガラス転移点は90℃以上400℃以下であることが好ましく、100℃以上380℃以下であることがより好ましく、120℃以上370℃以下であることがさらに好ましく、140℃以上360℃以下であることが特に好ましい。
正孔注入層、正孔輸送層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。
正孔注入層、正孔輸送層は上述した材料の1種または2種以上からなる単層構造であってもよいし、同一組成または異種組成の複数層からなる多層構造であってもよい。
正孔注入層、正孔輸送層の形成方法としては、真空蒸着法やLB法、前記正孔注入輸送材料を溶媒に溶解または分散させてコーティングする方法、インクジェット法、印刷法、転写法が用いられる。コーティング法の場合、樹脂成分と共に溶解または分散することができ、樹脂成分としては例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂などが挙げられる。
(電子注入層、電子輸送層)
電子注入層、電子輸送層の材料は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入された正孔を障壁する機能のいずれか有しているものであればよい。その具体例としては、本発明の化合物のほか、トリアゾール、オキサゾール、オキサジアゾール、イミダゾール、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン、8−キノリノールの金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン、本発明における前記一般式(1)の化合物、及び、それらの誘導体等が挙げられる。
電子注入層・電子輸送層の材料のガラス転移点は90℃以上400℃以下であることが好ましく、100℃以上380℃以下であることがより好ましく、120℃以上370℃以下であることがさらに好ましく、140℃以上360℃以下であることが特に好ましい。
電子注入層、電子輸送層の膜厚は特に限定されるものではないが、通常1nm〜5μmの範囲のものが好ましく、より好ましくは5nm〜1μmであり、更に好ましくは10nm〜500nmである。
電子注入層、電子輸送層は、上述した材料の1種または2種以上からなる単層構造であってもよいし、同一組成または異種組成の複数層からなる多層構造であってもよい。
電子注入層、電子輸送層の形成方法としては、真空蒸着法やLB法、前記電子注入輸送材料を溶媒に溶解または分散させてコーティングする方法、インクジェット法、印刷法、転写法などが用いられる。コーティング法の場合、樹脂成分と共に該材料を溶解または分散してコーティングすればよい。該樹脂成分としては例えば、前記正孔注入輸送層の場合に例示したものが適用できる。
<保護層>
保護層の材料としては水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2等の金属酸化物、MgF2、LiF、AlF3、CaF2等の金属フッ化物、SiNx、SiOxy などの窒化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法についても特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。
<封止>
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
本発明の発光素子は、青色蛍光発光化合物を含有しても良いし、また、該青色蛍光化合物を含有する青色発光素子と該青色発光素子以外の本発明の発光素子を同時に用いて、マルチカラー発光デバイス、フルカラー発光デバイスを作製しても良い。
本発明の発光素子の用途は特に限定されないが、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等の分野に好適に使用できる。
以下、本発明について実施例を用いて説明するが、本発明はこれらに限定されるものではない。
〔実施例1〕
洗浄したITO基板を蒸着装置に入れ、NPDを40nm蒸着した。この上に、Ir(ppy)3と例示化合物(1−3)とCBPとを6:20:74の比率(質量比)で30nm蒸着し、この上に、BCP(2,9−ジメチル−4,7−ジフェニル−フェナントロリン)を6nm蒸着し、この上に、Alq(トリス(8−ヒドロキシキノリン)アルミニウム錯体)を20nm蒸着した。この上に、マグネシウムと銀を10:1の比率(モル比)で100nm共蒸着し、EL素子を作製した。
東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させた結果、緑色発光が得られた。輝度はトプコン社製BM−8を用いて測定した。
また、浜松ホトニクス社製のマルチ・チャンネル・スペクトルアナライザーPMA−11を用いてスペクトル波形を測定した。これらの測定結果から、100cd/m2における駆動電圧、外部量子効率、発光波長ピークの値を得た。
更に、素子の駆動耐久性は初期輝度100cd/m2で定電流駆動を行い、輝度が50cd/m2になるまでに要する輝度半減時間T(1/2)を測定し、駆動耐久性の指標とした。輝度半減期は比較例の素子の約2倍であった。
Figure 2006100394
〔比較例1〕
(国際公開第00/70655号パンフレット<実施例1>に記載の素子)
洗浄したITO基板を蒸着装置に入れ、NPDを40nm蒸着した。この上に、Ir(ppy)3とCBPを6:94の比率(質量比)で30nm蒸着し、この上に、BCPを6nm蒸着し、この上に、Alqを20nm蒸着した。この上に、マグネシウムと銀を10:1の比率(モル比)で100nm共蒸着し、EL素子を作製した。
東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させた結果、緑色発光が得られた。輝度はトプコン社製BM−8を用いて測定した。
他の評価試験は実施例1と同様に行って、外部量子効率、発光波長ピーク、駆動耐久性(輝度半減期)を求めた。

Claims (5)

  1. 一対の電極間に発光層を含む少なくとも一層の有機化合物層を有する有機電界発光素子であって、該有機化合物層の少なくとも一層に下記一般式(1)で表される化合物を含有することを特徴とする有機電界発光素子。
    Figure 2006100394
    (一般式(1)中、R1は置換基を表し、Ar1はアリール基を表し、n11は0以上の整数、n12は4以上の整数を表し、Q1は芳香族へテロ環を形成する原子群を表す。)
  2. 前記一般式(1)で表される化合物が、下記一般式(2)で表されることを特徴とする請求項1に記載の有機電界発光素子。
    Figure 2006100394
    (一般式(2)中、R2は置換基を表し、n21は0〜2の整数、n22は4〜6の整数を表し(ただし、n21 +n22≦6)。n21 が複数の場合は、複数のR2は同じであっても異なっていても良い。Q2は芳香族へテロ環を形成する原子群を表す。)
  3. 前記一般式(1)で表される化合物が、下記一般式(3)で表されることを特徴とする請求項1に記載の有機電界発光素子。
    Figure 2006100394
    (一般式(3)中、Q31〜Q36はそれぞれ独立に芳香族へテロ環を形成する原子群を表す。)
  4. 前記発光層に前記一般式(1)で表される化合物を含有することを特徴とする請求項1に記載の有機電界発光素子。
  5. 前記発光層にさらにりん光発光材料を含有することを特徴とする請求項4に記載の有機電界発光素子。
JP2004282164A 2004-09-28 2004-09-28 有機電界発光素子 Pending JP2006100394A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282164A JP2006100394A (ja) 2004-09-28 2004-09-28 有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282164A JP2006100394A (ja) 2004-09-28 2004-09-28 有機電界発光素子

Publications (1)

Publication Number Publication Date
JP2006100394A true JP2006100394A (ja) 2006-04-13

Family

ID=36239948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282164A Pending JP2006100394A (ja) 2004-09-28 2004-09-28 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP2006100394A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027000B1 (ko) * 2008-06-04 2011-04-11 덕산하이메탈(주) 피롤 유도체 및 이를 포함하는 유기 전계발광 소자
CN103502388A (zh) * 2011-04-18 2014-01-08 默克专利有限公司 用于电子器件的化合物
KR20160113487A (ko) * 2015-03-20 2016-09-29 대주전자재료 주식회사 벤지이미다졸 유도체 및 이를 포함하는 유기전기발광소자
CN106243091A (zh) * 2016-08-01 2016-12-21 大连理工大学 一类含四个相同取代基的六元双氮杂环衍生物的制备方法及其应用
US12052915B2 (en) 2019-10-16 2024-07-30 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100476A (ja) * 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd 発光素子及びアゾール化合物
JP2002305084A (ja) * 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2004171808A (ja) * 2002-11-18 2004-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2004256453A (ja) * 2003-02-26 2004-09-16 Dainippon Printing Co Ltd ピリミドピリミジン系化合物、組成物および有機エレクトロルミネッセンス素子
JP2005113072A (ja) * 2003-10-10 2005-04-28 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2007513217A (ja) * 2004-08-23 2007-05-24 エルジー・ケム・リミテッド 新規の発光物質及びこれを用いた有機発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100476A (ja) * 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd 発光素子及びアゾール化合物
JP2002305084A (ja) * 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2004171808A (ja) * 2002-11-18 2004-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2004256453A (ja) * 2003-02-26 2004-09-16 Dainippon Printing Co Ltd ピリミドピリミジン系化合物、組成物および有機エレクトロルミネッセンス素子
JP2005113072A (ja) * 2003-10-10 2005-04-28 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2007513217A (ja) * 2004-08-23 2007-05-24 エルジー・ケム・リミテッド 新規の発光物質及びこれを用いた有機発光素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027000B1 (ko) * 2008-06-04 2011-04-11 덕산하이메탈(주) 피롤 유도체 및 이를 포함하는 유기 전계발광 소자
CN103502388A (zh) * 2011-04-18 2014-01-08 默克专利有限公司 用于电子器件的化合物
CN103502388B (zh) * 2011-04-18 2016-06-01 默克专利有限公司 用于电子器件的化合物
KR101929602B1 (ko) * 2011-04-18 2018-12-14 메르크 파텐트 게엠베하 전자 소자용 화합물
KR20160113487A (ko) * 2015-03-20 2016-09-29 대주전자재료 주식회사 벤지이미다졸 유도체 및 이를 포함하는 유기전기발광소자
KR101883772B1 (ko) 2015-03-20 2018-08-01 대주전자재료 주식회사 벤지이미다졸 유도체 및 이를 포함하는 유기전기발광소자
CN106243091A (zh) * 2016-08-01 2016-12-21 大连理工大学 一类含四个相同取代基的六元双氮杂环衍生物的制备方法及其应用
US12052915B2 (en) 2019-10-16 2024-07-30 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Similar Documents

Publication Publication Date Title
JP4794919B2 (ja) 有機電界発光素子
JP4365196B2 (ja) 有機電界発光素子
JP4531509B2 (ja) 発光素子
JP4340401B2 (ja) 発光素子及びイリジウム錯体
JP4505162B2 (ja) 発光素子および新規レニウム錯体
JP4365199B2 (ja) 有機電界発光素子
JP2006303394A (ja) 有機電界発光素子
JP2006203172A (ja) 有機電界発光素子
JP2009246373A (ja) 発光素子及びイリジウム錯体
JP2004221063A (ja) 有機電界発光素子
JP2006156847A (ja) 有機電界発光素子
JP2004127598A (ja) 有機電界発光素子
JP2006310479A (ja) 有機電界発光素子
JP2005327526A (ja) 有機電界発光素子
JP4849812B2 (ja) 有機電界発光素子およびケイ素化合物
JP2006228936A (ja) 有機電界発光素子
US7982391B2 (en) Organic electroluminescent device
JP4900895B2 (ja) 有機電界発光素子
JP4928867B2 (ja) 有機電界発光素子
JP2005310766A (ja) 有機電界発光素子
JP2006086482A (ja) 有機電界発光素子
JP4794918B2 (ja) 有機電界発光素子
JP4864304B2 (ja) 有機電界発光素子
JP2006100394A (ja) 有機電界発光素子
JP2005123168A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406