JP2006089538A - Polyvinyl alcohol-based resin for melt molding and method for producing the same, and its application - Google Patents

Polyvinyl alcohol-based resin for melt molding and method for producing the same, and its application Download PDF

Info

Publication number
JP2006089538A
JP2006089538A JP2004274311A JP2004274311A JP2006089538A JP 2006089538 A JP2006089538 A JP 2006089538A JP 2004274311 A JP2004274311 A JP 2004274311A JP 2004274311 A JP2004274311 A JP 2004274311A JP 2006089538 A JP2006089538 A JP 2006089538A
Authority
JP
Japan
Prior art keywords
resin
melt
polyvinyl alcohol
film
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004274311A
Other languages
Japanese (ja)
Other versions
JP4217199B2 (en
Inventor
Mitsuo Shibuya
光夫 渋谷
Norito Sakai
紀人 酒井
Shinji Yuno
新治 湯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2004274311A priority Critical patent/JP4217199B2/en
Publication of JP2006089538A publication Critical patent/JP2006089538A/en
Application granted granted Critical
Publication of JP4217199B2 publication Critical patent/JP4217199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polyvinyl alcohol-based resin for melt molding high in thermal stability in undergoing melt molding and good in long-run moldability. <P>SOLUTION: The polyvinyl alcohol-based resin is obtained by saponifying a copolymer of a vinyl ester monomer and a compound of the general formula (1) [wherein, R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>are each H or an alkyl; R<SP>4</SP>is a single bond or (alkyl-bearing) 1-3C alkylene group; and R<SP>5</SP>and R<SP>6</SP>are each independently H or a group R<SP>7</SP>-CO- (wherein, R<SP>7</SP>is an alkyl)]. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶融成形用のポリビニルアルコール系樹脂に関し、さらに詳しくは、溶融成形時の熱安定性が高く、ロングラン成形性に優れ、さらにケン化度を下げることで、より低温での成形が可能であり、また、ポリオレフィン系保温用フィルムに用いた場合に、透明性と保温性に優れたフィルムが得られる、溶融成形用のポリビニルアルコール系樹脂に関する。   The present invention relates to a polyvinyl alcohol resin for melt molding. More specifically, it has high thermal stability during melt molding, excellent long-run moldability, and can be molded at a lower temperature by lowering the degree of saponification. In addition, the present invention relates to a polyvinyl alcohol resin for melt molding, which can provide a film excellent in transparency and heat retention when used in a polyolefin heat retaining film.

ポリビニルアルコール系樹脂(以下、ポリビニルアルコールをPVAと略記することがある)は、強靭性、耐熱性、透明性、耐油性、生分解性などに優れており、さらには焼却時に有害ガスを発生しないなどの特徴を有しているため、フィルムやシート形状に成形され、衣類用、農薬用、洗剤用などの各種包装材料、ハウス、カーテンなどの農業用フィルム、などに用いられている。
しかしながら、PVA系樹脂は融点と分解温度が近く、溶融成形によって成形品、特にフィルム等を得ようとする場合は、分解温度の近傍で成形せざるをえず、得られた成形物の外観(焦げや熱分解物に起因する異物の混入)や、ロングラン成形性に問題があるものであった。
Polyvinyl alcohol resin (hereinafter, polyvinyl alcohol may be abbreviated as PVA) is excellent in toughness, heat resistance, transparency, oil resistance, biodegradability, etc., and does not generate harmful gases during incineration. Therefore, it is formed into a film or sheet shape, and is used for various packaging materials for clothing, agricultural chemicals, detergents, etc., agricultural films for houses, curtains, and the like.
However, the PVA resin has a melting point and a decomposition temperature close to each other. When a molded product, particularly a film, is to be obtained by melt molding, it must be molded in the vicinity of the decomposition temperature, and the appearance of the obtained molded product ( There was a problem in long run moldability) and contamination of foreign matters caused by scorching and thermal decomposition products.

かかる問題点に対して、重合度200〜1200、ケン化度75〜99.99モル%および融点160〜230℃であって、末端カルボキシル基および末端ラクトン環の合計量が0.008〜0.15モル%であるPVAおよびアルカリ金属塩からなる溶融成形用PVA系樹脂組成物(例えば、特許文献1参照。)、重合度200〜2000、ケン化度85〜99.5モル%のPVA系樹脂と固体可塑剤を含有する樹脂組成物(例えば、特許文献2参照。)、1,2−グリコール結合を1.8モル%以上有するPVA系樹脂(例えば、特許文献3参照。)が知られているが、本発明者の知見では、第一の樹脂組成物は、完全ケン化物の融点が200〜230℃と、まだまだ高いため、溶融成形時の熱安定性が不足し、第二の樹脂組成物は、融点は比較的低いものの固体可塑剤の併用が必須であるため、成形時のサージングや、成形物からの可塑剤のブリードのおそれがあり、第三のPVA系樹脂は、得られるPVAの重合度に制約(高重合度品は困難)があるため、力学的強度アップに対する自由度が少なく、また、主鎖の1,2−グリコール結合は、高温下でのPVAの熱劣化の原因となるため好ましくないことが判明した。そこで、これらの欠点を解決すべく、ケン化度が96モル%以上で、側鎖に1,2−グリコール結合を2〜10モル%含有する溶融成形用PVA系樹脂を提案した(例えば、特許文献4参照。)。
特開2000−178396号公報 特開2001−288321号公報 特開2001−181405号公報 特開2004−075866号公報
To solve this problem, the polymerization degree is 200 to 1200, the saponification degree is 75 to 99.99 mol%, the melting point is 160 to 230 ° C., and the total amount of the terminal carboxyl group and the terminal lactone ring is 0.008 to 0.00. PVA resin composition for melt molding comprising 15 mol% PVA and alkali metal salt (for example, see Patent Document 1), PVA resin having a polymerization degree of 200 to 2000 and a saponification degree of 85 to 99.5 mol% And a resin composition containing a solid plasticizer (for example, see Patent Document 2) and a PVA resin (for example, see Patent Document 3) having a 1,2-glycol bond of 1.8 mol% or more are known. However, according to the inventor's knowledge, the first resin composition has a high melting point of 200 to 230 ° C., which is still high, so that the thermal stability at the time of melt molding is insufficient, and the second resin composition Things However, since the use of a solid plasticizer is essential, there is a risk of surging during molding and bleeding of the plasticizer from the molded product. The third PVA resin has a degree of polymerization of the obtained PVA. Because there are restrictions (difficulty in products with a high degree of polymerization), the degree of freedom for increasing mechanical strength is small, and the 1,2-glycol bond in the main chain is preferable because it causes thermal deterioration of PVA at high temperatures. Not found out. Therefore, in order to solve these drawbacks, a PVA resin for melt molding having a saponification degree of 96 mol% or more and containing 1 to 2 mol% of 1,2-glycol bonds in the side chain has been proposed (for example, patents). Reference 4).
JP 2000-178396 A JP 2001-288321 A JP 2001-181405 A JP 2004-075866 A

しかしながら、特許文献4に記載のPVA系樹脂は、溶融成形時の熱安定性に優れ、ロングラン成形性の向上は認められるものの、市場から要求されているレベルからみると、まだまだ改良の余地があり、さらには、より低温で成形するために、96モル%よりもケン化度を下げていくと、熱安定性が低下、成形物中にゲルが発生したり、外観が悪くなったりするなど、ケン化度のコントロールによる成形温度の自由度に乏しいことが判明した。これは、かかるPVA系樹脂が、ビニルエステル系モノマーとビニルエチレンカーボネートの共重合物をケン化したものであり、部分ケン化物の場合、かかるコモノマーの未脱炭酸物であるカーボネート基が残存し、これが熱安定性の低下の原因になっているものと推測される。
そこで、本発明の目的とするところは、溶融成形時の熱安定性に優れ、ロングラン成形時にもゲルや目やにが発生しない溶融成形用PVA系樹脂を提供することであり、いまひとつの目的は、かかるPVA系樹脂の用途として透明性と保温性に優れたポリオレフィン系保温用フィルムを提供することである。
However, although the PVA resin described in Patent Document 4 has excellent thermal stability during melt molding and improved long-run moldability, there is still room for improvement when viewed from the level required by the market. Furthermore, in order to mold at a lower temperature, if the saponification degree is lowered more than 96 mol%, the thermal stability is lowered, gel is generated in the molded product, the appearance is deteriorated, etc. It was found that the degree of freedom in molding temperature by controlling the saponification degree was poor. This is a PVA resin obtained by saponifying a copolymer of a vinyl ester monomer and vinyl ethylene carbonate, and in the case of a partially saponified product, a carbonate group that is an undecarboxylated product of the comonomer remains, This is presumed to cause a decrease in thermal stability.
Accordingly, an object of the present invention is to provide a PVA resin for melt molding that has excellent thermal stability during melt molding and does not generate gels or eyes even during long run molding. An object of the PVA resin is to provide a polyolefin heat retaining film excellent in transparency and heat retaining property.

しかるに、本発明者はかかる事情に鑑み鋭意研究を重ねた結果、ビニルエステル系モノマーと、一般式(1)で示される化合物との共重合体をケン化して、側鎖に1,2−ジオール成分を含有した溶融成形用PVA系樹脂が上記目的に合致することを見出し、本発明を完成した。

Figure 2006089538

[但し、R、R及びRは、それぞれ独立して水素原子又はアルキル基を示し、Rは単結合またはアルキル基を有していてもよい炭素数1〜3のアルキレン基を示し、R、Rは、それぞれ独立して水素またはR−CO−(式中、Rはアルキル基である)である。] However, as a result of intensive studies in view of such circumstances, the present inventor has saponified a copolymer of a vinyl ester monomer and a compound represented by the general formula (1), and 1,2-diol in the side chain. The present invention has been completed by finding that the PVA resin for melt molding containing the components meets the above-mentioned purpose.
Figure 2006089538

[However, R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, and R 4 represents a C 1-3 alkylene group which may have a single bond or an alkyl group. , R 5 and R 6 are each independently hydrogen or R 7 —CO— (wherein R 7 is an alkyl group). ]

本発明のPVA系樹脂は、溶融成形時の熱安定性に優れ、長期ロングラン成形をおこなっても、焦げなどの熱分解物やゲル、フィッシュアイなどが発生せず、良好な外観の成形物が得られ、さらにケン化度を下げれば、より低温での成形が可能であり、各種包装材料用、水溶性フィルム、壁紙,水溶性繊維などの材料として好適である。
さらに、本発明のPVA系樹脂を用いたポリオレフィン系保温用フィルムは、保温性とともに透明性に優れるものである。
The PVA-based resin of the present invention has excellent thermal stability during melt molding, and does not generate pyrolysis products such as scorch, gels, fish eyes, etc. even when long-run long-run molding is performed. If it is obtained and the degree of saponification is further reduced, molding at a lower temperature is possible, and it is suitable as a material for various packaging materials, water-soluble films, wallpaper, water-soluble fibers and the like.
Furthermore, the polyolefin heat retention film using the PVA resin of the present invention is excellent in transparency as well as heat retention.

以下、本発明を詳細に説明する。
本発明の溶融整形用PVA系樹脂は、ビニルエステル系モノマーと、下記一般式(1)で示される化合物との共重合体をケン化して得られたPVA系樹脂である。

Figure 2006089538

[式中、R、R及びRは、それぞれ独立して水素原子又はアルキル基を示し、Rは単結合またはアルキル基を有していてもよい炭素数1〜3のアルキレン基を示し、R、Rは、それぞれ独立して水素またはR−CO−(式中、Rはアルキル基である)である。] Hereinafter, the present invention will be described in detail.
The PVA resin for melt shaping of the present invention is a PVA resin obtained by saponifying a copolymer of a vinyl ester monomer and a compound represented by the following general formula (1).
Figure 2006089538

[Wherein, R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, and R 4 represents a C 1-3 alkylene group which may have a single bond or an alkyl group. R 5 and R 6 are each independently hydrogen or R 7 —CO— (wherein R 7 is an alkyl group). ]

式(1)で示される化合物としては、3,4−ジヒドロキシ−1−ブテン、3,4−ジアシロキシ−1−ブテン、3−アシロキシ−4−ヒドロキシ−1−ブテン、4−アシロキシ−3−ヒドロキシ−1−ブテン、3,4−ジアシロキシ−2−メチル−1−ブテン、4,5−ジヒドロキシ−1−ペンテン、4,5−ジアシロキシ−1−ペンテン、4,5−ジヒドロキシ−3−メチル−1−ペンテン、4,5−ジアシロキシ−3−メチル−1−ペンテン、5,6−ジヒドロキシ−1−ヘキセン、5,6−ジアシロキシ−1−ヘキセンなどが挙げられる。なかでも、共重合反応性および工業的な取り扱いにおいて優れるという点で、R、R、Rが水素、Rが単結合、R、RがR−CO−で、Rがアルキル基である3,4−ジアシロキシ−1−ブテンが好ましく、そのなかでも特にRがメチル基である3,4−ジアセトキシ−1−ブテンがより好ましい。
なお、3,4−ジアシロキシ−1−ブテンは、イーストマンケミカル社やアクロス社の製品を市場から入手することが可能である。
Examples of the compound represented by the formula (1) include 3,4-dihydroxy-1-butene, 3,4-diacyloxy-1-butene, 3-acyloxy-4-hydroxy-1-butene, and 4-acyloxy-3-hydroxy. -1-butene, 3,4-diasiloxy-2-methyl-1-butene, 4,5-dihydroxy-1-pentene, 4,5-diasiloxy-1-pentene, 4,5-dihydroxy-3-methyl-1 -Pentene, 4,5-diacyloxy-3-methyl-1-pentene, 5,6-dihydroxy-1-hexene, 5,6-diacyloxy-1-hexene and the like. Among them, R 1 , R 2 and R 3 are hydrogen, R 4 is a single bond, R 5 and R 6 are R 7 —CO—, and R 7 is excellent in copolymerization reactivity and industrial handling. 3,4-diacyloxy-1-butene in which R 7 is an alkyl group is preferable, and 3,4-diacetoxy-1-butene in which R 7 is a methyl group is particularly preferable.
As for 3,4-diacyloxy-1-butene, products of Eastman Chemical Co. and Acros Co. can be obtained from the market.

ビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられる。なかでも、経済的な点から酢酸ビニルが好ましく用いられる。   Vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, versatic acid. Vinyl etc. are mentioned. Of these, vinyl acetate is preferably used from the economical viewpoint.

また、本発明においては、上記の共重合成分以外にも本発明の目的を阻害しない範囲において、他のモノマーを0.5〜10モル%程度共重合させることも可能で、例えばエチレン、プロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノ又はジアルキルエステル等、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル等のポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン、ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等が挙げられる。   In the present invention, in addition to the above-described copolymerization component, other monomers can be copolymerized in an amount of about 0.5 to 10 mol% within a range that does not impair the object of the present invention. For example, ethylene, propylene, Olefins such as isobutylene, α-octene, α-dodecene, α-octadecene, unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, salts thereof, mono- or dialkyl esters, etc. , Nitriles such as acrylonitrile and methacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid or salts thereof, alkyl vinyl ethers, dimethylallyl Vinyl keto , N-vinylpyrrolidone, vinyl chloride, vinylidene chloride, polyoxyethylene (meth) allyl ether, polyoxyalkylene (meth) allyl ether such as polyoxypropylene (meth) allyl ether, polyoxyethylene (meth) acrylate, polyoxy Polyoxyalkylene (meth) acrylate such as propylene (meth) acrylate, polyoxyethylene (meth) acrylamide, polyoxyalkylene (meth) acrylamide such as polyoxypropylene (meth) acrylamide, polyoxyethylene (1- (meth) acrylamide -1,1-dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene allylamine, polyoxypropylene allylamine, poly Polyoxyethylene vinyl amine, polyoxypropylene vinyl amine.

さらに、N−アクリルアミドメチルトリメチルアンモニウムクロライド、N−アクリルアミドエチルトリメチルアンモニウムクロライド、N−アクリルアミドプロピルトリメチルアンモニウムクロライド、2−アクリロキシエチルトリメチルアンモニウムクロライド、2−メタクリロキシエチルトリメチルアンモニウムクロライド、2−ヒドロキシ−3−メタクリロイルオキシプロピルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、3−ブテントリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジエチルジアリルアンモニウムクロライド等のカチオン基含有モノマー、アセトアセチル基含有モノマー等も挙げられる。   Furthermore, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidopropyltrimethylammonium chloride, 2-acryloxyethyltrimethylammonium chloride, 2-methacryloxyethyltrimethylammonium chloride, 2-hydroxy-3- Also included are cation group-containing monomers such as methacryloyloxypropyltrimethylammonium chloride, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, 3-butenetrimethylammonium chloride, dimethyldiallylammonium chloride, diethyldiallylammonium chloride, and acetoacetyl group-containing monomers. .

上記のビニルエステル系モノマーと式(1)で示される化合物(さらには他のモノマー)を共重合するに当たっては、特に制限はなく、塊状重合、溶液重合、懸濁重合、分散重合、またはエマルジョン重合等の公知の方法を採用することができるが、通常は溶液重合が行われる。
共重合時のモノマー成分の仕込み方法としては特に制限されず、一括仕込み、分割仕込み、連続仕込み等任意の方法が採用されるが、式(1)で示される化合物がポリビニルエステル系ポリマーの分子鎖中に均一に分布させられる点から滴下重合が好ましく、特にはHANNA法に基づく重合方法が好ましい。
There are no particular limitations on the copolymerization of the above-mentioned vinyl ester monomer and the compound represented by formula (1) (and other monomers), and there is no limitation, bulk polymerization, solution polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization. Although known methods such as the above can be employed, solution polymerization is usually performed.
The method for charging the monomer component at the time of copolymerization is not particularly limited, and any method such as batch charging, split charging, continuous charging, etc. may be employed. The compound represented by the formula (1) is a molecular chain of a polyvinyl ester polymer. Drop polymerization is preferred from the viewpoint of being uniformly distributed therein, and a polymerization method based on the HANNA method is particularly preferred.

かかる共重合で用いられる溶媒としては、通常、メタノール、エタノール、イソプロピルアルコール、n−プロパノール、ブタノール等の低級アルコールやアセトン、メチルエチルケトン等のケトン類等が挙げられ、工業的には、メタノールが好適に使用される。
溶媒の使用量は、目的とする共重合体の重合度に合わせて、溶媒の連鎖移動定数を考慮して適宜選択すればよく、例えば、溶媒がメタノールの時は、S(溶媒)/M(モノマー)=0.01〜10(重量比)、好ましくは0.05〜3(重量比)程度の範囲から選択される。
Examples of the solvent used in such copolymerization include usually lower alcohols such as methanol, ethanol, isopropyl alcohol, n-propanol and butanol, and ketones such as acetone and methyl ethyl ketone, and industrially preferred is methanol. used.
The amount of the solvent used may be appropriately selected in consideration of the chain transfer constant of the solvent in accordance with the degree of polymerization of the target copolymer. For example, when the solvent is methanol, S (solvent) / M ( Monomer) = 0.01 to 10 (weight ratio), preferably 0.05 to 3 (weight ratio).

共重合に当たっては重合触媒が用いられ、かかる重合触媒としては、例えばアゾビスイソブチロニトリル、過酸化アセチル、過酸化ベンゾイル、過酸化ラウリル等の公知のラジカル重合触媒やアゾビスジメチルバレロニトリル、アゾビスメトキシジメチルバレロニトリル等の低温活性ラジカル重合触媒等が挙げられ、重合触媒の使用量は、触媒の種類により異なり一概には決められないが、重合速度に応じて任意に選択される。例えば、アゾイソブチロニトリルや過酸化アセチルを用いる場合、ビニルエステル系モノマーに対して0.01〜0.2モル%が好ましく、特には0.02〜0.15モル%が好ましい。
また、共重合反応の反応温度は、使用する溶媒や圧力により40℃〜沸点程度とすることが好ましい。
For the copolymerization, a polymerization catalyst is used. Examples of the polymerization catalyst include known radical polymerization catalysts such as azobisisobutyronitrile, acetyl peroxide, benzoyl peroxide, lauryl peroxide, azobisdimethylvaleronitrile, azo Examples include low-temperature active radical polymerization catalysts such as bismethoxydimethylvaleronitrile, and the amount of polymerization catalyst used varies depending on the type of catalyst and cannot be determined unconditionally, but is arbitrarily selected according to the polymerization rate. For example, when azoisobutyronitrile or acetyl peroxide is used, 0.01 to 0.2 mol% is preferable with respect to the vinyl ester monomer, and 0.02 to 0.15 mol% is particularly preferable.
Moreover, it is preferable that the reaction temperature of a copolymerization reaction shall be about 40 degreeC-about a boiling point by the solvent and pressure to be used.

本発明においては、式(1)で示される化合物の共重合割合は特に限定されないが、後述の1,2−グリコール結合の導入量に合わせて共重合割合を決定すればよい。   In the present invention, the copolymerization ratio of the compound represented by the formula (1) is not particularly limited, but the copolymerization ratio may be determined in accordance with the amount of 1,2-glycol bond introduced later.

得られた共重合体は、次いでケン化されるのであるが、かかるケン化にあたっては、上記で得られた共重合体をアルコール又は含水アルコールに溶解し、アルカリ触媒又は酸触媒を用いて行われる。アルコールとしては、メタノール、エタノール、プロパノール、tert−ブタノール等が挙げられるが、メタノールが特に好ましく用いられる。アルコール中の共重合体の濃度は系の粘度により適宜選択されるが、通常は10〜60重量%の範囲から選ばれる。ケン化に使用される触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートの如きアルカリ触媒、硫酸、塩酸、硝酸、メタスルフォン酸、ゼオライト、カチオン交換樹脂等の酸触媒が挙げられる。   The obtained copolymer is then saponified. In such saponification, the copolymer obtained above is dissolved in an alcohol or a hydrous alcohol, and the reaction is carried out using an alkali catalyst or an acid catalyst. . Examples of the alcohol include methanol, ethanol, propanol, tert-butanol and the like, and methanol is particularly preferably used. The concentration of the copolymer in the alcohol is appropriately selected depending on the viscosity of the system, but is usually selected from the range of 10 to 60% by weight. Catalysts used for saponification include alkali catalysts such as alkali metal hydroxides and alcoholates such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate, lithium methylate, etc., sulfuric acid, Examples include acid catalysts such as hydrochloric acid, nitric acid, metasulfonic acid, zeolite, and cation exchange resin.

かかるケン化触媒の使用量については、ケン化方法、目標とするケン化度等により適宜選択されるが、アルカリ触媒を使用する場合は通常、ビニルエステル系モノマー及び式(1)で示される化合物の合計量1モルに対して0.1〜30ミリモル、好ましくは2〜17ミリモルが適当である。
また、ケン化反応の反応温度は特に限定されないが、10〜60℃が好ましく、より好ましくは20〜50℃である。
本発明のPVA系樹脂は上記の如くケン化時にビニルエステル系モノマーのエステル部分と式(1)で示される化合物のアシロキシ部分を同時に水酸基へ変換することによって製造されるので、ビニルエチレンカーボネートを使用するときの欠点である炭酸ジメチル等の副生成物が発生せず、PVA系樹脂の分子鎖中にカーボネート基が残存することで、溶融成形時にゲル化の原因となるということが無い。
The amount of the saponification catalyst used is appropriately selected depending on the saponification method, the target degree of saponification, and the like. When an alkali catalyst is used, the vinyl ester monomer and the compound represented by the formula (1) are usually used. The appropriate amount is 0.1 to 30 mmol, preferably 2 to 17 mmol, per 1 mol of the total amount.
Moreover, although the reaction temperature of saponification reaction is not specifically limited, 10-60 degreeC is preferable, More preferably, it is 20-50 degreeC.
Since the PVA resin of the present invention is produced by simultaneously converting the ester part of the vinyl ester monomer and the acyloxy part of the compound represented by the formula (1) into a hydroxyl group during saponification as described above, vinyl vinyl carbonate is used. By-products such as dimethyl carbonate, which are disadvantages in the production, are not generated, and the carbonate group remains in the molecular chain of the PVA resin, which does not cause gelation during melt molding.

かくして側鎖に1,2−ジオール成分を有したPVA系樹脂が得られるわけであるが、本発明においては、かかるPVA系樹脂の平均重合度(JIS K6726に準拠して測定)が200〜2000(さらには200〜1500、特には300〜1300、殊に300〜1000)であることが好ましく、かかる重合度が200未満では得られる成形物の強度が低下する傾向にあり、逆に2000を超えると溶融成形時の溶融粘度が高くなりすぎたり、せん断発熱が大きくなって成形中に分解したりする恐れがあり、好ましくない。   Thus, a PVA resin having a 1,2-diol component in the side chain is obtained. In the present invention, the average degree of polymerization (measured in accordance with JIS K6726) of the PVA resin is 200 to 2000. (More preferably, it is 200-1500, especially 300-1300, especially 300-1000). If the degree of polymerization is less than 200, the strength of the resulting molded product tends to decrease, and conversely exceeds 2000. Further, the melt viscosity at the time of melt molding becomes too high, or the shear heat generation becomes large and may be decomposed during molding, which is not preferable.

また、かかるPVA系樹脂のケン化度は、70〜99.9モル%(さらには75〜99.9モル%、特には80〜99.9モル%)であることが好ましく、かかるケン化度が70モル%未満では成形時に酢酸臭がしたり、PVA系樹脂が分解しやすくなる恐れがあるため好ましくない。
なお、本発明におけるケン化度とは、ビニルエステルモノマーのエステル部分および式(1)で示される化合物のアシロキシ部分の総量の水酸基への変化率(モル%)で表示される。
The saponification degree of the PVA-based resin is preferably 70 to 99.9 mol% (more preferably 75 to 99.9 mol%, particularly 80 to 99.9 mol%). However, if it is less than 70 mol%, it is not preferred because there is a risk of odor of acetic acid at the time of molding or the PVA resin is likely to be decomposed.
In addition, the saponification degree in this invention is displayed by the change rate (mol%) to the hydroxyl group of the total amount of the ester part of a vinyl ester monomer, and the acyloxy part of the compound shown by Formula (1).

また、かかるPVA系樹脂中の側鎖に存在する1,2−ジオール成分の含有量は、特に制限されないが、2〜15モル%(さらには3〜10モル%、特に4〜6.5モル%)であることが好ましく、2モル%未満では分解温度と融点が近接するため、熱分解をおこさない温度(通常は210℃以下)での成形が困難になり、逆に15モル%を超えると、溶融成形時の熱安定性が低下する恐れがあるため好ましくない。   Further, the content of the 1,2-diol component present in the side chain in the PVA resin is not particularly limited, but is 2 to 15 mol% (further 3 to 10 mol%, particularly 4 to 6.5 mol). When the content is less than 2 mol%, the decomposition temperature and the melting point are close to each other, making it difficult to form at a temperature that does not cause thermal decomposition (usually 210 ° C. or lower), and conversely, exceeding 15 mol%. And there is a possibility that the thermal stability at the time of melt molding is lowered, which is not preferable.

さらに、本発明においては、かかるPVA系樹脂に本発明の目的を阻害しない範囲において、飽和脂肪族アミド(例えばステアリン酸アミド等)、不飽和脂肪酸アミド(例えばオレイン酸アミド等)、ビス脂肪酸アミド(例えばエチレンビスステアリン酸アミド等)、などの滑剤、酸素吸収剤[(例えば無機系酸素吸収剤として、還元鉄粉類、さらにこれに吸水性物質や電解質等を加えたもの、アルミニウム粉、亜硫酸カリウム、光触媒酸化チタン等が、有機化合物系酸素吸収剤として、アスコルビン酸、さらにその脂肪酸エステルや金属塩等、ハイドロキノン、没食子酸、水酸基含有フェノールアルデヒド樹脂等の多価フェノール類、ビス−サリチルアルデヒド−イミンコバルト、テトラエチレンペンタミンコバルト、コバルト−シッフ塩基錯体、ポルフィリン類、大環状ポリアミン錯体、ポリエチレンイミン−コバルト錯体等の含窒素化合物と遷移金属との配位結合体、テルペン化合物、アミノ酸類とヒドロキシル基含有還元性物質の反応物、トリフェニルメチル化合物等が、高分子系酸素吸収剤として、窒素含有樹脂と遷移金属との配位結合体(例えばMXDナイロンとコバルトの組合せ)、三級水素含有樹脂と遷移金属とのブレンド物(例えばポリプロピレンとコバルトの組合せ)、炭素−炭素不飽和結合含有樹脂と遷移金属とのブレンド物(例えばポリブタジエンとコバルトの組合せ)、光酸化崩壊性樹脂(例えばポリケトン等)、アントラキノン重合体(例えばポリビニルアントラキノン)等や、更にこれらの配合物に光開始剤(例えばベンゾフェノン等)や過酸化物補足剤(例えば市販の酸化防止剤等)や消臭剤(例えば活性炭等)を添加したものなど]、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、着色剤、帯電防止剤、界面活性剤、抗菌剤、などを配合しても良い。   Further, in the present invention, a saturated aliphatic amide (such as stearic acid amide), an unsaturated fatty acid amide (such as oleic acid amide), a bis fatty acid amide (such as oleic acid amide) is added to such a PVA resin as long as the object of the present invention is not impaired. For example, ethylene bis-stearic acid amide, etc.), oxygen absorbers [(for example, reduced iron powders as inorganic oxygen absorbers, water-absorbing substances and electrolytes added thereto, aluminum powder, potassium sulfite, etc. , Photocatalytic titanium oxide and the like as organic compound-based oxygen absorbers, ascorbic acid, fatty acid esters and metal salts thereof, hydroquinone, gallic acid, polyhydric phenols such as hydroxyl group-containing phenol aldehyde resin, bis-salicylic aldehyde-imine Cobalt, tetraethylenepentamine cobalt, cobalt-Schiff salt Complexes, porphyrins, macrocyclic polyamine complexes, polyethyleneimine-cobalt complexes and other nitrogen-containing compounds and transition metal coordination complexes, terpene compounds, reaction products of amino acids and hydroxyl group-containing reducing substances, triphenylmethyl compounds And the like, as a polymer-based oxygen absorber, a coordinated combination of a nitrogen-containing resin and a transition metal (for example, a combination of MXD nylon and cobalt), a blend of a tertiary hydrogen-containing resin and a transition metal (for example, polypropylene and cobalt). A combination of a carbon-carbon unsaturated bond-containing resin and a transition metal (for example, a combination of polybutadiene and cobalt), a photo-oxidative disintegrating resin (for example, polyketone), an anthraquinone polymer (for example, polyvinyl anthraquinone), In addition to these compounds, photoinitiators (such as benzophenone) and peroxides Foot additives (eg, commercially available antioxidants) and deodorants (eg, activated carbon, etc.), heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, colorants, antistatic agents, A surfactant, an antibacterial agent, and the like may be blended.

特に、アルカリ金属塩および/またはアルカリ土類金属塩を配合することが、さらなる溶融成形性の改善の点で好ましく、かかるアルカリ金属塩としては、カリウム、ナトリウム等の酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸や、硫酸、亜硫酸、炭酸、リン酸等の無機酸の金属塩が挙げられ、またアルカリ土類金属塩としては、カルシウム、マグネシウム等の、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸や、硫酸、亜硫酸、炭酸、リン酸等の無機酸の金属塩を挙げることができる。   In particular, it is preferable to add an alkali metal salt and / or an alkaline earth metal salt from the viewpoint of further improving melt moldability. Examples of the alkali metal salt include acetic acid such as potassium and sodium, propionic acid, butyric acid, and lauryl. Examples include organic acids such as acids, stearic acid, oleic acid, and behenic acid, and metal salts of inorganic acids such as sulfuric acid, sulfurous acid, carbonic acid, phosphoric acid, and alkaline earth metal salts such as calcium and magnesium, Examples thereof include organic acids such as acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, and behenic acid, and metal salts of inorganic acids such as sulfuric acid, sulfurous acid, carbonic acid, and phosphoric acid.

これらの金属塩の配合量としては、PVA系樹脂に対して金属換算で5〜10000ppm(さらには20〜7000ppm、特には50〜5000ppm)とすることが好ましく、かかる含有量が5ppm未満では押出成形時にゲル化の程度が大きくなり、逆に10000ppmを超えると溶融成形時に分解が激しく発泡や臭気が発生しやすく、着色の程度も強くなったり、ゲル化傾向が強くなったりして好ましくない。なお、樹脂組成物中に2種以上のアルカリ金属及び/又はアルカリ土類金属の塩が含有される場合は、その総計が上記の含有量の範囲にあることが好ましい。   The compounding amount of these metal salts is preferably 5 to 10000 ppm (more preferably 20 to 7000 ppm, particularly 50 to 5000 ppm) in terms of metal with respect to the PVA resin, and if the content is less than 5 ppm, extrusion molding is performed. On the other hand, the degree of gelation increases. On the other hand, if it exceeds 10,000 ppm, decomposition is severe during melt molding, foaming and odor are likely to occur, the degree of coloring becomes strong, and the gelation tendency becomes strong. In addition, when 2 or more types of alkali metal and / or alkaline-earth metal salt contain in a resin composition, it is preferable that the sum total exists in the range of said content.

PVA系樹脂にアルカリ金属塩やアルカリ土類金属塩を含有させる方法については、特に限定されないが、一旦PVA系樹脂を得た後にアルカリ金属イオンやアルカリ土類金属イオンを含有する化合物を押出成形前に添加する方法、PVA系樹脂の製造(ケン化)時にケン化触媒としてアルカリ金属イオンを含有するアルカリ性物質を使用し、ケン化後のPVA系樹脂を洗浄して該樹脂中に含まれるアルカリ金属イオンの量を制御する方法等が挙げられる。なお、PVA系樹脂中のアルカリ金属やアルカリ土類金属の含有量は、原子吸光分析法で求めることができる。   Although it does not specifically limit about the method of containing an alkali metal salt and alkaline-earth metal salt in PVA-type resin, After extruding the compound containing an alkali-metal ion or alkaline-earth metal ion once after obtaining PVA-type resin, The alkali metal contained in the resin is washed by using an alkaline substance containing an alkali metal ion as a saponification catalyst during the production (saponification) of the PVA resin. Examples include a method for controlling the amount of ions. The content of alkali metal or alkaline earth metal in the PVA resin can be determined by atomic absorption analysis.

本発明のPVA系樹脂は、可塑剤を配合しなくても良好な溶融成形性を得ることができるが、別段必要に応じて可塑剤を配合することも可能で、かかる可塑剤としては脂肪族多価アルコール(例えば、エチレングリコール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジグリセリン等)、グリセリン等の多価アルコールへエチレンオキサイドを付加した化合物、各種アルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、エチレンオキサイドとプロピレンオキサイドの混合付加体等)、糖類(例えば、ソルビトール、マンニトール、ペンタエリスリトール、キシロール、アラビノース、リブロース等)、ビスフェノールAやビスフェノールS等のフェノール誘導体、N−メチルピロリドン等のアミド化合物、α−メチル−D−グルコシド等のグルコシド類、水等が挙げられる。なお、その配合量としては、PVA系樹脂100重量部に対して、100重量部以下、さらには20重量部以下、特には10重量部以下とすることが好ましい。   The PVA-based resin of the present invention can obtain good melt moldability without blending a plasticizer, but it can also be blended with a plasticizer if necessary. Polyhydric alcohols (for example, ethylene glycol, hexanediol, glycerin, trimethylolpropane, diglycerin, etc.), compounds obtained by adding ethylene oxide to polyhydric alcohols such as glycerin, various alkylene oxides (ethylene oxide, propylene oxide, ethylene oxide) Mixed adducts of propylene oxide, etc.), saccharides (for example, sorbitol, mannitol, pentaerythritol, xylol, arabinose, ribulose, etc.), phenol derivatives such as bisphenol A and bisphenol S, amide compounds such as N-methylpyrrolidone, α Glucosides such as methyl -D- glucoside, water and the like. The blending amount is preferably 100 parts by weight or less, more preferably 20 parts by weight or less, and particularly preferably 10 parts by weight or less with respect to 100 parts by weight of the PVA resin.

また、熱可塑性樹脂(例えば、相溶化剤存在下でポリエチレン、ポリプロピレン、ポリエステル)、香料、発泡剤、消臭剤、増量剤、充填剤(タルク、クレー、モンモリロナイト、炭酸カルシウム、ガラスビーズ、ガラス繊維、シリカ、マイカ、アルミナ、ハイドロタルサイト、酸化チタン、酸化ジルコニウム、窒化硼素、窒化アルミニウム等の無機充填剤、メラミンーホルマリン系樹脂等の有機充填材)、剥離剤、紫外線吸収剤、酸化防止剤、加工安定剤、耐候性安定剤、防かび剤、防腐剤等の添加剤を適宜配合することが出来る。なお、充填材は、PVA系樹脂の水解性や生分解性の速度を調整したり、該樹脂にブロッキング防止性や印刷適性の具備させる目的に好適に使用される。   Also, thermoplastic resins (eg polyethylene, polypropylene, polyester in the presence of compatibilizers), fragrances, foaming agents, deodorants, extenders, fillers (talc, clay, montmorillonite, calcium carbonate, glass beads, glass fibers , Silica, mica, alumina, hydrotalcite, titanium oxide, zirconium oxide, boron nitride, aluminum nitride and other inorganic fillers, melamine-formalin-based organic fillers, etc.), release agents, UV absorbers, antioxidants In addition, additives such as processing stabilizers, weather resistance stabilizers, fungicides, and preservatives can be appropriately blended. The filler is suitably used for the purpose of adjusting the water decomposability and biodegradability of the PVA resin, and for providing the resin with anti-blocking properties and printability.

上記の如く得られた側鎖に1,2−グリコール成分を含有する溶融成形用PVA系樹脂あるいはその組成物は、そのまま溶融成形に供することも可能であるが、溶融成形時の作業性や吐出安定性を考慮すれば、一度溶融状態で混練後冷却固化させてペレット状等にすることが好ましい。   The PVA resin for melt molding containing a 1,2-glycol component in the side chain obtained as described above or a composition thereof can be used for melt molding as it is. In consideration of stability, it is preferable to knead once in a molten state and then cool and solidify to form a pellet.

かかる手段としては、たとえば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサー、ブラストミルなどの公知の混練装置を用いて行うことができるが、通常は、単軸または二軸押出機を用いることが工業的に好ましく、また、必要に応じて、ベント吸引装置、ギヤポンプ装置、スクリーン装置、ストランド支持用ベルト、ドライフォッグ発生器等を設けることも好ましい。特に、水分や副生成物(熱分解低分子量物等)を除去するために、押出機に1個以上のベント孔を設けて減圧下に吸引したり、押出機中への酸素の混入を防止するためにホッパー内に窒素等の不活性ガスを連続的に供給したりすることにより、熱着色や熱劣化が軽減された品質に優れた溶融成形用PVA系樹脂あるいはその組成物のペレットを得ることができる。   As such means, for example, known kneaders such as a kneader ruder, an extruder, a mixing roll, a Banbury mixer, a blast mill can be used, but usually a single-screw or twin-screw extruder is used. It is industrially preferable, and it is also preferable to provide a vent suction device, a gear pump device, a screen device, a strand support belt, a dry fog generator, and the like as necessary. In particular, in order to remove moisture and by-products (pyrolysis low molecular weight products, etc.), one or more vent holes are provided in the extruder, and suction is performed under reduced pressure, and mixing of oxygen into the extruder is prevented. In order to achieve this, by continuously supplying an inert gas such as nitrogen into the hopper, a PVA resin for melt molding excellent in quality with reduced thermal coloring and thermal deterioration or a pellet of the composition is obtained. be able to.

上記のPVA系樹脂あるいはその組成物を用いて成形される溶融成形品の形状としては特に制限されることなく、フィルム、シート、容器、棒、管や溶融紡糸法による繊維及び不織布、その他各種の溶融成形品に成形される。
かかる溶融成形品を得るための溶融成形方法としては、圧縮成型法、トランスファー成形法、押出し成型法、射出成形法、インフレーション成形法、中空成形法、ブロー成形法、カレンダー成形法、発泡成形法、真空成形法等が主として採用され、溶融温度としては、通常150〜250℃の範囲から選ぶことが多いが、本発明のPVA系樹脂あるいはその組成物においては、PVA系樹脂が高ケン化度であっても150〜220℃(さらには185〜210℃)の低温で溶融成形することが可能であり、さらにPVA系樹脂のケン化度を下げればより低温での成形が可能である。
The shape of the melt-molded product molded using the PVA-based resin or the composition thereof is not particularly limited, and a film, a sheet, a container, a rod, a tube, a fiber and a nonwoven fabric obtained by a melt spinning method, and other various types. Molded into a melt-molded product.
As a melt molding method for obtaining such a melt molded product, a compression molding method, a transfer molding method, an extrusion molding method, an injection molding method, an inflation molding method, a hollow molding method, a blow molding method, a calendar molding method, a foam molding method, The vacuum forming method is mainly adopted, and the melting temperature is usually selected from the range of 150 to 250 ° C., but in the PVA resin or the composition of the present invention, the PVA resin has a high saponification degree. Even if it is, it is possible to perform melt molding at a low temperature of 150 to 220 ° C. (moreover, 185 to 210 ° C.), and further, molding at a lower temperature is possible if the saponification degree of the PVA resin is lowered.

上記の如く本発明の溶融成型用PVA系樹脂を用いて得られる溶融成形品は、水溶性フィルム(特に農薬、洗剤、洗濯用衣類、土木用添加材剤、殺菌剤、染料、顔料などの物品包装用)、シート、パイプ、チューブ、防漏膜、暫定皮膜、ケミカルレース用水溶性繊維、食品包装用PVDC代替フィルム、などに用いることができる。   As described above, a melt-molded product obtained by using the PVA resin for melt molding of the present invention is a water-soluble film (particularly, articles such as agricultural chemicals, detergents, laundry clothes, civil engineering additives, bactericides, dyes, pigments, etc. For packaging), sheet, pipe, tube, leak-proof film, provisional film, water soluble fiber for chemical lace, PVDC substitute film for food packaging, and the like.

また、本発明のPVA系樹脂は他の成形用樹脂に添加し、各種形状の成形体、あるいは単層および多層フィルムに成形することで、かかる成形体にPVA特有の特性を付与することも可能であり、その一例としてポリオレフィン系保温用フィルムが挙げられる。   In addition, the PVA resin of the present invention can be added to other molding resins and molded into various shapes, or formed into single-layer and multi-layer films, and PVA-specific properties can be imparted to such molded bodies. An example thereof is a polyolefin-based heat retaining film.

以下、かかる保温用フィルムについて説明する。
本発明の保温用フィルムに用いられるポリオレフィン系樹脂は、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン(ブロック又はランダム)共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン、ポリメチルペンテン等のオレフィンの単独又は共重合体等を挙げることができ、好適には直鎖状低密度ポリエチレン、低密度ポリエチレン、エチレン−プロピレン(ブロック又はランダム)共重合体、ポリプロピレン、エチレン−酢酸ビニル共重合体(中でも特に酢酸ビニル含有量が5〜30重量%のものが好ましい)が用いられる。
Hereinafter, such a heat retaining film will be described.
Polyolefin resins used in the heat retaining film of the present invention are linear low density polyethylene, low density polyethylene, ultra low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ionomer, ethylene- Propylene (block or random) copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, polypropylene, propylene-α- Examples of the olefin (alpha-olefin having 4 to 20 carbon atoms) copolymer, polybutene, polypentene, polymethylpentene, and other olefin homopolymers and copolymers may be mentioned. Density polyethylene, ethylene-propylene (bromine Or a copolymer), polypropylene, and ethylene-vinyl acetate copolymer (in particular, those having a vinyl acetate content of 5 to 30% by weight are preferred).

本発明の保温用フィルムにおけるPVA系樹脂とポリオレフィン系樹脂との含有割合については特に制限はないが、PVA系樹脂の含有量をポリオレフィン系樹脂100重量部に対して5〜100重量部(さらには5〜70重量部、特には10〜60重量部、殊に20〜50重量部)とすることが好ましく、かかる含有割合が5重量部未満では保温性が低下し、逆に100重量部を超えるとフィルムにするときの成形性や得られるフィルムの透明性が低下する傾向にあり好ましくない。   Although there is no restriction | limiting in particular about the content rate of PVA-type resin and polyolefin resin in the film for heat retention of this invention, The content of PVA-type resin is 5-100 weight part with respect to 100 weight part of polyolefin resin (further more 5 to 70 parts by weight, particularly 10 to 60 parts by weight, particularly 20 to 50 parts by weight). When the content is less than 5 parts by weight, the heat retaining property is lowered, and conversely, it exceeds 100 parts by weight. In addition, the moldability when forming a film and the transparency of the resulting film tend to decrease, such being undesirable.

本発明の保温用フィルムにおいては、上記のポリオレフィン系樹脂およびPVA系樹脂またはその組成物の剪断速度122sec−1、210℃での溶融粘度をそれぞれηaおよびηbとするとき、その溶融粘度比(ηa/ηb)が0.1〜1.2(さらには0.1〜1.1、特には0.15〜0.9)であることが好ましく、かかる溶融粘度比が0.1未満ではPVA系樹脂の分散粒子径が粗粒化して透明性が低下し、逆に1.2を超えるとPVA系樹脂の分散粒子が流動しやすくなるため好ましくない。 In the heat insulating film of the present invention, when the melt viscosity at 210 ° C. and shear rate of the polyolefin resin and PVA resin or the composition thereof is 122 sec −1 and ηa, respectively, the melt viscosity ratio (ηa / Ηb) is preferably 0.1 to 1.2 (more preferably 0.1 to 1.1, especially 0.15 to 0.9). When the melt viscosity ratio is less than 0.1, the PVA system If the dispersed particle diameter of the resin is coarsened and the transparency is lowered, and if it exceeds 1.2, the dispersed particle of the PVA resin tends to flow, which is not preferable.

なお、ポリオレフィン系樹脂の溶融粘度は、重合度等により調整することができ、かかる溶融粘度(剪断速度122sec−1、210℃で測定)の好ましい範囲は80〜8400Pa・sで、かかる溶融粘度が80Pa・s未満では得られるフィルムの機械的強度が低下するおそれがあり、逆に8400Pa・sを超えると押出成形性の低下を招いて好ましくない。 The melt viscosity of the polyolefin-based resin can be adjusted by the degree of polymerization or the like, and the preferable range of the melt viscosity (measured at a shear rate of 122 sec −1 and 210 ° C.) is 80 to 8400 Pa · s. If it is less than 80 Pa · s, the mechanical strength of the resulting film may be lowered. Conversely, if it exceeds 8400 Pa · s, the extrusion moldability is lowered, which is not preferable.

また、PVA系樹脂またはその組成物の溶融粘度(剪断速度122sec−1、210℃で測定)の好ましい範囲は、800〜7000Pa・sであり、かかる溶融粘度が800Pa・s未満では得られるフィルムの引き裂き強度が低下する傾向にあり、逆に7000Pa・sを超えると得られるフィルムの透明性やフィルム成形時の押出し成形性が低下する傾向にあり好ましくない。 Moreover, the preferable range of the melt viscosity (measured at a shear rate of 122 sec −1 , 210 ° C.) of the PVA-based resin or a composition thereof is 800 to 7000 Pa · s, and the film obtained is less than 800 Pa · s. The tear strength tends to decrease. On the other hand, if it exceeds 7000 Pa · s, the transparency of the resulting film and the extrusion moldability during film formation tend to decrease, such being undesirable.

かかるPVA系樹脂の溶融粘度は、重合度、充填剤や可塑剤の添加等により調整することができる。
かかる充填剤としては前述のものを使用することができ、その添加量は、PVA系樹脂に対して、0.01〜20重量%(さらには0.1〜20重量%、特には1〜20重量%、殊に5〜15重量%)とすることが好ましく、かかる添加量が0.01重量%未満では増粘効果や補強効果に乏しく、逆に20重量%を超えると得られるフィルムの機械的強度やフィルム成形時の成形性が低下する傾向にあり好ましくない。
The melt viscosity of the PVA resin can be adjusted by the degree of polymerization, the addition of a filler or a plasticizer, and the like.
As the filler, those described above can be used, and the amount added is 0.01 to 20% by weight (more preferably 0.1 to 20% by weight, particularly 1 to 20%) based on the PVA resin. %, Especially 5 to 15% by weight). If the amount added is less than 0.01% by weight, the effect of thickening and reinforcing is poor, and conversely if it exceeds 20% by weight, the resulting film machine This is not preferable because the mechanical strength and formability during film formation tend to be lowered.

また、可塑剤は、PVA系樹脂の溶融粘度を下げる目的で使用することができ、かかる可塑剤としては、前述のものを使用することができ、その添加量は、ポリビニルアルコール系樹脂100重量部に対して、0.01〜30重量部(さらには0.01〜20重量部、特には5〜15重量部)とすることが好ましく、かかる添加量が0.01重量部未満では可塑効果に乏しく、逆に30重量部を超えると得られるフィルムの機械的強度が低下したり、可塑剤がブリードアウトして好ましくない。   Further, the plasticizer can be used for the purpose of lowering the melt viscosity of the PVA resin, and as the plasticizer, the above-mentioned ones can be used, and the addition amount thereof is 100 parts by weight of the polyvinyl alcohol resin. Is preferably 0.01 to 30 parts by weight (more preferably 0.01 to 20 parts by weight, particularly 5 to 15 parts by weight). On the contrary, if it exceeds 30 parts by weight, the mechanical strength of the resulting film is lowered, or the plasticizer is bleed out, which is not preferable.

また、本発明の保温用フィルムにおいては、その成形性や引き裂き強度を向上させる目的で変性ポリオレフィン系樹脂を併用することが好ましい。
かかる変性ポリオレフィン系樹脂としては、酸変性ポリオレフィン系樹脂、ナイロングラフト変性ポリオレフィン系樹脂、部分ケン化のエチレン−酢酸ビニル共重合体(酢酸ビニル含有量3〜50モル%、OH基含有量2〜10モル%)等を挙げることができるが、本発明においては酸変性ポリオレフィン系樹脂やナイロングラフト変性ポリオレフィン系樹脂等を用いることが好ましく、さらには酸変性ポリオレフィン系樹脂が好ましい。かかる変性ポリオレフィン系樹脂の含有量は、PVA系樹脂とポリオレフィン系樹脂の合計量100重量部に対して0.1〜50重量部(さらには0.5〜40重量部、特には1〜30重量部、殊に1〜15重量部)とすることが好ましく、かかる含有割合が0.1重量部未満では樹脂組成物の相溶性が低下して得られるフィルムの透明性や機械的強度が低下したり、逆に50重量部を超えるとフィルムにするときの成形性や得られるフィルムの透明性が低下したりする傾向にあり好ましくない。
In the heat retaining film of the present invention, it is preferable to use a modified polyolefin resin in combination for the purpose of improving the moldability and tear strength.
Examples of such modified polyolefin resins include acid-modified polyolefin resins, nylon graft-modified polyolefin resins, partially saponified ethylene-vinyl acetate copolymers (vinyl acetate content 3-50 mol%, OH group content 2-10. In the present invention, an acid-modified polyolefin resin, a nylon graft-modified polyolefin resin, or the like is preferably used, and an acid-modified polyolefin resin is more preferable. The content of the modified polyolefin resin is 0.1 to 50 parts by weight (more preferably 0.5 to 40 parts by weight, particularly 1 to 30 parts by weight) with respect to 100 parts by weight of the total amount of the PVA resin and the polyolefin resin. Part, especially 1 to 15 parts by weight), and if the content ratio is less than 0.1 part by weight, the transparency and mechanical strength of the film obtained by reducing the compatibility of the resin composition are lowered. On the other hand, if it exceeds 50 parts by weight, the moldability when forming a film and the transparency of the resulting film tend to decrease, such being undesirable.

また、かかる保温用フィルムを成形するにあたり、ポリオレフィン系樹脂、PVA系樹脂、変性ポリオレフィン系樹脂の混合方法としては特に限定されないが、二軸押出機等の一般的な公知の混合機を用いることができ、具体的な混合方法としては、これらを一括混合し溶融する方法、又は、サイドフィード法を用いて、順次混合溶融する方法等が挙げられる。   Further, in forming such a heat retaining film, the mixing method of the polyolefin resin, the PVA resin, and the modified polyolefin resin is not particularly limited, but a general known mixer such as a twin screw extruder may be used. Specific mixing methods include a method of mixing and melting these at once, a method of sequentially mixing and melting using a side feed method, and the like.

本発明の保温用フィルム(単層)を成形するにあたっては特に制限はなく、単軸あるいは二軸押出機を用いて溶融押出成形することによりフィルムを得ることができる。この時の溶融温度としては150〜250℃の範囲から選択することができる。
また、得られるフィルムの厚みとしては特に制限はないが、10〜500μm(さらには10〜300μm、特には15〜150μm)とすることが好ましく、かかる厚みが10μm未満では機械的強度に乏しく、逆に500μmを超えると透明性が低下したり、伸張性が低下したりして好ましくない。
There is no restriction | limiting in particular in shape | molding the film for heat retention (single layer) of this invention, A film can be obtained by melt-extrusion molding using a single screw or a twin screw extruder. The melting temperature at this time can be selected from the range of 150 to 250 ° C.
The thickness of the obtained film is not particularly limited, but is preferably 10 to 500 μm (more preferably 10 to 300 μm, particularly 15 to 150 μm). If the thickness is less than 10 μm, the mechanical strength is poor, and conversely If it exceeds 500 μm, the transparency is lowered or the extensibility is lowered.

また、本発明の保温用フィルムは上記の如き単層フィルムだけでなく、多層フィルムとすることも可能で、かかる多層フィルム(積層体)は、本発明の樹脂組成物の片面又は両面に、他の基材(熱可塑性樹脂等)を積層すればよく、積層方法としては、例えば本発明の樹脂組成物の成形フィルムに他の基材を溶融押出ラミネートする方法、逆に他の基材に該樹脂組成物を溶融押出ラミネートする方法、該樹脂組成物と他の基材とを共押出する方法、該樹脂組成物の成形フィルムや成形シートと他の基材とを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物、ポリウレタン化合物等の接着剤を用いてドライラミネートする方法等が挙げられる。上記の溶融押出し時の溶融成形温度は、150〜300℃の範囲から選ぶことが多い。   Further, the heat retaining film of the present invention can be not only a single-layer film as described above but also a multilayer film. Such a multilayer film (laminate) can be used on one side or both sides of the resin composition of the present invention. The base material (thermoplastic resin or the like) may be laminated, and as a lamination method, for example, a method of melt extrusion laminating another base material on the molded film of the resin composition of the present invention, conversely, the other base material A method of melt extrusion laminating a resin composition, a method of co-extrusion of the resin composition and another substrate, an organic titanium compound, an isocyanate compound, a molded film or a molded sheet of the resin composition and another substrate, Examples thereof include a dry lamination method using an adhesive such as a polyester compound and a polyurethane compound. The melt molding temperature at the time of the melt extrusion is often selected from the range of 150 to 300 ° C.

かかる単層フィルムおよび多層フィルムは、そのまま各種形状のものに使用されるが、さらに物性を改善したり目的とする任意の容器形状に成形するためには加熱延伸処理を施すことも好ましい。ここで加熱延伸処理とは、熱的に均一に加熱されたフィルムをチャック、プラグ、真空力、圧空力、ブローなどにより、カップ、トレイ、チューブ、ボトル、フィルム状に均一に成形する操作を意味し、かかる延伸については、一軸延伸、二軸延伸のいずれであってもよく、できるだけ高倍率の延伸を行ったほうが物性的に良好で、延伸時にピンホールやクラック、延伸ムラや偏肉、デラミ等の生じない、ガスバリア性に優れた延伸成形物が得られる。   Such single-layer films and multilayer films are used in various shapes as they are, but it is also preferable to subject them to heat-stretching in order to further improve the physical properties or to form a desired container shape. Here, the heat stretching treatment means an operation for uniformly forming a thermally heated film into a cup, a tray, a tube, a bottle, or a film by chuck, plug, vacuum force, pneumatic force, blow, etc. Such stretching may be either uniaxial stretching or biaxial stretching, and it is better to perform stretching at as high a magnification as possible. Thus, a stretched molded product having no gas barrier property and excellent gas barrier properties is obtained.

延伸方法としては、ロール延伸法、テンター延伸法、チューブラー延伸法、延伸ブロー法、真空成形、圧空成形、真空圧空成形等のうち延伸倍率の高いものも採用できる。二軸延伸の場合は同時二軸延伸方式、逐次二軸延伸方式のいずれの方式も採用できる。延伸温度は60〜170℃、好ましくは80〜160℃程度の範囲から選ばれる。   As a stretching method, a roll stretching method, a tenter stretching method, a tubular stretching method, a stretching blow method, a vacuum forming method, a pressure forming method, a vacuum pressure forming method, or the like can be used. In the case of biaxial stretching, both a simultaneous biaxial stretching method and a sequential biaxial stretching method can be employed. The stretching temperature is selected from the range of about 60 to 170 ° C, preferably about 80 to 160 ° C.

延伸が終了した後、次いで熱固定を行うことも好ましい。熱固定は周知の手段で実施可能であり、上記延伸フィルムを緊張状態を保ちながら50〜170℃、好ましくは70〜160℃で2〜600秒間程度熱処理を行う。   It is also preferable to perform heat setting after the completion of stretching. The heat setting can be performed by a known means, and the heat treatment is performed at 50 to 170 ° C., preferably 70 to 160 ° C. for about 2 to 600 seconds while keeping the stretched film in a tension state.

かくして得られたポリオレフィン系保温用フィルムは、透明性と保温性を兼ね備えたもので、農業用ハウス、トンネルハウス、マルチング、農業用カーテンなどの農業用フィルム、液状加工食品やスープ等の食品包装、壁紙、防水シート、建築・土木用シートなどに好適である。   The polyolefin heat insulating film thus obtained has both transparency and heat insulating properties, such as agricultural films for agricultural houses, tunnel houses, mulching, agricultural curtains, food packaging for liquid processed foods and soups, Suitable for wallpaper, waterproof sheets, architectural and civil engineering sheets.

以下、実施例を挙げて本発明を具体的に説明する。
なお、例中「%」とあるのは、断りのない限り重量基準を意味する。
Hereinafter, the present invention will be specifically described with reference to examples.
In the examples, “%” means weight basis unless otherwise specified.

〔側鎖に1,2−ジオール成分を含有するPVA系樹脂(A1)〜(A6)の製造〕
製造例1:PVA系樹脂(A1)
還流冷却器、滴下漏斗、撹拌機を備えた反応缶(1m)に、酢酸ビニル260kg、メタノール291.2kg、3,4−ジアセトキシ−1−ブテン16.99kgを仕込み、アゾビスイソブチロニトリルを0.11モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ、67℃で重合を開始したと同時に3,4−ジアセトキシ−1−ブテンの20%メタノール溶液の仕込みをHANNA法に従って開始し、重合率が95%となるまでに24.33kg仕込んだ。
尚、3,4−ジアセトキシ−1−ブテンは、酢酸ビニルと均一に重合するように、HANNAの式[3,4−ジアセトキシ−1−ブテンの反応性比(r)=0.701、酢酸ビニルの反応性比(r)=0.710]から求めた量を重合速度に合わせて仕込んだ。酢酸ビニルの重合率が95%となった時点で、重合禁止剤としてm−ジニトロベンゼン 10ppm(対仕込酢酸ビニル)を仕込み、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
[Production of PVA-based resins (A1) to (A6) containing a 1,2-diol component in the side chain]
Production Example 1: PVA resin (A1)
A reaction vessel (1 m 3 ) equipped with a reflux condenser, a dropping funnel and a stirrer was charged with 260 kg of vinyl acetate, 291.2 kg of methanol, and 16.99 kg of 3,4-diacetoxy-1-butene, and azobisisobutyronitrile. Was added to 0.11 mol% (compared with vinyl acetate), the temperature was raised under a nitrogen stream while stirring, and the polymerization was started at 67 ° C, and at the same time, a 20% methanol solution of 3,4-diacetoxy-1-butene Was started according to the HANNA method, and 24.33 kg was charged until the polymerization rate reached 95%.
It should be noted that 3,4-diacetoxy-1-butene has a HANNA formula [3,4-diacetoxy-1-butene reactivity ratio (r) = 0.701, vinyl acetate so that it is uniformly polymerized with vinyl acetate. The amount obtained from the reactivity ratio (r) = 0.710] was charged in accordance with the polymerization rate. When the polymerization rate of vinyl acetate reached 95%, 10 ppm of m-dinitrobenzene (vs. charged vinyl acetate) was charged as a polymerization inhibitor to complete the polymerization. Subsequently, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

次いで、該溶液をメタノールで希釈して濃度45%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル及び3,4−ジアセトキシ−1-ブテンの合計量1モルに対して9.8ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出して、粒子状となった時点で、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、PVA系樹脂(A1)を得た。   The solution was then diluted with methanol to a concentration of 45% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to vinyl acetate and 3,4 in the copolymer. Saponification was carried out by adding 9.8 mmol to 1 mol of the total amount of diacetoxy-1-butene. When saponification progressed and the saponified product precipitated and became particulate, it was filtered, washed well with methanol, and dried in a hot air dryer to obtain PVA resin (A1).

得られたPVA系樹脂(A1)のケン化度は、残存酢酸ビニル及び残存3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量で分析を行ったところ、99.6モル%であり、平均重合度はJIS K6726に準じて分析を行ったところ、500であった。また、該ポリビニルアルコール系樹脂の4%水溶液の粘度は、5.2mPa・s(20℃)であり、1,2−グリコール成分を含有する側鎖の導入量は、H−NMR(内部標準:テトラメチルシラン、溶媒:DMSO−d6)で測定して算出したところ、4.3モル%であった。 The saponification degree of the obtained PVA-based resin (A1) was 99.6 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and residual 3,4-diacetoxy-1-butene. Yes, the average degree of polymerization was 500 when analyzed according to JIS K6726. The viscosity of a 4% aqueous solution of the polyvinyl alcohol-based resin is 5.2 mPa · s (20 ° C.), and the amount of side chain introduced containing a 1,2-glycol component is 1 H-NMR (internal standard). : Tetramethylsilane, Solvent: DMSO-d6) and calculated to be 4.3 mol%.

製造例2:PVA系樹脂(A2)
還流冷却器、滴下漏斗、撹拌機を備えた反応缶(1m)に、酢酸ビニル260kg、メタノール96.2kg、3,4−ジアセトキシ−1−ブテン22.82kgを仕込み、アゾビスイソブチロニトリルを0.09モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ重合を開始した。
その後、酢酸ビニルの重合率に応じてHanna法により3,4−ジアセトキシー1―ブテンを20%含有するメタノールを11時間かけて30.08kg滴下し、酢酸ビニルの重合率が90%となった時点で、重合禁止剤としてm−ジニトロベンゼン10ppm(対仕込酢酸ビニル)を仕込み、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
Production Example 2: PVA resin (A2)
A reaction vessel (1 m 3 ) equipped with a reflux condenser, a dropping funnel, and a stirrer was charged with 260 kg of vinyl acetate, 96.2 kg of methanol, and 22.82 kg of 3,4-diacetoxy-1-butene, and azobisisobutyronitrile. Was added in an amount of 0.09 mol% (compared with vinyl acetate), and the temperature was raised in a nitrogen stream while stirring to initiate polymerization.
Thereafter, 30.08 kg of methanol containing 20% of 3,4-diacetoxy-1-butene was dropped over 11 hours according to the Hanna method according to the polymerization rate of vinyl acetate, and the polymerization rate of vinyl acetate reached 90%. Then, 10 ppm of m-dinitrobenzene (vs. charged vinyl acetate) was charged as a polymerization inhibitor to complete the polymerization. Subsequently, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

次いで、該溶液をメタノールで希釈して濃度40%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル及び3,4−ジアセトキシ−1-ブテンの合計量1モルに対して10.5ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出して、粒子状となった時点で、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、PVA系樹脂(A2)を得た。   The solution was then diluted with methanol to a concentration of 40% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to vinyl acetate and 3,4 in the copolymer. -Saponification was carried out by adding 10.5 mmol to 1 mol of the total amount of diacetoxy-1-butene. When saponification progressed and the saponified product precipitated and became particulate, it was filtered off, washed well with methanol and dried in a hot air dryer to obtain a PVA resin (A2).

得られたPVA系樹脂(A2)のケン化度は99.5モル%であり、平均重合度は800、4%水溶液の粘度は8.2mPa・s(20℃)、1,2−グリコール成分を含有する側鎖の導入量は6モル%であった。   The obtained PVA-based resin (A2) has a saponification degree of 99.5 mol%, an average polymerization degree of 800, and a 4% aqueous solution with a viscosity of 8.2 mPa · s (20 ° C.), a 1,2-glycol component. The amount of side chain introduced was 6 mol%.

製造例3:PVA系樹脂(A3)
還流冷却器、滴下漏斗、撹拌機を備えた反応缶(1m)に、酢酸ビニル250kg、メタノール250kg、3,4−ジアセトキシ−1−ブテン23.76kgを仕込み、アゾビスイソブチロニトリルを0.1モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ、67℃で重合を開始したと同時に3,4−ジアセトキシ−1−ブテンの20%メタノール溶液の仕込みをHANNA法に従って開始し、重合率が90%となるまでに33.13kg仕込んだ。
尚、3,4−ジアセトキシ−1−ブテンは、酢酸ビニルと均一に重合するように、HANNAの式[3,4−ジアセトキシ−1−ブテンの反応性比(r)=0.701、酢酸ビニルの反応性比(r)=0.710]から求めた量を重合速度に合わせて仕込んだ。酢酸ビニルの重合率が95%となった時点で、重合禁止剤としてm−ジニトロベンゼン 10ppm(対仕込酢酸ビニル)を仕込み、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
Production Example 3: PVA resin (A3)
A reaction vessel (1 m 3 ) equipped with a reflux condenser, a dropping funnel, and a stirrer was charged with 250 kg of vinyl acetate, 250 kg of methanol, 23.76 kg of 3,4-diacetoxy-1-butene, and 0% of azobisisobutyronitrile. .1 mol% (vs. charged vinyl acetate) was added, the temperature was increased under a nitrogen stream while stirring, and polymerization was started at 67 ° C., and at the same time, a 20% methanol solution of 3,4-diacetoxy-1-butene was charged. Was started according to the HANNA method, and 33.13 kg was charged until the polymerization rate reached 90%.
It should be noted that 3,4-diacetoxy-1-butene has a HANNA formula [3,4-diacetoxy-1-butene reactivity ratio (r) = 0.701, vinyl acetate so that it is uniformly polymerized with vinyl acetate. The amount obtained from the reactivity ratio (r) = 0.710] was charged in accordance with the polymerization rate. When the polymerization rate of vinyl acetate reached 95%, 10 ppm of m-dinitrobenzene (vs. charged vinyl acetate) was charged as a polymerization inhibitor to complete the polymerization. Subsequently, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

次いで、該溶液をメタノールで希釈して濃度45%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル及び3,4−ジアセトキシ−1-ブテンの合計量1モルに対して7ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出して、粒子状となった時点で、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、PVA系樹脂(A3)を得た。   The solution was then diluted with methanol to a concentration of 45% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to vinyl acetate and 3,4 in the copolymer. Saponification was carried out by adding 7 mmol per 1 mol of the total amount of diacetoxy-1-butene. When saponification progressed and the saponified product precipitated and became particulate, it was filtered off, washed well with methanol and dried in a hot air drier to obtain a PVA resin (A3).

得られたPVA系樹脂(A3)のケン化度は75モル%であり、平均重合度は480であった。また、4%水溶液の粘度は4.5mPa・s(20℃)であり、1,2−グリコール成分を含有する側鎖の導入量は6.4モル%であった。   The obtained PVA resin (A3) had a saponification degree of 75 mol% and an average degree of polymerization of 480. Moreover, the viscosity of 4% aqueous solution was 4.5 mPa * s (20 degreeC), and the introduction amount of the side chain containing a 1, 2- glycol component was 6.4 mol%.

製造例4:PVA系樹脂(A4)
製造例2において、鹸化触媒量を11.5ミリモルとした以外は製造例2と同様の方法によりPVA系樹脂(A4)を得た。
得られたPVA系樹脂(A4)のケン化度は99.9モル%であり、平均重合度は500であった。また、4%水溶液の粘度は4.9mPa・s(20℃)であり、1,2−グリコール成分を含有する側鎖の導入量は6.4モル%であった。
Production Example 4: PVA resin (A4)
In Production Example 2, a PVA resin (A4) was obtained in the same manner as in Production Example 2, except that the amount of saponification catalyst was 11.5 mmol.
The obtained PVA resin (A4) had a saponification degree of 99.9 mol% and an average polymerization degree of 500. Further, the viscosity of the 4% aqueous solution was 4.9 mPa · s (20 ° C.), and the amount of side chains introduced containing the 1,2-glycol component was 6.4 mol%.

製造例5:PVA系樹脂(A5)
製造例2において、鹸化触媒量を9.5ミリモルとした以外は製造例2と同様の方法によりPVA系樹脂(A5)を得た。
得られたPVA系樹脂(A5)のケン化度は98.8モル%であり、平均重合度は500であった。また、4%水溶液の粘度は4.8mPa・s(20℃)であり、1,2−グリコール成分を含有する側鎖の導入量は6.4モル%であった。
Production Example 5: PVA resin (A5)
In Production Example 2, a PVA resin (A5) was obtained in the same manner as in Production Example 2, except that the amount of saponification catalyst was 9.5 mmol.
The obtained PVA resin (A5) had a saponification degree of 98.8 mol% and an average polymerization degree of 500. Further, the viscosity of the 4% aqueous solution was 4.8 mPa · s (20 ° C.), and the amount of side chain introduced containing the 1,2-glycol component was 6.4 mol%.

製造例6:PVA系樹脂(A6)
還流冷却器、滴下漏斗、撹拌機を備えた反応缶(1m)に、酢酸ビニル250kg、メタノール237.5kg、3,4−ジアセトキシ−1−ブテンに替えてビニルエチレンカーボネート22.6kg(6.5モル%)を仕込み、アゾビスイソブチロニトリルを0.12モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ重合を開始した。
酢酸ビニルの重合率が80%となった時点で、重合禁止剤としてm−ジニトロベンゼン10ppm(対仕込酢酸ビニル)を仕込み、重合を終了した。続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
Production Example 6: PVA resin (A6)
In a reaction vessel (1 m 3 ) equipped with a reflux condenser, a dropping funnel, and a stirrer, vinyl acetate 250 kg, methanol 237.5 kg, 3,4-diacetoxy-1-butene were replaced with 22.6 kg (6. 5 mol%) was charged, 0.12 mol% of azobisisobutyronitrile (vs. vinyl acetate charged) was added, and the temperature was raised under a nitrogen stream while stirring to initiate polymerization.
When the polymerization rate of vinyl acetate reached 80%, 10 ppm of m-dinitrobenzene (vs. charged vinyl acetate) was charged as a polymerization inhibitor to complete the polymerization. Subsequently, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

次いで、該溶液をメタノールで希釈して濃度45%に調整してニーダーに仕込み、溶液温度を40℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル1モルに対して8.0ミリモルとなる割合で加えてケン化を行った。ケン化が進行すると共にケン化物が析出して、粒子状となった時点で、濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、PVA系樹脂(A6)を得た。   Next, the solution was diluted with methanol to a concentration of 45% and charged into a kneader. While maintaining the solution temperature at 40 ° C., a 2% methanol solution of sodium hydroxide was added to 1 mol of vinyl acetate in the copolymer. Saponification was carried out at a rate of 8.0 mmol. When saponification progressed and saponified substance precipitated and became particulate, it was separated by filtration, washed well with methanol and dried in a hot air dryer to obtain a PVA resin (A6).

得られたPVA系樹脂(A6)のケン化度は、残存酢酸ビニルの加水分解に要するアルカリ消費量で分析を行ったところ80.2モル%であり、平均重合度は585であった。また、4%水溶液の粘度は5.6mPa・s(20℃)であり、1,2−グリコール成分を含有する側鎖の導入量は6.3モル%であった。   The degree of saponification of the obtained PVA-based resin (A6) was 80.2 mol% as analyzed by the alkali consumption required for hydrolysis of the residual vinyl acetate, and the average degree of polymerization was 585. Further, the viscosity of the 4% aqueous solution was 5.6 mPa · s (20 ° C.), and the amount of the side chain containing the 1,2-glycol component was 6.3 mol%.

実施例1
得られたPVA系樹脂(A1)を、2軸同方向押出機に供給して、以下の条件でペレット化した。
[ペレット化条件]
スクリュー内径 30mm
L/D 30
スクリュー回転数 100rpm
押出温度 C1:190℃ H:200℃
C2:200℃ D:198℃
C3:205℃
C4:205℃
上記で得られたペレットを用いて、下記の条件で製膜を行い、フィルム外観及び目やにの評価を下記の要領で行った。
Example 1
The obtained PVA-based resin (A1) was supplied to a biaxial co-directional extruder and pelletized under the following conditions.
[Pelletization conditions]
Screw inner diameter 30mm
L / D 30
Screw rotation speed 100rpm
Extrusion temperature C1: 190 ° C H: 200 ° C
C2: 200 ° C D: 198 ° C
C3: 205 ° C
C4: 205 ° C
Using the pellets obtained above, a film was formed under the following conditions, and the appearance of the film and the eyes were evaluated in the following manner.

[製膜条件]
スクリュー内径 40mm
L/D 25
スクリュー フルフライト
スクリュー圧縮比 3.5
スクリュー回転数 40rpm
ダイ T−ダイ
ダイ幅 450mm
押出温度 C1:195℃(フィードゾーン)
C2:210℃(コンプレッションゾーン)
C3:205℃(メータリングゾーン)
H :205℃
D :200℃
フィルム引取速度 25mm/min
[Film forming conditions]
Screw inner diameter 40mm
L / D 25
Screw Full flight Screw compression ratio 3.5
Screw rotation speed 40rpm
Die T-die Die width 450mm
Extrusion temperature C1: 195 ° C (feed zone)
C2: 210 ° C (compression zone)
C3: 205 ° C (metering zone)
H: 205 ° C
D: 200 ° C
Film take-up speed 25mm / min

[フィルム外観]
上記の条件でロングラン製膜を行って、フィルム外観を目視観察して、以下の判断基準で評価した。
A・・・7日以上成形を行ってもゲルの発生なし
B・・・2〜4日未満の成形でゲルの発生が見られた
C・・・3時間〜1日未満の成形でゲルの発生が見られた
D・・・3時間未満の成形でゲルが発生。
[Film appearance]
A long run film was formed under the above conditions, and the film appearance was visually observed and evaluated according to the following criteria.
A ... No gel generation even after molding for 7 days or longer B ... Generation of gel was observed in molding for less than 2-4 days C ... Gel for molding in 3 hours to less than 1 day Generation was observed D: Gel was generated after molding for less than 3 hours.

[目やに]
上記の条件でロングラン製膜を行って、ダイリップ付近の状況を目視観察して、以下の判断基準で評価した。
A・・・5日以上成形を行っても目やにの発生なし
B・・・3〜5日未満の成形で目やにの発生が見られた
C・・・3時間〜3日未満の成形で目やにの発生が見られた
D・・・3時間未満の成形で目やにが発生。
[In the eyes]
A long run film was formed under the above conditions, and the situation near the die lip was visually observed and evaluated according to the following criteria.
A ... No eyes or eyes formed even after molding for 5 days or longer B ... Eyes or eyes were observed after 3 to 5 days of molding C ... 3 hours to 3 days or less of molding Occurrence was observed D ... Eyes were formed in molding for less than 3 hours.

実施例2〜5、比較例1〜2
製造例2〜6によるPVA系樹脂(A2〜A6)および未変性PVA(重合度400、ケン化度98.2モル%)を用い、実施例1と同様にペレット化、製膜、及び評価を行った。結果を表1に示す。
なお、各実施例及び比較例においては、PVA系樹脂の融点に応じて下記のように溶融条件(シリンダー等の温度)の設定を行った。
Examples 2-5, Comparative Examples 1-2
Using PVA-based resins (A2 to A6) and unmodified PVA (polymerization degree 400, saponification degree 98.2 mol%) according to Production Examples 2 to 6, pelletization, film formation, and evaluation were performed in the same manner as in Example 1. went. The results are shown in Table 1.
In each example and comparative example, the melting conditions (temperature of the cylinder, etc.) were set as follows according to the melting point of the PVA resin.

[ペレット化条件]
実施例2〜5、比較例1:下記に変更
押出温度 C1:185℃ H:190℃
C2:190℃ D:190℃
C3:190℃
C4:190℃
比較例2:下記に変更
押出温度 C1:220℃ H:220℃
C2:225℃ D:120℃
C3:230℃
C4:230℃
[Pelletization conditions]
Examples 2-5, Comparative Example 1: Changed to the following Extrusion temperature C1: 185 ° C H: 190 ° C
C2: 190 ° C D: 190 ° C
C3: 190 ° C
C4: 190 ° C
Comparative example 2: changed to the following extrusion temperature C1: 220 ° C H: 220 ° C
C2: 225 ° C D: 120 ° C
C3: 230 ° C
C4: 230 ° C

[製膜条件]
実施例2〜5、比較例1:下記に変更
押出温度 C1:180℃ H:190℃
C2:190℃ D:190℃
C3:190℃
比較例2:下記に変更
押出温度 C1:210℃ H:225℃
C2:230℃ D:220℃
C3:225℃
[Film forming conditions]
Examples 2 to 5, Comparative Example 1: Changed to the following Extrusion temperature C1: 180 ° C. H: 190 ° C.
C2: 190 ° C D: 190 ° C
C3: 190 ° C
Comparative Example 2: Changed to the following Extrusion temperature C1: 210 ° C H: 225 ° C
C2: 230 ° C. D: 220 ° C.
C3: 225 ° C

Figure 2006089538
Figure 2006089538

実施例6
酢酸ビニル含有量15%のエチレン−酢酸ビニル共重合体80部、PVA系樹脂(A1)20部、グリセリン2部及び無水マレイン酸変性エチレン−酢酸ビニル共重合体〔マレイン酸含有量0.8%、酢酸ビニル含有量28%〕10部をドライブレンドした後、225℃で溶融混合して樹脂組成物を得た。
Example 6
80 parts of an ethylene-vinyl acetate copolymer having a vinyl acetate content of 15%, 20 parts of a PVA resin (A1), 2 parts of glycerin and a maleic anhydride-modified ethylene-vinyl acetate copolymer [maleic acid content of 0.8% Then, 10 parts of vinyl acetate content was dry blended and then melt-mixed at 225 ° C. to obtain a resin composition.

得られた樹脂組成物を用いて以下の要領で単軸押出機によりフィルム(厚み25μm)を成形した。
[単軸押出機による製膜条件]
スクリュー内径 40mm
L/D 28
スクリュー圧縮比 3.2
Tダイ コートハンガータイプ
ダイ巾 450mm
押出温度 C1:190℃ H:210℃
C2:200℃ D:200℃
C3:200℃
C4:210℃
Using the obtained resin composition, a film (thickness 25 μm) was formed by a single screw extruder in the following manner.
[Film forming conditions with a single screw extruder]
Screw inner diameter 40mm
L / D 28
Screw compression ratio 3.2
T die Coat hanger type Die width 450mm
Extrusion temperature C1: 190 ° C H: 210 ° C
C2: 200 ° C D: 200 ° C
C3: 200 ° C
C4: 210 ° C

得られたフィルムの保温性、透明性及び引き裂き強度を以下の要領で評価した。結果を表2に示す。なお、透明性及び引き裂き強度には、厚さ65μmのフィルムを成形して評価に用いた。   The heat retention property, transparency, and tear strength of the obtained film were evaluated as follows. The results are shown in Table 2. For transparency and tear strength, a film having a thickness of 65 μm was formed and used for evaluation.

[保温性]
特公平2−41410号公報に開示のデュワービンを用いた保温性能の評価方法に従い、得られたフィルムの遠赤外線の透過量を、アルミニウム板を100とし、ブランク状態を0として測定し、エチレン−酢酸ビニル共重合体(EVA;酢酸ビニル含有量15%)フィルム(厚さ25μm)のそれとの比較を行って、以下の基準で評価した。
○・・・透過量がEVAフィルムの2倍以上
△・・・ 〃 の1.5倍以上2倍未満
×・・・ 〃 の1.5倍未満
[Heat retention]
According to the heat insulation performance evaluation method using a dewar bin disclosed in JP-B-2-41410, the far-infrared transmission amount of the obtained film was measured with an aluminum plate as 100 and a blank state as 0, and ethylene-acetic acid Comparison with that of a vinyl copolymer (EVA; vinyl acetate content 15%) film (thickness 25 μm) was performed, and evaluation was performed according to the following criteria.
○ ・ ・ ・ Transmission amount is 2 times or more of EVA film △ ・ ・ ・ 1.5 times or more and less than 2 times 〃 × ・ ・ ・ Less than 1.5 times of フ ィ ル ム

[透明性]
得られたフィルムの内部ヘイズをヘイズメータで測定して、以下の基準で評価した。
◎・・・内部ヘイズが5未満
○・・・ 〃 が5以上10未満
△・・・ 〃 が10以上30未満
×・・・ 〃 が30以上
[transparency]
The internal haze of the obtained film was measured with a haze meter and evaluated according to the following criteria.
◎ ・ ・ ・ Internal haze is less than 5 ○ ・ ・ ・ 〃 is 5 or more and less than 10 △ ・ ・ ・ 〃 is 10 or more and less than 30 × ・ ・ ・ 〃 is 30 or more

[引き裂き強度]
得られたフィルムを用いて、JIS K7128 B法(エルメンドルフ法)に準じて引裂試験機(安田精機製作所社製「エルメンドルフ引裂試験機」)で振り子エネルギー6.88kgf・cmで引き裂き強度(N)を測定して、以下の基準で評価した。
○・・・引き裂き強度がEAV単体フィルムの1.5倍以上
△・・・ 〃 と同等以上1.5倍未満
×・・・ 〃 と同等未満
[Tear strength]
Using the obtained film, the tear strength (N) with a pendulum energy of 6.88 kgf · cm with a tear tester (“Elmendorf Tear Tester” manufactured by Yasuda Seiki Seisakusho Co., Ltd.) according to JIS K7128 B method (Elmendorf method) Measured and evaluated according to the following criteria.
○ ・ ・ ・ Tear strength is 1.5 times or more of EAV single film △ ・ ・ ・ Equal to 〃 or more and less than 1.5 times × ・ ・ ・ Equivalent to 〃

実施例7、8
実施例6において、PVA系樹脂(A1)に替えて、PVA系樹脂(A4)および(A5)を用いた以外は実施例6と同様に製膜を行い、同様に評価を行った。結果を表2に示す。
Examples 7 and 8
In Example 6, instead of the PVA resin (A1), a film was formed in the same manner as in Example 6 except that PVA resins (A4) and (A5) were used, and evaluation was performed in the same manner. The results are shown in Table 2.

比較例3、4
実施例6において、PVA系樹脂(A1)に替えて、PVA系樹脂(A6)および未変性PVA(重合度550、ケン化度92.5モル%)を用いた以外は実施例6と同様に製膜を行い、同様に評価を行った。結果を表2に示す。尚、未変性PVAの融点は、本発明のPVAの融点より高いので、押し出し条件は以下の未変性PVAの融点を考慮して以下の様に設定した。(可塑剤としてグリセリンは、未添加)
[未変性PVAの製膜条件]
押出温度 C1:190℃ H:210℃
C2:210℃ D:210℃
C3:220℃
C4:225℃
Comparative Examples 3 and 4
In Example 6, it replaced with PVA-type resin (A1), and except having used PVA-type resin (A6) and unmodified PVA (polymerization degree 550, saponification degree 92.5 mol%), it was the same as that of Example 6. Films were formed and evaluated in the same manner. The results are shown in Table 2. Since the melting point of the unmodified PVA is higher than the melting point of the PVA of the present invention, the extrusion conditions were set as follows in consideration of the melting point of the following unmodified PVA. (Glycerin is not added as a plasticizer)
[Film forming conditions for unmodified PVA]
Extrusion temperature C1: 190 ° C H: 210 ° C
C2: 210 ° C D: 210 ° C
C3: 220 ° C
C4: 225 ° C

Figure 2006089538
Figure 2006089538

本発明のPVA系樹脂は、溶融成形時の熱安定性に優れ、長期ロングラン成形を行っても、焦げなどの熱分解物やゲル、フィッシュアイなどが発生せず、良好な外観の成形物が得られ、さらにケン化度を下げれば、より低温での成形が可能であるという特徴を持ち、水溶性フィルム(農薬、洗剤、土木用添加剤、殺菌剤、染料、顔料などの包装材料用)、各種包装材料用(衣類など)、食品包装用PVDC代替フィルム、壁紙,水解紙、シート、パイプ、チューブ、防漏膜、暫定皮膜、ケミカルレース用水溶性繊維、などの材料として好適である。
さらに、本発明のPVA系樹脂を用いたポリオレフィン系保温用フィルムは、保温性とともに透明性に優れるものであり、農業用フィルム(ハウス、トンネル、マルチング、カーテンなど)、防水シート、建築・土木用シートなどに好適である。
The PVA resin of the present invention is excellent in thermal stability during melt molding, and does not generate thermal decomposition products such as scorch, gels, fish eyes, etc. even when long-run long-run molding is performed, and has a molded product with a good appearance. It can be obtained at a lower temperature if the degree of saponification is further reduced. Water-soluble film (for packaging materials such as agricultural chemicals, detergents, civil engineering additives, bactericides, dyes, pigments, etc.) It is suitable as a material for various packaging materials (clothing, etc.), PVDC substitute films for food packaging, wallpaper, water-disintegrating paper, sheets, pipes, tubes, leak-proof membranes, temporary coatings, water-soluble fibers for chemical laces, and the like.
Furthermore, the polyolefin heat insulating film using the PVA resin of the present invention is excellent in transparency as well as heat retaining properties, and is used for agricultural films (houses, tunnels, mulching, curtains, etc.), waterproof sheets, construction and civil engineering. Suitable for sheets and the like.

Claims (7)

ビニルエステル系モノマーと、一般式(1)で示される化合物との共重合体をケン化して、側鎖に1,2−ジオール成分を含有したことを特徴とする溶融成形用ポリビニルアルコール系樹脂。
Figure 2006089538

[R、R及びRは、それぞれ独立して水素原子又はアルキル基を示し、Rは単結合またはアルキル基を有していてもよい炭素数1〜3のアルキレン基を示し、R、Rは、それぞれ独立して水素またはR−CO−(式中、Rはアルキル基である)を示す]
A polyvinyl alcohol resin for melt molding, wherein a copolymer of a vinyl ester monomer and a compound represented by the general formula (1) is saponified to contain a 1,2-diol component in the side chain.
Figure 2006089538

[R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group; R 4 represents a C 1-3 alkylene group which may have a single bond or an alkyl group; 5 , R 6 each independently represents hydrogen or R 7 —CO— (wherein R 7 is an alkyl group)]
重合度が1000以下であることを特徴とする請求項1記載の溶融成形用ポリビニルアルコール系樹脂。 The polyvinyl alcohol resin for melt molding according to claim 1, wherein the degree of polymerization is 1000 or less. 側鎖に有する1,2−ジオール成分の含有量が2〜15モル%であることを特徴とする請求項1または2記載の溶融成形用ポリビニルアルコール系樹脂。 The polyvinyl alcohol resin for melt molding according to claim 1 or 2, wherein the content of the 1,2-diol component in the side chain is 2 to 15 mol%. ケン化度が70〜99.9モル%であることを特徴とする請求項1〜3いずれか記載の溶融成形用ポリビニルアルコール系樹脂。 The polyvinyl alcohol resin for melt molding according to any one of claims 1 to 3, wherein the saponification degree is 70 to 99.9 mol%. ビニルエステル系モノマーと、一般式(1)で示される化合物との共重合体をケン化することを特徴とする、側鎖に1,2−ジオール成分を含有する溶融成形用ポリビニルアルコール系樹脂の製造方法。 A melt-forming polyvinyl alcohol-based resin containing a 1,2-diol component in a side chain, wherein a copolymer of a vinyl ester-based monomer and a compound represented by the general formula (1) is saponified Production method. 請求項1〜4のいずれか記載の溶融成形用ポリビニルアルコール系樹脂を成形してなることを特徴とする溶融成形品。 A melt-molded article obtained by molding the melt-forming polyvinyl alcohol resin according to any one of claims 1 to 4. 請求項1〜4のいずれか記載の溶融成形用ポリビニルアルコール系樹脂を含有してなることを特徴とするポリオレフィン系保温用フィルム。 A polyolefin heat-retaining film comprising the melt-forming polyvinyl alcohol resin according to claim 1.
JP2004274311A 2004-09-22 2004-09-22 Polyvinyl alcohol resin for melt molding, method for producing the same, and use thereof Active JP4217199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274311A JP4217199B2 (en) 2004-09-22 2004-09-22 Polyvinyl alcohol resin for melt molding, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274311A JP4217199B2 (en) 2004-09-22 2004-09-22 Polyvinyl alcohol resin for melt molding, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2006089538A true JP2006089538A (en) 2006-04-06
JP4217199B2 JP4217199B2 (en) 2009-01-28

Family

ID=36230826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274311A Active JP4217199B2 (en) 2004-09-22 2004-09-22 Polyvinyl alcohol resin for melt molding, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4217199B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312313A (en) * 2005-04-05 2006-11-16 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure
JP2007326943A (en) * 2006-06-07 2007-12-20 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and film obtained by using the same
JP2009013558A (en) * 2007-06-08 2009-01-22 Nippon Synthetic Chem Ind Co Ltd:The Fiber and nonwoven fabric
JP2009062434A (en) * 2007-09-05 2009-03-26 Nippon Synthetic Chem Ind Co Ltd:The Method for producing polyvinyl alcohol-based resin having 1,2-diol structure in side chain
WO2009051173A1 (en) * 2007-10-18 2009-04-23 Aicello Chemical Co., Ltd. Water soluble sealing packaging material
JP2009155587A (en) * 2007-12-27 2009-07-16 Nippon Synthetic Chem Ind Co Ltd:The Seawater dissolvable molded product, false bait using it, and bait storing vessel
JP2009202893A (en) * 2008-02-27 2009-09-10 Nippon Synthetic Chem Ind Co Ltd:The Paper-made container for beverage, and laminated body used for same
JP2011052208A (en) * 2009-08-06 2011-03-17 Nippon Synthetic Chem Ind Co Ltd:The Biaxial stretching polyvinyl alcohol film and method for producing the same
JP2011094043A (en) * 2009-10-30 2011-05-12 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and molding thereof
JP2013100139A (en) * 2013-02-18 2013-05-23 Nippon Synthetic Chem Ind Co Ltd:The Beverage paper container and laminate for use in the same
JP2013539545A (en) * 2010-07-30 2013-10-24 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Ophthalmic device molds made from highly amorphous vinyl alcohol polymers, ophthalmic devices molded therein, and related methods
US8691892B2 (en) * 2007-04-27 2014-04-08 The Nippon Synthetic Chemical Industry Co., Ltd. Chaff molding and production method thereof
US8722782B2 (en) 2009-04-28 2014-05-13 The Nippon Synthetic Chemical Industry Co., Ltd. Polyvinyl alcohol-based resin composition
US8722181B2 (en) 2008-04-14 2014-05-13 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and multilayer structure using the same
WO2014092131A1 (en) * 2012-12-14 2014-06-19 日本合成化学工業株式会社 Resin composition, and film formed from said resin composition
JP2015117287A (en) * 2013-12-17 2015-06-25 日本合成化学工業株式会社 Molded article and method for producing the same
KR20200020796A (en) * 2017-06-16 2020-02-26 다이셀에보닉 주식회사 Method of producing resin particles
CN111094402A (en) * 2017-06-16 2020-05-01 大赛璐赢创株式会社 Water-soluble matrix, preform containing resin particles, and method for producing resin particles
JP2020090583A (en) * 2018-12-04 2020-06-11 三菱ケミカル株式会社 Modified polyvinyl alcohol resin and manufacturing method thereof
CN113248645A (en) * 2021-06-23 2021-08-13 天津辛德玛悬浮剂有限公司 Low-melting point polyvinyl alcohol and preparation method thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312313A (en) * 2005-04-05 2006-11-16 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure
JP2007326943A (en) * 2006-06-07 2007-12-20 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and film obtained by using the same
US8691892B2 (en) * 2007-04-27 2014-04-08 The Nippon Synthetic Chemical Industry Co., Ltd. Chaff molding and production method thereof
JP2009013558A (en) * 2007-06-08 2009-01-22 Nippon Synthetic Chem Ind Co Ltd:The Fiber and nonwoven fabric
JP2009062434A (en) * 2007-09-05 2009-03-26 Nippon Synthetic Chem Ind Co Ltd:The Method for producing polyvinyl alcohol-based resin having 1,2-diol structure in side chain
JP5143845B2 (en) * 2007-10-18 2013-02-13 アイセロ化学株式会社 Water-soluble packaging material
WO2009051173A1 (en) * 2007-10-18 2009-04-23 Aicello Chemical Co., Ltd. Water soluble sealing packaging material
JP2009155587A (en) * 2007-12-27 2009-07-16 Nippon Synthetic Chem Ind Co Ltd:The Seawater dissolvable molded product, false bait using it, and bait storing vessel
JP2009202893A (en) * 2008-02-27 2009-09-10 Nippon Synthetic Chem Ind Co Ltd:The Paper-made container for beverage, and laminated body used for same
US8722181B2 (en) 2008-04-14 2014-05-13 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and multilayer structure using the same
US8722782B2 (en) 2009-04-28 2014-05-13 The Nippon Synthetic Chemical Industry Co., Ltd. Polyvinyl alcohol-based resin composition
JP2011052208A (en) * 2009-08-06 2011-03-17 Nippon Synthetic Chem Ind Co Ltd:The Biaxial stretching polyvinyl alcohol film and method for producing the same
JP2011094043A (en) * 2009-10-30 2011-05-12 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and molding thereof
US8979261B2 (en) 2010-07-30 2015-03-17 Coopervision International Holding Company, Lp Silicone hydrogel ophthalmic devices molded in vinyl alcohol copolymer molds and related methods
US9676153B2 (en) 2010-07-30 2017-06-13 Coopervision International Holding Company, Lp Vinyl alcohol ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
US10509236B2 (en) 2010-07-30 2019-12-17 Coopervision International Holding Company, Lp Ophthalmic device molds and related methods
US10042183B2 (en) 2010-07-30 2018-08-07 Coopervision International Holding Company, Lp Ophthalmic device molds formed from water-soluble vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
JP2013539545A (en) * 2010-07-30 2013-10-24 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Ophthalmic device molds made from highly amorphous vinyl alcohol polymers, ophthalmic devices molded therein, and related methods
US9278489B2 (en) 2010-07-30 2016-03-08 Coopervision International Holding Company, Lp Ophthalmic device molds and related methods
US9492951B2 (en) 2010-07-30 2016-11-15 Coopervision International Holding Company, Lp Ophthalmic device molds formed from water-soluble vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US9616626B2 (en) 2010-07-30 2017-04-11 Coopervision International Holding Company, Lp Ophthalmic device molds formed from vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US9664925B2 (en) 2010-07-30 2017-05-30 Coopervision International Holding Company, Lp Ophthalmic device molds formed from highly amorphous vinyl alcohol polymer, ophthalmic devices molded therein, and related methods
WO2014092131A1 (en) * 2012-12-14 2014-06-19 日本合成化学工業株式会社 Resin composition, and film formed from said resin composition
JP2013100139A (en) * 2013-02-18 2013-05-23 Nippon Synthetic Chem Ind Co Ltd:The Beverage paper container and laminate for use in the same
JP2015117287A (en) * 2013-12-17 2015-06-25 日本合成化学工業株式会社 Molded article and method for producing the same
KR20200020796A (en) * 2017-06-16 2020-02-26 다이셀에보닉 주식회사 Method of producing resin particles
CN111094402A (en) * 2017-06-16 2020-05-01 大赛璐赢创株式会社 Water-soluble matrix, preform containing resin particles, and method for producing resin particles
CN111094403A (en) * 2017-06-16 2020-05-01 大赛璐赢创株式会社 Method for producing resin particles
KR102555299B1 (en) * 2017-06-16 2023-07-14 포리푸라 에보닉쿠 가부시키가이샤 Method for producing resin particles
US11859058B2 (en) 2017-06-16 2024-01-02 Daicel-Evonik Ltd. Method for producing resin particles
JP2020090583A (en) * 2018-12-04 2020-06-11 三菱ケミカル株式会社 Modified polyvinyl alcohol resin and manufacturing method thereof
JP7259296B2 (en) 2018-12-04 2023-04-18 三菱ケミカル株式会社 Modified polyvinyl alcohol resin and method for producing the same
CN113248645A (en) * 2021-06-23 2021-08-13 天津辛德玛悬浮剂有限公司 Low-melting point polyvinyl alcohol and preparation method thereof

Also Published As

Publication number Publication date
JP4217199B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4079723B2 (en) Melt molded product
JP4217199B2 (en) Polyvinyl alcohol resin for melt molding, method for producing the same, and use thereof
JP5008290B2 (en) Ethylene-vinyl alcohol copolymer composition and multilayer structure using the same
JP2004359965A (en) Ethylene-vinyl alcohol copolymer and its composition, its application, and method for producing the same
WO2010126041A1 (en) Polyvinyl alcohol resin composition
JP2011241234A (en) Polyvinyl alcohol-based resin composition
JP6456132B2 (en) Water-soluble film and drug package
WO2019049798A1 (en) Biodegradable acid-modified polyester-based resin, and laminate
JP4668753B2 (en) Multi-layer pipe
JP2007261074A (en) Multilayered stretched film
JP6184093B2 (en) Resin composition and molded product thereof
JP2012207054A (en) Heat-shrinkable film
JP4627469B2 (en) Multilayer stretched film
JP2000178396A (en) Melt-moldable polyvinyl alcohol resin composition
JP5041693B2 (en) Raw film for laminating
JP4869120B2 (en) Multilayer stretched film
JP4744834B2 (en) Resin composition and multilayer structure and container using the same
JP6686486B2 (en) Molded product, film and method for manufacturing molded product
WO2009084607A1 (en) Method for producing evoh resin composition
JP5116186B2 (en) Process for producing ethylene-vinyl acetate copolymer saponified composition pellets
JP6161531B2 (en) Molded product and manufacturing method thereof
JP7359138B2 (en) Resin composition, molded article, and method for producing resin composition
JP4520557B2 (en) Process for producing saponified ethylene-vinyl acetate copolymer composition
WO2023190816A1 (en) Modified ethylene-vinyl alcohol copolymer composition, pellets, multilayer structure, method for producing modified ethylene-vinyl alcohol copolymer composition, and method for producing multilayer structure
JP6253389B2 (en) Molded product and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4217199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350