JP2006098026A - Pyrolyzing treatment system - Google Patents

Pyrolyzing treatment system Download PDF

Info

Publication number
JP2006098026A
JP2006098026A JP2004287579A JP2004287579A JP2006098026A JP 2006098026 A JP2006098026 A JP 2006098026A JP 2004287579 A JP2004287579 A JP 2004287579A JP 2004287579 A JP2004287579 A JP 2004287579A JP 2006098026 A JP2006098026 A JP 2006098026A
Authority
JP
Japan
Prior art keywords
heating
amount
heat
pyrolysis
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287579A
Other languages
Japanese (ja)
Inventor
Makoto Nakajima
良 中島
Takeshi Noma
毅 野間
Katsunori Ide
勝記 井手
Kazutaka Koshiro
和高 小城
Hidetake Shiire
英武 仕入
Kiyoshi Imai
潔 今井
Mina Sakano
美菜 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004287579A priority Critical patent/JP2006098026A/en
Publication of JP2006098026A publication Critical patent/JP2006098026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pyrolyzing treatment system capable of exhibiting waste treating capacity to the maximum even with the occurrence of a heating impediment factor such as adhesion. <P>SOLUTION: In the pyrolyzing treatment system for pyrolyzing a treated material 1 into pyrolyzed gas 6 and pyrolyzed residue 7 by heating it in a pyrolyzing furnace 3, the heating value of a heating source to the pyrolyzing furnace is measured by a heat source heating value measuring means, and the quantity of exhaust heat exhausted after heating the pyrolyzing furnace 3 is measured by an exhaust heat measuring means 12. The difference between the heating value of the heat source and the quantity of exhaust heat is obtained by a control device 13, and the net quantity of heating to the treated material is obtained from the difference. The treated quantity of the treated material to the heating furnace 3 is adjusted corresponding to the net quantity of heating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被処理物を熱分解炉内にて加熱して熱分解ガスと熱分解残渣とに熱分解する熱分解処理システムに関する。   The present invention relates to a thermal decomposition treatment system that heats an object to be processed in a thermal decomposition furnace to thermally decompose it into a pyrolysis gas and a pyrolysis residue.

未分別かつ未処理であって様々な汚染物質を含んでいる廃棄物(被処理物)を使用可能物質に変質させる廃棄物処理システムとして、廃棄物を熱分解処理する熱分解処理システムが従来から知られている(例えば、特許文献1参照)。   As a waste treatment system that transforms unsorted and untreated waste containing various pollutants (processed materials) into usable materials, a thermal decomposition treatment system that thermally decomposes waste has been conventionally used. It is known (see, for example, Patent Document 1).

この熱分解処理システムは、有機物を含む廃棄物を還元雰囲気下で数百℃に加熱し、熱分解ガスと固体残渣物に分解処理するシステムである。このような熱分解処理システムとしては、回転ドラムを外部から加熱する外部加熱方式を採用した外熱式の回転炉(キルン)を適用することができる。外熱式キルンはセメント焼成などに長年の使用実績があり、未分解で未分別の廃棄物の処理装置としては構造が簡素で信頼性の高いものとして、一般に広く普及している。   This thermal decomposition treatment system is a system in which waste containing organic matter is heated to several hundred degrees Celsius in a reducing atmosphere to decompose it into thermal decomposition gas and solid residue. As such a thermal decomposition treatment system, an external heating type rotary furnace (kiln) that employs an external heating method for heating the rotary drum from the outside can be applied. Externally heated kilns have a long history of use in cement firing, etc., and are generally widely used as undecomposed and unsorted waste disposal devices with a simple structure and high reliability.

この熱分解処理システムでは、廃棄物は、計量機能を有する投入装置により回転ドラム(回転炉)の内部に投入される。この回転ドラムの外部には燃焼室が形成され、その内部で、バーナー等により燃料が燃焼され、回転ドラムを介して廃棄物が加熱されるようになっている。加熱された回転ドラム内の廃棄物は熱分解ガスと固体の熱分解残渣とに熱分解され、それぞれの出口から個別に排出される。また、燃焼室からの燃焼排気ガスは、排気ダクトを介して系外に排出される。廃棄物から生じた熱分解ガスおよび固体残渣は、熱分解処理システムの後工程の各種処理装置に送られて無害化処理が施された後に、エネルギー源として再利用されたりする。   In this thermal decomposition processing system, waste is introduced into the rotary drum (rotary furnace) by an input device having a weighing function. A combustion chamber is formed outside the rotating drum, in which fuel is burned by a burner or the like, and waste is heated through the rotating drum. The waste in the heated rotating drum is pyrolyzed into pyrolysis gas and solid pyrolysis residue, and discharged individually from the respective outlets. Further, the combustion exhaust gas from the combustion chamber is discharged out of the system through the exhaust duct. The pyrolysis gas and solid residue generated from the waste are sent to various processing apparatuses in the post-process of the pyrolysis processing system and subjected to detoxification, and then reused as an energy source.

上述のような熱分解処理システムでは、廃棄物等の被処理物の熱分解処理が安定的かつ長期的に継続して行われることが望ましい。しかし、熱分解炉の回転ドラム内において被処理物の熱分解処理を長時間に渡って継続的に行った場合には、回転ドラムの内壁に熱分解残渣が付着して、処理能力が低下するという課題がある。すなわち、回転ドラムの内壁に付着した熱分解残渣は、回転ドラムの外部から内部に伝えられる熱を遮断してしまうため、回転ドラム内の被処理物を回転ドラムの外部から加熱する方式では、当該加熱による熱が回転ドラムの内部へ十分に伝わらなくなる。この結果、熱伝達効率が悪化してしまい、回転ドラム内の被処理物を効率良く熱分解させることが難しくなり、被処理物を所定の熱分解温度まで加熱することができず、処理量を低下させざるを得なくなるからである。   In the thermal decomposition treatment system as described above, it is desirable that the thermal decomposition treatment of an object to be treated such as waste is performed stably and continuously over a long period of time. However, if the thermal decomposition treatment of the workpiece is continuously performed for a long time in the rotary drum of the pyrolysis furnace, the thermal decomposition residue adheres to the inner wall of the rotary drum and the processing capacity is lowered. There is a problem. That is, the thermal decomposition residue adhering to the inner wall of the rotating drum blocks the heat transferred from the outside of the rotating drum to the inside. Therefore, in the method of heating the workpiece in the rotating drum from the outside of the rotating drum, Heat from heating is not sufficiently transferred to the inside of the rotating drum. As a result, the heat transfer efficiency deteriorates, it becomes difficult to efficiently thermally decompose the object to be processed in the rotating drum, the object to be processed cannot be heated to a predetermined thermal decomposition temperature, and the processing amount is reduced. This is because it must be lowered.

このような課題を解決するために、ドラムの内壁への付着物を、処理運転を継続しながら機械的に掻き落とすための装置などが提案されている。この場合も、付着物の堆積を完全に防ぐことは困難であり、外熱式の回転ドラムを熱分解に適用する場合には、付着による性能の低下という課題は不可避的に発生するものといえる。   In order to solve such a problem, a device for mechanically scraping off deposits on the inner wall of the drum while continuing the processing operation has been proposed. Also in this case, it is difficult to completely prevent deposits from being deposited, and when an externally heated rotary drum is applied to thermal decomposition, the problem of performance degradation due to adhesion is inevitably generated. .

一般的には被処理物の加熱状況はドラム内部あるいは外部の温度監視、あるいは出口の被処理物の温度により管理されている。付着物により熱の伝わりが悪くなり、ドラム内部や出口の温度が低下する場合、一般的には加熱量を増加させるか、あるいは処理量を低下するかの手段がとられる。   Generally, the heating state of the workpiece is controlled by monitoring the temperature inside or outside the drum, or by the temperature of the workpiece to be processed at the outlet. When the heat transfer is deteriorated by the deposit and the temperature inside the drum or at the outlet is lowered, generally, a measure is taken to increase the heating amount or to reduce the processing amount.

ここで、加熱量を増加させることは装置の耐熱性や、加熱装置の容量からおのずと上限値があり、この上限に達した後は処理量の低下しか選択肢がなくなる。一方で、付着物が堆積した状態ではドラム内部の温度の正確な測定が困難となり、熱分解処理に適切な加熱が行われているか判断が難しく、熱分解炉の能力上限いっぱいまで性能を引き出すことは困難となる。このため、低い処理量で操業せざるを得なくなる。
特開2000−202419号公報
Here, increasing the heating amount naturally has an upper limit value from the heat resistance of the device and the capacity of the heating device, and after reaching this upper limit, there is only an option for a decrease in the processing amount. On the other hand, it is difficult to accurately measure the temperature inside the drum when deposits are accumulated, and it is difficult to determine whether heating is appropriate for the pyrolysis process. Will be difficult. For this reason, it must be operated with a low throughput.
JP 2000-202419 A

このように、熱分解炉内壁に堆積物が生じたりすると、熱分解炉内の被処理物に加わる熱量を正確に把握するのが困難であり、熱分解炉の能力上限いっぱいまで性能を引き出して効率的な処理を行うことが困難であった。   In this way, if deposits are generated on the inner wall of the pyrolysis furnace, it is difficult to accurately grasp the amount of heat applied to the object to be processed in the pyrolysis furnace, and the performance is drawn up to the maximum capacity of the pyrolysis furnace. It was difficult to perform efficient processing.

本発明の目的は、付着等の加熱阻害要因が発生しても、廃棄物の処理能力を最大限に発揮することのできる熱分解処理システムを提供することにある。   An object of the present invention is to provide a thermal decomposition treatment system capable of maximizing the waste treatment capacity even when a heating inhibiting factor such as adhesion occurs.

本発明の熱分解処理システムは、被処理物を熱分解炉内で熱して熱分解ガスと熱分解残渣とに熱分解する熱分解処理システムであって、前記熱分解炉に対する加熱源の熱量を計量する加熱源の熱量計量手段及びこの熱分解炉を加熱した後排気される排熱量を計量する排熱量計量手段と、これら計量手段により計量された加熱源の熱量と排熱量との差分から被処理物に対する正味加熱量を求め、この正味加熱量に対応して前記加熱炉への被処理物の処理量を調整する制御装置とを備えたことを特徴とする。   The thermal decomposition processing system of the present invention is a thermal decomposition processing system that heats an object to be processed in a thermal decomposition furnace and decomposes it into a thermal decomposition gas and a thermal decomposition residue. The heat quantity metering means of the heating source to be metered, the exhaust heat quantity metering means for metering the amount of exhaust heat exhausted after heating the pyrolysis furnace, and the difference between the heat quantity of the heat source measured by these metering means and the amount of exhaust heat. And a control device for obtaining a net heating amount for the processing object and adjusting a processing amount of the object to be processed in the heating furnace in accordance with the net heating amount.

また、本発明では、加熱源の熱量計量手段として加熱源への燃料流量計を設け、この燃料流量計により測定される燃料消費量と予め求められている燃料の発熱量とから、加熱源の熱量を求めている。   Further, in the present invention, a fuel flow meter to the heating source is provided as a calorific value measuring means of the heating source, and the heating source is calculated from the fuel consumption measured by the fuel flow meter and the calorific value of the fuel determined in advance. The amount of heat is being sought.

また、本発明では、排熱量計量手段として、排気ガス温度計を設け、この排気ガス温度計により測定された排気ガス温度と、燃料消費量及び予め設定された空気比から求められる排気ガス流量とを用い、これらから排熱量を求めている。   Further, in the present invention, an exhaust gas thermometer is provided as the exhaust heat quantity measuring means, and the exhaust gas temperature measured by the exhaust gas thermometer, the exhaust gas flow rate obtained from the fuel consumption amount and the preset air ratio, The amount of exhaust heat is calculated from these.

さらに、本発明では、熱分解炉として、外燃式の回転炉を用いている。   Furthermore, in the present invention, an external combustion type rotary furnace is used as the pyrolysis furnace.

本発明によれば、処理経過に伴う付着等の加熱阻害要因が発生しても、ドラム(熱分解炉)内部の正味の加熱量をほぼ正確に知ることができるので、ドラムの状態に応じた最適な処理量を選択し、投入量を制御することが可能であり、廃棄物の処理能力を最大限に発揮することができる。   According to the present invention, even if a heating-inhibiting factor such as adhesion due to the progress of processing occurs, the net amount of heat inside the drum (pyrolysis furnace) can be known almost accurately, so that it corresponds to the state of the drum. It is possible to select the optimum processing amount and control the input amount, and to maximize the waste processing capacity.

以下、本発明による熱分解処理システムの一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a thermal decomposition treatment system according to the present invention will be described in detail with reference to the drawings.

図1はこの実施の形態の全体構成を示している。熱分解処理システムは、前述のように、有機物を含む廃棄物を還元雰囲気下で数百℃に加熱し、熱分解ガスと固体残渣物に分離する。熱分解炉としては、回転ドラムを外部から加熱する外部加熱方式を採用した外熱式の回転炉(キルン)を用いる。   FIG. 1 shows the overall configuration of this embodiment. As described above, the thermal decomposition treatment system heats waste containing organic substances to several hundred degrees Celsius in a reducing atmosphere to separate into pyrolysis gas and solid residue. As the pyrolysis furnace, an externally heated rotary furnace (kiln) that employs an external heating method for heating the rotary drum from the outside is used.

図1において、廃棄物1は計量機能を有する投入装置2により回転ドラム3の内部に投入され、回転ドラム3の外部に設けられた燃焼室4により加熱される。すなわち、燃焼室4内では、バーナー5により燃料10が燃焼されており、回転ドラム3内の廃棄物は、その燃焼熱により回転ドラム3を介して加熱されるようになっている。加熱された回転ドラム3内の廃棄物は熱分解ガス6と固体の熱分解残渣7とに熱分解され、出口から排出される。また、燃焼室4からの燃焼排気ガス8は、排気ダクト9を介して系外に排出される。廃棄物から生じた熱分解ガス6および固体残渣7は、熱分解処理システムの後工程の各種処理装置に送られて無害化処理が施された後に、エネルギー源として再利用されたりする。   In FIG. 1, waste 1 is charged into a rotating drum 3 by a charging device 2 having a weighing function, and is heated by a combustion chamber 4 provided outside the rotating drum 3. That is, in the combustion chamber 4, the fuel 10 is burned by the burner 5, and the waste in the rotating drum 3 is heated via the rotating drum 3 by the combustion heat. The waste in the heated rotating drum 3 is pyrolyzed into pyrolysis gas 6 and solid pyrolysis residue 7 and discharged from the outlet. Further, the combustion exhaust gas 8 from the combustion chamber 4 is discharged out of the system through the exhaust duct 9. The pyrolysis gas 6 and the solid residue 7 generated from the waste are reused as an energy source after being sent to various processing apparatuses in the post-process of the pyrolysis treatment system and subjected to detoxification treatment.

この実施の形態では、熱分解炉として、回転ドラム3を有する外燃式の回転炉を用いている。この回転ドラム(熱分解炉)3に対する加熱源は、前述のように燃焼室4のバーナー5であり、その熱量を計量する加熱源の熱量計量手段として、バーナー5への燃料供給路に燃料流量計11を設け、燃料10の消費量を計量している。また、回転ドラム3を加熱した後の排熱量を計量するための排熱量計量手段として、排気ガス8の排気経路に排気ガス温度計12を設け、排気温度を計量している。   In this embodiment, an external combustion type rotary furnace having a rotary drum 3 is used as the pyrolysis furnace. The heating source for the rotary drum (pyrolysis furnace) 3 is the burner 5 of the combustion chamber 4 as described above, and the fuel flow rate to the fuel supply path to the burner 5 as a calorific value measuring means of the heating source for measuring the amount of heat. A total of 11 is provided to measure the amount of fuel 10 consumed. An exhaust gas thermometer 12 is provided in the exhaust path of the exhaust gas 8 as an exhaust heat amount measuring means for measuring the exhaust heat amount after heating the rotary drum 3 to measure the exhaust temperature.

さらに、これらの熱分解炉運転状態量を入力として演算を行い、廃棄物1の投入量を投入装置2にて調整可能とする制御装置13を設けている。   Further, a control device 13 is provided that performs calculation using these pyrolysis furnace operation state quantities as input, and allows the input amount of the waste 1 to be adjusted by the input device 2.

制御装置13は、燃料流量計11により計量された燃料消費量から、熱分解炉へのトータル入熱量を求めると共に、排気ガスの流量を演算し、この排気ガス流量と排気ガス温度計12から、熱分解炉系外への排熱量を演算する。   The control device 13 calculates the total heat input to the pyrolysis furnace from the fuel consumption measured by the fuel flow meter 11, calculates the exhaust gas flow rate, and from the exhaust gas flow rate and the exhaust gas thermometer 12, Calculate the amount of heat exhausted outside the pyrolysis furnace system.

すなわち、先ず、燃料流量計11により測定される燃料消費量と予め求められている燃料10の発熱量とから、加熱源である燃焼室4への入熱量(熱分解炉へのトータル入熱量)を下式により求める。   That is, first, the amount of heat input to the combustion chamber 4 as a heating source (total amount of heat input to the pyrolysis furnace) from the fuel consumption measured by the fuel flow meter 11 and the calorific value of the fuel 10 determined in advance. Is obtained by the following equation.

(熱分解炉へのトータル入熱量)=(燃料消費量)×(燃料の発熱量)
ここで、燃料の発熱量は、その燃料の組成からもともと既知である。
(Total heat input to the pyrolysis furnace) = (Fuel consumption) x (Fuel exotherm)
Here, the calorific value of the fuel is already known from the composition of the fuel.

次に、排気ガス温度計12により測定された排気ガス温度と、前記燃料流量計11で測定された燃料消費量及び予め設定されたバーナー5の空気比から排気ガス流量を求め、これらから排熱量を求める。   Next, the exhaust gas flow rate is obtained from the exhaust gas temperature measured by the exhaust gas thermometer 12, the fuel consumption measured by the fuel flow meter 11, and the preset air ratio of the burner 5, and the exhaust heat amount is obtained therefrom. Ask for.

排気ガス流量の演算は複雑であるが、燃料消費量と、「空気比」という、バーナーの調節によりあらかじめ設定された値を用いることにより計算できる。なお、空気比は通常はプラント試運転時に設定された一定の値である。   Although the calculation of the exhaust gas flow rate is complicated, it can be calculated by using a fuel consumption amount and an “air ratio” that are preset by adjusting the burner. The air ratio is usually a constant value set during the plant trial operation.

以下に詳細を示す。この関係式は、液体・ガスによらす燃料の燃焼による加熱システムではごく一般的なものである。   Details are shown below. This relational expression is very common in a heating system by combustion of fuel using liquid or gas.

排気ガス流量G:燃料1kgまたは1Nm3あたりの実際排ガス量Nm3/kg
G=G+(m−1)A+G+G’ [Nm3/kg] or [Nm3/Nm3]
ここで、
m:空気比 [−]
:理論乾き排ガス量 [Nm3/kg] or [Nm3/Nm3]
:理論空気燃焼量 [Nm3/kg] or [Nm3/Nm3]
:燃焼によって生じる水蒸気及び燃料中の水分による排ガス中の水蒸気の量
[Nm3/kg] or [Nm3/Nm3]
w’:燃焼用空気の温度による排ガス中の水蒸気の量 [Nm3/kg] or [Nm3/Nm3]
’ =1.61zmA[Nm3/kg] or [Nm3/Nm3]
z:外気の絶対湿度 [kg/(kg乾き空気)]であるが、略算においてはZ=0としても差し支えない。
Exhaust gas flow rate G: actual exhaust gas amount per fuel 1kg or 1Nm 3 Nm 3 / kg
G = G 0 + (m- 1) A 0 + G W + G W '[Nm 3 / kg] or [Nm 3 / Nm 3]
here,
m: Air ratio [-]
G 0 : Theoretical dry exhaust gas amount [Nm 3 / kg] or [Nm 3 / Nm 3 ]
A 0 : Theoretical air combustion amount [Nm 3 / kg] or [Nm 3 / Nm 3 ]
G W: amount of water vapor in the exhaust gas due to moisture vapor and fuel caused by the combustion
[Nm 3 / kg] or [Nm 3 / Nm 3 ]
w ': Amount of water vapor in exhaust gas depending on combustion air temperature [Nm 3 / kg] or [Nm 3 / Nm 3 ]
G W '= 1.61zmA 0 [Nm 3 / kg] or [Nm 3 / Nm 3]
z: Absolute humidity of outside air [kg / (kg dry air)], but Z may be set to 0 in the approximate calculation.

理論空気燃焼量Aoおよび水蒸気を含む理論排ガス量G1=Go+Gwの値を推算するには、燃料の低位発熱量Hlを用いて、次の経験式から求める。 In order to estimate the value of the theoretical air combustion amount A o and the theoretical exhaust gas amount G 1 = G o + G w including water vapor, it is obtained from the following empirical formula using the lower heating value H l of the fuel.

気体燃料で高発熱量(Hl > 14.65×106 J/Nm3)の場合
=1.105H/4.1868×10+0.2 [Nm3/Nm3]
=1.19H/4.1868×10+0.5 [Nm3/Nm3]
回転ドラム3内部の廃棄物への正味入熱量は、前記トータル入熱量から排熱量を差し引いたものとして求める。また、投入量制御装置13では、このように求めた廃棄物への正味入熱量から最適な投入量を演算して、投入装置2の制御を行う。
In the case of gaseous fuel and high calorific value (H l > 14.65 × 10 6 J / Nm 3 ) A 0 = 1.105H l /4.1868×10 6 +0.2 [Nm 3 / Nm 3 ]
G 1 = 1.19H l /4.1868×10 6 +0.5 [Nm 3 / Nm 3 ]
The net amount of heat input to the waste inside the rotary drum 3 is determined as the amount of exhaust heat subtracted from the total amount of heat input. Further, the input amount control device 13 calculates the optimum input amount from the net heat input amount to the waste thus obtained, and controls the input device 2.

ここで、正味入熱量を求めるのは、回転ドラム3内における廃棄物の温度が正確にわからない場合の最適運用法であり、所定の熱分解温度(例えば、550℃)まで十分に廃棄物が加熱されるように、次式により最適な投入量をもとめる。   Here, the net heat input is obtained in an optimum operation method when the temperature of the waste in the rotary drum 3 is not accurately known, and the waste is sufficiently heated to a predetermined thermal decomposition temperature (for example, 550 ° C.). As shown in the figure, the optimum input amount is obtained by the following equation.

(正味入熱量) = (廃棄物の投入量)×(廃棄物の比熱)×(所定の熱分解温度−投入前の廃棄物温度(=常温))
これより、最適な投入量は下式のとおりとなる。
(Net heat input) = (Waste input amount) x (Waste specific heat) x (Predetermined thermal decomposition temperature-Waste temperature before input (= normal temperature))
From this, the optimum input amount is as shown in the following equation.

(最適な投入量)=(正味入熱量)/{(廃棄物の比熱)×(所定の熱分解温度−投入前の廃棄物温度(=常温))}
このように、本実施の形態では、廃棄物の処理経過に伴って回転ドラム3の内部に付着物等の伝熱阻害要因が発生して、回転ドラム3内部の正味加熱量が低下したとしても、制御装置13において、実際の加熱状態をほぼ正確に診断可能であり、加熱状態に応じた最適な処理量に制御することが可能となる。
(Optimum input amount) = (net heat input amount) / {(specific heat of waste) × (predetermined thermal decomposition temperature−waste temperature before input (= normal temperature))}
As described above, in the present embodiment, even if a heat transfer inhibiting factor such as an adhering matter is generated inside the rotating drum 3 as the waste processing progresses, the net heating amount inside the rotating drum 3 is reduced. In the control device 13, the actual heating state can be diagnosed almost accurately, and it is possible to control the processing amount to an optimum amount according to the heating state.

すなわち、処理経過に伴う付着等の加熱阻害要因が発生しても、ドラム内部の正味の加熱量をほぼ正確に知ることができるので、ドラムの状態に応じた最適な処理量を選択し、投入量を制御することが可能であり、廃棄物の処理能力を最大限に発揮できる。   In other words, even if there is a heating-inhibiting factor such as adhesion due to the progress of processing, the net heating amount inside the drum can be known almost accurately, so the optimum processing amount according to the drum state is selected and input. The amount can be controlled, and the waste processing capacity can be maximized.

本発明による熱分解システムの一実施の形態を示す全体構成図である。1 is an overall configuration diagram showing an embodiment of a thermal decomposition system according to the present invention.

符号の説明Explanation of symbols

1 廃棄物(被処理物)
3 熱分解炉(回転ドラム)
5 加熱源(バーナー)
6 熱分解ガス
7 熱分解残渣
8 排気ガス
10 燃料
11 加熱源の熱量計量手段(燃料流量計)
12 排熱量計量手段(排気ガス温度計)
13 制御装置
1 Waste (processed material)
3 Pyrolysis furnace (rotary drum)
5 Heating source (burner)
6 Pyrolysis gas 7 Pyrolysis residue 8 Exhaust gas 10 Fuel 11 Heat source heat quantity metering means (fuel flow meter)
12 Waste heat measurement means (exhaust gas thermometer)
13 Control device

Claims (4)

被処理物を熱分解炉内にて加熱して熱分解ガスと熱分解残渣とに熱分解する熱分解処理システムであって、
前記熱分解炉に対する加熱源の熱量を計量する加熱源の熱量計量手段及びこの熱分解炉を加熱した後排気される排熱量を計量する排熱量計量手段と、
これら計量手段により計量された加熱源の熱量と排熱量との差分から被処理物に対する正味加熱量を求め、この正味加熱量に対応して前記加熱炉への被処理物の処理量を調整する制御装置と、
を備えたことを特徴とする熱分解処理システム。
A pyrolysis processing system that heats a workpiece in a pyrolysis furnace and pyrolyzes it into pyrolysis gas and pyrolysis residue,
A heat quantity metering means for measuring the heat quantity of the heating source for the pyrolysis furnace, and an exhaust heat quantity measuring means for measuring the amount of exhaust heat exhausted after heating the pyrolysis furnace;
The net heating amount for the object to be processed is obtained from the difference between the heat amount of the heating source measured by these measuring means and the exhaust heat amount, and the processing amount of the object to be processed in the heating furnace is adjusted in accordance with the net heating amount. A control device;
A thermal decomposition treatment system comprising:
加熱源の熱量計量手段として加熱源への燃料流量計を設け、この燃料流量計により測定される燃料消費量と予め求められている燃料の発熱量とから、加熱源の熱量を求めることを特徴とする請求項1に記載の熱分解処理システム。   A fuel flow meter to the heating source is provided as a means for measuring the heat amount of the heating source, and the heat amount of the heating source is obtained from the fuel consumption measured by the fuel flow meter and the calorific value of the fuel obtained in advance. The thermal decomposition processing system according to claim 1. 排熱量計量手段として、排気ガス温度計を設け、この排気ガス温度計により測定された排気ガス温度と、燃料消費量及び予め設定された空気比から求められる排気ガス流量とを用い、これらから排熱量を求めることを特徴とする請求項2に記載の熱分解処理システム。   An exhaust gas thermometer is provided as a means for measuring the amount of exhaust heat, and the exhaust gas temperature measured by the exhaust gas thermometer and the exhaust gas flow rate obtained from the fuel consumption and a preset air ratio are used. The thermal decomposition processing system according to claim 2, wherein the amount of heat is obtained. 熱分解炉として、外燃式の回転炉を用いたことを特徴とする請求項1乃至請求項3のいずれかに記載の熱分解処理システム。   The pyrolysis treatment system according to any one of claims 1 to 3, wherein an external combustion type rotary furnace is used as the pyrolysis furnace.
JP2004287579A 2004-09-30 2004-09-30 Pyrolyzing treatment system Pending JP2006098026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287579A JP2006098026A (en) 2004-09-30 2004-09-30 Pyrolyzing treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287579A JP2006098026A (en) 2004-09-30 2004-09-30 Pyrolyzing treatment system

Publications (1)

Publication Number Publication Date
JP2006098026A true JP2006098026A (en) 2006-04-13

Family

ID=36238023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287579A Pending JP2006098026A (en) 2004-09-30 2004-09-30 Pyrolyzing treatment system

Country Status (1)

Country Link
JP (1) JP2006098026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107559832A (en) * 2017-09-07 2018-01-09 佛山市因诺威特科技有限公司 A kind of refuse disposal installation using net with heating function incineration technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107559832A (en) * 2017-09-07 2018-01-09 佛山市因诺威特科技有限公司 A kind of refuse disposal installation using net with heating function incineration technology

Similar Documents

Publication Publication Date Title
CN102712846B (en) Process for treating coal by removing volatile components
US8340825B2 (en) Method and device for controlling a process for burning a lime containing mixture to burnt lime
CN103663896A (en) Method and device for stabilizing heavy metal through pyrolysis of sludge
JP2010084976A (en) Device and method for drying wet powder
JP3841016B2 (en) Waste pyrolysis method and pyrolysis gasifier
JP2006098026A (en) Pyrolyzing treatment system
JP2007303737A (en) Pyrolytic furnace device
JP2011156501A (en) Method for thermally treating contaminated soil
JP4373263B2 (en) Carbonization method for sludge containing organic matter
JP2006193622A (en) Carbonized product and method for producing the same
JP4928903B2 (en) Pyrolysis furnace equipment
KR101284178B1 (en) Equipments for treating sludge
JP6690877B2 (en) Carbonization equipment for woody biomass
JP5838800B2 (en) Operation control method for cement manufacturing equipment
CN108147639A (en) A kind of sludge of sewage treatment plant plasma handling system
JP2006068629A (en) Pyrolysis apparatus
JP2006063179A (en) Carbonizing apparatus
JP3726779B2 (en) Heat treatment method and facilities for sludge
JP4158470B2 (en) Sludge transfer system and sludge heat treatment facility
JP2004283784A (en) Heat treatment method for sludge and its facility
JP3825656B2 (en) Waste treatment equipment
AU2021249298B2 (en) Carbonization product manufacturing facility and carbonization product manufacturing method
RU2247025C1 (en) Device for rubber waste processing
JP6413894B2 (en) Method and apparatus for producing solid fuel for cement firing
JP2009046550A (en) Meat-and-bone carbonizer, and meat and bone powder carbonization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714