JP2006078426A - Apparatus and method for inspecting defect - Google Patents

Apparatus and method for inspecting defect Download PDF

Info

Publication number
JP2006078426A
JP2006078426A JP2004265212A JP2004265212A JP2006078426A JP 2006078426 A JP2006078426 A JP 2006078426A JP 2004265212 A JP2004265212 A JP 2004265212A JP 2004265212 A JP2004265212 A JP 2004265212A JP 2006078426 A JP2006078426 A JP 2006078426A
Authority
JP
Japan
Prior art keywords
light
defect
inspection
polarization axis
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004265212A
Other languages
Japanese (ja)
Inventor
Tomohide Mizukoshi
智秀 水越
Koji Fukazawa
孝二 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004265212A priority Critical patent/JP2006078426A/en
Publication of JP2006078426A publication Critical patent/JP2006078426A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspecting apparatus and a defect inspection method, capable of stably inspecting defects without requiring a defect inspecting apparatus of complicated structure or reductions in defect inspection accuracy due to the type of objects to be inspected. <P>SOLUTION: The defect inspection apparatus comprises both a light-projecting part for irradiating inspecting light to an object to be inspected and a detection part for detecting transmitted light transmitted through the object to be inspected or reflected light and detecting defects of the object to be inspected. The light projection part comprises both a light irradiation means and a polarizer. The detection part comprises an analyzer and a photodetection means. The polarizer changes the polarization axis of the polarizer according to a polarization axis inherent to the object to be inspected, polarizes the light from the irradiation means, and irradiates the object to be inspected. The analyzer matches its polarization axis to the polarization axis of the polarizer. By detecting transmitted light from the object to be inspected, changes in the amount of transmission through reflected light, or changes in the amount of reflection with the photodetection means, defects of the object to be inspected are detected in the defect inspection apparatus. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂フィルム、基板、ガラス、各種ドラム、紙、鋼板、非鉄板等の欠陥を検査する欠陥検査装置に関する。   The present invention relates to a defect inspection apparatus for inspecting defects such as a resin film, a substrate, glass, various drums, paper, a steel plate, and a non-ferrous plate.

従来、樹脂フィルム、基板、ガラス、各種ドラム、紙、鋼板、非鉄板等を扱う各種製造業において、製品の品質向上、安定性の面から使用する材料、製品に対して欠陥検査装置による検査が行われている。欠陥検査装置としては被検査物に検査光を照射し、被検査物を透過した透過光の透過量、或いは反射光の反射量の変化を検出し被照射物の欠陥を検査する方法が採られている。例えば、樹脂フィルムの一例としては、写真ショット数の増加や携帯電話、ノートパソコンの爆発的な普及から光学用フィルムの需要とくに、液晶表示装置用の偏光板保護フィルム、光学補償フィルム等が挙げられる。基板の一例としては、半導体デバイスの製造に使用するウエハが挙げられる。ガラスの一例として、テレビのブラウン管に使用されるシャドウマスク、IC回路を組み込んだパッケイジのリードフレーム用マスク、液晶パネルに用いられている電極を書き込んだマスク及びワーキングマスクの作製に用いる感光材料であるガラス乾板の支持体として使用されるガラス板が挙げられる。紙の一例としては、識別マーク、すき入れ並びにプリントマークが作り込まれている紙幣用の印刷前の原反ロールの用紙が挙げられる。   Conventionally, in various manufacturing industries that handle resin films, substrates, glass, various drums, paper, steel plates, non-ferrous plates, etc., inspections are performed by defect inspection equipment for materials and products used from the standpoint of improving product quality and stability. Has been done. As a defect inspection apparatus, a method of inspecting a defect of an irradiated object by irradiating the inspection object with inspection light and detecting a change in the amount of transmitted light transmitted through the inspection object or a reflection amount of reflected light is adopted. ing. For example, as an example of a resin film, there is a demand for optical films due to the increase in the number of photo shots and the explosive spread of mobile phones and notebook computers, particularly polarizing plate protective films for liquid crystal display devices, optical compensation films, and the like. . An example of the substrate is a wafer used for manufacturing a semiconductor device. Examples of glass are shadow masks used for television cathode ray tubes, package lead frame masks incorporating IC circuits, masks on which electrodes used in liquid crystal panels are written, and photosensitive materials used to make working masks. The glass plate used as a support body of a glass dry plate is mentioned. As an example of the paper, there is an original roll roll paper before printing for a banknote in which an identification mark, a clearance, and a print mark are formed.

例に挙げた物は、いずれも欠陥の存在を見落として使用した場合は、製品の性能に致命的な影響を与えるため、通常、十分な欠陥検査を行い欠陥が無いことを確認した後に使用している。例えば、光学補償フィルムの欠陥検査装置として、偏光子を通した光を光学補償フィルムに照射し、透過した光を検光子を通してCCDカメラで受光し、得られた情報を処理装置で処理することで欠陥を検出する欠陥検査装置が知られている(例えば、特許文献1を参照。)。   Any of the examples listed above may cause a fatal effect on the product performance if used overlooking the presence of defects, so it is usually used after a thorough defect inspection to confirm that there are no defects. ing. For example, as a defect inspection device for an optical compensation film, the optical compensation film is irradiated with light passing through a polarizer, the transmitted light is received by a CCD camera through the analyzer, and the obtained information is processed by a processing device. A defect inspection apparatus for detecting a defect is known (see, for example, Patent Document 1).

しかしながら、特許文献1に記載の欠陥検査装置は次の欠点を有している。1)異物付着による異物欠陥と、配向膜表面の汚れに伴う複屈折が異常となるシュリーレン欠陥とを別々に検出するため欠陥検査装置が複雑になる。2)被検査物の両側にある偏光子の関係から、得られる検出信号の感度ムラ(シェーディング)が大きくなることがある。   However, the defect inspection apparatus described in Patent Document 1 has the following drawbacks. 1) A defect inspection apparatus is complicated because a foreign matter defect caused by foreign matter adhesion and a schlieren defect in which birefringence caused by dirt on the alignment film surface becomes abnormal are separately detected. 2) Due to the relationship between the polarizers on both sides of the object to be inspected, the sensitivity unevenness (shading) of the obtained detection signal may increase.

視野角改善フィルムの欠陥検査装置として、一対の偏光子の間に被検査品である視野角改善フィルムと、フィルム面内で180度回転した状態で欠陥のないことが確認されている被検査品である視野角改善フィルムの一定範囲部分を取り出した視野角改善フィルムを置き、被検査品である視野角改善フィルム側から偏光子を通して検査光を照射し、透過した光を検光子を通してCCDカメラで受光し、得られた情報を処理装置で処理することで欠陥を検出する欠陥検査装置が知られている(例えば、特許文献2を参照。)。   As a viewing angle improvement film defect inspection device, a viewing angle improvement film that is an inspection object between a pair of polarizers, and an inspection object that has been confirmed to be free of defects after being rotated 180 degrees in the film plane Place a viewing angle improvement film from a certain range of the viewing angle improvement film, irradiate the inspection light through the polarizer from the viewing angle improvement film side to be inspected, and pass the transmitted light through the analyzer with a CCD camera. A defect inspection apparatus that detects a defect by receiving light and processing the obtained information with a processing apparatus is known (see, for example, Patent Document 2).

しかしながら、特許文献2に記載の欠陥検査装置は、被検査物の両側にある偏光子の関係から、得られる検出信号の感度ムラ(シェーディング)補正用のフィルムが必要になり、欠陥検査装置の構成が複雑になる欠点を有している。この様な状況から、複雑な構成の欠陥検査装置にすることなく、被検査物の種類により、欠陥検査精度が劣ることなく安定に欠陥を検出する欠陥検査装置及び欠陥検査方法の開発が望まれている。
特開2000−28546号公報 特開2001−324453号公報
However, the defect inspection apparatus described in Patent Document 2 requires a film for correcting sensitivity unevenness (shading) of the obtained detection signal due to the relationship between the polarizers on both sides of the inspection object, and the configuration of the defect inspection apparatus. Has the disadvantage of becoming complicated. Under these circumstances, development of a defect inspection apparatus and a defect inspection method that stably detect defects without inferior defect inspection accuracy is desired depending on the type of inspection object, without using a defect inspection apparatus with a complicated configuration. ing.
JP 2000-28546 A JP 2001-324453 A

本発明は、上記状況に鑑みなされたものであり、その目的は、複雑な構成の欠陥検査装置にすることなく、被検査物の種類により、欠陥検査精度が劣ることなく安定に欠陥を検出する欠陥検査装置及び欠陥検査方法を提供することである。   SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to detect defects stably without inferior defect inspection accuracy depending on the type of inspection object, without using a defect inspection apparatus having a complicated configuration. A defect inspection apparatus and a defect inspection method are provided.

本発明の上記目的は、下記の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

(請求項1)
被検査物に検査光を照射する投光部と、該被検査物を透過した透過光、或いは反射光を検出し、前記被検査物の欠陥を検出する検出部とを有する欠陥検査装置において、
該投光部は照射手段と、偏光子とを有し、
該検出部は、検光子と光検出手段とを有し、
該偏光子は、前記被検査物の固有の偏光軸に合わせ前記偏光子の偏光軸を変え、該照射手段からの光を偏光して前記被検査物に照射し、
該検光子は、偏光軸を前記偏光子の偏光軸に合わせ、前記被検査物からの透過光、或いは反射光を通して透過量の変化、或いは反射量の変化を光検出手段で検出することにより、前記被検査物の欠陥を検出することを特徴とする欠陥検査装置。
(Claim 1)
In a defect inspection apparatus having a light projecting unit that irradiates an inspection object with inspection light, and a detection unit that detects transmitted light or reflected light transmitted through the inspection object and detects a defect of the inspection object,
The light projecting unit has irradiation means and a polarizer,
The detection unit includes an analyzer and light detection means,
The polarizer changes the polarization axis of the polarizer according to the specific polarization axis of the inspection object, polarizes the light from the irradiation means, and irradiates the inspection object,
The analyzer aligns the polarization axis with the polarization axis of the polarizer, and detects the change in the transmission amount or the change in the reflection amount through the transmitted light or reflected light from the inspection object by the light detection means, A defect inspection apparatus for detecting a defect of the inspection object.

(請求項2)
前記照射手段が140〜40,000nmの波長域の光を照射し得ることを特徴とする請求項1に記載の欠陥検査装置。
(Claim 2)
The defect inspection apparatus according to claim 1, wherein the irradiation unit can irradiate light having a wavelength range of 140 to 40,000 nm.

(請求項3)
前記偏光子の偏光軸の角度と、被検査物の偏光軸の角度との差は、−45〜+45°であることを特徴とする請求項1又は2に記載の欠陥検査装置。
(Claim 3)
3. The defect inspection apparatus according to claim 1, wherein the difference between the angle of the polarization axis of the polarizer and the angle of the polarization axis of the inspection object is −45 to + 45 °.

(請求項4)
前記検光子の偏光軸の角度と、偏光子の偏光軸の角度との差は、−30〜+30°であることを特徴とする請求項1〜3の何れか1項に記載の欠陥検査装置。
(Claim 4)
The defect inspection apparatus according to claim 1, wherein a difference between an angle of a polarization axis of the analyzer and an angle of a polarization axis of the polarizer is −30 to + 30 °. .

(請求項5)
前記光検出手段と検光子の間、又は、前に、該光検出手段である受光手段の受光面積に対して開口径が、10〜100%の開口部を有するマスクが設けられていることを特徴とする請求項1〜4の何れか1項に記載の欠陥検査装置。
(Claim 5)
A mask having an opening with an opening diameter of 10 to 100% with respect to the light receiving area of the light receiving means which is the light detecting means is provided between or before the light detecting means and the analyzer. The defect inspection apparatus according to any one of claims 1 to 4, wherein the defect inspection apparatus is characterized in that:

(請求項6)
前記マスクは検光子と一体型であることを特徴とする請求項5に記載の欠陥検査装置。
(Claim 6)
The defect inspection apparatus according to claim 5, wherein the mask is integrated with an analyzer.

(請求項7)
被検査物に検査光を照射する投光部と、該被検査物を透過した透過光、或いは反射光を検出し、前記被検査物の欠陥を検出する検出部とを有する欠陥検査装置を用いた欠陥検査方法において、
該投光部は照射手段と、偏光子とを有し、
該検出部は、検光子と光検出手段とを有し、
前記偏光子は、被検査物の固有の偏光軸に合わせ該偏光子の偏光軸を変え、照射手段からの光を偏光して該被検査物に照射し、
該検光子は、偏光軸を前記偏光子の偏光軸に合わせ、前記被検査物からの透過光、或いは反射光を通して透過量の変化、或いは反射量の変化を光検出手段で検出することにより、被照射物の欠陥を検出することを特徴とする欠陥検査方法。
(Claim 7)
A defect inspection apparatus having a light projecting unit that irradiates an inspection object with inspection light and a detection unit that detects transmitted light or reflected light transmitted through the inspection object and detects a defect of the inspection object is used. In the defect inspection method
The light projecting unit has irradiation means and a polarizer,
The detection unit includes an analyzer and light detection means,
The polarizer changes the polarization axis of the polarizer according to the specific polarization axis of the inspection object, polarizes the light from the irradiation means, and irradiates the inspection object,
The analyzer aligns the polarization axis with the polarization axis of the polarizer, and detects the change in the transmission amount or the change in the reflection amount through the transmitted light or reflected light from the inspection object by the light detection means, A defect inspection method characterized by detecting a defect of an irradiated object.

(請求項8)
前記照射手段が140〜40,000nmの波長域の光を照射し得ることを特徴とする請求項7に記載の欠陥検査方法。
(Claim 8)
The defect inspection method according to claim 7, wherein the irradiation unit can irradiate light having a wavelength range of 140 to 40,000 nm.

(請求項9)
前記偏光子の偏光軸の角度と、被検査物の偏光軸の角度との差は、−45〜+45°であることを特徴とする請求項7又は8に記載の欠陥検査方法。
(Claim 9)
9. The defect inspection method according to claim 7, wherein a difference between an angle of a polarization axis of the polarizer and an angle of a polarization axis of the inspection object is −45 to + 45 °.

(請求項10)
前記検光子の偏光軸の角度と、偏光子の偏光軸の角度との差は、−30〜+30°であることを特徴とする請求項7〜9の何れか1項に記載の欠陥検査方法。
(Claim 10)
The defect inspection method according to claim 7, wherein a difference between an angle of a polarization axis of the analyzer and an angle of a polarization axis of the polarizer is −30 to + 30 °. .

(請求項11)
前記光検出手段と検光子の間、又は、前に、該光検出手段である受光手段の受光面積に対して開口径が、10〜100%の開口部を有するマスクが設けられていることを特徴とする請求項7〜10の何れか1項に記載の欠陥検査方法。
(Claim 11)
A mask having an opening with an opening diameter of 10 to 100% with respect to the light receiving area of the light receiving means which is the light detecting means is provided between or before the light detecting means and the analyzer. The defect inspection method according to claim 7, wherein the defect inspection method is any one of claims 7 to 10.

(請求項12)
前記マスクは検光子と一体型であることを特徴とする請求項11に記載の欠陥検査方法。
(Claim 12)
The defect inspection method according to claim 11, wherein the mask is integrated with an analyzer.

複雑な構成の欠陥検査装置にすることなく、被検査物の種類により、欠陥検査精度が劣ることなく安定に欠陥を検出する欠陥検査装置及び欠陥検査方法を提供することが出来、最終製品にする前の段階で欠陥材料を的確に排除することが可能となり、生産効率の向上が可能となった。   It is possible to provide a defect inspection apparatus and a defect inspection method that stably detect defects without inferior in defect inspection accuracy depending on the type of inspection object, without making the defect inspection apparatus of a complicated configuration, and make it a final product. It was possible to accurately eliminate defective materials at the previous stage, and it was possible to improve production efficiency.

本発明に係る実施形態を図1〜図4を参照して説明するが、本発明はこれに限定されるものではない。   Embodiments according to the present invention will be described with reference to FIGS. 1 to 4, but the present invention is not limited thereto.

図1は欠陥検出装置の基本構成を示す模式図である。図1の(a)は被検査物に検査光を透過する物を使用した場合の欠陥検出装置の基本構成を示す模式図である。図1の(b)は被検査物に検査光を反射する物を使用した場合の欠陥検出装置の基本構成を示す模式図である。   FIG. 1 is a schematic diagram showing a basic configuration of a defect detection apparatus. FIG. 1A is a schematic diagram showing a basic configuration of a defect detection apparatus when an object that transmits inspection light is used as an inspection object. FIG. 1B is a schematic diagram illustrating a basic configuration of a defect detection apparatus when an object that reflects inspection light is used as an inspection object.

図中、1は欠陥検出装置を示す。欠陥検出装置1は、被検査物の光学的欠陥部分、すなわち、複屈折特性が正常な部分と異なる欠陥部分、異物付着による光散乱を伴う異物付着欠陥等の欠陥部分を検出するための装置である。欠陥検出装置1は、被検査物4に検査光Aを照射する投光部2と、検出部3とを有している。   In the figure, reference numeral 1 denotes a defect detection apparatus. The defect detection apparatus 1 is an apparatus for detecting an optical defect portion of an object to be inspected, that is, a defect portion having a different birefringence characteristic from a normal portion, or a defect portion such as a foreign matter adhesion defect accompanied by light scattering due to foreign matter adhesion. is there. The defect detection apparatus 1 includes a light projecting unit 2 that irradiates an inspection object 4 with inspection light A, and a detection unit 3.

投光部2は照射手段である光源201と偏光子202とを有している。照射手段としては140〜40,000nmの波長域の光を照射し得ることが好ましい。例えば、140〜300nmの波長域の光を照射する光源としては重水素ランプ、190〜2,000nmの波長域の光を照射する光源としてはキセノンランプ、タングステンランプ、350〜2000nmの波長域の光を照射する光源としてはハロゲンランプ、1500〜40,000nmの波長域の光を照射する光源としてはSグローバーランプが挙げられる。光源201は、被検査物4のフィルム面の一定の領域を一様に照射する面光源であっても、被検査物4のフィルム面の一方向を一様に照射する線光源であってもよい。被検査物4の形態に合わせて適宜選択することが好ましい。   The light projecting unit 2 includes a light source 201 and a polarizer 202 that are irradiation means. The irradiation means is preferably capable of irradiating light in a wavelength range of 140 to 40,000 nm. For example, a deuterium lamp is used as a light source for irradiating light in the wavelength range of 140 to 300 nm, a xenon lamp, a tungsten lamp, and light in a wavelength range of 350 to 2000 nm as light sources for irradiating light in the wavelength range of 190 to 2,000 nm. As a light source for irradiating light, a halogen lamp is used, and as a light source for irradiating light in the wavelength range of 1500 to 40,000 nm, an S-glober lamp is used. The light source 201 may be a surface light source that uniformly irradiates a certain area of the film surface of the inspection object 4 or a linear light source that uniformly irradiates one direction of the film surface of the inspection object 4. Good. It is preferable to select appropriately according to the form of the inspection object 4.

偏光子202は、検査光を被検査物4の固有の偏光軸に合わせるために偏光子202の偏光軸が可変となる様に駆動系を介して回転可能に欠陥検出装置1のフレーム(不図示)に配設することが好ましい。配設する手段としては、例えば、駿河精機(株)製微調式偏光ホルダーが挙げられる。   The polarizer 202 is a frame (not shown) of the defect detection apparatus 1 that can be rotated via a drive system so that the polarization axis of the polarizer 202 can be varied in order to align the inspection light with the specific polarization axis of the inspection object 4. ) Is preferable. As a means to arrange | position, the Suruga Seiki Co., Ltd. fine adjustment type | mold polarization holder is mentioned, for example.

測定に際し、偏光子の偏光軸の角度は、被検査物の偏光軸の角度に対して、−45〜+45°であることが好ましい。偏光子の偏光軸の角度が、−45°未満の場合は、被検査物の偏光軸の角度との差が大きくなり、光量が減り、検出信号が小さくなり、正確な欠陥検出が出来なくなる場合がある。偏光子の偏光軸の角度が、+45°を越えた場合は、光量が減り、検出信号が小さくなり、正確な欠陥検出が出来なくなる場合がある。尚、偏光子の偏光軸の角度の変更については後述する。   In the measurement, the angle of the polarization axis of the polarizer is preferably −45 to + 45 ° with respect to the angle of the polarization axis of the inspection object. When the angle of the polarization axis of the polarizer is less than −45 °, the difference from the angle of the polarization axis of the object to be inspected increases, the amount of light decreases, the detection signal decreases, and accurate defect detection cannot be performed. There is. When the angle of the polarization axis of the polarizer exceeds + 45 °, the amount of light decreases, the detection signal becomes small, and accurate defect detection may not be possible. The change in the angle of the polarization axis of the polarizer will be described later.

偏光子202の偏光軸を可変とし、検査光を被検査物4の固有の偏光軸の角度に対して、−45〜+45°の範囲で合わせることで次の効果が得られる。
1)被検査物が変化しても、精度良く安定した欠陥検出が可能となる。
2)被検査物の正常箇所での検査光の透過量(反射量)が増加するため、検出力が高くなると同時に検出精度が向上する。
3)被検査物を透過(反射)した検査光が、被検査物の偏光軸に対応して偏光しているので、被検査物に対して照射する検査光の光量分布が安定し、検査幅に対して均一で安定した欠陥検出が可能となる。
By making the polarization axis of the polarizer 202 variable and adjusting the inspection light within the range of −45 to + 45 ° with respect to the angle of the specific polarization axis of the inspection object 4, the following effects can be obtained.
1) Even if the object to be inspected changes, accurate and stable defect detection is possible.
2) Since the amount of inspection light transmitted (reflection amount) at a normal location of the object to be inspected increases, the detection power increases and at the same time the detection accuracy improves.
3) Since the inspection light transmitted (reflected) through the inspection object is polarized in accordance with the polarization axis of the inspection object, the light quantity distribution of the inspection light applied to the inspection object is stabilized, and the inspection width For this, uniform and stable defect detection becomes possible.

検出部3は、検光子301と、光検出手段の受光手段302と、マスク303と、信号処理装置304とを有している。検光子301は、偏光子202を通して検査光Aが被検査物4に照射され、被検査物4を透過(反射)した検査光Bを透過させる様に受光手段302の前に配設されている。302aは受光手段302の受光部を示す。303aはマスク303の開口部を示す。マスク303は、異物により散乱光となった検査光の内、散乱角度が小さく検光子を通過する正常部を透過(反射)した検査光と光路が異なる検査光を遮光するために配設されている。マスク303を配設する位置としては、受光手段302と検光子301の間(受光部302aの前)でも良いし、検光子301の前であっても良い。又、マスク303は検光子301と別体であっても良いし、一体で合っても良い。測定する条件にわせ適宜選択することが好ましい。本図はマスク303と、検光子301とが別体の場合を示している。   The detection unit 3 includes an analyzer 301, a light receiving unit 302 serving as a light detection unit, a mask 303, and a signal processing device 304. The analyzer 301 is disposed in front of the light receiving means 302 so that the inspection light A is irradiated onto the inspection object 4 through the polarizer 202 and the inspection light B transmitted (reflected) through the inspection object 4 is transmitted. . Reference numeral 302 a denotes a light receiving portion of the light receiving means 302. Reference numeral 303 a denotes an opening of the mask 303. The mask 303 is disposed to shield inspection light having a different optical path from inspection light transmitted (reflected) through a normal portion having a small scattering angle and passing through the analyzer among inspection light that has become scattered light due to foreign matter. Yes. The position where the mask 303 is disposed may be between the light receiving means 302 and the analyzer 301 (in front of the light receiving portion 302 a) or in front of the analyzer 301. The mask 303 may be a separate body from the analyzer 301 or may be integrated together. It is preferable to select appropriately according to the conditions to be measured. This figure shows a case where the mask 303 and the analyzer 301 are separate bodies.

検光子301の偏光軸の角度は、偏光子の偏光軸に対して、−30〜+30°であることが好ましい。検光子の偏光軸の角度が−30°未満の場合は、被検査物の欠陥による検査光の偏光角の変化量が検光子の偏光軸の角度とほぼ同じになることにより、欠陥の検出が精度良く出来なくなる場合がある。検光子の偏光軸の角度が、+30°を越えた場合は、被検査物の欠陥による検査光の偏光角の変化量が検光子の偏光軸の角度とほぼ同じになることにより、欠陥の検出が精度良く出来なくなる場合がある。尚、検光子301の偏光軸の角度の変更については後述する。検光子301の偏光軸の角度は、偏光子の偏光軸に対して、−30〜+30°の範囲で合わせることで次の効果が得られる。   The angle of the polarization axis of the analyzer 301 is preferably −30 to + 30 ° with respect to the polarization axis of the polarizer. When the angle of the polarization axis of the analyzer is less than −30 °, the amount of change in the polarization angle of the inspection light due to the defect of the inspection object becomes almost the same as the angle of the polarization axis of the analyzer, thereby detecting the defect. It may not be possible with high accuracy. When the angle of the polarization axis of the analyzer exceeds + 30 °, the amount of change in the polarization angle of the inspection light due to the defect of the inspection object becomes almost the same as the angle of the polarization axis of the analyzer, thereby detecting the defect. May not be accurate. The change in the angle of the polarization axis of the analyzer 301 will be described later. The following effects can be obtained by adjusting the angle of the polarization axis of the analyzer 301 within a range of −30 to + 30 ° with respect to the polarization axis of the polarizer.

1)検光子を通過する検査光の透過量が増加するため、検出力が高くなると同時に検出精度が向上する。   1) Since the amount of inspection light passing through the analyzer increases, the detection power increases and at the same time the detection accuracy improves.

2)検光子を通過する検査光の偏光軸の角度が、検光子の偏光軸の角度に対応しているので、検光子を通過する検査光にムラがなくなり均一となり、検出精度が向上する。   2) Since the angle of the polarization axis of the inspection light passing through the analyzer corresponds to the angle of the polarization axis of the analyzer, the inspection light passing through the analyzer is uniform and uniform, and the detection accuracy is improved.

3)被検査物に欠陥が存在した時に、欠陥箇所を透過(反射)した偏光軸が異なる検査光は検光子を通過しないため、検出精度が向上する。   3) When there is a defect in the inspection object, inspection light having a different polarization axis that is transmitted (reflected) through the defect portion does not pass through the analyzer, thereby improving detection accuracy.

マスク303は、本図の場合は異物により散乱光となった検査光の内、散乱角度が小さく検光子を通過する正常部を透過(反射)した検査光と光路が異なる検査光を遮光するために受光手段302と検光子の間(受光部302aの前)に配設されている。マスク303の開口部303aの開口径は、受光面積に対して10〜100%が好ましい。受光面積に対して10%未満の場合は、受光量が減少し、正確な欠陥検出が出来なくなる場合がある。開口部303aの径が、100%を越える場合は、欠陥による散乱光が通過し受光部が受光してしまうため、精度の高い検出が不可となる場合がある。   In this figure, the mask 303 shields inspection light having a light path different from that of inspection light having a small scattering angle and transmitted (reflected) through a normal portion that passes through the analyzer, among inspection light that has been scattered by foreign matter. Are disposed between the light receiving means 302 and the analyzer (in front of the light receiving portion 302a). The opening diameter of the opening 303a of the mask 303 is preferably 10 to 100% with respect to the light receiving area. If it is less than 10% with respect to the light receiving area, the amount of received light decreases, and accurate defect detection may not be possible. When the diameter of the opening 303a exceeds 100%, scattered light due to the defect passes and the light receiving unit receives the light, so that highly accurate detection may not be possible.

マスク303の開口部303aの開口径を受光面積に対して10〜100%とすることで、異物により散乱光となった検査光の内、散乱角度が小さく検光子を通過する正常部を透過(反射)した検査光と光路が異なる検査光を遮光するために欠陥検出の精度が向上する。   By setting the opening diameter of the opening 303a of the mask 303 to 10 to 100% with respect to the light receiving area, the inspection light that has become scattered light due to the foreign matter is transmitted through a normal part having a small scattering angle and passing through the analyzer ( The accuracy of defect detection is improved because the inspection light having a different optical path from the reflected inspection light is shielded.

受光手段302は検光子301を透過(反射)した検査光Bを受光し、輝度信号を得る手段であり、例えば、受光面上の固体撮像素子が一方向に線状に並んだラインセンサ、受光面上の固体撮像素子がエリア状に配置されたエリアセンサが挙げられる。具体的には、固体撮像素子を受光面に持つCCDカメラ、CMOS型撮像素子等の公知の固体撮像素子が挙げられる。   The light receiving means 302 is means for receiving the inspection light B transmitted (reflected) through the analyzer 301 and obtaining a luminance signal. For example, a line sensor in which solid-state image sensors on the light receiving surface are arranged in a line in one direction, An area sensor in which solid-state image sensors on a surface are arranged in an area is exemplified. Specifically, a known solid-state image sensor such as a CCD camera having a solid-state image sensor on the light receiving surface or a CMOS image sensor can be used.

検光子301と受光手段302との間に、検光子301を透過した検査光Bを受光手段302の受光面に結像するために集光する公知の光学系レンズ(不図示)を使用してもかまわない。例えば、受光手段302にCCDカメラを使用する場合、CCDカメラの受光面で受光する際の検査光Bの光量によって得られる輝度信号の値がCCDカメラの受光面の受光位置によって変化する視角依存性を防止し、CCDカメラの受光面に結像させるの光学系レンズを使用することが好ましい。又、より視角依存性を小さくし、精度の高い欠陥部分の検出を行う場合や、輝度信号の値が小さく欠陥部分のSN比が小さい場合等に、特に光学系レンズを用いることが好ましい。305は、受光手段302を駆動させ検査光Bを検出するための駆動回路を示す。   A known optical system lens (not shown) that collects the inspection light B transmitted through the analyzer 301 to form an image on the light receiving surface of the light receiving means 302 is used between the analyzer 301 and the light receiving means 302. It doesn't matter. For example, when a CCD camera is used as the light receiving means 302, the value of the luminance signal obtained by the amount of the inspection light B when the light is received by the light receiving surface of the CCD camera changes depending on the viewing angle depending on the light receiving position of the light receiving surface of the CCD camera. It is preferable to use an optical lens that prevents image formation and forms an image on the light receiving surface of the CCD camera. In addition, it is particularly preferable to use an optical system lens when detecting the defect portion with high accuracy by reducing the viewing angle dependency or when the luminance signal value is small and the SN ratio of the defect portion is small. Reference numeral 305 denotes a drive circuit for driving the light receiving means 302 to detect the inspection light B.

受光手段302には信号処理装置304が接続されている。信号処理装置304は、バンドパスフィルタ304aと、コンパレーター設定値を有する2値化回路304bと、欠陥検出回路304cとを有している。バンドパスフィルタ304aは、受光手段302からの出力信号のうち、検査に必要な周波数帯域の信号だけを透過させる。2値化回路304bはバンドパスフィルタ304aを透過してきた出力信号のレベルを監視し、そのレベルが所定範囲を超えた以上レベルであるときに欠陥信号を出力するようになっている。欠陥検出回路304cは、各2値化回路304bから出力された信号に基づき、欠陥の有無を検出するとともに、カウンタ304dで被検査物の搬送される方向の長さと、欠陥の数とをカウントし、メモリ304eを用いて欠陥のレベルを演算処理し、欠陥信号と欠陥の位置情報とを出力することが可能になっている。   A signal processing device 304 is connected to the light receiving means 302. The signal processing device 304 includes a band-pass filter 304a, a binarization circuit 304b having a comparator set value, and a defect detection circuit 304c. The band pass filter 304a transmits only the signal in the frequency band necessary for the inspection among the output signals from the light receiving means 302. The binarization circuit 304b monitors the level of the output signal that has passed through the bandpass filter 304a, and outputs a defect signal when the level exceeds a predetermined range. The defect detection circuit 304c detects the presence / absence of a defect based on the signal output from each binarization circuit 304b, and counts the length in the direction in which the inspection object is conveyed and the number of defects by the counter 304d. The defect level is calculated using the memory 304e, and a defect signal and defect position information can be output.

図1の(a)に示される様に、被検査物が検査光を透過する物の場合、照射手段からの検査光の被検査物への照射角度は、0〜60°が好ましい。照射角度が60°を越える場合は、反射光量が増加し入射光量が減少するため検査信号が小さくなり、正確な欠陥検出が出来なくなる場合がある。   As shown in FIG. 1A, when the inspection object is an object that transmits inspection light, the irradiation angle of the inspection light from the irradiation means to the inspection object is preferably 0 to 60 °. When the irradiation angle exceeds 60 °, the amount of reflected light increases and the amount of incident light decreases, so that the inspection signal becomes small and accurate defect detection may not be possible.

図1の(b)に示される様に、被検査物が検査光を反射する物の場合、照射手段からの検査光の被検査物への照射角度は、0〜75°が好ましい。照射角度が75°を越えた場合、被検査物のわずかな変化により反射光量への影響が大きく、欠陥検出の精度が低下し、正確な欠陥検出が出来ない場合がある。   As shown in FIG. 1B, when the inspection object is an object that reflects inspection light, the irradiation angle of the inspection light from the irradiation unit to the inspection object is preferably 0 to 75 °. When the irradiation angle exceeds 75 °, a slight change in the inspected object has a large influence on the amount of reflected light, the accuracy of defect detection is lowered, and accurate defect detection may not be performed.

本図に示される欠陥検出装置を使用して被検査物の欠陥検出は、例えば、被検査物が小さな場合は、欠陥検出装置を移動して検査することも可能であるし、被検査物が帯状である場合は、被検査物を移動させながら連続的に検査することも可能である。次に、図1に示される欠陥検出装置を使用して、被検査物に存在する欠陥の検出方法につき説明する。   For example, when the inspection object is small, the defect detection apparatus shown in this figure can be used for inspection by moving the defect detection apparatus when the inspection object is small. In the case of a strip shape, it is possible to inspect continuously while moving the object to be inspected. Next, a method for detecting a defect present in an inspection object using the defect detection apparatus shown in FIG. 1 will be described.

図2は図1の(a)に示される欠陥検出装置を使用して、被検査物に存在する欠陥の検出方法の模式図である。   FIG. 2 is a schematic diagram of a method for detecting defects existing in the inspection object using the defect detection apparatus shown in FIG.

光源201の検査光は、偏光子202により被検査物4の偏光軸の角度との差が−45〜+45°の偏光角度に偏光される。偏光された検査光Aは、被検査物4に照射される。このとき、被検査物4に異物が付着した箇所401、結晶欠陥に伴う配向異常の箇所402、正常な箇所403が存在した場合、検査光の挙動は次の様になる。   The inspection light from the light source 201 is polarized by the polarizer 202 so that the difference from the angle of the polarization axis of the inspection object 4 is −45 to + 45 °. Polarized inspection light A is applied to the inspection object 4. At this time, when there are a portion 401 where foreign matter is attached to the inspection object 4, a portion 402 of abnormal orientation due to crystal defects, and a normal portion 403, the behavior of the inspection light is as follows.

異物が付着した箇所401では、検査光Aは異物により散乱され散乱光Dとなり、一部は系外に散乱し、散乱角度が小さい検査光D′が検光子301を通過してマスク303に到達する。マスク303に到達する検査光D′は異物による散乱角度の大きさに対応して変化する。マスク303に到達した検査光D′は、正常部を透過した検査光Bと光路が異なるため受光手段302の受光部の前に配設されたマスク303により遮光され、開口部303aから受光部302aへ入らない様になっている。これにより、検査光を散乱させる様な欠陥に対する検出精度が向上する。結晶欠陥に伴う配向異常の箇所402では、検査光Aは偏光角度が変化する光Cとなり、検出部3には到達するが、検光子301の偏光角度と異なるため検光子301を透過することが出来なくなっている。このため、受光手段302に到達する検査光はなくなる。正常な箇所403では、検査光Aは障害となる物がないため、偏光子202の偏光角度に対して検光子301の偏光角度が−30〜+30°に設定されている検光子301を透過して受光手段302に到達する。この様にして、受光手段302で得られた信号は信号処理装置304に送られて処理され欠陥判別が出される。他の符号は図1と同義である。   At the spot 401 where the foreign matter has adhered, the inspection light A is scattered by the foreign matter to become scattered light D, part of it is scattered outside the system, and the inspection light D ′ having a small scattering angle passes through the analyzer 301 and reaches the mask 303. To do. The inspection light D ′ reaching the mask 303 changes in accordance with the size of the scattering angle caused by the foreign matter. The inspection light D ′ that has reached the mask 303 has a different optical path from the inspection light B that has passed through the normal portion, and is thus shielded by the mask 303 disposed in front of the light receiving portion of the light receiving means 302, and from the opening 303 a to the light receiving portion 302 a. It is designed not to enter. Thereby, the detection accuracy with respect to a defect which scatters inspection light improves. The inspection light A becomes the light C whose polarization angle changes at the location 402 where the orientation is abnormal due to the crystal defect, and reaches the detection unit 3, but can pass through the analyzer 301 because it is different from the polarization angle of the analyzer 301. It is no longer possible. Therefore, no inspection light reaches the light receiving means 302. In the normal location 403, since the inspection light A has no obstacle, it passes through the analyzer 301 in which the polarization angle of the analyzer 301 is set to −30 to + 30 ° with respect to the polarization angle of the polarizer 202. To reach the light receiving means 302. In this way, the signal obtained by the light receiving means 302 is sent to the signal processing device 304 and processed for defect determination. Other reference numerals are the same as those in FIG.

即ち、モデル的に説明すると、例えば、100の検査光Aを被検査物に照射したとき、異物が付着した箇所401に30%、正常な箇所403に50%、結晶欠陥に伴う配向異常の箇所402に20%の検査光が照射されたと仮定する。この場合、異物が付着した箇所では散乱光となり減光し、照射された検査光の20%が受光手段302に到達し、結晶欠陥に伴う配向異常の箇所402では、受光手段302に到達する検査光は0%となり、正常箇所では照射された検査光の100%が受光手段302に到達する。この結果、被検査物の正常箇所に照射された50%の検査光に対して、配向異常の箇所での検査光は0となり、正常箇所との差が0/50となり、又、異物が付着した箇所では、正常箇所との差が6/50となることから、この箇所に欠陥が存在することが判定される。   That is, in terms of a model, for example, when 100 inspection light A is irradiated onto an inspection object, 30% is present at a spot 401 where foreign matter has adhered, 50% at a normal spot 403, and an abnormal position due to crystal defects. Assume that 20% of the inspection light is irradiated to 402. In this case, the scattered light is reduced at the spot where the foreign matter is attached, and 20% of the irradiated inspection light reaches the light receiving means 302, and the inspection reaching the light receiving means 302 at the location 402 where the orientation is abnormal due to crystal defects. The light becomes 0%, and 100% of the irradiated inspection light reaches the light receiving means 302 at a normal location. As a result, with respect to 50% of the inspection light irradiated to the normal part of the object to be inspected, the inspection light at the part where the orientation is abnormal is 0, the difference from the normal part is 0/50, and foreign matter is attached. Since the difference from the normal location is 6/50 at the location that has been done, it is determined that there is a defect at this location.

図3は図1の(a)に示される欠陥検出装置を使用して欠陥検出を行い、得られる欠陥信号のパターンの模式図である。図3の(a)は配向異常の欠陥が2箇所ある被検査物を、図1の(a)に示される欠陥検出装置を使用して欠陥検出を行い、得られる欠陥信号の模式図である。図3の(b)は異物付着の欠陥が3箇所ある被検査物を、図1の(a)に示される欠陥検出装置を使用して欠陥検出を行い、得られる欠陥信号の模式図である。図3の(c)は配向異常の欠陥が2箇所と異物付着の欠陥が2箇所ある被検査物を図1の(a)に示される欠陥検出装置を使用して欠陥検出を行い、得られる欠陥信号の模式図である。   FIG. 3 is a schematic diagram of a defect signal pattern obtained by performing defect detection using the defect detection apparatus shown in FIG. FIG. 3A is a schematic diagram of a defect signal obtained by performing defect detection on an inspection object having two defects of orientation anomalies using the defect detection apparatus shown in FIG. . FIG. 3B is a schematic diagram of a defect signal obtained by performing defect detection on an inspection object having three foreign substance attachment defects using the defect detection apparatus shown in FIG. . FIG. 3 (c) is obtained by performing defect detection on an inspection object having two orientation abnormality defects and two foreign matter adhesion defects using the defect detection apparatus shown in FIG. 1 (a). It is a schematic diagram of a defect signal.

図中、A1、A2は配向異常の欠陥箇所を示し、B1〜B3は異物付着の欠陥箇所を示し、1〜6は走査回数を示す。即ち、本図は被検査物4に対して、全幅方向で上から下に向かって(図中の矢印方向)、6回走査したことを示しており、その各走査で得られた検査信号のパターンを示している。   In the figure, A1 and A2 indicate defect locations with abnormal alignment, B1 to B3 indicate defect locations with foreign matter adhesion, and 1 to 6 indicate the number of scans. That is, this figure shows that the inspection object 4 has been scanned six times from the top to the bottom in the full width direction (the direction of the arrow in the figure). The pattern is shown.

図3の(a)に示される配向異常の欠陥A1、A2が2箇所ある被検査物の場合、配向異常の欠陥A1、A2で検査光は偏光することにより、検光子を通過しないため受光手段には到達しなく、欠陥信号として記録される。本図ではWが欠陥A1、Vが欠陥A2に該当する。この結果から被検査物には2箇所の欠陥が存在することが検出される。   In the case of an inspected object having two abnormal alignment defects A1 and A2 shown in FIG. 3A, the inspection light is polarized by the abnormal alignment defects A1 and A2, and therefore does not pass through the analyzer. Is not recorded and is recorded as a defect signal. In this figure, W corresponds to the defect A1, and V corresponds to the defect A2. From this result, it is detected that there are two defects in the inspection object.

図3の(b)に示される異物付着の欠陥B1〜B3が3箇所ある被検査物の場合、異物付着の欠陥B1〜B3で検査光は散乱光となり、一部は光路から外れ、散乱角度が小さい検査光が検光子を通過するが、受光手段の前にあるマスクにより遮光されるため、欠陥信号として記録される。本図ではXが欠陥B1、Yが欠陥B2、Zが欠陥B3に該当する。この結果から被検査物には3箇所の欠陥が存在することが検出される。   In the case of the inspected object having the foreign matter adhesion defects B1 to B3 shown in FIG. 3B, the inspection light becomes scattered light at the foreign matter adhesion defects B1 to B3, and a part of the inspection light is out of the optical path. Small inspection light passes through the analyzer, but is shielded by the mask in front of the light receiving means, and is recorded as a defect signal. In this figure, X corresponds to the defect B1, Y corresponds to the defect B2, and Z corresponds to the defect B3. From this result, it is detected that there are three defects in the inspection object.

図3の(c)に示される配向異常の欠陥A1、A2が2箇所と、異物付着の欠陥B1〜B3が3箇所ある被検査物の場合、この場合は図3の(a)と、図3の(b)とに示される欠陥信号が合わされた欠陥信号となり、欠陥箇所が5箇所あることが検出される。   In the case of the inspected object having two orientation abnormalities A1 and A2 and three foreign matter defects B1 to B3 shown in FIG. 3C, in this case, FIG. The defect signal shown in (b) of 3 is a combined defect signal, and it is detected that there are five defect portions.

本図に示す如く、本発明の欠陥検出装置では、得られた欠陥信号から偏光軸方向が変化
する欠陥、光散乱する欠陥の解析は困難であるが、被検査物の欠陥の有無を検出するには構成が簡単で優れた機能を有している。
図4は図1、図2に示される欠陥検出装置を使用し、欠陥検出を行うまでの概略フロー図である。
As shown in this figure, in the defect detection apparatus of the present invention, it is difficult to analyze a defect whose polarization axis direction changes or a light scattering defect from the obtained defect signal, but it detects the presence or absence of a defect in the inspection object. Has a simple structure and excellent functions.
FIG. 4 is a schematic flow chart until the defect detection is performed using the defect detection apparatus shown in FIGS.

図1、図2に示される欠陥検出装置を使用し、欠陥検出を行うまでを段階的に説明する。S1では、被検査物の搬送方向に対する偏光角量を駿河精機(株)製VPMM−100を使用して求める。   The steps until defect detection is performed using the defect detection apparatus shown in FIGS. 1 and 2 will be described step by step. In S1, the amount of polarization angle with respect to the conveyance direction of the object to be inspected is obtained using a VPMM-100 manufactured by Suruga Seiki Co., Ltd.

S2では、投光部の偏光子、検出部の検光子の偏光軸を予め駿河精機(株)製VPMM−100を使用し求め、偏光子、検光子に偏光軸方向に沿ってマークを付ける。   In S2, the polarization axes of the polarizer of the light projecting unit and the analyzer of the detecting unit are obtained in advance using a VPMM-100 manufactured by Suruga Seiki Co., Ltd., and the polarizer and the analyzer are marked along the direction of the polarization axis.

S3では、S2で求められた偏光子の偏光軸を、S1で求めた被検査物の搬送方向に対する偏光角量に対応して、必要とする偏光角量分だけ駿河精機(株)製の微調式偏光ホルダーを使用して合わせる。   In S3, the polarization axis of the polarizer determined in S2 is finely adjusted by Suruga Seiki Co., Ltd. by the required polarization angle amount corresponding to the polarization angle amount with respect to the conveyance direction of the inspection object determined in S1. Align using a polarizing holder.

S4では、検出部の検光子の偏光軸を偏光子の被検査物の搬送方向に対する偏光角量に対応して微調整した偏光軸方向に必要とする偏光角量分だけ駿河精機(株)製の微調式偏光ホルダーを使用して合わせる。   In S4, the Suruga Seiki Co., Ltd. product makes the polarization axis of the analyzer of the detection unit by the amount of polarization angle required in the direction of the polarization axis finely adjusted in accordance with the polarization angle of the polarizer with respect to the conveyance direction of the inspection object. Use a fine-tuning polarization holder.

S5では、検出部の検光子の前(後)に、必要とする開口径10〜100%の開口部を有するマスクを設置する。   In S5, a mask having an opening with a required opening diameter of 10 to 100% is placed before (after) the analyzer of the detection unit.

S6では、被検査物に検査光を照射し検査を開始する。   In S6, the inspection object is irradiated with inspection light and inspection is started.

S1〜S6の段階を経ることで被検査物の欠陥を容易に検出することが可能となる。本発明の図1〜図4に示す欠陥検査装置及び欠陥検査方法により次の効果が挙げられる。1)構成が簡単な欠陥検査装置を提供出来、安定した欠陥検査が可能となった。2)被検査物が変化しても、精度良く安定した欠陥検出が可能となった。   By passing through the steps S1 to S6, it becomes possible to easily detect the defect of the inspection object. The following effects can be obtained by the defect inspection apparatus and the defect inspection method shown in FIGS. 1) A defect inspection apparatus having a simple configuration can be provided, and stable defect inspection is possible. 2) Even if the inspection object changes, stable defect detection can be performed with high accuracy.

本発明に係る被検査物としては特に限定はないが、例えば樹脂フィルム、基板、ガラス、各種ドラム、紙、鋼板、非鉄板が挙げられる。具体的には、樹脂フィルムとしては、アクリルフィルム、ペットフィルム、蒸着フィルム、偏光フィルム、フィルム、光拡散フィルム、ARフィルム、多層フィルム、コーティングフィルム、セロファンフィルム、A−PETフィルム、ポリアミドフィルム、位相差フィルム、磁気テープ、塩化ビニルフィルム、ゴムシート等が上げられる。欠陥の種類としては、例えば、凹凸、穴、黒点、異物、ピンホール、キズ、スクラッチ、シミ、薄シミ、にじみ、汚れ、薄汚れ、フィッシュアイ、異物混入、ブツ、ゲル、斑、ムラ、色ムラ、皺、ストリーク、ダイライン等が挙げられる。   The test object according to the present invention is not particularly limited, and examples thereof include a resin film, a substrate, glass, various drums, paper, a steel plate, and a non-ferrous plate. Specifically, as a resin film, acrylic film, pet film, vapor deposition film, polarizing film, film, light diffusion film, AR film, multilayer film, coating film, cellophane film, A-PET film, polyamide film, retardation Film, magnetic tape, vinyl chloride film, rubber sheet, etc. are raised. The types of defects include, for example, unevenness, holes, black spots, foreign matter, pinholes, scratches, scratches, spots, thin stains, smudges, dirt, thin stains, fish eyes, foreign matter contamination, blisters, gels, spots, unevenness, color Examples include unevenness, wrinkles, streaks, and die lines.

基板、ガラスとしては、例えば、素ガラス、塗工ガラス、ガラス基板、積層基板、BGAシール基板等が挙げられる。欠陥の種類としては、穴、ピンホール、黒点、異物、汚れ、キズ、スリスジ、泡等が挙げられる。   Examples of the substrate and glass include raw glass, coated glass, a glass substrate, a laminated substrate, and a BGA seal substrate. Examples of the types of defects include holes, pinholes, black spots, foreign matters, dirt, scratches, sludge, bubbles, and the like.

各種ドラムとしては、例えば、アルミ素管、ゴムロール、感光ドラム、自動車部品等が上げられる。欠陥の種類としては、スクラッチ、焼き付け、異物、シミ、ムシレ、押し込み、白抜け、スジ、凹凸、打痕等が挙げられる。   Examples of the various drums include an aluminum base tube, a rubber roll, a photosensitive drum, and automobile parts. Examples of the types of defects include scratches, burn-in, foreign matter, stains, stuffiness, indentation, white spots, streaks, irregularities, and dents.

紙としては、例えば、感光材料用支持体、レジンコート紙、印刷用紙、紙幣用紙等が挙げられる。欠陥の種類としては、例えば、シミ、異物、皺、汚れ、凹凸、抜け等が挙げられる。   Examples of the paper include a photosensitive material support, resin-coated paper, printing paper, banknote paper, and the like. Examples of the type of defect include a stain, a foreign object, a wrinkle, a stain, an unevenness, and a dropout.

鋼板、非鉄板としては、鋼板(CPL、CGL、EGL、CAL等)、銅板、黄銅板、ステンレス板、アルミニウム板、銅箔、アルミ箔、電極板、電子材料等が挙げられる。
欠陥の種類としては、例えば、凹凸、ヘゲ、穴、黒点、ピンホール、キズ、疵、かき疵、シミ、汚れ、斑、ムラ、白点マーク、ハガレ、削れ跡、斑点、メッキ露出、異物、押し跡、ロールマーク、研磨跡、光沢ムラ、スリキズ、メッキ不良、溶接跡、クロム酸ヨゴレ、光沢斑等が挙げられる。
Examples of steel plates and non-ferrous plates include steel plates (CPL, CGL, EGL, CAL, etc.), copper plates, brass plates, stainless steel plates, aluminum plates, copper foils, aluminum foils, electrode plates, electronic materials, and the like.
The types of defects include, for example, unevenness, shavings, holes, black spots, pinholes, scratches, wrinkles, scabs, spots, dirt, spots, unevenness, white spot marks, peeling, spots, spots, plating exposure, and foreign matter. , Pressing marks, roll marks, polishing marks, uneven gloss, scratches, poor plating, welding marks, stained chromate, gloss spots, and the like.

以下、本発明の効果を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although the effect of the present invention is concretely explained by an example, the present invention is not limited to these.

実施例1
(被検査物の準備)
被検査物として、次の方法でセルロースエステルフィルムを作製した。
(ドープ組成物の調製)
三酢酸セルロース 100質量部
トリフェニルホスフェート 13質量部
2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)
ベンゾトリアゾール 3質量部
アエロジルR200V(日本アエロジル(株)製) 0.1質量部
メチレンクロライド 475質量部
エタノール 50質量部
以上を密閉容器に投入し、41℃で撹拌しながら完全に溶解した。
Example 1
(Preparation of inspection object)
A cellulose ester film was produced as an object to be inspected by the following method.
(Preparation of dope composition)
Cellulose triacetate 100 parts by weight Triphenyl phosphate 13 parts by weight 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl)
Benzotriazole 3 parts by weight Aerosil R200V (manufactured by Nippon Aerosil Co., Ltd.) 0.1 part by weight Methylene chloride 475 parts by weight Ethanol 50 parts by weight The above was put into a sealed container and completely dissolved while stirring at 41 ° C.

(フィルムの調製)
ドープ組成物を濾過し、ドープ温度33℃で支持体上に幅1000mmで均一に流延した。支持体の速度は20m/minで温度をコントロールしながら溶媒を蒸発させ、残留溶媒量120%で支持体上から剥離した後、ロール搬送乾燥工程での乾燥を残留溶媒量が80質量%までは30℃、80質量%未満では50℃で行った。次ぎに、テンター搬送・乾燥工程で残留溶媒量が20質量%迄は80℃で、20質量%未満は100℃で行い、更にテンター後のロール乾燥を130℃で行いセルロースエステルフィルムを作製した。乾燥終了時のフィルムの厚さは60μmであり、残留溶媒量は0.1質量%未満であった。
(Preparation of film)
The dope composition was filtered, and uniformly cast with a width of 1000 mm on a support at a dope temperature of 33 ° C. The speed of the support is 20 m / min while the temperature is controlled, the solvent is evaporated, and after peeling off from the support with a residual solvent amount of 120%, the drying in the roll transport drying process is performed until the residual solvent amount reaches 80% by mass. It was performed at 50 ° C. at 30 ° C. and less than 80% by mass. Next, in the tenter conveying / drying step, the residual solvent amount was 80 ° C. up to 20% by mass, less than 20% by mass at 100 ° C., and roll drying after the tenter was performed at 130 ° C. to prepare a cellulose ester film. The thickness of the film at the end of drying was 60 μm, and the residual solvent amount was less than 0.1% by mass.

残留溶媒量の測定はフィルムを115℃で1時間乾燥した時のフィルムの質量をAとし、乾燥前のフィルムの質量をBとしたとき、下式より求めた値である。   The measurement of the residual solvent amount is a value obtained from the following equation, where A is the mass of the film when the film is dried at 115 ° C. for 1 hour, and B is the mass of the film before drying.

((B−A)/A)×100=残留溶媒量(質量%)
(欠陥検査)
準備したセルロースエステルフィルムの欠陥検査を、図1の(a)に示す欠陥検査装置を使用し、図4に示す概略フロー図に従って、表1、表2に示す様に、偏光子の偏光角量、検光子の偏光角量及びマスクの開口率を変えた検査条件101〜154で欠陥検出を行い欠陥信号の状態を、欠陥信号レベルの高さをS、ノイズ信号レベルの高さをNとしたときの検出力をS/N値を求め、以下に示す評価ランクに従って評価した結果を表1に示す。尚、偏光子の偏光角量は、被検査物のセルロースエステルフィルムの搬送方向に対する偏光角量に対しての角度の差を示す。検光子の偏光角量は、偏光子の被検査物の搬送方向に対する偏光角量に対応して微調整した偏光軸方向に必要とする偏光角量に対しての角度の差を示す。光源はタングステン光を使用し、面光源とした。又、被検査物に対する照射角度は56.3°とした。受光手段としてはCCDカメラを使用し、マスクの開口径はCCDカメラの受光面積に対する割合を示す。
((BA) / A) × 100 = residual solvent amount (% by mass)
(Defect inspection)
The defect inspection of the prepared cellulose ester film is performed using the defect inspection apparatus shown in FIG. 1A, and according to the schematic flow chart shown in FIG. Defect detection is performed under inspection conditions 101 to 154 in which the amount of polarization angle of the analyzer and the aperture ratio of the mask are changed. Table 1 shows the results obtained by calculating the S / N value of the detection power at the time and evaluating it according to the following evaluation rank. In addition, the polarization angle amount of a polarizer shows the difference of the angle with respect to the polarization angle amount with respect to the conveyance direction of the cellulose-ester film of a to-be-inspected object. The polarization angle amount of the analyzer indicates a difference in angle with respect to the polarization angle amount required in the polarization axis direction finely adjusted corresponding to the polarization angle amount of the polarizer with respect to the conveyance direction of the inspection object. The light source used was tungsten light and was a surface light source. Moreover, the irradiation angle with respect to the to-be-inspected object was 56.3 degrees. A CCD camera is used as the light receiving means, and the opening diameter of the mask indicates a ratio to the light receiving area of the CCD camera.

欠陥信号の評価ランク
○:S/N≧3で、安定して欠陥が確実に検出できる
△:2≦S/N<3で、検出できる時とできない時が混在する
×:S/N<2で、検出することが難しい
Defect signal evaluation rank ○: S / N ≧ 3, stable defect can be detected reliably. Δ: 2 ≦ S / N <3, both when it can be detected and when it cannot be detected. ×: S / N <2. And difficult to detect

Figure 2006078426
Figure 2006078426

Figure 2006078426
Figure 2006078426

本発明の欠陥検査装置を使用し、受光手段の受光面積に対して開口径が、10〜100%の開口部を有するマスクを受光手段の前に設置し、偏光子の偏光軸の角度と、被検査物の偏光軸の角度との差が−45〜+45°、且つ検光子の偏光軸の角度と、偏光子の偏光軸の角度とのを、−30〜+30°に検出条件を設定することで偏光方向が変化する欠陥、光散乱する欠陥が共存していても精度良く欠陥検出が可能であることを確認し本発明の有効性が確認された。   Using the defect inspection apparatus of the present invention, a mask having an opening with an opening diameter of 10 to 100% with respect to the light receiving area of the light receiving means is placed in front of the light receiving means, and the angle of the polarization axis of the polarizer, The detection condition is set such that the difference from the angle of the polarization axis of the inspection object is −45 to + 45 °, and the angle of the polarization axis of the analyzer and the angle of the polarization axis of the polarizer are −30 to + 30 °. Thus, it was confirmed that the defect can be detected with high accuracy even when a defect whose polarization direction changes and a light scattering defect coexist, and the effectiveness of the present invention was confirmed.

実施例2
(被検査物の準備)
ポリメタメチルアクリレート(PMMA)を1μmの厚さで被覆した、直径48mmのシリコンウエハーを準備した。
Example 2
(Preparation of inspection object)
A silicon wafer with a diameter of 48 mm, coated with polymethamethyl acrylate (PMMA) at a thickness of 1 μm, was prepared.

(欠陥検査)
準備したシリコンウエハーの欠陥検査を、目視観察と図1の(b)に示す欠陥検査装置を使用し、図4に示す概略フロー図に従って、表3、表4に示す様に、偏光子の偏光角量、検光子の偏光角量及びマスクの開口率を変えた検査条件201〜254欠陥検出を行い欠陥信号の状態を実施例1と同じ方法でS/N値を求め、実施例1と同じ評価ランクで評価した結果を表2に示す。
(Defect inspection)
Defect inspection of the prepared silicon wafer is carried out by visual observation and using the defect inspection apparatus shown in FIG. 1B, and according to the schematic flow chart shown in FIG. Inspection conditions 201 to 254 with different angular amounts, analyzer polarization angle amounts and mask aperture ratios are detected, the defect signal state is obtained in the same manner as in Example 1, and the S / N value is obtained in the same manner as in Example 1. Table 2 shows the results of evaluation based on the evaluation rank.

尚、偏光子の偏光角量は、被検査物のシリコンウエハーの搬送方向に対する偏光角量に対しての角度の差を示す。検光子の偏光角量は、偏光子の被検査物の搬送方向に対する偏光角量に対応して微調整した偏光方向に必要とする偏光角量に対しての角度の差を示す。光源はタングステン光を使用し、面光源とした。又、被検査物に対する照射角度は60°とした。受光手段としてはCCDカメラを使用し、マスクの開口径はCCDカメラの受光面積に対する割合を示す。   The polarization angle amount of the polarizer indicates an angle difference with respect to the polarization angle amount with respect to the conveyance direction of the silicon wafer of the inspection object. The polarization angle amount of the analyzer indicates a difference in angle with respect to the polarization angle amount necessary for the polarization direction finely adjusted corresponding to the polarization angle amount of the polarizer with respect to the conveyance direction of the inspection object. The light source used was tungsten light and was a surface light source. The irradiation angle with respect to the object to be inspected was 60 °. A CCD camera is used as the light receiving means, and the opening diameter of the mask indicates a ratio to the light receiving area of the CCD camera.

Figure 2006078426
Figure 2006078426

Figure 2006078426
Figure 2006078426

本発明の欠陥検査装置を使用し、受光手段の受光面積に対して開口径が、10〜100%の開口部を有するマスクを受光手段の前に設置し、偏光子の偏光軸の角度と、被検査物の偏光軸の角度との差が−45〜+45°、且つ検光子の偏光軸の角度と、偏光子の偏光軸の角度とのを、−30〜+30°に検出条件を設定することで偏光方向が変化する欠陥、光散乱する欠陥が共存していても精度良く欠陥検出が可能であることを確認し本発明の有効性が確認された。   Using the defect inspection apparatus of the present invention, a mask having an opening with an opening diameter of 10 to 100% with respect to the light receiving area of the light receiving means is placed in front of the light receiving means, and the angle of the polarization axis of the polarizer, The detection condition is set such that the difference from the angle of the polarization axis of the inspection object is −45 to + 45 °, and the angle of the polarization axis of the analyzer and the angle of the polarization axis of the polarizer are −30 to + 30 °. Thus, it was confirmed that the defect can be detected with high accuracy even when a defect whose polarization direction changes and a light scattering defect coexist, and the effectiveness of the present invention was confirmed.

欠陥検出装置の基本構成を示す模式図である。It is a schematic diagram which shows the basic composition of a defect detection apparatus. 図1の(a)に示される欠陥検出装置を使用して、被検査物に存在する欠陥の検出方法の模式図である。It is a schematic diagram of the detection method of the defect which exists in to-be-inspected object using the defect detection apparatus shown by (a) of FIG. 図1の(a)に示される欠陥検出装置を使用して欠陥検出を行い、得られる欠陥信号の模式図である。It is a schematic diagram of a defect signal obtained by performing defect detection using the defect detection apparatus shown in FIG. 図1、図2に示される欠陥検出装置を使用し、欠陥検出を行うまでの概略フロー図である。FIG. 3 is a schematic flowchart up to defect detection using the defect detection apparatus shown in FIGS. 1 and 2.

符号の説明Explanation of symbols

1 欠陥検出装置
2 投光部
201 光源
202 偏光子
3 検出部
301 検光子
302 受光手段
302a 受光部
303 マスク
303a 開口部
304 信号処理装置
4 被検査物
DESCRIPTION OF SYMBOLS 1 Defect detection apparatus 2 Light projection part 201 Light source 202 Polarizer 3 Detection part 301 Analyzer 302 Light receiving means 302a Light reception part 303 Mask 303a Opening part 304 Signal processing apparatus 4 Inspected object

Claims (12)

被検査物に検査光を照射する投光部と、該被検査物を透過した透過光、或いは反射光を検出し、前記被検査物の欠陥を検出する検出部とを有する欠陥検査装置において、
該投光部は照射手段と、偏光子とを有し、
該検出部は、検光子と光検出手段とを有し、
該偏光子は、前記被検査物の固有の偏光軸に合わせ前記偏光子の偏光軸を変え、該照射手段からの光を偏光して前記被検査物に照射し、
該検光子は、偏光軸を前記偏光子の偏光軸に合わせ、前記被検査物からの透過光、或いは反射光を通して透過量の変化、或いは反射量の変化を光検出手段で検出することにより、前記被検査物の欠陥を検出することを特徴とする欠陥検査装置。
In a defect inspection apparatus having a light projecting unit that irradiates an inspection object with inspection light, and a detection unit that detects transmitted light or reflected light transmitted through the inspection object and detects a defect of the inspection object,
The light projecting unit has irradiation means and a polarizer,
The detection unit includes an analyzer and light detection means,
The polarizer changes the polarization axis of the polarizer according to the specific polarization axis of the inspection object, polarizes the light from the irradiation means, and irradiates the inspection object,
The analyzer aligns the polarization axis with the polarization axis of the polarizer, and detects the change in the transmission amount or the change in the reflection amount through the transmitted light or reflected light from the inspection object by the light detection means, A defect inspection apparatus for detecting a defect of the inspection object.
前記照射手段が140〜40,000nmの波長域の光を照射し得ることを特徴とする請求項1に記載の欠陥検査装置。 The defect inspection apparatus according to claim 1, wherein the irradiation unit can irradiate light having a wavelength range of 140 to 40,000 nm. 前記偏光子の偏光軸の角度と、被検査物の偏光軸の角度との差は、−45〜+45°であることを特徴とする請求項1又は2に記載の欠陥検査装置。 3. The defect inspection apparatus according to claim 1, wherein the difference between the angle of the polarization axis of the polarizer and the angle of the polarization axis of the inspection object is −45 to + 45 °. 前記検光子の偏光軸の角度と、偏光子の偏光軸の角度との差は、−30〜+30°であることを特徴とする請求項1〜3の何れか1項に記載の欠陥検査装置。 The defect inspection apparatus according to claim 1, wherein a difference between an angle of a polarization axis of the analyzer and an angle of a polarization axis of the polarizer is −30 to + 30 °. . 前記光検出手段と検光子の間、又は、前に、該光検出手段である受光手段の受光面積に対して開口径が、10〜100%の開口部を有するマスクが設けられていることを特徴とする請求項1〜4の何れか1項に記載の欠陥検査装置。 A mask having an opening with an opening diameter of 10 to 100% with respect to the light receiving area of the light receiving means which is the light detecting means is provided between or before the light detecting means and the analyzer. The defect inspection apparatus according to any one of claims 1 to 4, wherein the defect inspection apparatus is characterized in that: 前記マスクは検光子と一体型であることを特徴とする請求項5に記載の欠陥検査装置。 The defect inspection apparatus according to claim 5, wherein the mask is integrated with an analyzer. 被検査物に検査光を照射する投光部と、該被検査物を透過した透過光、或いは反射光を検出し、前記被検査物の欠陥を検出する検出部とを有する欠陥検査装置を用いた欠陥検査方法において、
該投光部は照射手段と、偏光子とを有し、
該検出部は、検光子と光検出手段とを有し、
前記偏光子は、被検査物の固有の偏光軸に合わせ該偏光子の偏光軸を変え、照射手段からの光を偏光して該被検査物に照射し、
該検光子は、偏光軸を前記偏光子の偏光軸に合わせ、前記被検査物からの透過光、或いは反射光を通して透過量の変化、或いは反射量の変化を光検出手段で検出することにより、被照射物の欠陥を検出することを特徴とする欠陥検査方法。
A defect inspection apparatus having a light projecting unit that irradiates an inspection object with inspection light and a detection unit that detects transmitted light or reflected light transmitted through the inspection object and detects a defect of the inspection object is used. In the defect inspection method
The light projecting unit has irradiation means and a polarizer,
The detection unit includes an analyzer and light detection means,
The polarizer changes the polarization axis of the polarizer according to the specific polarization axis of the inspection object, polarizes the light from the irradiation means, and irradiates the inspection object,
The analyzer aligns the polarization axis with the polarization axis of the polarizer, and detects the change in the transmission amount or the change in the reflection amount through the transmitted light or reflected light from the inspection object by the light detection means, A defect inspection method characterized by detecting a defect of an irradiated object.
前記照射手段が140〜40,000nmの波長域の光を照射し得ることを特徴とする請求項7に記載の欠陥検査方法。 The defect inspection method according to claim 7, wherein the irradiation unit can irradiate light having a wavelength range of 140 to 40,000 nm. 前記偏光子の偏光軸の角度と、被検査物の偏光軸の角度との差は、−45〜+45°であることを特徴とする請求項7又は8に記載の欠陥検査方法。 9. The defect inspection method according to claim 7, wherein a difference between an angle of a polarization axis of the polarizer and an angle of a polarization axis of the inspection object is −45 to + 45 °. 前記検光子の偏光軸の角度と、偏光子の偏光軸の角度との差は、−30〜+30°であることを特徴とする請求項7〜9の何れか1項に記載の欠陥検査方法。 The defect inspection method according to claim 7, wherein a difference between an angle of a polarization axis of the analyzer and an angle of a polarization axis of the polarizer is −30 to + 30 °. . 前記光検出手段と検光子の間、又は、前に、該光検出手段である受光手段の受光面積に対して開口径が、10〜100%の開口部を有するマスクが設けられていることを特徴とする請求項7〜10の何れか1項に記載の欠陥検査方法。 A mask having an opening with an opening diameter of 10 to 100% with respect to the light receiving area of the light receiving means which is the light detecting means is provided between or before the light detecting means and the analyzer. The defect inspection method according to claim 7, wherein the defect inspection method is any one of claims 7 to 10. 前記マスクは検光子と一体型であることを特徴とする請求項11に記載の欠陥検査方法。 The defect inspection method according to claim 11, wherein the mask is integrated with an analyzer.
JP2004265212A 2004-09-13 2004-09-13 Apparatus and method for inspecting defect Pending JP2006078426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265212A JP2006078426A (en) 2004-09-13 2004-09-13 Apparatus and method for inspecting defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265212A JP2006078426A (en) 2004-09-13 2004-09-13 Apparatus and method for inspecting defect

Publications (1)

Publication Number Publication Date
JP2006078426A true JP2006078426A (en) 2006-03-23

Family

ID=36158007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265212A Pending JP2006078426A (en) 2004-09-13 2004-09-13 Apparatus and method for inspecting defect

Country Status (1)

Country Link
JP (1) JP2006078426A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175565A (en) * 2007-01-16 2008-07-31 Fujifilm Corp Flaw detector of light transmissive member, and flaw detection method
WO2011155294A1 (en) * 2010-06-09 2011-12-15 シャープ株式会社 Substrate processing apparatus, substrate transfer apparatus, and dent detecting apparatus
KR101367922B1 (en) 2007-04-16 2014-02-27 엘아이지에이디피 주식회사 Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission and Phase Shift of Transmission Light
KR20140033980A (en) * 2012-09-11 2014-03-19 참엔지니어링(주) Apparatus and method for detecting defect of lcd panel
KR101414273B1 (en) * 2007-04-16 2014-07-02 엘아이지에이디피 주식회사 Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission
KR101477288B1 (en) * 2007-04-16 2014-12-29 엘아이지에이디피 주식회사 Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission and Phase Shift of Transmission Light
KR101481618B1 (en) * 2013-09-03 2015-01-12 주식회사 포스코 Apparatus and method for estimating welding quality of strip
US9164042B2 (en) 2011-02-10 2015-10-20 Hitachi High-Technologies Corporation Device for detecting foreign matter and method for detecting foreign matter
KR20190034734A (en) * 2017-09-25 2019-04-03 주식회사 포스코 Apparatus of estimating welding quality
CN111948176A (en) * 2019-05-15 2020-11-17 住友化学株式会社 Method for inspecting optical film and method for manufacturing optical film
JP2022532427A (en) * 2019-06-07 2022-07-14 エルジー・ケム・リミテッド Liquid crystal unevenness inspection device for polarizing plates and liquid crystal unevenness inspection method for polarizing plates

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175565A (en) * 2007-01-16 2008-07-31 Fujifilm Corp Flaw detector of light transmissive member, and flaw detection method
KR101367922B1 (en) 2007-04-16 2014-02-27 엘아이지에이디피 주식회사 Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission and Phase Shift of Transmission Light
KR101414273B1 (en) * 2007-04-16 2014-07-02 엘아이지에이디피 주식회사 Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission
KR101477288B1 (en) * 2007-04-16 2014-12-29 엘아이지에이디피 주식회사 Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission and Phase Shift of Transmission Light
WO2011155294A1 (en) * 2010-06-09 2011-12-15 シャープ株式会社 Substrate processing apparatus, substrate transfer apparatus, and dent detecting apparatus
US9164042B2 (en) 2011-02-10 2015-10-20 Hitachi High-Technologies Corporation Device for detecting foreign matter and method for detecting foreign matter
KR101643326B1 (en) 2012-09-11 2016-07-27 참엔지니어링(주) Apparatus and method for detecting defect of lcd panel
KR20140033980A (en) * 2012-09-11 2014-03-19 참엔지니어링(주) Apparatus and method for detecting defect of lcd panel
KR101481618B1 (en) * 2013-09-03 2015-01-12 주식회사 포스코 Apparatus and method for estimating welding quality of strip
KR20190034734A (en) * 2017-09-25 2019-04-03 주식회사 포스코 Apparatus of estimating welding quality
KR102020391B1 (en) 2017-09-25 2019-09-10 주식회사 포스코 Apparatus of estimating welding quality
CN111948176A (en) * 2019-05-15 2020-11-17 住友化学株式会社 Method for inspecting optical film and method for manufacturing optical film
JP2020190553A (en) * 2019-05-15 2020-11-26 住友化学株式会社 Method for inspecting optical film and method for manufacturing optical film
JP7383559B2 (en) 2019-05-15 2023-11-20 住友化学株式会社 Optical film inspection method and optical film manufacturing method
CN111948176B (en) * 2019-05-15 2024-03-26 住友化学株式会社 Inspection method for optical film and manufacturing method for optical film
TWI839517B (en) * 2019-05-15 2024-04-21 日商住友化學股份有限公司 Method for inspecting optical film inspection and method for manufacturing optical film
JP2022532427A (en) * 2019-06-07 2022-07-14 エルジー・ケム・リミテッド Liquid crystal unevenness inspection device for polarizing plates and liquid crystal unevenness inspection method for polarizing plates
EP3982193A4 (en) * 2019-06-07 2022-07-27 Lg Chem, Ltd. Device for detecting liquid crystal mura in polarizing plate, and method for detecting liquid crystal mura in polarizing plate
JP7410979B2 (en) 2019-06-07 2024-01-10 エルジー・ケム・リミテッド Polarizing plate liquid crystal unevenness inspection device and polarizing plate liquid crystal unevenness inspection method

Similar Documents

Publication Publication Date Title
KR100399507B1 (en) How to recognize and evaluate defects in reflective surface coatings
US7283227B2 (en) Oblique transmission illumination inspection system and method for inspecting a glass sheet
TWI480539B (en) Defect inspection apparatus and method for light transmittance material
KR101300132B1 (en) Apparatus for detecting particle in flat glass and detecting method using same
JP4628824B2 (en) Film defect inspection apparatus and film manufacturing method
JP5258349B2 (en) Defect detection apparatus and method
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
KR20110088706A (en) Detection apparatus for particle on the glass
JP2006078426A (en) Apparatus and method for inspecting defect
KR20050014684A (en) A method for examinning a foreign substance on a transparent film
JPH06148095A (en) Method for detecting transparent defect of film sheets
JPH08271433A (en) Tablet inspection equipment
WO1998015871A1 (en) Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method
JP2001124660A (en) Inspection method and inspection device of defect and foreign matter for flat panel flat display device
JPS589051A (en) Inspecting device for surface of mirror-like work piece
JPH07209199A (en) Method and apparatus for detecting flaw of planar plate-shaped material to be inspected
TWI692614B (en) Film thickness measurement device, substrate inspection device, film thickness measurement method and substrate inspection method
TWM539050U (en) Optical inspection system
JPH0755720A (en) Defect inspecting apparatus for transparent and opaque films
JP2008026121A (en) Optical film inspection device, optical film inspection method, optical film manufacturing method and manufacturing method of liquid crystal display device
JPH0426844A (en) Foreign matter inspecting method
JPH09218162A (en) Surface defect inspection device
JPH04248451A (en) Method for detecting flaw
JPH1183752A (en) Method and apparatus for inspecting surface state
JP3623145B2 (en) Plate glass thickness inspection method and apparatus