JP2006071512A - Three-dimensional measuring method and three-dimensional measuring apparatus - Google Patents

Three-dimensional measuring method and three-dimensional measuring apparatus Download PDF

Info

Publication number
JP2006071512A
JP2006071512A JP2004256407A JP2004256407A JP2006071512A JP 2006071512 A JP2006071512 A JP 2006071512A JP 2004256407 A JP2004256407 A JP 2004256407A JP 2004256407 A JP2004256407 A JP 2004256407A JP 2006071512 A JP2006071512 A JP 2006071512A
Authority
JP
Japan
Prior art keywords
camera
inspection object
foreign matter
inspected
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004256407A
Other languages
Japanese (ja)
Inventor
Takayuki Hatanaka
孝行 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2004256407A priority Critical patent/JP2006071512A/en
Publication of JP2006071512A publication Critical patent/JP2006071512A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect the height position of a faulty part or the like in a transparent or semitransparent product at high speed. <P>SOLUTION: The photographing areas of two cameras 3, 4 installed with different angles are joined to simultaneously photograph a foreign body in a transparent or semitransparent object to be inspected W. The center of gravity of the foreign body on a screen of the cameras 3, 4 is captured by a storage of a computer 7. On the basis of the position information of the foreign body by the cameras 3, 4, the height position of the foreign body in the object to be inspected W is calculated through calculations using prestored installation angles of the cameras 3, 4, the thickness information of the object to be inspected W by a camera 5, or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の撮影手段を用いて被検査物を撮影し、例えば製品内の不良部分等の位置を測定する三次元計測方法および三次元計測装置に関するものである。   The present invention relates to a three-dimensional measurement method and a three-dimensional measurement apparatus for photographing an object to be inspected using a plurality of photographing means and measuring the position of, for example, a defective portion in a product.

一般的に被測定物の高さ方向を測定するために使用される三次元計測方法としては、レーザー変位計による三角計測法や共焦点法、合焦法、スリット光による光切断法などが知られている。   Three-dimensional measurement methods generally used to measure the height direction of the object to be measured include triangulation method using laser displacement meter, confocal method, focusing method, and light cutting method using slit light. It has been.

三角計測式レーザー変位計は、高精度で位置検査ができ、その検査の応答時間も速いという特徴を持っているが、検査できる位置はレーザービームのスポットが当たっている一点でしかなく、このため、検査にあたってスポット位置を走査して断面形状を検査するようにしている(特許文献1参照)。この方法では検査時間が非常に長くなるため、実際の検査装置として、例えば製品内の不良部分等の検出を行う場合には、検査効率が悪く、使用できなかった。   The triangulation type laser displacement meter has the feature that the position inspection can be performed with high accuracy and the response time of the inspection is fast, but the position that can be inspected is only one point where the spot of the laser beam is hit. In the inspection, the spot position is scanned to inspect the cross-sectional shape (see Patent Document 1). In this method, since the inspection time becomes very long, when detecting, for example, a defective portion in a product as an actual inspection device, the inspection efficiency is poor and cannot be used.

また、他の方法として被測定物にスリット光を照射し、照射したスリット光のズレから検査を行う光切断法などが提案されている(特許文献2参照)。しかしながら、照射されるスリット光のライン状の光源幅の観点から、一回の取込み画像において光が照射されているライン上での高さ方向の情報しか得られないため、断面形状を検査するに当たり、光源のスリット光位置を等間隔で走査していかなければならず、やはり、製品内の不良部分の検出等には装置コストおよび検査効率上好適ではなかった。
特開平11−83453号公報 特開平5−60524号公報
Further, as another method, there has been proposed a light cutting method in which slit light is irradiated on an object to be measured and an inspection is performed based on a deviation of the irradiated slit light (see Patent Document 2). However, from the viewpoint of the line-shaped light source width of the slit light to be irradiated, only information in the height direction on the line irradiated with light in a single captured image can be obtained. The slit light position of the light source must be scanned at equal intervals, which is also not suitable for detecting a defective portion in the product and the like in terms of apparatus cost and inspection efficiency.
Japanese Patent Laid-Open No. 11-83453 Japanese Patent Laid-Open No. 5-60524

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、被検査物に対して、被検査物内の不良部分等異物の高さ方向の位置を高速で計測することのできる三次元計測方法および三次元計測装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and measures the position in the height direction of a foreign object such as a defective portion in the inspection object at a high speed with respect to the inspection object. It is an object of the present invention to provide a three-dimensional measurement method and a three-dimensional measurement apparatus capable of performing the above.

上記目的を達成するため、本発明の三次元計測方法は、透明または半透明の被検査物に対して照明光を照射し、前記被検査物内の異物を同一断面内にあって同時に撮影可能な位置に複数の撮影手段を設置する工程と、各撮影手段によって前記被検査物内の前記異物を同時に撮影し、その撮影画像により前記異物の位置データを得る工程と、前記位置データと各撮影手段の設置角度に基づいて前記被検査物内の前記異物の高さ位置を演算する工程とを有することを特徴とする。   In order to achieve the above object, the three-dimensional measurement method of the present invention irradiates a transparent or semi-transparent object with illumination light, and can simultaneously photograph foreign objects in the object in the same cross section. A step of installing a plurality of photographing means at various positions, a step of simultaneously photographing the foreign matter in the inspection object by each photographing means, and obtaining position data of the foreign matter from the photographed image, and the position data and each photographing. And a step of calculating a height position of the foreign matter in the inspection object based on an installation angle of the means.

複数の撮影手段を用いて、それぞれ被検査物の内部を撮影し、デジタル処理することにより、異物の高さ方向の位置を測定する。   The position of the foreign material in the height direction is measured by photographing the inside of the object to be inspected using a plurality of photographing means and performing digital processing.

複数の撮影手段で同時に撮影する一回の取込み画像による画像データに基づき演算処理を行うものであるため、製品内の不良部分等を極めて高速で検出することができる。   Since arithmetic processing is performed on the basis of image data from a single captured image that is simultaneously captured by a plurality of imaging means, it is possible to detect a defective portion or the like in a product at an extremely high speed.

図1に示すように、ステージ1上の被検査物Wの裏面側に光源である投影装置2の照明光を照射し、表面側から撮影手段であるカメラ3、4を用いて同時に被検査物Wを撮影し、各カメラ3、4の画像をデジタル処理する。この撮影は、被検査物W内の任意の位置に対して、各カメラ3、4の撮像範囲を合わせて行われる。   As shown in FIG. 1, the back surface side of the inspection object W on the stage 1 is irradiated with illumination light from the projection device 2 that is a light source, and the inspection object is simultaneously used using the cameras 3 and 4 that are imaging means from the front surface side. W is photographed, and the images of the cameras 3 and 4 are digitally processed. This imaging is performed by matching the imaging ranges of the cameras 3 and 4 with respect to an arbitrary position in the inspection object W.

すなわち、2個のカメラ3、4を使用し、両者の撮像範囲を任意点に合わせて、両カメラ3、4が被検査物Wに対し同時に同位置を撮影し、その複数画像による被検査物W内の異物の位置情報と各カメラ3、4の設置角度に基づき、被検査物Wを側傍から撮影する厚み検出用のカメラ5による被検査物Wの厚み情報を用いて、コンピュータ7の記憶装置および演算手段である処理装置におけるパラメータの設定および画像処理を行い、被検査物W内の異物の高さ方向の情報を得る。そして、その結果を表示装置8に表示する。   That is, two cameras 3 and 4 are used, and both cameras 3 and 4 are set at arbitrary points, and both cameras 3 and 4 simultaneously photograph the same position with respect to the object W, and the object to be inspected by the plurality of images. Based on the position information of the foreign matter in W and the installation angle of each camera 3, 4, the thickness information of the inspection object W by the thickness detection camera 5 that images the inspection object W from the side is used. Parameter setting and image processing are performed in the storage device and the processing device which is a calculation means, and information on the height direction of the foreign matter in the inspection object W is obtained. Then, the result is displayed on the display device 8.

このように、被検査物の任意の位置に対して複数の撮像手段の撮像範囲を合わせ、異なる角度から被検査物中の異物を画像データとして取込み、取込み画像データによる異物の位置情報の違いと、撮影手段の設置角度の違いから、計測の基準位置を厚み軸方向0点としたときに、撮影手段で得られる被検査物中の異物の位置と基準位置との差の絶対値の和が、予め計測した被検査物の厚みに概略等しくなるようにプログラムのパラメータを設定して、画像処理を行うことにより被検査物内の異物の高さ位置の測定を行う。   In this way, the imaging range of the plurality of imaging means is adjusted to an arbitrary position of the object to be inspected, the foreign matter in the object to be inspected as image data from different angles, and the difference in the position information of the foreign matter by the captured image data Because of the difference in the installation angle of the imaging means, when the measurement reference position is set to zero in the thickness axis direction, the sum of the absolute values of the differences between the position of the foreign matter in the inspection object obtained by the imaging means and the reference position is The parameters of the program are set so as to be approximately equal to the thickness of the inspected object measured in advance, and the height position of the foreign matter in the inspected object is measured by performing image processing.

複数のカメラの撮像範囲を任意点に合わせるためには、複数のカメラの設置角度と各カメラの撮像可能範囲の双方に配慮する必要がある。すなわち、単に、被検査物に対して撮影手段であるカメラの撮像可能範囲を合わせればよいのではなく、適合配置があることがわかった。   In order to match the imaging range of a plurality of cameras to an arbitrary point, it is necessary to consider both the installation angle of the plurality of cameras and the imaging range of each camera. That is, it has been found that it is not only necessary to match the imaging range of the camera as the imaging means to the object to be inspected, but there is an appropriate arrangement.

複数のカメラの撮像範囲について、各カメラの撮像可能範囲の位置は、カメラに撮影される被検査物の異物がすべてのカメラの被写界深度内に入る位置に設定する必要があり、また同時に、被検査物内の異物が被検査物の高さ位置に関係なく各カメラの取込み領域内に入ることが必要である。   Regarding the imaging range of multiple cameras, the position of the imaging range of each camera must be set to a position where the foreign object of the object to be inspected by the camera falls within the depth of field of all cameras. Therefore, it is necessary that the foreign matter in the inspection object enters the capturing area of each camera regardless of the height position of the inspection object.

そこで、アイリス絞りの調節ができ、被写界深度の調節が可能で、例えばその被写界深度が0.3〜0.5[mm]まで調節可能なレンズをカメラの対物レンズとして用いることにより、被検査物内の異物を画像データとして取込むことが可能になった。被写界深度については本実施の形態においては0.5[mm]としたが、被検査物の撮影が可能であれば、この数値に限定するものではない。   Therefore, the iris diaphragm can be adjusted, and the depth of field can be adjusted. For example, by using a lens whose depth of field can be adjusted to 0.3 to 0.5 [mm] as an objective lens of the camera. Thus, it is possible to capture the foreign matter in the inspection object as image data. Although the depth of field is set to 0.5 [mm] in this embodiment, the depth of field is not limited to this value as long as the object can be imaged.

次に、複数のカメラの設置角度については、各カメラの撮像可能範囲位置と被写界深度との関係により決定される。なお、複数のカメラの任意点の同時撮像可能な範囲の位置と各カメラの設置角度の関係は実験的に最適値が得られる。カメラの設置角度は、1〜89°(0°と90°以外の角度)にすることができるが、好ましくは、分解能と被写界深度の関係から、15〜60°がよい。   Next, the installation angles of the plurality of cameras are determined based on the relationship between the imageable range position of each camera and the depth of field. It should be noted that an optimum value is experimentally obtained for the relationship between the position of the range where a plurality of cameras can simultaneously capture an arbitrary point and the installation angle of each camera. The camera installation angle can be 1 to 89 ° (an angle other than 0 ° and 90 °), but preferably 15 to 60 ° from the relationship between the resolution and the depth of field.

図1の装置は、被検査物Wを支持するステージ1、投影装置2、カメラ(A)3、カメラ(B)4、カメラ(C)5、レンズ6a〜6c、記憶装置および処理装置を有するコンピュータ7、表示装置8、ステージ1の位置制御やカメラ(A)3、カメラ(B)4等の設置角度の制御を行う駆動装置9を備えた三次元計測装置である。   The apparatus in FIG. 1 includes a stage 1 that supports an object W to be inspected, a projection device 2, a camera (A) 3, a camera (B) 4, a camera (C) 5, lenses 6a to 6c, a storage device, and a processing device. This is a three-dimensional measuring device including a drive device 9 that controls the position of the computer 7, the display device 8, the stage 1, and the installation angle of the camera (A) 3, the camera (B) 4, and the like.

投影装置2による照明光が被検査物Wの内部の異物により影として投影され、2つのカメラカメラ(A)3、カメラ(B)4によって撮像される。   Illumination light from the projection device 2 is projected as a shadow by a foreign substance inside the inspection object W, and is imaged by the two camera cameras (A) 3 and camera (B) 4.

このときカメラ(A)3、カメラ(B)4は、それぞれ1つの任意点で光軸を交差させ、これを基準位置として撮像可能範囲を持つように配置し、撮像可能範囲の位置情報をコンピュータ7の記憶装置に設定可能な位置となるような配置にしておく。配置する角度は1〜89°まで設定できるが、分解能と被写界深度の関係から、15〜60°の範囲が望ましい。   At this time, the camera (A) 3 and the camera (B) 4 are arranged so that the optical axes intersect each other at one arbitrary point and have an imageable range as a reference position. 7 is arranged so that the position can be set in the storage device 7. The arrangement angle can be set from 1 to 89 °, but a range of 15 to 60 ° is desirable from the relationship between resolution and depth of field.

また、撮像可能範囲の基準位置は任意点でよいが、本実施例ではレンズ6a、6bの被写界深度が被検査物Wの内部を充分にカバーできる幅とするために、被検査物W内部に設定した。なお、撮像可能範囲位置を被検査物Wの内部位置に設定可能なように、金属で作成したゲージのエッジ部を被検査物下端の位置に設定した。   The reference position of the imageable range may be an arbitrary point, but in this embodiment, the inspected object W is set so that the depth of field of the lenses 6a and 6b can sufficiently cover the inside of the inspected object W. Set inside. In addition, the edge part of the gauge created with metal was set to the position of the lower end of the inspection object so that the imageable range position can be set to the internal position of the inspection object W.

また、被検査物Wの厚みを測定するためにカメラ(C)5を被検査物Wの横方向に設置する。このカメラ(C)5の設置角度は、被検査物Wの厚みを測定可能であれば特に限定するものではないが、測定分解能の観点から、本実施例においては90°に設定した。   In order to measure the thickness of the inspection object W, the camera (C) 5 is installed in the lateral direction of the inspection object W. The installation angle of the camera (C) 5 is not particularly limited as long as the thickness of the inspection object W can be measured, but is set to 90 ° in the present embodiment from the viewpoint of measurement resolution.

まず、図2に示すように、表示装置8に表示されたカメラ(A)3の画面上の被検査物Wの幅(厚み)X、カメラ(B)4の画面上の被検査物Wの幅(厚み)Yと、カメラ(C)5の画面上の被検査物Wの幅(厚みの実測値)Tの間には以下の関係が成立する。
|X|=T・sinθ1 (1)
|Y|=T・sinθ2 (2)
First, as shown in FIG. 2, the width (thickness) X of the inspection object W on the screen of the camera (A) 3 displayed on the display device 8 and the inspection object W on the screen of the camera (B) 4 are displayed. The following relationship is established between the width (thickness) Y and the width (measured value of thickness) T of the inspection object W on the screen of the camera (C) 5.
| X | = T · sin θ 1 (1)
| Y | = T · sin θ 2 (2)

また、図3および図4に示すように、表示装置8に表示されたカメラ(A)3の画面上の異物Vの重心位置の位置データである光軸位置01からの離間距離x、カメラ(B)4の画面上の異物Vの重心位置の位置データである光軸位置02からの離間距離y、カメラ(C)5の画面上の基準位置0から被検査物Wの下端までの離間距離a、異物Vの基準位置0からの高さ位置t0 、異物Vの被検査物Wの下端からの高さ位置をtとすると、以下の関係が成立する。まず、上記の式(1)、式(2)と同様に、位置データx、yの高さ方向の成分をt1 、t2 とすると、
x=t1 ・sinθ1 (3)
y=t2 ・sinθ2 (4)
式(3)、(4)から、
1 =x/sinθ1 (5)
2 =y/sinθ2 (6)
カメラ(A)3とカメラ(B)4は同じ異物Vを撮像していることから、基準位置0からの水平方向の偏差をSとすると、以下の2式が成立する。
3 and 4, the separation distance x from the optical axis position 01, which is the position data of the center of gravity position of the foreign matter V on the screen of the camera (A) 3 displayed on the display device 8, the camera ( B) Separation distance y from the optical axis position 02, which is position data of the center of gravity position of the foreign substance V on the screen 4, and separation distance from the reference position 0 on the screen of the camera (C) 5 to the lower end of the inspection object W When the height position t 0 of the foreign object V from the reference position 0 and the height position of the foreign object V from the lower end of the object W are t, the following relationship is established. First, similarly to the above formulas (1) and (2), assuming that the components in the height direction of the position data x and y are t 1 and t 2 ,
x = t 1 · sin θ 1 (3)
y = t 2 · sin θ 2 (4)
From equations (3) and (4),
t 1 = x / sin θ 1 (5)
t 2 = y / sin θ 2 (6)
Since the camera (A) 3 and the camera (B) 4 are capturing the same foreign object V, the following two equations are established, where S is the horizontal deviation from the reference position 0.

0 =−S・tanθ1 +(x/sinθ1 ) (7)
0 =S・tanθ2 +(y/sinθ2 ) (8)
式(7)、(8)より、
t 0 = −S · tan θ 1 + (x / sin θ 1 ) (7)
t 0 = S · tan θ 2 + (y / sin θ 2 ) (8)
From equations (7) and (8),

Figure 2006071512
また、被検査物W内の異物Vの高さ位置tは以下の式で表わされる。
Figure 2006071512
Further, the height position t of the foreign matter V in the inspection object W is expressed by the following expression.

t=t0 +a
(10)
式(9)、(10)より、
t = t 0 + a
(10)
From equations (9) and (10),

Figure 2006071512
Figure 2006071512

すなわち、図4に示す画像における位置データx、yとカメラ(A)3、カメラ(B)4の設置角度θ1 、θ2 および基準位置0の高さaを用いて、式(11)の演算を行うことで、被検査物W内の異物Vの高さ位置tを求めることができる。 That is, using the position data x and y in the image shown in FIG. 4 and the installation angles θ 1 and θ 2 of the camera (A) 3 and camera (B) 4 and the height a of the reference position 0, the expression (11) By performing the calculation, the height position t of the foreign matter V in the inspection object W can be obtained.

次に、図5に基づいて動作を説明する。ステップ1で、投影装置2は図示しない電源および制御部によって電源を供給され均一化された光量の可視光を発光する。スポットの大きさは、レンズ倍率とカメラ視野の観点からφ10mm程度とした。ステップ2で、ステージ1を移動させて、スポット光を被検査物Wの所定の部位に照射する。ステップ3で、スポット光が被検査物Wに照射されると、異物Vによって影となり、レンズ6a、6bを通過し結像し、カメラ(A)3、カメラ(B)4に画像として取込まれる。各レンズ6a、6bは、パーフォーカル光学系を用いた高解像度マクロズームレンズを使用し、アイリス絞り機能を有し光量を調節可能なものを使用し、各カメラ3、4において、像がハレーションを起こすことなく、精度よく結像できるようなものを選択した。   Next, the operation will be described with reference to FIG. In step 1, the projection device 2 is supplied with power by a power source and a control unit (not shown) and emits a uniform amount of visible light. The spot size was set to about φ10 mm from the viewpoint of lens magnification and camera field of view. In step 2, the stage 1 is moved to irradiate a predetermined part of the inspection object W with the spot light. In step 3, when spot light is irradiated onto the inspection object W, it becomes a shadow by the foreign matter V, passes through the lenses 6a and 6b, forms an image, and is taken as an image into the camera (A) 3 and the camera (B) 4. It is. Each of the lenses 6a and 6b uses a high-resolution macro zoom lens using a perfocal optical system and uses an iris diaphragm function and an adjustable light quantity. We selected one that could form an image accurately without waking up.

ステップ4で、撮像された画像はコンピュータ7の記憶装置および処理装置に電気信号で転送され、記憶装置に画像データとして収納される。その後画像データは、処理装置へ転送され、画像処理加工をほどこし、被検査物W中の異物Vによって形成された画像の位置情報(重心位置)を抽出する。その際には、各レンズ6a、6bの倍率、各カメラ3、4の設置角度θ1 、θ2 、撮像可能範囲の基準位置などの設定はあらかじめ処理装置のほうへ登録しておく。ステップ5で、横方向に設置されたカメラ(C)5は透明ないし半透明の板状物である被検査物Wの厚みTを計測し、ステップ6で、カメラ設置角度θ1 、θ2 と、カメラ3、4にて抽出された異物Vの位置情報である位置データx、yと、カメラ5による厚み情報から求められた基準位置0の高さaに基づいて、異物Vの高さ位置tを演算する。 In step 4, the captured image is transferred to the storage device and processing device of the computer 7 as an electrical signal, and stored in the storage device as image data. Thereafter, the image data is transferred to a processing apparatus, and image processing is performed to extract position information (center of gravity position) of an image formed by the foreign matter V in the inspection object W. In that case, settings such as the magnification of each lens 6a, 6b, the installation angles θ 1 , θ 2 of each camera 3, 4 and the reference position of the imageable range are registered in advance in the processing device. In step 5, the camera (C) 5 installed in the horizontal direction measures the thickness T of the inspection object W, which is a transparent or translucent plate-like object, and in step 6, the camera installation angles θ 1 , θ 2 and The height position of the foreign matter V based on the position data x, y which is the position information of the foreign matter V extracted by the cameras 3 and 4 and the height a of the reference position 0 obtained from the thickness information obtained by the camera 5. t is calculated.

また、駆動装置9と連動させ、設定した計測分解能に従いステージ1を制御し、検査位置を順次変えていくことで、被検査物W全体を検査することが可能である。   Further, the entire inspection object W can be inspected by interlocking with the driving device 9 and controlling the stage 1 according to the set measurement resolution and sequentially changing the inspection position.

(具体例)
2つのカメラA、Bの設置角度をθ1 、θ2 を30.0°に設定し、計測を行った。そのときに用いた被検査物は製品内部に異物が埋没している物をサンプルとして選択した。なお、実際の欠陥部の高さ方向の位置は、従来例による三角計測式レーザー変位計より製品下端より300μmであることを確認しておく。
(Concrete example)
Measurement was performed with the installation angles of the two cameras A and B set to θ 1 and θ 2 of 30.0 °. The object to be inspected at that time was selected as a sample with a foreign object embedded in the product. It should be noted that the actual position of the defective portion in the height direction is confirmed to be 300 μm from the lower end of the product by the conventional triangulation laser displacement meter.

撮像可能範囲を製品下端位置に設定し、カメラA、Bによって検査した場合、異物すなわち欠陥部の高さ位置は製品下端位置より、300μmとなった。   When the imageable range was set to the lower end position of the product and inspected by the cameras A and B, the height position of the foreign matter, that is, the defective portion was 300 μm from the lower end position of the product.

本実施例においては、一回の取込み画像において撮像範囲1.58×1.36[mm]を測定することが可能なため、一回の取込み画像において光源が照射されているライン上での高さ方向の情報しか得られない光切断方式と比較して計測速度が向上した。   In this embodiment, since it is possible to measure the imaging range 1.58 × 1.36 [mm] in one captured image, the height on the line irradiated with the light source in one captured image is high. The measurement speed is improved compared to the optical cutting method that can only obtain the information of the direction.

このことより、検査精度が同等で、測定に関し高速に測定することが可能であると判断できるので、一実施例における三次元計測は、従来例による計測より高速に計測が可能であることがわかる。   From this, it can be judged that the inspection accuracy is equal and that it is possible to measure at high speed with respect to the measurement, so that the three-dimensional measurement in one embodiment can be measured at a higher speed than the measurement by the conventional example. .

一実施例による三次元計測装置を説明する図である。It is a figure explaining the three-dimensional measuring apparatus by one Example. 被検査物の厚み情報に関するパラメータを計算する方法を示す図である。It is a figure which shows the method of calculating the parameter regarding the thickness information of a to-be-inspected object. 被検査物内の異物の高さ位置を計算する方法を示す図である。It is a figure which shows the method of calculating the height position of the foreign material in a to-be-inspected object. 各カメラの画像データを説明する図である。It is a figure explaining the image data of each camera. 三次元計測方法を示すフローチャートである。It is a flowchart which shows a three-dimensional measuring method.

符号の説明Explanation of symbols

1 ステージ
2 投影装置
3 カメラA
4 カメラB
5 カメラC
6a〜6c レンズ
7 コンピュータ
8 表示装置
9 駆動装置
1 Stage 2 Projector 3 Camera A
4 Camera B
5 Camera C
6a to 6c Lens 7 Computer 8 Display device 9 Drive device

Claims (2)

透明または半透明の被検査物に対して照明光を照射し、前記被検査物内の異物を同一断面内にあって同時に撮影可能な位置に複数の撮影手段を設置する工程と、各撮影手段によって前記被検査物内の前記異物を同時に撮影し、その撮影画像により前記異物の位置データを得る工程と、前記位置データと各撮影手段の設置角度に基づいて前記被検査物内の前記異物の高さ位置を演算する工程とを有することを特徴とする三次元計測方法。   A step of irradiating a transparent or semi-transparent inspection object with illumination light, and installing a plurality of imaging means at positions where foreign matter in the inspection object is in the same cross section and can be simultaneously imaged; and each imaging means The foreign matter in the inspection object is simultaneously imaged by the step of obtaining the position data of the foreign matter from the captured image, and the position of the foreign matter in the inspection object based on the position data and the installation angle of each imaging means. And a step of calculating a height position. 透明または半透明の被検査物に照明光を照射する光源と、前記照明光の透過光によって前記被検査物内の異物を撮影するための複数の撮影手段と、各撮影手段による前記異物の画像から得られた位置データと各撮影手段の設置角度に基づいて前記異物の高さ位置を演算する演算手段とを有し、前記複数の撮影手段は、前記被検査物内の任意の位置において互いに光軸を交差させ、それぞれの撮像範囲を合わせて撮影することを特徴とする三次元計測装置。   A light source that illuminates a transparent or translucent object to be inspected with illumination light, a plurality of photographing means for photographing a foreign object in the object to be inspected by transmitted light of the illumination light, and an image of the foreign object by each photographing means And calculating means for calculating the height position of the foreign matter based on the installation angle of each imaging means, and the plurality of imaging means are mutually connected at arbitrary positions in the inspection object. A three-dimensional measuring apparatus characterized in that the optical axes are crossed and the respective imaging ranges are photographed together.
JP2004256407A 2004-09-03 2004-09-03 Three-dimensional measuring method and three-dimensional measuring apparatus Pending JP2006071512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256407A JP2006071512A (en) 2004-09-03 2004-09-03 Three-dimensional measuring method and three-dimensional measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256407A JP2006071512A (en) 2004-09-03 2004-09-03 Three-dimensional measuring method and three-dimensional measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006071512A true JP2006071512A (en) 2006-03-16

Family

ID=36152297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256407A Pending JP2006071512A (en) 2004-09-03 2004-09-03 Three-dimensional measuring method and three-dimensional measuring apparatus

Country Status (1)

Country Link
JP (1) JP2006071512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040915A (en) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd Surface defect inspection device and inspection method for glass substrate
CN104061956A (en) * 2014-06-27 2014-09-24 苏州科德溯源仪器有限公司 Double-lens image measuring instrument
JP5999859B1 (en) * 2015-09-30 2016-09-28 上野精機株式会社 Appearance inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040915A (en) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd Surface defect inspection device and inspection method for glass substrate
CN104061956A (en) * 2014-06-27 2014-09-24 苏州科德溯源仪器有限公司 Double-lens image measuring instrument
JP5999859B1 (en) * 2015-09-30 2016-09-28 上野精機株式会社 Appearance inspection device
JP2017067630A (en) * 2015-09-30 2017-04-06 上野精機株式会社 Visual checkup apparatus

Similar Documents

Publication Publication Date Title
US8180156B2 (en) Method and device for machine-cutting a plate-shaped workpiece
JP6040930B2 (en) Surface defect detection method and surface defect detection apparatus
JP5418176B2 (en) Pantograph height measuring device and calibration method thereof
JP2006010392A (en) Through hole measuring system, method, and through hole measuring program
JP2005037366A (en) Infrared structure-diagnosis system, and method for infrared structure-diagnosis
JP2005300179A (en) Infrared structure diagnosis system
JP5042503B2 (en) Defect detection method
JP2015108582A (en) Three-dimensional measurement method and device
JP2009058459A (en) Profile measuring system
JP6797638B2 (en) Image measuring device
JP6781969B1 (en) Measuring device and measuring method
KR100926019B1 (en) Defective particle measuring apparatus and defective particle measuring method
JP2006071512A (en) Three-dimensional measuring method and three-dimensional measuring apparatus
JP2005283267A (en) Through hole measuring device, method, and program for through hole measurement
JP2007033040A (en) Method and device for calibrating optical head part in three-dimensional shape measuring instrument by optical cutting method
JP6149990B2 (en) Surface defect detection method and surface defect detection apparatus
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP2010025803A (en) Inspection device having positioning function, program therefor, inspection method of inspection device having positioning function
JP2007198762A (en) Flaw detection method and detector
JPWO2020121784A1 (en) Work inspection device and work inspection method
JP2006349351A (en) Three-dimensional microstructure measuring method
JP2003295066A (en) Microscope apparatus
JP2006098101A (en) Defect detection method and defect detection device of plate body
JP2006170953A (en) Method and device for detecting distortion of plate