JP2006097673A - Control valve for variable displacement compressor - Google Patents

Control valve for variable displacement compressor Download PDF

Info

Publication number
JP2006097673A
JP2006097673A JP2005021518A JP2005021518A JP2006097673A JP 2006097673 A JP2006097673 A JP 2006097673A JP 2005021518 A JP2005021518 A JP 2005021518A JP 2005021518 A JP2005021518 A JP 2005021518A JP 2006097673 A JP2006097673 A JP 2006097673A
Authority
JP
Japan
Prior art keywords
pressure
valve
control valve
discharge
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021518A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2005021518A priority Critical patent/JP2006097673A/en
Priority to EP05018104A priority patent/EP1630419A3/en
Priority to KR1020050079729A priority patent/KR20060050781A/en
Priority to US11/213,902 priority patent/US20060045758A1/en
Publication of JP2006097673A publication Critical patent/JP2006097673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve for a variable displacement compressor, capable of quickly restoring it to a prescribed discharge capacity without hunting even in a case of rapid fluctuation of rotation speed of the variable displacement compressor of high sensitivity. <P>SOLUTION: At a valve part 13 for controlling flow of refrigerant from a discharge chamber to a crank chamber based on differential pressure between discharge pressure Pd and suction pressure Ps, a pressure sensitive part 12 is provided on a high pressure port 18. As a pressure sensitive piston 19 having larger pressure bearing surface than a valve element 23 receives rapid change of the discharge pressure Pd, differential pressure generated between the discharge pressure Pd and pressure in a pressure regulating chamber 20 acts to the valve element 23 in the opposite direction to its opening/closing direction to temporarily slowing move of the valve element 23 that is opened/closed by differential pressure between the discharge pressure Pd and the suction pressure Ps. The variable displacement compressor of high sensitivity is thus restored to the prescribed discharge capacity without hunting. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は可変容量圧縮機用制御弁に関し、特に自動車用空調装置の冷凍サイクルを構成する可変容量圧縮機に装着されてその吐出容量を吐出圧力と吸入圧力との差圧によって制御するようにした可変容量圧縮機用制御弁に関する。   The present invention relates to a control valve for a variable capacity compressor, and in particular, is mounted on a variable capacity compressor constituting a refrigeration cycle of an air conditioner for an automobile, and its discharge capacity is controlled by a differential pressure between the discharge pressure and the suction pressure. The present invention relates to a control valve for a variable capacity compressor.

自動車用空調装置の冷凍サイクル中で冷媒を圧縮するために用いられる圧縮機は、エンジンを駆動源としているので、回転数制御を行うことができない。そこで、エンジンの回転数に制約されることなく適切な冷房能力を得るために、冷媒の圧縮容量を変えることができる可変容量圧縮機が用いられている。   Since the compressor used for compressing the refrigerant in the refrigeration cycle of the air conditioner for automobiles uses the engine as a drive source, the rotational speed control cannot be performed. Therefore, in order to obtain an appropriate cooling capacity without being restricted by the engine speed, a variable capacity compressor capable of changing the compression capacity of the refrigerant is used.

このような可変容量圧縮機においては、エンジンによって回転駆動される軸に取り付けられた揺動板に圧縮用ピストンが連結され、揺動板の角度を変えることによって圧縮用ピストンのストロークを変えることで冷媒の吐出量を変えるようにしている。   In such a variable capacity compressor, a compression piston is connected to a swing plate attached to a shaft that is rotationally driven by an engine, and the stroke of the compression piston is changed by changing the angle of the swing plate. The amount of refrigerant discharged is changed.

揺動板の角度は、密閉されたクランク室内に圧縮された冷媒の一部を導入し、その導入する冷媒の圧力を変化させ、圧縮用ピストンの両面にかかる圧力の釣り合いを変化させることによって連続的に変えている。   The angle of the swing plate is continuously increased by introducing a part of the compressed refrigerant into the sealed crank chamber, changing the pressure of the introduced refrigerant, and changing the balance of pressure applied to both sides of the compression piston. Is changing.

クランク室内の圧力は、可変容量圧縮機の吐出室とクランク室との間またはクランク室と吸入室との間に設けて、吐出室からクランク室に導入する冷媒の流量を変えるか、クランク室から吸入室に導出する冷媒の流量を変えることにより調整するようにした可変容量圧縮機用制御弁が知られている(たとえば、特許文献1参照。)。   The pressure in the crank chamber is set between the discharge chamber and the crank chamber of the variable capacity compressor or between the crank chamber and the suction chamber to change the flow rate of the refrigerant introduced from the discharge chamber into the crank chamber, or from the crank chamber. A control valve for a variable capacity compressor, which is adjusted by changing the flow rate of the refrigerant led to the suction chamber, is known (for example, see Patent Document 1).

この特許文献1に記載の可変容量圧縮機用制御弁は、可変容量圧縮機に装着されたときに、その吐出室とクランク室との間の冷媒通路に配置される弁部を有し、クランク室と吸入室との間に設けたオリフィスを介して吐出室から吸入室へ冷媒が流れる経路を形成するようにしている。可変容量圧縮機用制御弁は、開弁方向に吐出圧力Pdを受ける弁体と、この弁体の背面側に弁孔とほぼ同じ径を有するピストンロッドとを一体にして構成した弁部を備え、そのピストンロッドの端面には、閉弁方向に吸入圧力Psと外部信号によって吐出容量を設定するソレノイドの荷重とを受けるように構成されている。したがって、この可変容量圧縮機用制御弁では、弁体とピストンロッドとの有効受圧面積の等しい両端に吐出圧力Pdと吸入圧力Psとを受圧しているため、それらの差圧(Pd−Ps)によって弁体が開閉動作をし、吐出室からクランク室へ流れる冷媒流量を制御する。   The control valve for a variable displacement compressor described in Patent Document 1 has a valve portion that is disposed in a refrigerant passage between a discharge chamber and a crank chamber when the variable displacement compressor is mounted on a crank. A path through which the refrigerant flows from the discharge chamber to the suction chamber is formed through an orifice provided between the chamber and the suction chamber. The control valve for a variable capacity compressor includes a valve portion that is configured integrally with a valve body that receives the discharge pressure Pd in the valve opening direction and a piston rod that has substantially the same diameter as the valve hole on the back side of the valve body. The end face of the piston rod is configured to receive a suction pressure Ps in the valve closing direction and a solenoid load that sets a discharge capacity by an external signal. Therefore, in this control valve for a variable capacity compressor, since the discharge pressure Pd and the suction pressure Ps are received at both ends of the valve body and the piston rod having the same effective pressure receiving area, the differential pressure between them (Pd−Ps). The valve body opens and closes to control the flow rate of refrigerant flowing from the discharge chamber to the crank chamber.

たとえばエンジンの回転数が上昇することにより可変容量圧縮機の回転数が上昇してその吐出容量が増加してくると、その吐出圧力Pdが上昇し、吸入圧力Psが低下してそれらの差圧(Pd−Ps)が大きくなる。すると、可変容量圧縮機用制御弁は、差圧(Pd−Ps)によって動作する弁部の弁リフトが大きくなるので、クランク室に導入される冷媒流量を増やし、クランク室の圧力Pcを増加させて可変容量圧縮機の吐出容量を下げ、これによって差圧(Pd−Ps)が小さくなるように制御する。すなわち、可変容量圧縮機用制御弁は、可変容量圧縮機を吐出圧力Pdと吸入圧力Psとの差圧(Pd−Ps)を所定値に保つようにクランク室に導入される冷媒流量を制御している。その差圧の所定値は、ソレノイドに供給する電流の値によって外部から設定することができる。   For example, when the rotational speed of the engine increases and the rotational speed of the variable capacity compressor increases and its discharge capacity increases, the discharge pressure Pd increases and the suction pressure Ps decreases and the differential pressure therebetween. (Pd−Ps) increases. Then, since the valve lift of the valve part operated by the differential pressure (Pd−Ps) increases in the control valve for the variable capacity compressor, the flow rate of refrigerant introduced into the crank chamber is increased, and the pressure Pc in the crank chamber is increased. Thus, the discharge capacity of the variable capacity compressor is lowered, and thereby the differential pressure (Pd−Ps) is controlled to be small. That is, the control valve for the variable capacity compressor controls the flow rate of the refrigerant introduced into the crank chamber so that the variable capacity compressor maintains the differential pressure (Pd−Ps) between the discharge pressure Pd and the suction pressure Ps at a predetermined value. ing. The predetermined value of the differential pressure can be set from the outside by the value of the current supplied to the solenoid.

このような可変容量圧縮機用制御弁によって制御される可変容量圧縮機は、エンジンの回転数が変動することにより可変容量圧縮機の回転数が変動してその吐出容量が変化することによる差圧(Pd−Ps)の変化でクランク室内の圧力Pcが変化し、これにより揺動板の傾斜角度が変化して吐出容量が最大から最小の間で可変する。たとえば起動時のように差圧(Pd−Ps)が0のとき、可変容量圧縮機は、最大容量で運転していて、差圧(Pd−Ps)がある値に達すると、容量可変を開始するが、可変容量圧縮機には個性があり、可変容量圧縮機よっては、容量可変を開始するときのクランク室内の圧力Pcと吸入圧力Psとの差圧(Pc−Ps)の値に幅がある。これは、可変容量圧縮機の揺動板の動きやすさ、すなわち感度の違いに起因している。
特開2001−132650号公報(段落番号〔0043〕〜〔0045〕,図4)
A variable capacity compressor controlled by such a control valve for a variable capacity compressor has a differential pressure due to a change in the discharge capacity due to a change in the rotation speed of the variable capacity compressor due to a change in the engine speed. The pressure Pc in the crank chamber changes due to the change in (Pd−Ps), whereby the tilt angle of the swing plate changes, and the discharge capacity varies between the maximum and minimum. For example, when the differential pressure (Pd-Ps) is 0, such as at the time of startup, the variable capacity compressor is operating at the maximum capacity, and when the differential pressure (Pd-Ps) reaches a certain value, the capacity variable starts. However, the variable capacity compressor has individuality, and depending on the variable capacity compressor, there is a range in the value of the differential pressure (Pc−Ps) between the pressure Pc in the crank chamber and the suction pressure Ps when starting variable capacity. is there. This is due to the ease of movement of the swing plate of the variable capacity compressor, that is, the difference in sensitivity.
JP 2001-132650 A (paragraph numbers [0043] to [0045], FIG. 4)

しかしながら、感度の高い可変容量圧縮機は、回転数の急激な変動による吐出圧力Pdおよび吸入圧力Psの急激な圧力変化に対して敏感に反応し、ハンチングが生じてしまうという問題点があった。   However, the variable capacity compressor with high sensitivity has a problem in that it reacts sensitively to sudden pressure changes of the discharge pressure Pd and the suction pressure Ps due to rapid fluctuations in the rotational speed, and hunting occurs.

本発明はこのような点に鑑みてなされたものであり、感度の高い可変容量圧縮機に対して、エンジンの回転数が急激に変化することによる急激な圧力変化があっても、ハンチングを起こすことなく安定した制御を行うことができるようにした可変容量圧縮機用制御弁を提供することを目的とする。   The present invention has been made in view of the above points, and causes hunting for a variable capacity compressor having high sensitivity even if there is a sudden pressure change due to a sudden change in engine speed. It is an object of the present invention to provide a control valve for a variable displacement compressor that can perform stable control without any problems.

本発明では上記問題を解決するために、可変容量圧縮機の吐出室の吐出圧力と吸入室の吸入圧力との差圧を感知して前記吐出室からクランク室へ流す冷媒の流量を制御することにより前記冷媒の吐出容量を変化させるようにした可変容量圧縮機用制御弁において、前記可変容量圧縮機の急激な回転数の変動による圧力変化を感知して前記圧力変化の度合いに比例した値だけ弁部の開閉方向の動きを鈍くさせる感圧部を備えていることを特徴とする可変容量圧縮機用制御弁が提供される。   In the present invention, in order to solve the above problem, the flow rate of the refrigerant flowing from the discharge chamber to the crank chamber is controlled by sensing the differential pressure between the discharge pressure of the discharge chamber of the variable capacity compressor and the suction pressure of the suction chamber. In the control valve for a variable capacity compressor, in which the discharge capacity of the refrigerant is changed by the above, only a value proportional to the degree of the pressure change is detected by detecting a pressure change due to a sudden change in the rotational speed of the variable capacity compressor. There is provided a control valve for a variable capacity compressor, comprising a pressure-sensitive portion that slows the movement of the valve portion in the opening / closing direction.

このような可変容量圧縮機用制御弁によれば、可変容量圧縮機の緩やかな回転数の変動による圧力変化に対して、感圧部は不感であって、従来と同じ動作をするが、急激な回転数の変動による圧力変化に対しては、感圧部が感知し、圧力変化の度合いに比例した値だけ弁部に対してその開閉方向とは逆方向に作用させて、弁部の動きを鈍くさせている。これにより、感度の高い可変容量圧縮機は、急激な回転数の変動があった場合に、それによる圧力変化がオーバシュートすることなく、速やかに所定の吐出容量に回復させることができるようになる。   According to such a control valve for a variable capacity compressor, the pressure-sensitive part is insensitive to pressure changes due to a gradual change in the rotational speed of the variable capacity compressor and operates in the same manner as in the past, but suddenly Pressure change due to fluctuations in the number of revolutions, and the pressure sensing part senses and moves the valve part in the direction opposite to the opening and closing direction of the valve part by a value proportional to the degree of pressure change. Is dull. As a result, the variable displacement compressor with high sensitivity can quickly recover to a predetermined discharge capacity without causing an overshoot of a pressure change caused by a sudden change in the rotational speed. .

本発明の可変容量圧縮機用制御弁は、可変容量圧縮機が急激な回転数の変動を受けた場合に、その回転数の変動による圧力変化を感圧部が感知し、圧力変化の度合いに比例した値だけ弁部の開閉方向の動きを鈍くさせるようにしたので、感度の高い可変容量圧縮機が急激な回転数の変動を受けた場合においてもハンチングのない安定した容量制御をすることができるという利点がある。   In the control valve for a variable capacity compressor of the present invention, when the variable capacity compressor is subjected to a sudden change in the rotational speed, the pressure sensing unit senses a pressure change due to the change in the rotational speed, and determines the degree of the pressure change. Since the valve section is slowed in the opening and closing direction by a proportional value, it is possible to perform stable capacity control without hunting even when a highly sensitive variable capacity compressor is subjected to sudden fluctuations in the rotational speed. There is an advantage that you can.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は第1の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a first embodiment.

この可変容量圧縮機用制御弁11は、吐出圧力Pdの急激な圧力変動を感知する感圧部12と、吐出圧力Pdと吸入圧力Psとの差圧(Pd−Ps)を感知して吐出室からクランク室へ流す冷媒の流量を制御する弁部13と、制御しようとする差圧(Pd−Ps)の所定値を外部から設定することができるソレノイド14とが同一軸線上に配置されて構成されている。   The control valve 11 for the variable capacity compressor senses a pressure sensing unit 12 that senses a sudden pressure fluctuation of the discharge pressure Pd, and senses a differential pressure (Pd−Ps) between the discharge pressure Pd and the suction pressure Ps. A valve unit 13 for controlling the flow rate of the refrigerant flowing from the engine to the crank chamber and a solenoid 14 capable of setting a predetermined value of the differential pressure (Pd-Ps) to be controlled from the outside are arranged on the same axis. Has been.

感圧部12および弁部13を収容しているボディ15は、その図の上部にシリンダ16が形成され、その上端の開口部は、蓋17によって閉じられている。そのシリンダ16の図の下方位置には、この可変容量圧縮機用制御弁11が可変容量圧縮機に装着されたときに、その吐出室に連通する高圧ポート18が穿設されている。シリンダ16の中には、軸線方向に進退自在に感圧ピストン19が配置され、シリンダ16の上部には、ボディ15および蓋17とともに調圧室20の空間が形成されている。この調圧室20は、シリンダ16と感圧ピストン19との間の所定のクリアランスを介して高圧ポート18に連通するようにしている。シリンダ16の底部中央には、孔が形成されていて、その孔には筒状の弁座形成部材21が圧入されている。この弁座形成部材21は、軸線方向に貫通している通路、すなわち弁孔を有し、図の下方の端部が弁部13の弁座を構成している。また、弁座形成部材21による弁孔内には、シャフト22が配置され、その一端は、感圧ピストン19に固定されている。   A cylinder 15 is formed in the upper part of the body 15 accommodating the pressure sensitive part 12 and the valve part 13, and the opening at the upper end is closed by a lid 17. A high pressure port 18 communicating with the discharge chamber when the variable capacity compressor control valve 11 is mounted on the variable capacity compressor is formed at a lower position of the cylinder 16 in the figure. A pressure-sensitive piston 19 is disposed in the cylinder 16 so as to be movable back and forth in the axial direction. A space for the pressure regulating chamber 20 is formed in the upper part of the cylinder 16 together with the body 15 and the lid 17. The pressure regulating chamber 20 communicates with the high pressure port 18 through a predetermined clearance between the cylinder 16 and the pressure sensitive piston 19. A hole is formed in the center of the bottom of the cylinder 16, and a cylindrical valve seat forming member 21 is press-fitted into the hole. The valve seat forming member 21 has a passage penetrating in the axial direction, that is, a valve hole, and a lower end portion in the drawing constitutes a valve seat of the valve portion 13. A shaft 22 is disposed in the valve hole formed by the valve seat forming member 21, and one end thereof is fixed to the pressure-sensitive piston 19.

弁座形成部材21による弁座に対向して弁体23が弁孔を開閉可能に配置されている。弁体23は、一端が感圧ピストン19に固定されたシャフト22およびボディ15によって軸線方向に進退自在に保持されたピストンロッド24と一体に形成されている。ピストンロッド24の外径は、弁座形成部材21の弁孔の内径に等しく形成されている。ピストンロッド24は、また、スプリング25によって弁体23が弁座形成部材21から離れる方向に付勢されている。なお、弁体23が配置されている空間は、この可変容量圧縮機用制御弁11が可変容量圧縮機に装着されたときに、そのクランク室に制御された圧力Pcを供給する中圧ポート26に連通し、スプリング25が配置されている空間は、吸入室の吸入圧力Psを受ける低圧ポート27に連通している。   A valve body 23 is disposed so as to be able to open and close the valve hole, facing the valve seat by the valve seat forming member 21. The valve body 23 is formed integrally with a piston rod 24 held at one end by a shaft 22 fixed to the pressure-sensitive piston 19 and a body 15 so as to be movable back and forth in the axial direction. The outer diameter of the piston rod 24 is formed to be equal to the inner diameter of the valve hole of the valve seat forming member 21. The piston rod 24 is also urged by a spring 25 in a direction in which the valve body 23 is separated from the valve seat forming member 21. The space in which the valve body 23 is disposed is an intermediate pressure port 26 that supplies a controlled pressure Pc to the crank chamber when the variable displacement compressor control valve 11 is mounted on the variable displacement compressor. The space in which the spring 25 is disposed communicates with the low pressure port 27 that receives the suction pressure Ps of the suction chamber.

ボディ15の図の下部中央には、孔が形成されていて、この孔には、有底スリーブ28の開口縁部が緊密に結合されている。有底スリーブ28の中には、ソレノイド14のコア29およびプランジャ30が設けられている。コア29は、ボディ15の下部中央の孔および有底スリーブ28に圧入により固定されている。プランジャ30は、有底スリーブ28の中に軸線方向に摺動自在に配置され、コア29を軸線方向に貫通して配置されたシャフト31の一端に固定されている。プランジャ30は、また、スプリング32によってコア29の方向へ付勢されており、シャフト31の他端がピストンロッド24の図の下端面に当接するようにしている。有底スリーブ28の外周には、コイル33が配置され、これに給電するためのハーネス34が外部に導出されている。   A hole is formed in the lower center of the body 15 in the figure, and the opening edge of the bottomed sleeve 28 is tightly coupled to the hole. In the bottomed sleeve 28, a core 29 and a plunger 30 of the solenoid 14 are provided. The core 29 is fixed to the hole in the lower center of the body 15 and the bottomed sleeve 28 by press-fitting. The plunger 30 is slidably disposed in the axial direction in the bottomed sleeve 28, and is fixed to one end of a shaft 31 disposed through the core 29 in the axial direction. The plunger 30 is also urged toward the core 29 by a spring 32 so that the other end of the shaft 31 abuts on the lower end surface of the piston rod 24 in the figure. A coil 33 is disposed on the outer periphery of the bottomed sleeve 28, and a harness 34 for supplying power to the coil 33 is led out to the outside.

以上の構成の可変容量圧縮機用制御弁11において、弁部13のピストンロッド24をソレノイド14の方向へ付勢しているスプリング25がソレノイド14のシャフト31を弁部13の方向へ付勢しているスプリング32よりもばね荷重を大きく設定してあるので、ソレノイド14が非通電のとき、弁部13は、その弁体23が弁座形成部材21から離されているので全開状態に保持されている。このようなときは、可変容量圧縮機の吐出室から高圧ポート18に導入された吐出圧力Pdの高圧冷媒は、全開の弁部13を通過し、中圧ポート26からクランク室へと流れることになる。したがって、可変容量圧縮機は、クランク室の圧力Pcが吐出圧力Pdに近い圧力になるため、吐出容量最小の運転を行うことになる。   In the variable displacement compressor control valve 11 having the above configuration, the spring 25 urging the piston rod 24 of the valve portion 13 toward the solenoid 14 urges the shaft 31 of the solenoid 14 toward the valve portion 13. Since the spring load is set to be larger than that of the spring 32, the valve portion 13 is held in the fully opened state because the valve body 23 is separated from the valve seat forming member 21 when the solenoid 14 is not energized. ing. In such a case, the high-pressure refrigerant having the discharge pressure Pd introduced from the discharge chamber of the variable capacity compressor to the high-pressure port 18 passes through the fully-open valve portion 13 and flows from the intermediate-pressure port 26 to the crank chamber. Become. Therefore, the variable capacity compressor is operated with the minimum discharge capacity because the crank chamber pressure Pc is close to the discharge pressure Pd.

自動車用空調装置の起動時または冷房負荷が最大のときには、ソレノイド14に供給される制御電流値は最大になる。このとき、プランジャ30は、コア29に最大の吸引力で吸引されることになるので、弁部13のピストンロッド24は、スプリング25の付勢力に抗してプランジャ30に固定されたシャフト31によって閉弁方向に押され、これによって、弁体23が弁座形成部材21に着座し、弁部13は、全閉状態となる。このときは、高圧ポート18に導入される吐出圧力Pdの高圧冷媒は、全閉の弁部13によって阻止されるので、可変容量圧縮機は、クランク室の圧力Pcが吸入圧力Psに近い圧力になって、吐出容量最大の運転を行うことになる。   When the automotive air conditioner is started or when the cooling load is maximum, the control current value supplied to the solenoid 14 is maximum. At this time, since the plunger 30 is attracted to the core 29 with the maximum suction force, the piston rod 24 of the valve portion 13 is supported by the shaft 31 fixed to the plunger 30 against the urging force of the spring 25. The valve body 23 is pushed in the valve closing direction, whereby the valve body 23 is seated on the valve seat forming member 21 and the valve portion 13 is fully closed. At this time, since the high-pressure refrigerant having the discharge pressure Pd introduced into the high-pressure port 18 is blocked by the fully closed valve portion 13, the variable capacity compressor has the crank chamber pressure Pc close to the suction pressure Ps. Thus, the operation with the maximum discharge capacity is performed.

ここで、ソレノイド14に供給される電流値が所定値に設定されているときには、弁体23は、開弁方向に付勢しているスプリング25の荷重と、閉弁方向に付勢しているソレノイド14の荷重と、開弁方向に受圧する吐出圧力Pdと、閉弁方向に受圧する吸入圧力Psとがバランスした弁リフト位置にて停止する。   Here, when the current value supplied to the solenoid 14 is set to a predetermined value, the valve body 23 is biased in the valve closing direction and the load of the spring 25 biased in the valve opening direction. The valve stops at a valve lift position where the load of the solenoid 14, the discharge pressure Pd received in the valve opening direction, and the suction pressure Ps received in the valve closing direction are balanced.

このバランスが取れた状態で、エンジンの回転数が上がるなどして可変容量圧縮機の回転数が上がり、吐出容量が増えたとすると、吐出圧力Pdが上がって吸入圧力Psが下がるので、その差圧(Pd−Ps)が大きくなり、弁体23およびピストンロッド24には、開弁方向の力が作用し、弁体23は、バランス位置からリフトして吐出室からクランク室へ流す冷媒の流量を増やすことになる。これにより、クランク室の圧力Pcが上昇し、可変容量圧縮機は、その吐出容量を減少させる方向に動作し、差圧(Pd−Ps)がソレノイド14によって設定された所定値になるように制御される。エンジンの回転数が低下した場合は、その逆の動作をし、可変容量圧縮機は、差圧(Pd−Ps)がソレノイド14によって設定された所定値になるように制御される。   In this balanced state, if the rotational speed of the variable capacity compressor is increased by increasing the engine speed and the discharge capacity is increased, the discharge pressure Pd is increased and the suction pressure Ps is decreased. (Pd−Ps) increases, and a force in the valve opening direction acts on the valve body 23 and the piston rod 24. The valve body 23 lifts the flow rate of the refrigerant flowing from the discharge chamber to the crank chamber by lifting from the balance position. Will increase. As a result, the crank chamber pressure Pc increases, the variable capacity compressor operates in a direction to decrease its discharge capacity, and the differential pressure (Pd−Ps) is controlled to be a predetermined value set by the solenoid 14. Is done. When the engine speed decreases, the reverse operation is performed, and the variable capacity compressor is controlled so that the differential pressure (Pd−Ps) becomes a predetermined value set by the solenoid 14.

このように、自動車がほぼ一定速度で巡航しているときのように、可変容量圧縮機の回転数が緩やかに変動しているときは、感圧部12は不感であって、従来の可変容量圧縮機用制御弁と同じ動作をする。次に、自動車が急加速、急減速した場合のように、エンジンの回転数が急激に変動したことによって可変容量圧縮機の回転数が急変した場合の可変容量圧縮機用制御弁11の動作について説明する。   Thus, when the rotational speed of the variable capacity compressor is slowly changing, such as when the automobile is cruising at a substantially constant speed, the pressure sensing unit 12 is insensitive and the conventional variable capacity Operates in the same way as a compressor control valve. Next, the operation of the control valve 11 for the variable displacement compressor when the rotational speed of the variable capacity compressor is suddenly changed due to a sudden change in the rotational speed of the engine, such as when the automobile is suddenly accelerated or decelerated. explain.

図2は可変容量圧縮機の回転数が急増したときの可変容量圧縮機用制御弁の動作説明図である。
可変容量圧縮機の回転数がたとえば毎分800回転で安定して動作しているときに、たとえば毎分2000回転まで急上昇したとすると、可変容量圧縮機用制御弁11は、吐出圧力Pdの上昇および吸入圧力Psの降下を受けて弁リフトが増加し、その結果、クランク室の圧力Pcを上昇させるが、感度の高い可変容量圧縮機では、図中破線で示したように、弁リフト、吐出圧力Pd、クランク室の圧力Pcおよび吸入圧力Psがオーバシュートしてしまい、ハンチング現象が起きるような傾向を有している。
FIG. 2 is an explanatory view of the operation of the control valve for the variable capacity compressor when the rotational speed of the variable capacity compressor has increased rapidly.
When the rotational speed of the variable capacity compressor is operating stably at, for example, 800 revolutions per minute, assuming that the variable capacity compressor suddenly rises to, for example, 2000 revolutions per minute, the variable capacity compressor control valve 11 increases the discharge pressure Pd. In response to the decrease in the suction pressure Ps, the valve lift increases, and as a result, the crank chamber pressure Pc increases. However, in a highly sensitive variable capacity compressor, as indicated by the broken line in the figure, the valve lift and discharge are increased. The pressure Pd, the crank chamber pressure Pc, and the suction pressure Ps tend to overshoot and cause a hunting phenomenon.

このとき、感圧部12は、急増した吐出圧力Pdを弁体23よりも受圧面積の十分に大きな感圧ピストン19が受けることになる。これに対し、調圧室20は、急増する前の吐出圧力Pdの平均値である圧力Pd(av)のままであるので、感圧ピストン19には、差圧(Pd−Pd(av))によって弁部13から離れる方向の力が発生する。この力は、シャフト22を介して弁体23に伝達されるので、その弁体23には、急増した吐出圧力Pdから感圧部12の差圧(Pd−Pd(av))を差し引いた力が加わることになる。これにより、図2にて実線で示したように、可変容量圧縮機用制御弁11は、弁リフトがよりゆっくりと大きくなるので、クランク室の圧力Pcをよりゆっくりと上昇させることになる。その後、感圧部12では、急増した吐出圧力Pdがシリンダ16と感圧ピストン19との間のクリアランスを介して調圧室20に速やかに導入されることによって、差圧(Pd−Pd(av))はなくなり、ここで感圧部12の機能は消失する。すなわち、この感圧部12は、吐出圧力Pdの急増を感知して、圧力変化の度合いに比例した値だけ弁部13の開弁方向の動きを一時的に鈍くさせる機能を有しているということになる。これにより、可変容量圧縮機用制御弁11は、可変容量圧縮機をハンチングさせることなく速やかに所定の吐出容量に回復させることができるようになる。   At this time, the pressure-sensitive part 12 receives the rapidly increased discharge pressure Pd by the pressure-sensitive piston 19 having a sufficiently larger pressure receiving area than the valve body 23. On the other hand, since the pressure regulating chamber 20 remains at the pressure Pd (av) that is the average value of the discharge pressure Pd before increasing rapidly, the pressure-sensitive piston 19 has a differential pressure (Pd−Pd (av)). As a result, a force in a direction away from the valve portion 13 is generated. Since this force is transmitted to the valve body 23 through the shaft 22, the force obtained by subtracting the differential pressure (Pd−Pd (av)) of the pressure sensing unit 12 from the rapidly increased discharge pressure Pd is applied to the valve body 23. Will be added. As a result, as indicated by the solid line in FIG. 2, the valve lift of the variable displacement compressor control valve 11 increases more slowly, so that the pressure Pc in the crank chamber is increased more slowly. Thereafter, in the pressure-sensitive part 12, the rapidly increased discharge pressure Pd is promptly introduced into the pressure-regulating chamber 20 through the clearance between the cylinder 16 and the pressure-sensitive piston 19, so that the differential pressure (Pd−Pd (av )) Disappears, and the function of the pressure-sensitive part 12 is lost here. That is, the pressure sensing unit 12 has a function of sensing a sudden increase in the discharge pressure Pd and temporarily slowing the movement of the valve unit 13 in the valve opening direction by a value proportional to the degree of pressure change. It will be. As a result, the variable displacement compressor control valve 11 can quickly recover to a predetermined discharge capacity without hunting the variable displacement compressor.

以上は、可変容量圧縮機の回転数が急上昇した場合の動作であるが、回転数が急激に低下した場合も同様である。すなわち、可変容量圧縮機の回転数が急激に低下すると、感圧部12の差圧(Pd(av)−Pd)が感圧ピストン19を弁部13の方向へ移動させる力となるので、これが閉弁方向に移動しようとしている弁体23を一時的に開弁方向へ付勢する力となる。これにより、可変容量圧縮機用制御弁11は、回転数が急激に低下した場合でも、可変容量圧縮機の回転数が急上昇した場合とまったく逆の動作をすることになる。   The above is the operation when the rotational speed of the variable capacity compressor rapidly increases, but the same applies when the rotational speed rapidly decreases. That is, when the rotational speed of the variable capacity compressor is suddenly reduced, the pressure difference (Pd (av) −Pd) of the pressure-sensitive part 12 becomes a force for moving the pressure-sensitive piston 19 toward the valve part 13. This is a force for temporarily urging the valve body 23 about to move in the valve closing direction in the valve opening direction. As a result, even when the rotational speed of the variable capacity compressor is suddenly decreased, the variable capacity compressor control valve 11 operates in the exact opposite manner as when the rotational speed of the variable capacity compressor is rapidly increased.

なお、以上の構成において、感圧ピストン19に、円周方向に所定の長さに切断されたピストンリングのような流量調整手段を設けて、調圧室20を出入りする冷媒の通路の大きさを調節することにより、感圧部12の特性を調整するようにしてもよい。   In the above configuration, the pressure-sensitive piston 19 is provided with a flow rate adjusting means such as a piston ring cut to a predetermined length in the circumferential direction, and the size of the refrigerant passage that enters and exits the pressure regulating chamber 20. The characteristic of the pressure-sensitive part 12 may be adjusted by adjusting.

図3は第2の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図3において、図1に示した構成要素と同じまたは同等の機能を有する構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 3 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a second embodiment. 3, components having the same or equivalent functions as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第2の実施の形態に係る可変容量圧縮機用制御弁11aは、第1の実施の形態に係る可変容量圧縮機用制御弁11が吐出圧力Pdの急変を感知して弁部13の弁リフトを制御するようにしているのに対し、クランク室へ供給される圧力Pcの急変を感知して弁部13の弁リフトを制御するようにしている点で異なる。   The variable displacement compressor control valve 11a according to the second embodiment is configured such that the variable displacement compressor control valve 11 according to the first embodiment senses a sudden change in the discharge pressure Pd and detects the valve of the valve section 13. The difference is that the lift is controlled while the valve lift of the valve portion 13 is controlled by detecting a sudden change in the pressure Pc supplied to the crank chamber.

このため、この第2の実施の形態に係る可変容量圧縮機用制御弁11aでは、感圧部12が中圧ポート26に連通する空間内に配置され、圧力Pcを受圧する感圧ピストン19が弁体23と一体のピストンロッド24に固定されている。弁座形成部材21は、フランジ部を有していて、そのフランジ部がボディ15の図の上部の先端開口部に嵌着されている。弁座形成部材21の下方位置には、感圧ピストン19が軸線方向に進退可能に遊嵌されており、ボディ15と弁座形成部材21のフランジ部とによってドーナツ形状の調圧室20の空間を形成している。また、感圧ピストン19は、その上部中央部が凹設されており、さらにその凹部は、中圧ポート26に連通する空間に連通するよう連通孔が形成されている。   For this reason, in the variable displacement compressor control valve 11a according to the second embodiment, the pressure sensitive part 12 is disposed in the space communicating with the intermediate pressure port 26, and the pressure sensitive piston 19 that receives the pressure Pc is provided. It is fixed to a piston rod 24 integral with the valve body 23. The valve seat forming member 21 has a flange portion, and the flange portion is fitted into a front end opening of the body 15 in the figure. A pressure-sensitive piston 19 is loosely fitted in a position below the valve seat forming member 21 so as to advance and retreat in the axial direction, and the space of the donut-shaped pressure adjusting chamber 20 is formed by the body 15 and the flange portion of the valve seat forming member 21. Is forming. Further, the pressure-sensitive piston 19 has a concave upper central portion, and the concave portion is formed with a communication hole so as to communicate with a space communicating with the intermediate pressure port 26.

以上の構成の可変容量圧縮機用制御弁11aが所定の弁リフトにて制御しているときに、吐出圧力Pdが急激に増加し、吸入圧力Psが急激に減少すると、弁体23およびピストンロッド24の両端の差圧(Pd−Ps)が大きくなって弁リフトが大きくなろうとし、これによって弁部13の下流側の圧力Pcも急激に大きくなろうとする。このとき、感圧部12の感圧ピストン19が弁体23よりも十分大きな受圧面積を有しているため、感圧ピストン19には、図の上方へ一時的に移動しようとする力が発生し、その力が感圧ピストン19に固定されたピストンロッド24を閉弁方向に作用させる。したがって、差圧(Pd−Ps)が大きくなることによって開弁方向に移動しようとする弁体23には、その感圧ピストン19の閉弁方向の力が反対方向に作用するため、弁リフトは緩慢に大きくなり、これに連れて吐出圧力Pdおよびクランク室の圧力Pcも緩慢に増加する。やがて、調圧室20の圧力がクランク室の圧力Pcと等しくなると、吐出圧力Pd、クランク室の圧力Pc、吸入圧力Ps、弁リフトがオーバシュートすることなく速やかに元に戻るようになる。もちろん、可変容量圧縮機の回転数が急に低下した場合も同じように、可変容量圧縮機用制御弁11aは緩動作し、可変容量圧縮機を速やかに所定の吐出容量に回復させることができる。   When the variable displacement compressor control valve 11a configured as described above is controlled by a predetermined valve lift, if the discharge pressure Pd increases rapidly and the suction pressure Ps decreases rapidly, the valve body 23 and the piston rod The differential pressure (Pd−Ps) at both ends of 24 increases and the valve lift tends to increase, whereby the pressure Pc on the downstream side of the valve portion 13 also increases abruptly. At this time, since the pressure-sensitive piston 19 of the pressure-sensitive portion 12 has a sufficiently large pressure receiving area than the valve body 23, a force is generated in the pressure-sensitive piston 19 to temporarily move upward in the figure. Then, the force causes the piston rod 24 fixed to the pressure sensitive piston 19 to act in the valve closing direction. Accordingly, since the force in the valve closing direction of the pressure-sensitive piston 19 acts in the opposite direction on the valve body 23 that tends to move in the valve opening direction due to the increase in the differential pressure (Pd−Ps), the valve lift is The discharge pressure Pd and the crank chamber pressure Pc increase slowly along with this. Eventually, when the pressure in the pressure regulating chamber 20 becomes equal to the crank chamber pressure Pc, the discharge pressure Pd, the crank chamber pressure Pc, the suction pressure Ps, and the valve lift quickly return to the original without overshooting. Of course, similarly, when the rotational speed of the variable capacity compressor suddenly decreases, the variable capacity compressor control valve 11a operates slowly, and the variable capacity compressor can be quickly restored to a predetermined discharge capacity. .

図4は第3の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図4において、図1に示した構成要素と同じまたは同等の機能を有する構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 4 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a third embodiment. 4, constituent elements having the same or equivalent functions as those shown in FIG. 1 are given the same reference numerals, and detailed descriptions thereof are omitted.

この第3の実施の形態に係る可変容量圧縮機用制御弁11bは、第1の実施の形態に係る可変容量圧縮機用制御弁11が吐出圧力Pdの急変を感知して弁部13の弁リフトを制御し、第2の実施の形態に係る可変容量圧縮機用制御弁11aがクランク室へ供給される圧力Pcの急変を感知して弁部13の弁リフトを制御するようにしているのに対し、吸入圧力Psの急変を感知して弁部13の弁リフトを制御するようにしている点で異なる。   The variable displacement compressor control valve 11b according to the third embodiment is configured such that the variable displacement compressor control valve 11 according to the first embodiment senses a sudden change in the discharge pressure Pd and detects the valve of the valve section 13. The lift is controlled, and the variable displacement compressor control valve 11a according to the second embodiment senses a sudden change in the pressure Pc supplied to the crank chamber and controls the valve lift of the valve portion 13. In contrast, the valve lift of the valve unit 13 is controlled by detecting a sudden change in the suction pressure Ps.

このため、この可変容量圧縮機用制御弁11bでは、スプリング25が配置されていて低圧ポート27に連通する空間とソレノイド14に通じる空間とを遮るように感圧ピストン19が配置され、その感圧ピストン19が弁体23と一体のピストンロッド24に固定されている。したがって、この可変容量圧縮機用制御弁11bでは、ボディ15と、感圧ピストン19と、ピストンロッド24と、コア29と、シャフト31とによって囲まれた空間が調圧室20を形成している。   For this reason, in the control valve 11b for the variable capacity compressor, the pressure sensitive piston 19 is arranged so as to block the space communicating with the low pressure port 27 and the space communicating with the solenoid 14 where the spring 25 is arranged. The piston 19 is fixed to a piston rod 24 that is integral with the valve body 23. Therefore, in the control valve 11b for the variable capacity compressor, a space surrounded by the body 15, the pressure sensitive piston 19, the piston rod 24, the core 29, and the shaft 31 forms the pressure regulating chamber 20. .

以上の構成の可変容量圧縮機用制御弁11bが所定の弁リフトにて制御しているときに、吐出圧力Pdが急激に増加し、吸入圧力Psが急激に減少すると、弁体23およびピストンロッド24の両端の差圧(Pd−Ps)が大きくなって弁リフトが大きくなり、これによって吸入圧力Psが急激に小さくなる。このとき、感圧部12の感圧ピストン19が弁体23よりも十分大きな受圧面積を有しているため、感圧ピストン19は、図の上方へ移動しようとする力が発生し、その力が感圧ピストン19に固定されたピストンロッド24を閉弁方向に作用させる。弁体23には、その感圧ピストン19の閉弁方向の力が逆方向に加わるため、弁リフトは緩慢に大きくなって、吐出圧力Pdおよびクランク室の圧力Pcの圧力上昇も緩慢になる。やがて、調圧室20の圧力が吸入圧力Psと等しくなると、吐出圧力Pd、クランク室の圧力Pc、吸入圧力Ps、弁リフトがオーバシュートすることなく速やかに元に戻るようになる。もちろん、可変容量圧縮機の回転数が急に低下した場合も同じように、可変容量圧縮機用制御弁11bは速やかに動作し、可変容量圧縮機を速やかに所定の吐出容量に回復させることができる。   When the control valve 11b for the variable displacement compressor having the above configuration is controlled by a predetermined valve lift, if the discharge pressure Pd increases rapidly and the suction pressure Ps decreases rapidly, the valve body 23 and the piston rod The differential pressure (Pd−Ps) at both ends of 24 increases, and the valve lift increases, whereby the suction pressure Ps decreases rapidly. At this time, since the pressure-sensitive piston 19 of the pressure-sensitive portion 12 has a pressure receiving area sufficiently larger than that of the valve body 23, the pressure-sensitive piston 19 generates a force to move upward in the figure. Causes the piston rod 24 fixed to the pressure sensitive piston 19 to act in the valve closing direction. Since a force in the valve closing direction of the pressure-sensitive piston 19 is applied to the valve body 23 in the reverse direction, the valve lift increases slowly, and the pressure increase of the discharge pressure Pd and the crank chamber pressure Pc also decreases. Eventually, when the pressure in the pressure regulating chamber 20 becomes equal to the suction pressure Ps, the discharge pressure Pd, the crank chamber pressure Pc, the suction pressure Ps, and the valve lift quickly return to the original without overshooting. Of course, similarly, when the rotational speed of the variable capacity compressor suddenly decreases, the variable capacity compressor control valve 11b operates quickly, and the variable capacity compressor can be quickly restored to a predetermined discharge capacity. it can.

図5は第4の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図5において、図1に示した構成要素と同じまたは同等の機能を有する構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 5 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a fourth embodiment. In FIG. 5, components having the same or equivalent functions as those shown in FIG. 1 are given the same reference numerals, and detailed descriptions thereof are omitted.

この第4の実施の形態に係る可変容量圧縮機用制御弁11cは、第1の実施の形態に係る可変容量圧縮機用制御弁11では、感圧部12が吐出圧力Pdの増加方向および減少方向の急激な変化を感知して弁部13の弁リフトを制御しているのに対し、吐出圧力Pdの増加方向の急激な変化は感知せずに、吐出圧力Pdの減少方向の急激な変化に対してのみこれを敏感に感知して弁部13の弁リフトを制御するようにしている点で異なる。   In the variable displacement compressor control valve 11c according to the fourth embodiment, in the variable displacement compressor control valve 11 according to the first embodiment, the pressure sensing unit 12 increases and decreases the discharge pressure Pd. While the valve lift of the valve unit 13 is controlled by detecting a sudden change in the direction, a sudden change in the decreasing direction of the discharge pressure Pd is detected without detecting a sudden change in the increasing direction of the discharge pressure Pd. This is different in that the valve lift of the valve unit 13 is controlled by sensitively detecting this.

すなわち、この可変容量圧縮機用制御弁11cでは、感圧部12を構成する感圧ピストン19に、吐出圧力Pdの増加方向と減少方向との急激な変化に対して感度を切り換えるための逆止弁機構(感度切り換え手段)が設けられている。この逆止弁機構は、感圧ピストン19に高圧ポート18と調圧室20とを連通するように段差のある通路を形成し、調圧室20側の径の大きな通路にボール形状の弁体41を配置し、その弁体41が調圧室20の側に脱落しないよう調圧室20側の開口端部に板ばね42を係止して構成される。   That is, in this variable displacement compressor control valve 11c, the pressure sensitive piston 19 constituting the pressure sensitive part 12 is a check for switching the sensitivity to a sudden change in the increasing direction and decreasing direction of the discharge pressure Pd. A valve mechanism (sensitivity switching means) is provided. This check valve mechanism forms a stepped passage so that the high pressure port 18 and the pressure regulating chamber 20 communicate with the pressure sensitive piston 19, and a ball-shaped valve element is formed in the passage having a large diameter on the pressure regulating chamber 20 side. 41 is arranged, and a leaf spring 42 is engaged with an opening end portion on the pressure regulating chamber 20 side so that the valve body 41 does not fall off on the pressure regulating chamber 20 side.

以上の構成の可変容量圧縮機用制御弁11cが所定の弁リフトにて制御しているときにおいて、吐出圧力Pdが急激に増加すると、吐出圧力Pdと調圧室20内の圧力との差圧によって感圧ピストン19に設けられた逆止弁機構が直ぐに開き、吐出圧力Pdと調圧室20内の圧力との差圧がなくなる。このため、感圧部12は、不感状態になり、可変容量圧縮機用制御弁11cは、吐出圧力Pdの急激な増加に敏感に応答して弁部13が急激に開弁方向に作用し、これによってクランク室の圧力Pcをより速やかに上昇させ、可変容量圧縮機の吐出容量を速やかに減少させる方向に制御する。   When the control valve 11c for the variable displacement compressor having the above configuration is controlled by a predetermined valve lift, if the discharge pressure Pd increases rapidly, the differential pressure between the discharge pressure Pd and the pressure in the pressure regulating chamber 20 As a result, the check valve mechanism provided in the pressure-sensitive piston 19 opens immediately, and the differential pressure between the discharge pressure Pd and the pressure in the pressure regulating chamber 20 disappears. For this reason, the pressure-sensitive part 12 becomes insensitive, and the control valve 11c for the variable capacity compressor responds sensitively to the sudden increase in the discharge pressure Pd, and the valve part 13 acts in the valve opening direction rapidly. As a result, the pressure Pc in the crank chamber is increased more quickly, and the discharge capacity of the variable capacity compressor is controlled to decrease rapidly.

逆に、吐出圧力Pdが急激に低下した場合には、急激に低下した吐出圧力Pdと急激に低下する前の吐出圧力Pdの平均値である調圧室20内の圧力Pd(av)との差圧により感圧ピストン19に設けられた逆止弁機構が閉じるため、弁体23よりも受圧面積の大きな感圧ピストン19が急激に低下した吐出圧力Pdの変化を敏感に感知する。このため、弁体23は吐出圧力Pdの急激な低下に応答して閉弁方向に作用しようとするが、感圧ピストン19が急激な圧力変化を受けて瞬間的に開弁方向に作用するため、弁体23の閉弁方向の動きが鈍くさせられる。つまり、この可変容量圧縮機用制御弁11cは、吐出圧力Pdの急激な増加方向の変化に対して感度が高く、吐出圧力Pdの急激な低下方向の変化に対しては感度が低いといった非対称の開弁特性を有している。これにより、たとえば吐出圧力Pdの急激な増加方向の変化に対して可変容量圧縮機が過渡応答して、吐出圧力Pdが急激に減少方向に変化したとしても、吐出圧力Pdの急激な減少方向では、過渡応答することはないので、ハンチング現象が発生してしまうことはない。   On the other hand, when the discharge pressure Pd drops rapidly, the discharge pressure Pd that has dropped sharply and the pressure Pd (av) in the pressure regulating chamber 20 that is the average value of the discharge pressure Pd before the drop is suddenly reduced. Since the check valve mechanism provided in the pressure-sensitive piston 19 is closed by the differential pressure, the pressure-sensitive piston 19 having a pressure receiving area larger than that of the valve body 23 senses a change in the discharge pressure Pd that is rapidly reduced. For this reason, the valve body 23 tries to act in the valve closing direction in response to the rapid decrease in the discharge pressure Pd, but the pressure sensitive piston 19 receives the sudden pressure change and instantaneously acts in the valve opening direction. The movement of the valve body 23 in the valve closing direction is made dull. That is, the control valve 11c for the variable capacity compressor is asymmetric, such that the sensitivity is high with respect to a rapid change in the discharge pressure Pd and the sensitivity is low with respect to a rapid decrease in the discharge pressure Pd. Has valve opening characteristics. Thus, for example, even if the variable capacity compressor makes a transient response to a sudden increase in discharge pressure Pd and the discharge pressure Pd suddenly decreases, Since there is no transient response, the hunting phenomenon does not occur.

図6は第5の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図6において、図5に示した構成要素と同じ構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 6 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a fifth embodiment. In FIG. 6, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第5の実施の形態に係る可変容量圧縮機用制御弁11dは、第4の実施の形態に係る可変容量圧縮機用制御弁11cが感圧部12の逆止弁機構を感圧ピストン19に設け、その逆止弁の弁体をボール弁で構成していたのに対し、感圧部12の逆止弁機構を蓋17に設け、その逆止弁の弁体をポペット弁で構成している点で異なる。   In the variable displacement compressor control valve 11d according to the fifth embodiment, the variable displacement compressor control valve 11c according to the fourth embodiment has a check valve mechanism of the pressure sensing portion 12 as a pressure sensitive piston 19. The check valve mechanism is a ball valve, whereas the check valve mechanism of the pressure sensing unit 12 is provided in the lid 17 and the check valve element is a poppet valve. Is different.

すなわち、この可変容量圧縮機用制御弁11dでは、感圧部12に設けられた逆止弁機構は、感圧部12の蓋17に吐出圧力Pdを受ける空間と調圧室20とを連通するように段差のある通路を形成し、調圧室20側の径の大きな通路に茸形状の弁体41を配置し、その弁体41が調圧室20の側に脱落しないよう調圧室20側の開口端部に板ばね42を係止し、さらに蓋17と感圧ピストン19との間に感圧ピストン19を蓋17から離れる方向に付勢する荷重の小さなスプリング43を配置して構成される。   In other words, in this variable displacement compressor control valve 11 d, the check valve mechanism provided in the pressure sensing unit 12 communicates the space that receives the discharge pressure Pd with the lid 17 of the pressure sensing unit 12 and the pressure regulating chamber 20. In this way, a stepped passage is formed, and a bowl-shaped valve body 41 is disposed in a passage having a large diameter on the pressure regulating chamber 20 side, so that the valve body 41 does not fall off to the pressure regulating chamber 20 side. A leaf spring 42 is locked to the opening end on the side, and a spring 43 having a small load for urging the pressure sensitive piston 19 away from the lid 17 is arranged between the lid 17 and the pressure sensitive piston 19. Is done.

このような構成の感圧部12を持った可変容量圧縮機用制御弁11dの動作は、第4の実施の形態に係る可変容量圧縮機用制御弁11cと同じである。なお、この第5の実施の形態では、逆止弁機構は、感圧部12の蓋17に設けられているが、調圧室20を吐出圧力Pdに曝される側から隔離しているボディ15に設けても良い。   The operation of the variable displacement compressor control valve 11d having the pressure sensing unit 12 having the above-described configuration is the same as that of the variable displacement compressor control valve 11c according to the fourth embodiment. In the fifth embodiment, the check valve mechanism is provided on the lid 17 of the pressure sensing unit 12, but the body that isolates the pressure regulating chamber 20 from the side exposed to the discharge pressure Pd. 15 may be provided.

図7は第6の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図7において、図6に示した構成要素と同じ構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 7 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a sixth embodiment. In FIG. 7, the same components as those shown in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第6の実施の形態に係る可変容量圧縮機用制御弁11eは、第4および第5の実施の形態に係る可変容量圧縮機用制御弁11c,11dが逆止弁機構を有しているのに対し、吐出圧力Pdが急激に増加するときと急激に低下するときとで感度を切り換えるようにした感度切り換え機構を備えている点で異なる。   In the variable displacement compressor control valve 11e according to the sixth embodiment, the variable displacement compressor control valves 11c and 11d according to the fourth and fifth embodiments have check valve mechanisms. On the other hand, there is a difference in that a sensitivity switching mechanism is provided in which the sensitivity is switched between when the discharge pressure Pd suddenly increases and when it rapidly decreases.

すなわち、この可変容量圧縮機用制御弁11eでは、感圧部12に設けられた感度切り換え機構は、調圧室20を出入りする冷媒の流れ易さを切り換えるもので、感圧ピストン19の外周形状を高圧ポート18の側から調圧室20に向かって外径が徐々に大きくなるテーパ形状になっている。したがって、感圧ピストン19の外周の隙間は、調圧室20内の図の上端では、最も絞られた絞り部を構成し、それより高圧ポート18に連通する空間に向かって流路断面積が徐々に拡大している。これにより、その絞り部の高圧ポート18側は流路断面積が急拡大していて、絞り部から急拡大部へ冷媒が流れ込む場合には、そこに縮流が発生し、その縮流作用によって、高圧ポート18の側と調圧室20内との差圧が同じであれば、この感圧部12は、高圧ポート18に入った冷媒が徐々に絞られてから絞り部を通過して調圧室20に入るときに比べて、調圧室20内の冷媒が絞り部で急激に絞られてから高圧ポート18の側へ流れるときの方が冷媒流量は少ないという特性になっている。   That is, in the control valve 11e for the variable capacity compressor, the sensitivity switching mechanism provided in the pressure sensing unit 12 switches the ease of flow of the refrigerant entering and exiting the pressure regulating chamber 20, and the outer peripheral shape of the pressure sensitive piston 19 The taper shape has an outer diameter that gradually increases from the high-pressure port 18 side toward the pressure regulating chamber 20. Therefore, the gap on the outer periphery of the pressure-sensitive piston 19 constitutes the most narrowed throttle portion at the upper end of the pressure regulating chamber 20, and has a flow passage cross-sectional area toward the space communicating with the high-pressure port 18. It is gradually expanding. As a result, the flow passage cross-sectional area is rapidly expanding on the high pressure port 18 side of the constricted portion, and when refrigerant flows from the constricted portion to the suddenly expanded portion, a contracted flow is generated there, and the contracted flow action If the pressure difference between the high-pressure port 18 side and the pressure-regulating chamber 20 is the same, the pressure-sensing unit 12 adjusts the refrigerant that has entered the high-pressure port 18 after the refrigerant is gradually throttled. Compared to when entering the pressure chamber 20, the refrigerant flow rate is smaller when the refrigerant in the pressure adjusting chamber 20 flows to the high-pressure port 18 side after being rapidly throttled by the throttle portion.

可変容量圧縮機の回転数が急激に増加して吐出圧力Pdが急激に増加したときは、高圧になった高圧ポート18の圧力と高圧になる前の調圧室20内の圧力との差によって、高圧ポート18の側から感圧ピストン19の外周の隙間を通って調圧室20に冷媒が流れようとし、逆に、回転数が急激に低下して吐出圧力Pdが急激に低下したときは、調圧室20から感圧ピストン19の外周の隙間を通って高圧ポート18の側に冷媒が流れようとする。このとき、吐出圧力Pdが急激に増加したときと急激に低下したときとでは、感圧ピストン19の外周の隙間を流れる冷媒流量に差ができ、吐出圧力Pdが急激に増加したときは、調圧室20の圧力は急激に増加した吐出圧力Pdと均圧になる時間が短く、吐出圧力Pdが急激に低下したときには、調圧室20の圧力は急激に増加した吐出圧力Pdと均圧になる時間が長くなる。吐出圧力Pdが急激に増加したときに感圧ピストン19が弁部13の弁体23をその閉弁方向に作用する力は、吐出圧力Pdが急激に低下したときに感圧ピストン19が弁部13の弁体23をその開弁方向に作用する力よりも小さくなるので、吐出圧力Pdが急激に増加したときには、感圧部12はより鈍感になり、弁部13の感度はあまり低下しない。一方、吐出圧力Pdが急激に低下する過渡期には、感圧ピストン19が開弁方向に動きやすいため、感圧部12はより敏感になる。吐出圧力Pdと吸入圧力Psとの差圧が小さくなることで、弁部13が閉弁方向に作用しようとする力が感圧部12の開弁方向に作用しようとする力によって瞬間的にキャンセルされるため、弁部13の弁体23は閉弁方向の動きが抑制される。この結果、吐出圧力Pdが急激に低下する方向では、弁部13が過渡応答することはないので、感度の高い可変容量圧縮機が吐出圧力Pdの急激な圧力変動によってハンチング現象を起こしてしまうことはない。   When the rotational speed of the variable capacity compressor increases rapidly and the discharge pressure Pd increases rapidly, the difference between the pressure of the high-pressure port 18 that has become high pressure and the pressure in the pressure regulating chamber 20 before high pressure has occurred. When the refrigerant is about to flow into the pressure regulating chamber 20 from the high-pressure port 18 side through the gap on the outer periphery of the pressure-sensitive piston 19, and conversely, when the rotational speed is suddenly reduced and the discharge pressure Pd is suddenly reduced. Then, the refrigerant tends to flow from the pressure regulating chamber 20 to the high-pressure port 18 side through the gap on the outer periphery of the pressure-sensitive piston 19. At this time, there is a difference in the flow rate of the refrigerant flowing through the gap on the outer periphery of the pressure-sensitive piston 19 between when the discharge pressure Pd suddenly increases and when the discharge pressure Pd decreases sharply, and when the discharge pressure Pd increases rapidly, When the pressure in the pressure chamber 20 is equal to the rapidly increased discharge pressure Pd and the pressure equalizing time is short, and the discharge pressure Pd is rapidly decreased, the pressure in the pressure regulating chamber 20 is rapidly increased to the discharge pressure Pd and equalized pressure. The time to become longer. The force that the pressure-sensitive piston 19 acts in the valve closing direction of the valve body 23 of the valve portion 13 when the discharge pressure Pd increases abruptly is that the pressure-sensitive piston 19 is the valve portion when the discharge pressure Pd decreases rapidly. Since the 13 valve bodies 23 are smaller than the force acting in the valve opening direction, when the discharge pressure Pd increases abruptly, the pressure-sensitive part 12 becomes insensitive and the sensitivity of the valve part 13 does not decrease much. On the other hand, in the transition period in which the discharge pressure Pd rapidly decreases, the pressure-sensitive piston 19 tends to move in the valve opening direction, so that the pressure-sensitive portion 12 becomes more sensitive. Since the differential pressure between the discharge pressure Pd and the suction pressure Ps is reduced, the force that the valve unit 13 tries to act in the valve closing direction is instantaneously canceled by the force that the pressure sensing unit 12 tries to act in the valve opening direction. Therefore, the valve body 23 of the valve portion 13 is restrained from moving in the valve closing direction. As a result, the valve section 13 does not make a transient response in the direction in which the discharge pressure Pd rapidly decreases, and therefore, a highly sensitive variable capacity compressor causes a hunting phenomenon due to a sudden pressure fluctuation of the discharge pressure Pd. There is no.

図8は第7の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図8において、図3に示した構成要素と同じ構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 8 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to a seventh embodiment. In FIG. 8, the same components as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第7の実施の形態に係る可変容量圧縮機用制御弁11fは、第2の実施の形態に係る可変容量圧縮機用制御弁11aでは、感圧部12がクランク室へ供給される圧力Pcの増加方向および減少方向の急激な変化を感知して弁部13の弁リフトを制御しているのに対し、クランク室へ供給される圧力Pcの増加方向の急激な変化は感知せずに、圧力Pcの減少方向の急激な変化に対してのみこれを敏感に感知して弁部13の弁リフトを制御するようにしている点で異なる。   The variable displacement compressor control valve 11f according to the seventh embodiment is the same as the variable displacement compressor control valve 11a according to the second embodiment. While the valve lift of the valve unit 13 is controlled by detecting a sudden change in the increasing direction and the decreasing direction of the valve, the rapid change in the increasing direction of the pressure Pc supplied to the crank chamber is not detected. Only the sharp change in the decreasing direction of the pressure Pc is sensitively detected to control the valve lift of the valve portion 13.

すなわち、この可変容量圧縮機用制御弁11fでは、感圧部12を構成する感圧ピストン19に、クランク室へ供給される圧力Pcの増加方向と減少方向との急激な変化に対して感度を切り換えるための逆止弁機構が設けられている。この逆止弁機構は、感圧ピストン19に中圧ポート26と調圧室20とを連通するように段差のある通路を形成し、調圧室20側の径の大きな通路にボール形状の弁体41を配置し、その弁体41が調圧室20内に脱落しないよう調圧室20側の開口端部にストッパ44を嵌合して構成される。   That is, in the variable displacement compressor control valve 11f, the pressure-sensitive piston 19 constituting the pressure-sensitive portion 12 is sensitive to a sudden change in the increasing direction and decreasing direction of the pressure Pc supplied to the crank chamber. A check valve mechanism for switching is provided. This check valve mechanism forms a stepped passage so that the intermediate pressure port 26 and the pressure regulating chamber 20 are communicated with the pressure sensitive piston 19, and a ball-shaped valve is formed in the passage having a large diameter on the pressure regulating chamber 20 side. The body 41 is arranged, and a stopper 44 is fitted to the opening end on the pressure regulating chamber 20 side so that the valve body 41 does not fall into the pressure regulating chamber 20.

以上の構成の可変容量圧縮機用制御弁11fが所定の弁リフトにて制御しているときにおいて、吐出圧力Pdが急激に増加することにより弁部13が開弁方向に動作してクランク室へ供給される圧力Pcが急激に増加した場合には、感圧ピストン19に設けられた逆止弁機構は、クランク室の圧力Pcと調圧室20内の圧力との差圧によって直ちに開弁する。このため、感圧部12は、弁部13の動作に影響を与えないので、弁部13は、圧力Pcの急激な増加に応答して速やかに開弁方向に動作してクランク室の圧力Pcをより速やかに上昇させ、可変容量圧縮機の吐出容量を速やかに減少させる方向に制御する。   When the variable displacement compressor control valve 11f configured as described above is controlled by a predetermined valve lift, the valve section 13 operates in the valve opening direction due to a sudden increase in the discharge pressure Pd to the crank chamber. When the supplied pressure Pc suddenly increases, the check valve mechanism provided in the pressure-sensitive piston 19 is immediately opened by the differential pressure between the pressure Pc in the crank chamber and the pressure in the pressure regulating chamber 20. . For this reason, since the pressure-sensitive part 12 does not affect the operation of the valve part 13, the valve part 13 quickly operates in the valve opening direction in response to the rapid increase of the pressure Pc, and the pressure Pc of the crank chamber. Is controlled more quickly, and the discharge capacity of the variable capacity compressor is quickly decreased.

逆に、クランク室へ供給される圧力Pcが急激に低下した場合には、急激に低下する前の圧力Pcの平均値である調圧室20内の圧力Pc(av)よりも中圧ポート26の圧力Pcが低くなるため、感圧ピストン19に設けられた逆止弁機構が閉じる。このため、弁体23よりも受圧面積の大きな感圧ピストン19が圧力Pcの急激な低下を敏感に感知し、吐出圧力Pdと吸入圧力Psとの差圧が小さくなることで、弁部13は、開弁方向に敏感に作用する感圧部12によって、閉弁方向の作用が瞬間的に抑制される。   On the contrary, when the pressure Pc supplied to the crank chamber is suddenly reduced, the intermediate pressure port 26 is higher than the pressure Pc (av) in the pressure regulating chamber 20 which is an average value of the pressure Pc before the sudden reduction. Therefore, the check valve mechanism provided in the pressure-sensitive piston 19 is closed. For this reason, the pressure-sensitive piston 19 having a larger pressure receiving area than the valve body 23 sensitively senses a sudden drop in the pressure Pc, and the differential pressure between the discharge pressure Pd and the suction pressure Ps is reduced, so that the valve portion 13 is The operation in the valve closing direction is instantaneously suppressed by the pressure sensing unit 12 acting sensitively in the valve opening direction.

これにより、可変容量圧縮機用制御弁11fは、クランク室へ供給される圧力Pcの急激な増加方向の変化に対して感度が高く、圧力Pcの急激な低下方向の変化に対しては感度が低いといった非対称の開弁特性になるので、吐出圧力Pdの急激な変動に起因した圧力Pcの急激な変動があっても、ハンチングすることはない。   As a result, the variable displacement compressor control valve 11f is highly sensitive to a sudden increase in the pressure Pc supplied to the crank chamber and sensitive to a sudden decrease in the pressure Pc. Since the asymmetric valve opening characteristic is low, hunting does not occur even if there is a sudden change in the pressure Pc due to a sudden change in the discharge pressure Pd.

図9は第8の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。この図9において、図4に示した構成要素と同じ構成要素については同じ符号を付してその詳細な説明は省略する。   FIG. 9 is a central longitudinal sectional view schematically showing a control valve for a variable capacity compressor according to an eighth embodiment. In FIG. 9, the same components as those shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第8の実施の形態に係る可変容量圧縮機用制御弁11gは、第3の実施の形態に係る可変容量圧縮機用制御弁11bでは、感圧部12が吸入圧力Psの増加方向および減少方向の急激な変化を感知して弁部13の弁リフトを制御しているのに対し、吸入圧力Psの減少方向の急激な変化は感知せずに、吸入圧力Psの増加方向の急激な変化に対してのみこれを敏感に感知して弁部13の弁リフトを制御するようにしている点で異なる。   In the variable displacement compressor control valve 11g according to the eighth embodiment, in the variable displacement compressor control valve 11b according to the third embodiment, the pressure sensing unit 12 increases and decreases the suction pressure Ps. While the valve lift of the valve unit 13 is controlled by detecting a rapid change in direction, the rapid change in the increase direction of the suction pressure Ps is detected without detecting the rapid change in the decrease direction of the suction pressure Ps. This is different in that the valve lift of the valve unit 13 is controlled by sensitively detecting this.

すなわち、この可変容量圧縮機用制御弁11gでは、感圧部12を構成する感圧ピストン19に、吸入圧力Psの増加方向と減少方向との急激な変化に対して感度を切り換えるための逆止弁機構が設けられている。この逆止弁機構は、感圧ピストン19に低圧ポート27と調圧室20とを連通するように段差のある通路を形成し、低圧ポート27側の径の大きな通路にボール形状の弁体41を配置し、その弁体41が低圧ポート27に連通する空間内に脱落しないよう低圧ポート27側の開口端部にストッパ44を嵌合して構成される。   That is, in this variable displacement compressor control valve 11g, a non-return for switching the sensitivity to the pressure-sensitive piston 19 constituting the pressure-sensitive portion 12 with respect to a sudden change between the increasing direction and the decreasing direction of the suction pressure Ps. A valve mechanism is provided. In this check valve mechanism, a stepped passage is formed in the pressure-sensitive piston 19 so that the low pressure port 27 and the pressure regulating chamber 20 communicate with each other, and a ball-shaped valve element 41 is formed in a large passage on the low pressure port 27 side. And a stopper 44 is fitted to the opening end on the low pressure port 27 side so that the valve body 41 does not fall into the space communicating with the low pressure port 27.

以上の構成の可変容量圧縮機用制御弁11gが所定の弁リフトにて制御しているときにおいて、吐出圧力Pdが急激に増加することにより吸入圧力Psが急激に低下した場合には、感圧ピストン19に設けられた逆止弁機構は、吸入圧力Psと調圧室20内の圧力との差圧によって直ちに開弁する。このため、感圧部12は、弁部13の動作に影響を与えないので、弁部13は、吐出圧力Pdの急激な増加に応答して速やかに開弁方向に動作し、クランク室の圧力Pcをより速やかに上昇させ、可変容量圧縮機の吐出容量を速やかに減少させる方向に制御する。   When the variable displacement compressor control valve 11g having the above configuration is controlled by a predetermined valve lift, if the suction pressure Ps rapidly decreases due to a sudden increase in the discharge pressure Pd, the pressure sensitivity The check valve mechanism provided in the piston 19 is immediately opened by the differential pressure between the suction pressure Ps and the pressure in the pressure regulating chamber 20. For this reason, since the pressure-sensitive part 12 does not affect the operation of the valve part 13, the valve part 13 quickly operates in the valve opening direction in response to the rapid increase in the discharge pressure Pd, and the pressure in the crank chamber Pc is increased more rapidly, and the discharge capacity of the variable capacity compressor is controlled to decrease rapidly.

逆に、吐出圧力Pdが急激に低下することにより吸入圧力Psが急激に増加した場合には、急激に増加する前の吸入圧力Psの平均値である調圧室20内の圧力Ps(av)よりも低圧ポート27の吸入圧力Psが高くなるため、感圧ピストン19に設けられた逆止弁機構が閉じる。このため、感圧ピストン19が吸入圧力Psの急激な増加を敏感に感知し、弁部13は、開弁方向に敏感に作用する感圧部12によって、閉弁方向の作用が瞬間的に抑制される。   On the other hand, when the suction pressure Ps increases rapidly due to the sudden decrease in the discharge pressure Pd, the pressure Ps (av) in the pressure regulating chamber 20 that is the average value of the suction pressure Ps before it increases rapidly. Since the suction pressure Ps of the low pressure port 27 becomes higher than that, the check valve mechanism provided in the pressure sensitive piston 19 is closed. For this reason, the pressure-sensitive piston 19 sensitively senses a sudden increase in the suction pressure Ps, and the valve portion 13 instantaneously suppresses the action in the valve closing direction by the pressure sensitive portion 12 acting sensitively in the valve opening direction. Is done.

これにより、可変容量圧縮機用制御弁11gは、吸入圧力Psの急激な低下方向の変化に対して感度が高く、圧力Pcの急激な増加方向の変化に対しては感度が低いといった非対称の開弁特性になるので、ハンチングすることはない。   As a result, the variable displacement compressor control valve 11g is highly sensitive to a sudden change in the suction pressure Ps and low in sensitivity to a sudden increase in the pressure Pc. Since it becomes a valve characteristic, it does not hunting.

第1の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal section showing the control valve for variable capacity compressors concerning a 1st embodiment typically. 可変容量圧縮機の回転数が急増したときの可変容量圧縮機用制御弁の動作説明図である。It is operation | movement explanatory drawing of the control valve for variable capacity compressors when the rotation speed of a variable capacity compressor increases rapidly. 第2の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors which concerns on 2nd Embodiment. 第3の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors concerning 3rd Embodiment. 第4の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors which concerns on 4th Embodiment. 第5の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors which concerns on 5th Embodiment. 第6の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors concerning 6th Embodiment. 第7の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors concerning 7th Embodiment. 第8の実施の形態に係る可変容量圧縮機用制御弁を模式的に示した中央縦断面図である。It is the center longitudinal cross-sectional view which showed typically the control valve for variable capacity compressors which concerns on 8th Embodiment.

符号の説明Explanation of symbols

11,11a,11b,11c,11d,11e,11f,11g 可変容量圧縮機用制御弁
12 感圧部
13 弁部
14 ソレノイド
15 ボディ
16 シリンダ
17 蓋
18 高圧ポート
19 感圧ピストン
20 調圧室
21 弁座形成部材
22 シャフト
23 弁体
24 ピストンロッド
25 スプリング
26 中圧ポート
27 低圧ポート
28 有底スリーブ
29 コア
30 プランジャ
31 シャフト
32 スプリング
33 コイル
34 ハーネス
41 弁体
42 板ばね
43 スプリング
44 ストッパ
Pd 吐出圧力
Ps 吸入圧力
Pc クランク室の圧力
11, 11a, 11b, 11c, 11d, 11e, 11f, 11g Control valve for variable capacity compressor 12 Pressure sensitive part 13 Valve part 14 Solenoid 15 Body 16 Cylinder 17 Lid 18 High pressure port 19 Pressure sensitive piston 20 Pressure regulating chamber 21 Valve Seat forming member 22 Shaft 23 Valve body 24 Piston rod 25 Spring 26 Medium pressure port 27 Low pressure port 28 Bottomed sleeve 29 Core 30 Plunger 31 Shaft 32 Spring 33 Coil 34 Harness 41 Valve body 42 Plate spring 43 Spring 44 Stopper Pd Discharge pressure Ps Suction pressure Pc Crank chamber pressure

Claims (13)

可変容量圧縮機の吐出室の吐出圧力と吸入室の吸入圧力との差圧を感知して前記吐出室からクランク室へ流す冷媒の流量を制御することにより前記冷媒の吐出容量を変化させるようにした可変容量圧縮機用制御弁において、
前記可変容量圧縮機の急激な回転数の変動による圧力変化を感知して前記圧力変化の度合いに比例した値だけ弁部の開閉方向の動きを鈍くさせる感圧部を備えていることを特徴とする可変容量圧縮機用制御弁。
The refrigerant discharge capacity is changed by sensing the differential pressure between the discharge pressure of the discharge chamber of the variable capacity compressor and the suction pressure of the suction chamber and controlling the flow rate of the refrigerant flowing from the discharge chamber to the crank chamber. In the control valve for the variable displacement compressor,
A pressure-sensitive part is provided that senses a pressure change due to a sudden change in the rotational speed of the variable capacity compressor and slows the movement of the valve part in the opening / closing direction by a value proportional to the degree of the pressure change. Control valve for variable capacity compressor.
前記感圧部は、前記吐出圧力が導入される高圧ポートに設けられ、弁体よりも大きな受圧面積で前記吐出圧力を受圧する感圧ピストンと、前記感圧ピストンが受圧する前記吐出圧力と前記感圧ピストンによって閉じられた調圧室内の圧力との差圧によって発生する軸線方向の動きを弁孔を介して前記弁体へ伝達するシャフトとを有していることを特徴とする請求項1記載の可変容量圧縮機用制御弁。   The pressure-sensitive part is provided in a high-pressure port into which the discharge pressure is introduced, receives a pressure-sensitive piston that receives the discharge pressure in a pressure-receiving area larger than a valve body, the discharge pressure received by the pressure-sensitive piston, and the 2. A shaft for transmitting axial movement generated by a differential pressure with respect to a pressure in a pressure regulating chamber closed by a pressure sensitive piston to the valve body through a valve hole. The control valve for a variable displacement compressor as described. 前記シャフトは、一方の端面に前記吐出圧力を受圧する前記弁体と他方の端面に前記吸入圧力を受圧するピストンロッドとともに一体に形成されていることを特徴とする請求項2記載の可変容量圧縮機用制御弁。   3. The variable displacement compression according to claim 2, wherein the shaft is integrally formed with the valve body for receiving the discharge pressure at one end face and a piston rod for receiving the suction pressure at the other end face. Control valve for machine. 前記感圧部は、前記感圧ピストンが前記シャフトを介して前記弁体に作用する力を、前記吐出圧力の急激な増加のときの方が前記吐出圧力の急激な低下のときよりも小さくするようにした感度切り換え手段をさらに有していることを特徴とする請求項2記載の可変容量圧縮機用制御弁。   The pressure-sensitive portion reduces the force that the pressure-sensitive piston acts on the valve body via the shaft when the discharge pressure is suddenly increased than when the discharge pressure is suddenly reduced. The control valve for a variable capacity compressor according to claim 2, further comprising sensitivity switching means. 前記感度切り換え手段は、前記高圧ポートの側と前記調圧室とを連通するように前記感圧ピストンに貫通形成された通路に設けられ、前記高圧ポートの側から前記調圧室へ向かう冷媒の流れを許容し、前記調圧室から前記高圧ポートの側へ向かう冷媒の流れを阻止する逆止弁であることを特徴とする請求項4記載の可変容量圧縮機用制御弁。   The sensitivity switching means is provided in a passage formed through the pressure-sensitive piston so as to communicate the high-pressure port side and the pressure-regulating chamber, and the refrigerant switching unit moves from the high-pressure port side to the pressure-regulating chamber. 5. The control valve for a variable capacity compressor according to claim 4, wherein the control valve is a check valve that allows a flow and prevents a refrigerant flow from the pressure regulating chamber toward the high pressure port. 前記感度切り換え手段は、前記感圧ピストンとともに前記調圧室を形成している部材に前記吐出圧力を受けている側と前記調圧室とを連通するように貫通形成された通路に設けられ、前記吐出圧力を受けている側から前記調圧室へ向かう冷媒の流れを阻止し、前記調圧室から前記吐出圧力を受けている側へ向かう冷媒の流れを許容する逆止弁であることを特徴とする請求項4記載の可変容量圧縮機用制御弁。   The sensitivity switching means is provided in a passage formed so as to communicate with the member that forms the pressure regulating chamber together with the pressure sensitive piston so that the side receiving the discharge pressure and the pressure regulating chamber communicate with each other. A check valve that prevents a refrigerant flow from the side receiving the discharge pressure to the pressure regulating chamber and allows a refrigerant flow from the pressure regulating chamber to the side receiving the discharge pressure. The control valve for a variable displacement compressor according to claim 4, 前記感度切り換え手段は、前記感圧ピストンの外周に形成される隙間の流路断面積が高圧ポートの側から前記調圧室へ向かって徐々に縮小するように、前記感圧ピストンの外周をテーパ形状に形成することによって構成されていることを特徴とする請求項4記載の可変容量圧縮機用制御弁。   The sensitivity switching means tapers the outer periphery of the pressure-sensitive piston so that the cross-sectional area of the gap formed on the outer periphery of the pressure-sensitive piston gradually decreases from the high-pressure port side toward the pressure regulating chamber. 5. The control valve for a variable capacity compressor according to claim 4, wherein the control valve is formed in a shape. 前記感圧部は、前記弁部によって制御された制御圧力が前記クランク室へ導出される中圧ポートに設けられていて弁体よりも大きな受圧面積で前記制御圧力を受圧する感圧ピストンを有し、前記感圧ピストンは、これが受圧する前記制御圧力と前記感圧ピストンによって閉じられた調圧室内の圧力との差圧によって発生する軸線方向の動きを前記弁体へ伝達するようにしたことを特徴とする請求項1記載の可変容量圧縮機用制御弁。   The pressure-sensitive portion has a pressure-sensitive piston that is provided at an intermediate pressure port through which the control pressure controlled by the valve portion is led to the crank chamber and receives the control pressure with a larger pressure-receiving area than the valve body. The pressure-sensitive piston transmits the axial movement generated by the differential pressure between the control pressure received by the pressure-sensitive piston and the pressure in the pressure regulating chamber closed by the pressure-sensitive piston to the valve body. The control valve for a variable capacity compressor according to claim 1. 前記感圧部は、前記感圧ピストンが前記弁体に作用する力を、前記制御圧力の急激な増加のときの方が前記制御圧力の急激な低下のときよりも小さくするようにした感度切り換え手段をさらに有していることを特徴とする請求項8記載の可変容量圧縮機用制御弁。   The pressure-sensing unit is configured to change sensitivity so that the force acting on the valve element by the pressure-sensitive piston is smaller when the control pressure is suddenly increased than when the control pressure is suddenly reduced. 9. The control valve for a variable capacity compressor according to claim 8, further comprising means. 前記感度切り換え手段は、前記中圧ポートの側と前記調圧室とを連通するように前記感圧ピストンに貫通形成された通路に設けられ、前記中圧ポートの側から前記調圧室へ向かう冷媒の流れを許容し、前記調圧室から前記中圧ポートの側へ向かう冷媒の流れを阻止する逆止弁であることを特徴とする請求項9記載の可変容量圧縮機用制御弁。   The sensitivity switching means is provided in a passage formed through the pressure-sensitive piston so as to communicate the intermediate pressure port side and the pressure regulating chamber, and is directed from the intermediate pressure port side to the pressure regulating chamber. The control valve for a variable capacity compressor according to claim 9, wherein the control valve is a check valve that allows a refrigerant flow and prevents a refrigerant flow from the pressure regulating chamber toward the intermediate pressure port. 前記感圧部は、前記吸入圧力が導入される低圧ポートに設けられていて弁体よりも大きな受圧面積で前記吸入圧力を受圧する感圧ピストンを有し、前記感圧ピストンは、これが受圧する前記吸入圧力と前記感圧ピストンによって閉じられた調圧室内の圧力との差圧によって発生する軸線方向の動きを前記弁体へ伝達するようにしたことを特徴とする請求項1記載の可変容量圧縮機用制御弁。   The pressure-sensitive portion has a pressure-sensitive piston that is provided in a low-pressure port into which the suction pressure is introduced and receives the suction pressure in a pressure-receiving area larger than that of the valve body, and the pressure-sensitive piston receives the pressure. 2. The variable capacity according to claim 1, wherein an axial movement generated by a differential pressure between the suction pressure and a pressure in a pressure regulating chamber closed by the pressure-sensitive piston is transmitted to the valve body. Control valve for compressor. 前記感圧部は、前記感圧ピストンが前記弁体に作用する力を、前記吸入圧力の急激な増加のときの方が前記吸入圧力の急激な低下のときよりも大きくするようにした感度切り換え手段をさらに有していることを特徴とする請求項11記載の可変容量圧縮機用制御弁。   The pressure-sensing unit is configured to change sensitivity so that the force acting on the valve body by the pressure-sensitive piston is larger when the suction pressure is suddenly increased than when the suction pressure is suddenly reduced. The control valve for a variable capacity compressor according to claim 11, further comprising means. 前記感度切り換え手段は、前記低圧ポートの側と前記調圧室とを連通するように前記感圧ピストンに貫通形成された通路に設けられ、前記低圧ポートの側から前記調圧室へ向かう冷媒の流れを許容し、前記調圧室から前記低圧ポートの側へ向かう冷媒の流れを阻止する逆止弁であることを特徴とする請求項12記載の可変容量圧縮機用制御弁。
The sensitivity switching means is provided in a passage formed through the pressure-sensitive piston so as to communicate the low-pressure port side and the pressure-regulating chamber, and the refrigerant switching unit moves from the low-pressure port side to the pressure-regulating chamber. 13. The control valve for a variable capacity compressor according to claim 12, wherein the control valve is a check valve that allows a flow and prevents a refrigerant flow from the pressure regulating chamber toward the low pressure port.
JP2005021518A 2004-08-31 2005-01-28 Control valve for variable displacement compressor Pending JP2006097673A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005021518A JP2006097673A (en) 2004-08-31 2005-01-28 Control valve for variable displacement compressor
EP05018104A EP1630419A3 (en) 2004-08-31 2005-08-19 Control valve for variable displacement compressor
KR1020050079729A KR20060050781A (en) 2004-08-31 2005-08-30 Control valve for variable displacement compressor
US11/213,902 US20060045758A1 (en) 2004-08-31 2005-08-30 Control valve for variable displacement compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004251287 2004-08-31
JP2005021518A JP2006097673A (en) 2004-08-31 2005-01-28 Control valve for variable displacement compressor

Publications (1)

Publication Number Publication Date
JP2006097673A true JP2006097673A (en) 2006-04-13

Family

ID=35457145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021518A Pending JP2006097673A (en) 2004-08-31 2005-01-28 Control valve for variable displacement compressor

Country Status (4)

Country Link
US (1) US20060045758A1 (en)
EP (1) EP1630419A3 (en)
JP (1) JP2006097673A (en)
KR (1) KR20060050781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019605A (en) * 2007-07-13 2009-01-29 Sanden Corp Displacement control valve of variable displacement compressor
WO2011067940A1 (en) * 2009-12-04 2011-06-09 サンデン株式会社 Control valve and variable capacity swash-plate type compressor provided with same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815866B (en) * 2007-10-02 2012-07-04 三电有限公司 Variable displacement compressor
EP2829685A1 (en) 2013-07-25 2015-01-28 Siemens Aktiengesellschaft Valve for a flow machine
JP6340501B2 (en) * 2014-06-19 2018-06-13 株式会社テージーケー Control valve for variable capacity compressor
JP2016014334A (en) * 2014-07-01 2016-01-28 株式会社テージーケー Variable displacement compressor control valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071321A (en) * 1989-10-02 1991-12-10 General Motors Corporation Variable displacement refrigerant compressor passive destroker
JP3963619B2 (en) * 1999-11-05 2007-08-22 株式会社テージーケー Compression capacity controller for refrigeration cycle
JP3780784B2 (en) * 1999-11-25 2006-05-31 株式会社豊田自動織機 Control valve for air conditioner and variable capacity compressor
JP2001165055A (en) * 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd Control valve and displacement variable compressor
JP3906796B2 (en) * 2002-12-19 2007-04-18 株式会社豊田自動織機 Control device for variable capacity compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019605A (en) * 2007-07-13 2009-01-29 Sanden Corp Displacement control valve of variable displacement compressor
WO2011067940A1 (en) * 2009-12-04 2011-06-09 サンデン株式会社 Control valve and variable capacity swash-plate type compressor provided with same
JP2011117396A (en) * 2009-12-04 2011-06-16 Sanden Corp Control valve and swash plate type variable displacement compressor having control valve
CN102639871A (en) * 2009-12-04 2012-08-15 三电有限公司 Control valve and variable capacity swash-plate type compressor provided with same
CN102639871B (en) * 2009-12-04 2015-07-29 三电有限公司 Control valve and comprise the ramp type variable displacement compressor of control valve

Also Published As

Publication number Publication date
EP1630419A3 (en) 2006-10-18
US20060045758A1 (en) 2006-03-02
EP1630419A2 (en) 2006-03-01
KR20060050781A (en) 2006-05-19

Similar Documents

Publication Publication Date Title
JP4700048B2 (en) Capacity control valve
WO2011114841A1 (en) Volume control valve
EP1605161A2 (en) Control valve for variable displacement compressor
JP2002021721A (en) Capacity control mechanism for variable displacement compressor
JP2006097673A (en) Control valve for variable displacement compressor
JP2004278511A (en) Control valve for variable displacement compressor
JP2009275550A (en) Capacity control valve of variable displacement compressor
US7437881B2 (en) Control valve for variable displacement compressor
EP1512871A1 (en) Capacity control valve for variable displacement compressor
JP2002285956A (en) Control valve of variable displacement compressor
WO2019142931A1 (en) Capacity control valve
EP1630418B1 (en) Control valve for variable displacement compressor
JP4000767B2 (en) Control device for variable capacity compressor
JP4545031B2 (en) Control valve, variable capacity compressor and refrigeration cycle apparatus
JP4173018B2 (en) Capacity control valve for variable capacity compressor
JP4923186B2 (en) Control valve for variable capacity compressor
JPH04134188A (en) Variable capacity and oscillating cam plate type compressor
JP2006125292A (en) Control valve for variable displacement compressor
JP7467494B2 (en) Capacity Control Valve
JP7051238B2 (en) Capacity control valve
JP4599253B2 (en) Control valve for variable displacement compressor
KR20220066410A (en) capacity control valve
JP2005061253A (en) Control valve for variable displacement compressor
JP4173073B2 (en) Control valve for variable capacity compressor
JP2007218168A (en) Control valve for variable capacity compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006