JP2006058274A - Sensing sensor - Google Patents

Sensing sensor Download PDF

Info

Publication number
JP2006058274A
JP2006058274A JP2004268973A JP2004268973A JP2006058274A JP 2006058274 A JP2006058274 A JP 2006058274A JP 2004268973 A JP2004268973 A JP 2004268973A JP 2004268973 A JP2004268973 A JP 2004268973A JP 2006058274 A JP2006058274 A JP 2006058274A
Authority
JP
Japan
Prior art keywords
output voltage
conductor object
exciting coil
detection sensor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004268973A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakaki
哲夫 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AEC KK
Original Assignee
AEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AEC KK filed Critical AEC KK
Priority to JP2004268973A priority Critical patent/JP2006058274A/en
Publication of JP2006058274A publication Critical patent/JP2006058274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for detecting position, displacement, shift, distance, thickness, side-runout, irregularities in an oscillation surface, rotation speed, speed and the like of an object comprising a non-magnetic conductor at high sensitivity, by signal-processing an output voltage singular value generated in an MI element in an exciting coil. <P>SOLUTION: In the sensing sensor of the non-magnetic conductor object, when the non-magnetic conductor object is separated at a distance having no magnetically specific interaction with the exciting coil and when the non-magnetic conductor object is near to the exciting coil, the high sensitivity sensor matched with respective purposes can be provided, by fixing the exciting coil and an MI sensor at the maximum and minimum values appearing in the exciting coil and the output value of the MI sensor of an peripheral edge outside of the exciting coil, and in the neighborhood of an arbitrary position of a transition curve of the maximum value to the minimum value in matching with the purpose, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非磁性導体からなる対象物の位置、距離、変位、ずれ、キズ、厚さ、面ブレ、軸振動、表面の凹凸、回転数、速度等を、励磁コイルと磁気インピーダンス素子(以下MI素子と略す)を用いて検出するセンサに関する。  In the present invention, the position, distance, displacement, deviation, scratch, thickness, surface vibration, axial vibration, surface irregularity, rotation speed, speed, etc. of an object made of a non-magnetic conductor can be measured with an excitation coil and a magnetic impedance element (hereinafter referred to as “impact coil”) The present invention relates to a sensor that detects using an abbreviated MI element.

非磁性導体を検出対象として、位置、距離、変位、ずれ、キズ、厚さ、面ブレ、軸振動表面の凹凸、回転数、速度等を検出するセンサとして渦電流を利用したものが知られている。  Sensors that use eddy currents are known as sensors that detect non-magnetic conductors and detect position, distance, displacement, displacement, scratches, thickness, surface blurring, shaft vibration surface irregularities, rotation speed, speed, etc. Yes.

図31は従来の渦電流を利用した検出センサ7の概念図である。同図の検出センサ7は空芯コイル9、発振回路10、増幅器11、信号処理回路12から構成されている。同図において符号1は非磁性導体対象物である。この検出センサ7は発振回路10より、空芯コイル9に交流電流を流し交流磁束8を発生させる。該非磁性導体対象物1の表面とセンサ間の距離が短くなると、交流磁束の一部が非磁性導体対象物の内部に侵入して渦電流を発生し、その渦電流により発生した反磁界が交流磁束8を打ち消し、コイル電圧は低下する。反対に、該非磁性導体対象物1の表面とセンサ間の距離が長くなるとコイル電圧は増加する。そこで、このコイル電圧を信号として増幅器で増幅し、信号処理回路で処理する。  FIG. 31 is a conceptual diagram of a detection sensor 7 using a conventional eddy current. The detection sensor 7 shown in FIG. 1 includes an air-core coil 9, an oscillation circuit 10, an amplifier 11, and a signal processing circuit 12. In the figure, reference numeral 1 denotes a nonmagnetic conductor object. This detection sensor 7 causes an alternating current to flow through the air core coil 9 from the oscillation circuit 10 to generate an alternating magnetic flux 8. When the distance between the surface of the nonmagnetic conductor object 1 and the sensor is shortened, a part of the alternating magnetic flux enters the inside of the nonmagnetic conductor object to generate eddy current, and the demagnetizing field generated by the eddy current is AC. The magnetic flux 8 is canceled, and the coil voltage decreases. Conversely, the coil voltage increases as the distance between the surface of the nonmagnetic conductor object 1 and the sensor increases. Therefore, this coil voltage is amplified as a signal by an amplifier and processed by a signal processing circuit.

しかし、このような回転センサは、例えば、コイル径を10mm以下に小型化すると感度が落ち、渦電流の反磁場の強さが急激に低下するため、測定対象物の表面積が小さい場合や測定対象物と励磁コイルとの距離(リフトオフと定義する)がおよそ1mm以上の場合には測定が困難となる。様々な分野で該センサの小型化の要請がある。例えばアルミニウム製測定対象物の凹凸上下の落差が1mm以下の測定の場合、径10mm以下の励磁コイルを使用して安全を見てリフトオフを1mm以上の測定が困難となる。このような問題に対しては、コイルの巻き数を増やし、コイル電圧を上げること試られたが、十分な信号を得るに到っていない。However, in such a rotation sensor, for example, when the coil diameter is reduced to 10 mm or less, the sensitivity decreases and the strength of the demagnetizing field of the eddy current rapidly decreases. When the distance between the object and the exciting coil (defined as lift-off) is approximately 1 mm or more, measurement becomes difficult. There is a demand for downsizing of the sensor in various fields. For example, in the case where the height difference between the top and bottom of an object to be measured made of aluminum is 1 mm or less, it is difficult to measure a lift-off of 1 mm or more by using an exciting coil having a diameter of 10 mm or less for safety. For such a problem, an attempt was made to increase the coil voltage by increasing the number of turns of the coil, but a sufficient signal was not obtained.

これに対して、近年、MI素子が、高感度消費電流が少なく、形状が小さいことから注目され、例えば、車載センサとして車速センサ、位置センサ、高さ測定センサ、ポジションセンサ等、また工場内生産ラインとして各種近接センサ、工場内搬送装置などに使用されているか、又はされつつある(特許文献1)。
しかしながら、MI素子は基本的に非磁性物質に応答しないために、非磁性導体の測定個所に磁性物質を取り付けるが、あるいは蒸着をして使用する必要がある。一方測定個所の取り付けが不可能な場所や測定環境によっては好ましくはない場合がある。
On the other hand, in recent years, MI elements have attracted attention because of their low sensitive current consumption and small shape. For example, vehicle sensors include vehicle speed sensors, position sensors, height measurement sensors, position sensors, etc. It is being used or is being used for various proximity sensors, in-plant transfer devices, etc. as a line (Patent Document 1).
However, since the MI element basically does not respond to a nonmagnetic substance, it is necessary to attach a magnetic substance to a measurement location of a nonmagnetic conductor or to use it by vapor deposition. On the other hand, it may not be preferable depending on the location where the measurement location cannot be attached and the measurement environment.

そこで、位置、距離、変位、ずれ、キズ、厚さ、面ブレ、軸振動、表面の凹凸、回転数、速度等を測定する場合、非磁性導体対象物に磁性物質を取り付けや蒸着することなくそのままの形態で高感度に求められるようにすることが求められている。なお、MI素子を利用した渦電流センサとしては、金属の欠陥検出を目的としたもの(非特許文献1)や、金属体との距離を検出するものが既に提案されているが感度の点で低いかもしくは不明確である。
特開2002−195864号 特開2003−273718号 日本応用磁気学会誌、23、1453−1456(1999)
Therefore, when measuring position, distance, displacement, displacement, scratches, thickness, surface vibration, axial vibration, surface irregularities, rotation speed, speed, etc., without attaching or depositing a magnetic substance on the nonmagnetic conductor object There is a demand for high sensitivity in the form as it is. In addition, as an eddy current sensor using an MI element, a sensor for detecting a defect of a metal (Non-Patent Document 1) and a sensor for detecting a distance from a metal body have already been proposed. Low or unclear.
JP 2002-195864 A JP 2003-273718 A Journal of the Japan Society of Applied Magnetics, 23, 1453-1456 (1999)

本発明は、MI素子を利用したセンサにより、非磁性体対象物の位置、変位、ずれ、キズ、厚さ、面ブレ、軸振動、表面の凹凸、回転数、速度をその非磁性導体対象物に磁性物質を取り付けたり、蒸着したりすることなく、そのままの形態で高感度に求める構成と方法を提供することを目的とする。  According to the present invention, the position, displacement, displacement, scratch, thickness, surface vibration, axial vibration, surface unevenness, rotational speed, and speed of the nonmagnetic object are measured by the sensor using the MI element. It is an object of the present invention to provide a structure and a method that can be obtained with high sensitivity in the form as it is without attaching a magnetic substance or vapor deposition.

上記の目的を達成するため、本発明は、非磁性導体対象物の位置、距離、変位、ずれ、キズ、厚さ、面ブレ、軸振動、表面の凹凸、回転数、速度を検出するセンサであって、非磁性体導体対象物を励磁する励磁コイル、励磁コイルにより非磁性体導体対象物による磁束変化を検出するMI素子、及びMI素子により検出された信号を処理する演算回路を備えた検出センサ7を提供する。  In order to achieve the above object, the present invention is a sensor that detects the position, distance, displacement, displacement, scratch, thickness, surface blur, axial vibration, surface irregularity, rotation speed, and speed of a nonmagnetic conductor object. A detection device comprising an exciting coil for exciting a non-magnetic conductor object, an MI element for detecting a magnetic flux change caused by the non-magnetic conductor object by the exciting coil, and an arithmetic circuit for processing a signal detected by the MI element. A sensor 7 is provided.

本発明の検出センサはMI素子を励磁コイルの内部、または外部に配置し、非磁性導体対象物に発生する渦電流による反磁場の影響を直接的に及び励磁コイルを介して効果的に検出センサ出力信号として利用する方法である。高感度で小型化にすることが実現できる。例えば従来の磁気抵抗素子の感度が1ガウス程度であるのに対して、10−6ガウス程度の高感度のMI素子を反磁場の影響を効果的に取り出すために励磁コイルの内部または外部に配置して後述するコイル磁場の相互作用を利用して更に感度を高め、演算回路を除いたセンサヘッド部を縦横数mmないしそれ以下の寸法に小型化し、検出精度を向上すると同時に、従来測定不可能であったリフトオフでの測定を可能にすることができる。具体的に説明する。励磁コイル内部または励磁コイル周縁外部に設置されたMI素子は励磁コイル内部または励磁コイル周縁外部の設置位置により出力電圧値は異なる。例1として、非磁性導体対象物の渦電流反磁界の影響を受けない環境下では、コイル長さ方向のおよそ中央で出力電圧値は最小値ピークを示す。この後非磁性導体対象物を励磁コイルに近づけると即ちリフトオフを小さくすると出力電圧値は増加し、さらに近接すると最大値に達する。ここで感度を下式に定義する。
感度(%)=(出力電圧比の最大値−出力電圧比の最小値)×100(1)
出力電圧値比の最大値を1とすると、ほぼ100%の感度が得られる。ただし、出力電圧比の最小値は目的に合わせて該ピークより大きい値を用いてもよい。(1)式は後述する他の構成についても成立する。電流反磁界の影響を例2として、非磁性導体対象物の渦電流反磁場を受ける環境下即ち励磁コイルと非磁性導体対象物が近接した状態にある励磁コイル内でMI素子の位置によって出力電圧が最大値ピークとなる領域(領域1とする)、最小値ピークとなる領域(領域2とする)及び最大値から最小値に変化する過渡領域(領域3とする)の3つの領域が存在する。領域1の場合、非磁性導体対象物と励磁コイルの間隔を広げると、即ちリフトオフを大きくするにつれ出力電圧は小さくなる。(1)式を用いて感度を求めることができる。ただし、出力電圧比の最大値は用途に応じて該ピークより小さい値を用いてもよい。領域2の場合非磁性導体対象物と励磁コイルの間隔を広げると、即ちリフトオフを大きくすると、出力電圧は大きくなる。領域3の場合、リフトオフを大きくすると、出力電圧は一端小さくなるが、次に大きくなり複雑な変位を示す。従って、これらの特性を利用して非磁性体対象物の位置、距離、変位、ずれ、キズ、厚さ、面ブレ、軸振動、表面の凹凸、回転数、速度の計測に使用することができる。
In the detection sensor of the present invention, the MI element is disposed inside or outside the excitation coil, and the effect of the demagnetizing field due to the eddy current generated in the nonmagnetic conductor object is detected directly and effectively through the excitation coil. This method is used as an output signal. High sensitivity and downsizing can be realized. For example, while the sensitivity of a conventional magnetoresistive element is about 1 gauss, a highly sensitive MI element of about 10-6 gauss is arranged inside or outside the exciting coil in order to effectively extract the influence of the demagnetizing field. By using the interaction of coil magnetic fields, which will be described later, the sensitivity is further improved, and the sensor head part excluding the arithmetic circuit is downsized to several mm or less in dimensions to improve the detection accuracy, and at the same time, conventional measurement is impossible. It was possible to make the measurement at the lift-off that was. This will be specifically described. The output voltage value of the MI element installed inside the excitation coil or outside the periphery of the excitation coil varies depending on the installation position inside the excitation coil or outside the periphery of the excitation coil. As an example 1, in an environment that is not affected by the eddy current demagnetizing field of the nonmagnetic conductor object, the output voltage value exhibits a minimum value peak at approximately the center in the coil length direction. Thereafter, when the nonmagnetic conductor object is brought closer to the exciting coil, that is, when the lift-off is reduced, the output voltage value is increased, and when the object is further approached, the maximum value is reached. Here, the sensitivity is defined by the following equation.
Sensitivity (%) = (Maximum value of output voltage ratio−Minimum value of output voltage ratio) × 100 (1)
When the maximum value of the output voltage value ratio is 1, a sensitivity of almost 100% can be obtained. However, the minimum value of the output voltage ratio may be larger than the peak according to the purpose. Equation (1) holds true for other configurations described later. As an example of the influence of the current demagnetizing field, the output voltage depends on the position of the MI element in the environment where the nonmagnetic conductor object is subjected to the eddy current demagnetizing field, that is, the excitation coil and the nonmagnetic conductor object are close to each other. There are three regions: a region where the peak is the maximum value (referred to as region 1), a region where the peak is the minimum value (referred to as region 2), and a transient region where the maximum value changes from the minimum value (referred to as region 3) . In the case of region 1, the output voltage decreases as the distance between the nonmagnetic conductor object and the exciting coil is increased, that is, as the lift-off is increased. Sensitivity can be obtained using equation (1). However, the maximum value of the output voltage ratio may be smaller than the peak depending on the application. In the case of region 2, when the distance between the nonmagnetic conductor object and the exciting coil is increased, that is, when the lift-off is increased, the output voltage increases. In the case of the region 3, when the lift-off is increased, the output voltage is once reduced, but is then increased to indicate a complicated displacement. Therefore, these characteristics can be used to measure the position, distance, displacement, displacement, scratch, thickness, surface vibration, axial vibration, surface irregularities, rotation speed, and speed of a non-magnetic object. .

以下、図面を参照しながら、本発明を詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。図1は本発明の一実施例の検出センサ概念図である。この検出センサ7は、センサヘッド部13が励磁コイル2及び、MI素子3で構成されており、また、回路部が励磁用発振回路14、MI素子用発振回路15、及び保持回路17と増幅器11からなる演算回路18で構成されている。MI素子3は、その外部磁場感知方向(長手方向)が励磁コイル2の軸に対して垂直に該コイル内部または周縁外部(図は省略)に配置されており、非磁性導体対象物1の面に対して水平となるように配置されて使用される。このように励磁コイル2とMI素子3を配置することにより、リフトオフを大きくした場合の感度の向上を大幅に図ることができる。本発明において、MI素子3としては例えば、直径20から30μm、長さ約0.5mmから1.0mmの棒状のアモルハスワイヤを使用する。この他、MI素子としては、ガラス等の基板に蒸着により形成した薄膜MI素子を使用してもよく、その場合、薄膜MI素子の大きさは、例えば、縦1〜3mm×横2〜4mm×厚さ0.2〜1.5mm程度となる。MI素子の出力電圧はコイルの巻数、コイル形状、コイル電圧により異なるので、相対比、即ち出力電圧比を代わりに用いることによって全ての図を関連づけることができる。  Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components. FIG. 1 is a conceptual diagram of a detection sensor according to an embodiment of the present invention. In this detection sensor 7, the sensor head portion 13 is composed of the excitation coil 2 and the MI element 3, and the circuit portion is the excitation oscillation circuit 14, the MI element oscillation circuit 15, the holding circuit 17 and the amplifier 11. It is comprised by the arithmetic circuit 18 which consists of. The MI element 3 has an external magnetic field sensing direction (longitudinal direction) perpendicular to the axis of the exciting coil 2 and is disposed inside the coil or outside the periphery (not shown), and the surface of the nonmagnetic conductor object 1 It is arranged and used so that it may become horizontal. By arranging the exciting coil 2 and the MI element 3 in this way, the sensitivity can be greatly improved when the lift-off is increased. In the present invention, for example, a rod-shaped amorphous wire having a diameter of 20 to 30 μm and a length of about 0.5 to 1.0 mm is used as the MI element 3. In addition, as the MI element, a thin film MI element formed by vapor deposition on a substrate such as glass may be used. In that case, the size of the thin film MI element is, for example, 1 to 3 mm in length × 2 to 4 mm in width. The thickness is about 0.2 to 1.5 mm. Since the output voltage of the MI element varies depending on the number of turns of the coil, the coil shape, and the coil voltage, all figures can be related by using the relative ratio, that is, the output voltage ratio instead.

本発明は非磁性導体対象物、励磁コイルおよびMI素子の配置された構成において、MI素子の位置に依存して、出力電圧が異なることおよび該位置でのリフトオフ特性が異なることから適切な励磁コイルとMI素子の位置関係を決定し用途に合った検出センサを提供する。
先ず、アルミニウム非磁性導体対象物1、励磁コイル2及びMI素子3の順で構成する図2の位置関係により得られる出力電圧比の特性を図3に示す。この構成の場合、該出力電圧はリフトオフが0mmで最低値を示すが、リフトオフの数値が増大するにつれ増大して10mmに至るとほぼ飽和する傾向がある。即ち、励磁コイル2がMI素子3よりもアルミニウム非磁性導体対象物1により近距離にある場合、該出力電圧はリフトオフの数値が増大するにつれ増大する。(現象Bとする)。
According to the present invention, in a configuration in which a nonmagnetic conductor object, an excitation coil, and an MI element are arranged, an output voltage differs depending on the position of the MI element, and lift-off characteristics at the position are different. The detection sensor suitable for the use is provided by determining the positional relationship between the MI element and the MI element.
First, FIG. 3 shows the characteristics of the output voltage ratio obtained by the positional relationship of FIG. 2, which is composed of the aluminum nonmagnetic conductor object 1, the exciting coil 2 and the MI element 3 in this order. In the case of this configuration, the output voltage shows a minimum value when the lift-off is 0 mm, but tends to be saturated when the lift-off value increases and reaches 10 mm. That is, when the exciting coil 2 is closer to the aluminum nonmagnetic conductor object 1 than the MI element 3, the output voltage increases as the lift-off value increases. (Referred to as phenomenon B).

次に、アルミニウム非磁性導体対象物1、MI素子3及び励磁コイル2の順で構成する図4の位置関係により得られる出力電圧比の特性を図5に示す。該出力電圧はリフトオフが0mmで最高値を示すが、リフトオフの数値が増大するにつれ減少して10mmに至るとほぼ飽和する傾向がある。即ち、励磁コイル2がMI素子3よりもアルミニウム非磁性導体対象1から遠距離にある場合、該出力電圧はリフトオフの数値が増大するにつれ減少する。(現象Aとする.)。  Next, FIG. 5 shows the characteristics of the output voltage ratio obtained by the positional relationship of FIG. 4 configured in the order of the aluminum nonmagnetic conductor object 1, the MI element 3, and the exciting coil 2. The output voltage shows a maximum value when the lift-off is 0 mm, but tends to be saturated when the lift-off value increases and decreases to 10 mm. That is, when the exciting coil 2 is farther from the aluminum nonmagnetic conductor object 1 than the MI element 3, the output voltage decreases as the lift-off value increases. (Referred to as phenomenon A).

図6の構成において、MI素子3を励磁コイル2内部の適切な位置に配置し、現象Aと現象Bのバランスをとることによって高感度の検出センサ7を得ることが可能となる。  In the configuration of FIG. 6, the MI element 3 is disposed at an appropriate position inside the exciting coil 2, and the phenomenon A and the phenomenon B are balanced to obtain the highly sensitive detection sensor 7.

例えば、リフトオフを最大限広げてアルミニウム非磁性導体対象物1からの渦電流反磁界の影響をなくし、MI素子3をコイル内で移動するか、もしくはMI素子3を固定して励磁コイル2を移動すると出力電圧は位置ごとに変化し最小値が現れることを図7に示す。出力電圧が最小となる該バランスの取れた近辺で励磁コイル2を固定すると、例えば図8に示すリフトオフが減少するにつれ該2つの現象A,Bのバランスが崩れるために、出力電圧値が大幅に増加するため高感度センサが可能となる。  For example, the lift-off is maximized to eliminate the influence of the eddy current demagnetizing field from the aluminum nonmagnetic conductor object 1, and the MI element 3 is moved in the coil, or the MI element 3 is fixed and the exciting coil 2 is moved. Then, FIG. 7 shows that the output voltage changes for each position and the minimum value appears. If the exciting coil 2 is fixed in the vicinity of the balanced state where the output voltage is minimized, the balance between the two phenomena A and B is lost as the lift-off shown in FIG. Since it increases, a highly sensitive sensor becomes possible.

例えば、アルミニウム非磁性導体対象物1を励磁コイル2に近接状態とし、MI素子3を励磁コイル2内で移動すると出力電圧は位置ごとに変化し最大値と最小値が現れることを図9に示す。該出力電圧が最小値を示す位置、即ち、該2つの現象A,Bのバランスの取れた状態である該位置近辺でMI素子3を固定して高感度の検出センサ7が作成できる。例えば図10のリフトオフが増加するにつれアルミニウム非磁性導体対象物1に生じた渦電流の反磁場の影響で該2つの現象A,Bのバランスが崩れ、出力電圧値が大幅に変化する高感度検出センサ7となる。  For example, FIG. 9 shows that when the aluminum nonmagnetic conductor object 1 is placed in the proximity of the excitation coil 2 and the MI element 3 is moved within the excitation coil 2, the output voltage changes for each position and the maximum value and minimum value appear. . A highly sensitive detection sensor 7 can be created by fixing the MI element 3 at a position where the output voltage shows a minimum value, that is, in the vicinity of the position where the two phenomena A and B are balanced. For example, as the lift-off in FIG. 10 increases, the sensitivity of the two phenomena A and B is lost due to the influence of the demagnetizing field of the eddy current generated in the aluminum non-magnetic conductor object 1, and the output voltage value changes greatly. It becomes the sensor 7.

該出力電圧が最大値を示す位置、即ち、該2つの現象A,Bのバランスの取れていない状態である該位置近辺でMI素子3を固定して高感度の検出センサ7が作成できる。例えば図11のようにリフトオフが増加するにつれアルミニウム非磁性導体対象物1に生じた渦電流の反磁場の影響で該2つの現象A,Bのバランスが整い、出力電圧値が大幅に減少する高感度検出センサ7となる。  A highly sensitive detection sensor 7 can be created by fixing the MI element 3 at a position where the output voltage shows the maximum value, that is, in the vicinity of the position where the two phenomena A and B are not balanced. For example, as shown in FIG. 11, as the lift-off increases, the balance between the two phenomena A and B is achieved by the influence of the demagnetizing field of the eddy current generated in the aluminum nonmagnetic conductor object 1, and the output voltage value is greatly reduced. The sensitivity detection sensor 7 is obtained.

このようにしてアルミニウムを非磁性導体対象物1として異なる出力特性が高感度の3種類の検出センサ7は用途に応じて選択することができる。その際、出力電圧の最小値もしくは最大値の位置は励磁コイル2、MI素子3の形状、寸法により依存するが、必ず励磁コイル2の内部、もしくは側面近辺に限られる。また、励磁コイル2とMI素子3の位置関係から得られる図7、図9の出力電圧信号から任意の感度の検出センサ7の設定が可能である。  In this manner, the three types of detection sensors 7 having different output characteristics and high sensitivity using aluminum as the non-magnetic conductor object 1 can be selected according to the application. At that time, the position of the minimum value or the maximum value of the output voltage depends on the shape and dimensions of the exciting coil 2 and the MI element 3, but is always limited to the inside of the exciting coil 2 or the vicinity of the side surface. Further, the detection sensor 7 having an arbitrary sensitivity can be set from the output voltage signals in FIGS. 7 and 9 obtained from the positional relationship between the exciting coil 2 and the MI element 3.

これまで、MI素子3が励磁コイル2内部にあるとき、または励磁コイル側面近辺に配置されているときについて述べてきたが、ここでMI素子3がコイル周縁外部に配置しても感度特性が同じ傾向を持つことを説明する。図16のようにコイルの周縁外部にMI素子3を配置する本考案もまた性能の高い検出器を提供する。本発明も非磁性導体対象物1、励磁コイル2及びMI素子3の3者が関係する位置構成に基づく出力信号の特異点を効果的に利用した高感度、高精度の検出センサ7を提供する。  Up to now, the case where the MI element 3 is inside the excitation coil 2 or the case where the MI element 3 is arranged near the side surface of the excitation coil has been described. However, even if the MI element 3 is arranged outside the coil periphery, the sensitivity characteristics are the same. Explain that they have a tendency. The present invention in which the MI element 3 is arranged outside the periphery of the coil as shown in FIG. 16 also provides a high-performance detector. The present invention also provides a high-sensitivity and high-precision detection sensor 7 that effectively uses a singular point of an output signal based on a positional configuration in which the nonmagnetic conductor object 1, the exciting coil 2, and the MI element 3 are related. .

図12、図14、図16はアルミニウム非磁性導体対象物1、MI素子3及び励磁コルとの位置関係と出力電圧を説明するための概念図である。図12において、アルミニウム非磁性導体対象物1に対向して励磁コイル2、斜め前方に該励磁コイル2が位置するようにMI素子3が配置されている構成の場合、該出力電圧はリフトオフが0mmで最低値を示すが、リフトオフの数値が増大するにつれ増大し、10mmに至りほぼ飽和する。図2の構成の検出センサ7と同じ傾向があることを図13が示している。即ち励磁コイル2がMI素子3よりもアルミニウム非磁性導体対象物1により近距離にある場合該出力電圧はリフトオフの数値が増大するにつれ増大する現象Bを示す。  FIGS. 12, 14, and 16 are conceptual diagrams for explaining the positional relationship and output voltage between the aluminum nonmagnetic conductor object 1, the MI element 3, and the excitation coll. In FIG. 12, when the MI coil 3 is arranged so that the exciting coil 2 faces the aluminum nonmagnetic conductor object 1 and the exciting coil 2 is positioned obliquely forward, the output voltage has a lift-off of 0 mm. Shows a minimum value, but increases as the lift-off value increases, reaches 10 mm, and is almost saturated. FIG. 13 shows that there is the same tendency as the detection sensor 7 having the configuration of FIG. That is, when the exciting coil 2 is closer to the aluminum nonmagnetic conductor object 1 than the MI element 3, the output voltage shows a phenomenon B that increases as the lift-off value increases.

図14において、アルミニウ厶非磁性導体対象物1に対向してMI素子3、該MI素子3の斜め後方に該励磁コイル2が位置する構成の場合、図15において該出力電圧はリフトオフが0mmで最高値を示すが、リフトオフが増大するにつれ減少して10mmに至るとほぼ飽和する。この傾向は図4の構成の検出センサ7と同じ傾向があることを示している。即ち、アルミニウム非磁性導体対象物1に対して、励磁コイル2がMI素子3よりも遠距離にある場合、該出力電圧はリフトオフの数値が増大するにつれ減少する全く逆の現象A示す。  In FIG. 14, when the MI element 3 is opposed to the aluminum nonmagnetic conductor object 1 and the exciting coil 2 is positioned obliquely behind the MI element 3, the output voltage in FIG. Although it shows the maximum value, it decreases as the lift-off increases, and is almost saturated when it reaches 10 mm. This tendency indicates the same tendency as that of the detection sensor 7 having the configuration shown in FIG. That is, when the exciting coil 2 is located farther than the MI element 3 with respect to the aluminum nonmagnetic conductor object 1, the output voltage shows a completely opposite phenomenon A that decreases as the lift-off value increases.

図16はアルミニウム非磁性導体対象物1に対向して励磁コイル2の周縁外部に近接してMI素子3が配置される構成を示している。現象Aと現象Bの影響を受け、励磁コイル2内のMI素子3の出力電圧は設置される位置に依存する。  FIG. 16 shows a configuration in which the MI element 3 is arranged close to the outer periphery of the excitation coil 2 so as to face the aluminum nonmagnetic conductor object 1. Under the influence of the phenomenon A and the phenomenon B, the output voltage of the MI element 3 in the exciting coil 2 depends on the position where it is installed.

MI素子3もしくは励磁コイル2の間隔を200mm以上離した場合、即ちアルミニウム非磁性導体対象物1の渦電流反磁界の影響を無視できる距離において、該励磁コイル2と該MI素子3の位置関係から生ずる特性について説明する。MI素子3が非対象物側励磁コイル周縁外部端面から励磁コイル2に沿って反対面の励磁コイル周縁外部に至った後までの過程でMI素子3測定点が該励磁コイル2の周縁外部に沿って移動する図16のとき、MI素子3の出力電圧値は下降し、MI素子3がコイル周縁外部範囲内で最小となることを図17に示す。この最小値を示す位置では現象A,Bが拮抗し、共に打ち消しあってバランスが励磁コイル2内部で保たれているものと考える。リフトオフ距離を狭めると、反磁界の影響が現れ、バランスが崩れ出力電圧が増加して、図18の高出力電圧変化が得られる。  From the positional relationship between the exciting coil 2 and the MI element 3 when the interval between the MI element 3 or the exciting coil 2 is 200 mm or more, that is, at a distance where the influence of the eddy current demagnetizing field of the aluminum nonmagnetic conductor object 1 can be ignored. The resulting characteristics will be described. The MI element 3 measurement point is along the outer periphery of the excitation coil 2 in the process from when the MI element 3 reaches the outside of the excitation coil periphery on the opposite surface along the excitation coil 2 from the non-object side excitation coil periphery outer end surface. FIG. 17 shows that the output voltage value of the MI element 3 decreases and the MI element 3 becomes the minimum within the coil peripheral outside range. It is considered that the phenomenon A and B antagonize at the position showing the minimum value, cancel each other, and the balance is maintained inside the exciting coil 2. When the lift-off distance is shortened, the influence of the demagnetizing field appears, the balance is lost, the output voltage increases, and the high output voltage change of FIG. 18 is obtained.

非磁性導体対象物1と励磁コイル2間の距離を近接して、MI素子3が非磁性導対象物側励磁コイル周縁外部端面に近接した位置から、該励磁コイル周縁外部に沿って反対面の近接位置に至るまでの過程で、MI素子3の位置と出力電圧値の関係を図19に示す。コイル非磁性導体対象物1側外側からMI素子3が移動するにつれ、出力電圧は増大し、最大値に到達する。この最大値までに至る任意の位置で作成した検出センサ7はリフトオフが大きくなるにつれ出力電圧が低下する図20の傾向を持ち、この領域を領域1とする。  When the distance between the nonmagnetic conductor object 1 and the exciting coil 2 is close, the MI element 3 is located on the opposite surface along the outer periphery of the exciting coil from the position close to the outer peripheral edge of the nonmagnetic conductive object side exciting coil. FIG. 19 shows the relationship between the position of the MI element 3 and the output voltage value in the process up to the proximity position. As the MI element 3 moves from the outside of the coil nonmagnetic conductor object 1 side, the output voltage increases and reaches the maximum value. The detection sensor 7 created at an arbitrary position up to this maximum value has the tendency shown in FIG. 20 in which the output voltage decreases as the lift-off increases.

更にMI素子3が移動すると出力電圧は最大値から最小値に向かって減少する。この領域を領域3とする。領域3で作成した検出センサ7は図21のようにリフトオフが大きくなるにつれ出力電圧が減少する現象Aと増加する現象Bが混在する。MI素子3が移動すると出力電圧は最小値に達する。最小値近辺で作成した検出センサ7はリフトオフが大きくなるにつれ、出力電圧も大きくなる図22の結果を得る。この領域を領域2とする。更に、MI素子3が励磁コイル2の反対側の周縁外部端面近辺に至るまで、増加し最大値に達しその後低下する。  Further, when the MI element 3 moves, the output voltage decreases from the maximum value to the minimum value. This region is referred to as region 3. As shown in FIG. 21, the detection sensor 7 created in the region 3 includes a phenomenon A in which the output voltage decreases and a phenomenon B in which the output voltage increases as the lift-off increases. When the MI element 3 moves, the output voltage reaches a minimum value. The detection sensor 7 created near the minimum value obtains the result of FIG. 22 in which the output voltage increases as the lift-off increases. This region is referred to as region 2. Further, the MI element 3 increases until reaching the vicinity of the outer peripheral edge on the opposite side of the exciting coil 2, reaches a maximum value, and then decreases.

検出センサ7の感度調整法について説明する
検出センサ7の感度は非磁性導体対象物1、MI素子3および励磁コイル2の位置関係から得られる曲線より容易に設定できる。
一例として、MI素子3もしくは励磁コイル2の間隔を非磁性導体対象物1から200mm上離した場合、即ちアルミニウム非磁性導体対象物1の渦電流反磁界の影響を無視できる距離において、非磁性導体対象物側励磁コイル2面の外、励磁コイル2内、非磁性導体対象物側励磁コイル反対面の外の順にMI素子3を移動させながら出力電圧値を測定すると、励磁コイル2内部で、図7のように零に近い最小値を含む曲線が得られる。この出力電圧が最小値を示す位置で励磁コイル2とMI素子3を接着剤で固定し検出センサ7を形成する。ここで検出センサ7とアルミニウム非磁性導体対象物1間のリフトオフを図8に示すように小さくすると、出力電圧信号はおおきくなり、さらにリフトオフが零では最大値となる。具体的に説明すると、信号の初期値、例えばリフトオフが200mmのとき零に近い値が設定でき、リフトオフが、例えば、0mmのとき、出力電圧は最高値近くに大きくなるために、ほぼ100パーセントの高感度の信号を得ることができる高感度センサを提供できる。この説明は図6のMI素子3が励磁コイル2の内部にある場合であるが、図16のようにMI素子3が励磁コイル2の周縁外部にあっても出力電圧の最小値となる位置でMI素子3と励磁コイル2を固定して図18に示している高感度の検出センサ7を提供することが可能である。
The sensitivity of the detection sensor 7 for explaining the sensitivity adjustment method of the detection sensor 7 can be easily set from a curve obtained from the positional relationship between the nonmagnetic conductor object 1, the MI element 3, and the exciting coil 2.
As an example, when the interval between the MI element 3 or the exciting coil 2 is 200 mm above the nonmagnetic conductor object 1, that is, at a distance where the influence of the eddy current demagnetizing field of the aluminum nonmagnetic conductor object 1 can be ignored. When the output voltage value is measured while moving the MI element 3 in the order of outside the object side exciting coil 2 surface, inside the exciting coil 2 and outside the nonmagnetic conductor object side exciting coil, the inside of the exciting coil 2 A curve including a minimum value close to zero, such as 7, is obtained. The excitation coil 2 and the MI element 3 are fixed with an adhesive at a position where the output voltage shows the minimum value, and the detection sensor 7 is formed. Here, when the lift-off between the detection sensor 7 and the aluminum nonmagnetic conductor object 1 is reduced as shown in FIG. 8, the output voltage signal increases, and when the lift-off is zero, the maximum value is obtained. Specifically, the initial value of the signal, for example, a value close to zero can be set when the lift-off is 200 mm, and when the lift-off is, for example, 0 mm, the output voltage becomes close to the maximum value. A highly sensitive sensor capable of obtaining a highly sensitive signal can be provided. This explanation is for the case where the MI element 3 in FIG. 6 is inside the excitation coil 2, but at a position where the minimum value of the output voltage is obtained even if the MI element 3 is outside the periphery of the excitation coil 2 as shown in FIG. The highly sensitive detection sensor 7 shown in FIG. 18 can be provided with the MI element 3 and the excitation coil 2 fixed.

また励磁コイル2に流す電流を調整することで高い出力の得られる検出センサ7を提供できる。なお零点はMI素子3や励磁コイル2の微妙な形状、寸法により励磁コイル2内部で変動するが、上述の電気的手法で零点の位置を見出してMI素子3と励磁コイル2を容易に固定することができる。  Moreover, the detection sensor 7 which can obtain a high output by adjusting the electric current sent through the exciting coil 2 can be provided. The zero point fluctuates inside the excitation coil 2 depending on the delicate shape and dimensions of the MI element 3 and the excitation coil 2, but the MI element 3 and the excitation coil 2 are easily fixed by finding the position of the zero point by the above-described electrical method. be able to.

二例として、MI素子3もしくは励磁コイル2が磁性導体対象物と間隔が0mmで近接した場合、即ちアルミニウム非磁性導体対象物1の渦電流反磁界の影響を受ける距離において、非磁性導体対象物側励磁コイル2側面、励磁コイル2内、非磁性導体対象物側励磁コイル2反対面の外の順に固定したMI素子3を内在して励磁コイル2を移動させながら出力電圧値を測定した結果を図9に示す。特に図6の範囲で増大、最大値、減少、最小値、再度増大と複雑な変化をする。この出力電圧が最小値を示す位置で励磁コイル2とMI素子3を接着剤で固定し検出センサ7を形成する。ここで検出センサ7とアルミニウム非磁性導体対象物1間のリフトオフを大きくすると、図10に示すように出力電圧信号は大きくなる。
この説明は図6のMI素子3が励磁コイル2の内部にある場合であるが、図16のようにMI素子3が励磁コイル2の周縁外部にあっても出力電圧の最小値となる位置でMI素子3と励磁コイル2を固定して作成した検出センサ7を用いて図22に示すリフトオフの増加に対する出力電圧の増加率の大きい高感度の検出センサ7の提供することが可能である。
As an example, when the MI element 3 or the excitation coil 2 is close to the magnetic conductor object with a distance of 0 mm, that is, at a distance affected by the eddy current demagnetizing field of the aluminum nonmagnetic conductor object 1, the nonmagnetic conductor object The result of measuring the output voltage value while moving the excitation coil 2 with the MI element 3 fixed in the order of the side of the side excitation coil 2, the inside of the excitation coil 2, and the outer surface of the non-magnetic conductor object side excitation coil 2. As shown in FIG. In particular, in the range of FIG. 6, there are complicated changes such as increase, maximum value, decrease, minimum value, and increase again. The excitation coil 2 and the MI element 3 are fixed with an adhesive at a position where the output voltage shows the minimum value, and the detection sensor 7 is formed. Here, if the lift-off between the detection sensor 7 and the aluminum nonmagnetic conductor object 1 is increased, the output voltage signal increases as shown in FIG.
This explanation is for the case where the MI element 3 in FIG. 6 is inside the excitation coil 2, but at a position where the minimum value of the output voltage is obtained even if the MI element 3 is outside the periphery of the excitation coil 2 as shown in FIG. It is possible to provide the high-sensitivity detection sensor 7 having a large increase rate of the output voltage with respect to the increase in lift-off shown in FIG. 22 by using the detection sensor 7 formed by fixing the MI element 3 and the excitation coil 2.

次に、図9の出力電圧が最大値を示す位置で励磁コイル2とMI素子3を接着剤で固定し検出センサ7を形成する。図11に示すリフトオフの増加に対する出力電圧を測定し、減少率の大きい高感度の検出センサ7の提供することが可能である。
この説明は図6のMI素子3が励磁コイル2の内部にある場合であるが、図16のようにMI素子3が励磁コイル2の周縁外部にあっても出力電圧の最大値となる位置でMI素子3と励磁コイル2を固定して作成したセンサヘッドを用いて図20に示すリフトオフの増加対する出力電圧の減少率の大きい高感度の検出センサ7の提供することが可能である。
Next, the excitation coil 2 and the MI element 3 are fixed with an adhesive at a position where the output voltage of FIG. It is possible to measure the output voltage with respect to the increase in lift-off shown in FIG. 11 and provide the high-sensitivity detection sensor 7 having a large decrease rate.
This explanation is for the case where the MI element 3 in FIG. 6 is inside the exciting coil 2, but at a position where the maximum value of the output voltage is obtained even if the MI element 3 is outside the periphery of the exciting coil 2 as shown in FIG. It is possible to provide a highly sensitive detection sensor 7 having a large output voltage decrease rate with respect to an increase in lift-off shown in FIG. 20 using a sensor head formed by fixing the MI element 3 and the exciting coil 2.

銅、真鍮、ステンレス、鉄などの非磁性導体対象物はアルミニウム非磁性導体対象物と感度が異なるが、出力特性はほぼ同じ傾向であり、例えばリフトオフが増加するにつれ出力電圧値のより高い特性をもつ高感度検出センサが可能となる。また、リフトオフを最大限広げてMI素子3をコイル内で移動し出力電圧が最小となる近辺でMI素子3を固定すると、リフトオフが増加するにつれより出力電圧値のより低くなる特性をもつ高感度検出センサ7が可能となる。  Non-magnetic conductor objects such as copper, brass, stainless steel, and iron have different sensitivities from aluminum non-magnetic conductor objects, but the output characteristics tend to be almost the same.For example, as the lift-off increases, the output voltage value becomes higher. A high-sensitivity detection sensor can be realized. Further, when the MI element 3 is moved in the coil with the lift-off being maximized and the MI element 3 is fixed in the vicinity where the output voltage is minimized, the output voltage value becomes lower as the lift-off increases. The detection sensor 7 becomes possible.

実施例1  Example 1

試−1
励磁コイル2軸線上にMI素子3を配置する図2、図4及び図6の様態からなる検出セサ7であって、高感度、高精度が取得できる確実な感度調整方法について説明する。
MIセンサ3及び励磁コイル2はアルミニウム製非磁性導体対象物1からの渦電流反磁界の影響を受けない距離例えば200mm以上の間隔にする。励磁コイル2としては、例えば、線径0.01mm〜1mmの銅線からなる、外径4.14mm、内径3.02及び厚み.0.8mmのパンケーキ型励磁コイル2を使用した励磁コイル2には5Vp−pの80kHzの周波数交流電圧を加えた測定はコイル内部ばかりでなく、その延長上においても測定した。出力はシンクロスコープで観察した。観察例を図24,25.26に示す。横軸が時間に対して、縦軸は出力電圧である。図24は出力電圧が10mV以下、図25は出力電圧が約150mV、図26が約400mV出力の各例である。
励磁コイル2がアルミニウム製非磁性導体対象物1に向かってMI素子3の前方にある図2の様態のとき、リフトオフが大きくなるにつれて、出力電圧比は上昇する図3の現象Bを示した。励磁コイル2がアルミニウ厶製非磁性導体対象物1に向かってMI素子3の後方にある図4の様態のとき、リフトオフが大きくなるにつれて、出力電圧比は下降する図5の現象Aを示した。
Trial-1
A description will be given of a reliable sensitivity adjustment method for obtaining high sensitivity and high accuracy, which is the detection sensor 7 having the MI elements 3 arranged on the two axes of the exciting coil and having the modes shown in FIGS.
The MI sensor 3 and the excitation coil 2 are set to a distance not affected by the eddy current demagnetizing field from the aluminum nonmagnetic conductor object 1, for example, 200 mm or more. As the exciting coil 2, for example, an outer diameter of 4.14 mm, an inner diameter of 3.02, and a thickness of copper wire having a wire diameter of 0.01 mm to 1 mm are used. The excitation coil 2 using the 0.8 mm pancake-type excitation coil 2 was measured not only in the coil but also on the extension thereof by applying an AC voltage of 80 kHz frequency of 5 Vp-p. The output was observed with a synchroscope. An example of observation is shown in FIGS. The horizontal axis represents time, and the vertical axis represents output voltage. 24 shows an example in which the output voltage is 10 mV or less, FIG. 25 shows each example in which the output voltage is about 150 mV, and FIG. 26 shows about 400 mV output.
When the exciting coil 2 is in front of the MI element 3 toward the aluminum non-magnetic conductor object 1, the output voltage ratio increases as the lift-off increases. In the state of FIG. 4 in which the exciting coil 2 is behind the MI element 3 toward the nonmagnetic conductor object 1 made of aluminum, the phenomenon A in FIG. 5 in which the output voltage ratio decreases as the lift-off increases is shown. .

MI素子3を励磁コイル2内、外部で出力電圧を測定しながら移動させると、出力電圧は移動につれて下降しほぼ零近くまで到達後再度上昇したことにより励磁コイル2内部で最小値を得ることができた。結果を図7に示す。この最小値を示す位置で励磁コイル2とMI素子3の両方を接着剤または機械的に固定した検出センサ7を成した。図8に検出センサ7を用いて測定したリフトオフと出力電圧比の関係を示す。リフトオフが減少するにつれて出力電圧の増加が大きく、ほぼ100パーセントの高感度を得ることができた。When the MI element 3 is moved while measuring the output voltage inside and outside the exciting coil 2, the output voltage decreases as it moves, reaches a value close to zero, and then rises again, thereby obtaining a minimum value inside the exciting coil 2. did it. The results are shown in FIG. A detection sensor 7 in which both the exciting coil 2 and the MI element 3 are fixed with an adhesive or mechanically is formed at a position showing the minimum value. FIG. 8 shows the relationship between the lift-off measured using the detection sensor 7 and the output voltage ratio. As the lift-off decreased, the output voltage increased greatly, and a high sensitivity of almost 100 percent could be obtained.

試−2
励磁コイル2軸線上に平行にMI素子3を配置した図2、図4、図6の3様態から構成からなる検出センサ7の高精度、高感度が取得できる第2番目の感度調整方法を説明する。MI素子3及び励磁コイル2はアルミニウム製非磁性導体対象物1と近接して配置し、積極的にアルミニウム製非磁性導体対象物1の影響を受けるようにした(リフトオフ0mm)。MI素子3をアルミニウム製非磁性導体対象物1側から励磁コイル2軸線に平行に順次励磁コイル2内を通って該対象物と反対側に移動させたときの移動距離と出力電圧比の関係を図9に示す。MI素子3が励磁コイル2内部に存在する図6の様態では、現象Aと現象Bの相互作用がより顕著に現れる領域である。0.8mm幅の励磁コイル2内部で最大(領域1)と最小(領域2)の二つのピーク値と両ピーク間にまたがる斜線(領域3)が示された。領域1の近辺で形成した検出センサ7はリフトオフの増加に伴う出力電圧比の減少率が大きいことを図11に示した。
Trial-2
A second sensitivity adjustment method capable of acquiring high accuracy and high sensitivity of the detection sensor 7 having the configuration shown in FIGS. 2, 4 and 6 in which the MI element 3 is arranged in parallel on the two axes of the exciting coil will be described. To do. The MI element 3 and the exciting coil 2 are arranged close to the aluminum nonmagnetic conductor object 1 so as to be positively influenced by the aluminum nonmagnetic conductor object 1 (lift-off 0 mm). The relationship between the movement distance and the output voltage ratio when the MI element 3 is moved from the aluminum non-magnetic conductor object 1 side in parallel to the excitation coil 2 axis and sequentially through the excitation coil 2 to the opposite side of the object. As shown in FIG. In the state of FIG. 6 in which the MI element 3 is present inside the exciting coil 2, this is a region where the interaction between the phenomenon A and the phenomenon B appears more prominently. Two peak values (maximum (region 1) and minimum (region 2)) inside the exciting coil 2 having a width of 0.8 mm and a diagonal line (region 3) extending between the two peaks are shown. FIG. 11 shows that the detection sensor 7 formed in the vicinity of the region 1 has a large reduction rate of the output voltage ratio with an increase in lift-off.

領域2の近辺で形成した検出センサ7はリフトオフの増加につれて出力電圧比変化が大きくなることを図10に示した。  FIG. 10 shows that the change in the output voltage ratio of the detection sensor 7 formed in the vicinity of the region 2 increases as the lift-off increases.

領域3の近辺では励磁コイル2とMI素子3の位置の微小な変化により、リフトオフの増加に伴い出力電圧は一旦減少するが、直ぐに増加するA,Bの2現象からなる傾向を図23に示した。
実施例2
試−3
In the vicinity of region 3, the output voltage decreases once as lift-off increases due to slight changes in the positions of the exciting coil 2 and the MI element 3, but the tendency consisting of two phenomena A and B immediately increases is shown in FIG. It was.
Example 2
Trial-3

励磁コイル2の周縁外部にMI素子3を配置した図12、図14及び図16の3様態から構成からなる検出センサ7の高精度、高感度が取得できる簡単明瞭な感度調整方法を説明する。MI素子3及び励磁コイル2はアルミニウム製非磁性導体対象物1からの渦電流反磁界の影響を受けない距離例えば200mm以上の間隔にする。励磁コイル2としては、例えば、線径0.01mm〜1mmの銅線からなる、外径4.14mm、内径3.02及び厚み1.5mmのパンケーキ型励磁コイル2を使用した。励磁コイル2には5Vp−pの60kHzの周波数交流電圧を加えた。測定はコイル内部もしくは該周縁ばかりでなく、その延長上においても測定した。出力はシンクロスコープで観察した。  A simple and clear sensitivity adjustment method capable of obtaining high accuracy and high sensitivity of the detection sensor 7 having the configuration of the three modes of FIGS. 12, 14 and 16 in which the MI element 3 is arranged outside the periphery of the exciting coil 2 will be described. The MI element 3 and the excitation coil 2 are set to a distance not affected by the eddy current demagnetizing field from the aluminum nonmagnetic conductor object 1, for example, 200 mm or more. As the exciting coil 2, for example, a pancake type exciting coil 2 made of a copper wire having a wire diameter of 0.01 mm to 1 mm and having an outer diameter of 4.14 mm, an inner diameter of 3.02 and a thickness of 1.5 mm was used. The excitation coil 2 was applied with a frequency alternating voltage of 60 V and 5 Vp-p. The measurement was performed not only on the inside of the coil or the peripheral edge but also on the extension thereof. The output was observed with a synchroscope.

励磁コイル2がアルミニウム製非磁性導体対象物1に向かってMI素子3の前方にある図12の様態のとき、リフトオフが大きくなるにつれて、出力電圧比は上昇する図13の現象Bを示した。また励磁コイル2がアルミニウム製非磁性導体対象物1に向かってMI素子3の後方にある図14の様態のとき、リフトオフが大きくなるにつれて、出力電圧比は下降する図15の現象Aを示した。  When the exciting coil 2 is in front of the MI element 3 toward the aluminum non-magnetic conductor object 1, the output voltage ratio increases as the lift-off increases. In addition, when the exciting coil 2 is behind the MI element 3 toward the aluminum non-magnetic conductor object 1, the output voltage ratio decreases as the lift-off increases. .

試−4
MI素子3が励磁コイル2周縁外部に近接している図16の様態では、現象Aと現象Bの相互作用がより顕著に現れる領域である。アルミニウム製非磁性導体対象物1と励磁コイル2が近接した条件下において、励磁コイル2の外周部に近接しているMI素子3の各位置の出力電圧値を測定した。結果を図19に示す。1.5mm幅の励磁コイル外部周縁で最大値(領域1)と最小値(領域2)の二つのピーク値と両ピーク間にまたがる斜線(領域3)が示されている。
Trial-4
In the state of FIG. 16 in which the MI element 3 is close to the outside of the periphery of the exciting coil 2, this is a region where the interaction between the phenomenon A and the phenomenon B appears more prominently. Under the condition where the aluminum nonmagnetic conductor object 1 and the exciting coil 2 are close to each other, the output voltage value at each position of the MI element 3 close to the outer peripheral portion of the exciting coil 2 was measured. The results are shown in FIG. Two peak values of the maximum value (region 1) and the minimum value (region 2) and a diagonal line (region 3) extending between the two peaks are shown at the outer periphery of the 1.5 mm wide excitation coil.

領域1で励磁コイル2周縁外部とMI素子3を固定した構成からなる検出センサ7のリフトオフと出力電圧の関係を図20に示す。リフトオフが大きくなるにつれて非磁性導体対象物1上の渦電流による反磁界の影響が減少し、出力電圧値は最大値から順次低い値に移行した。FIG. 20 shows the relationship between the lift-off and the output voltage of the detection sensor 7 having a configuration in which the MI coil 3 is fixed to the outside of the periphery of the exciting coil 2 in the region 1. As the lift-off increased, the influence of the demagnetizing field due to the eddy current on the non-magnetic conductor object 1 decreased, and the output voltage value gradually shifted from the maximum value to a lower value.

領域1と領域2の中間に存在する斜線の領域3におけるリフトオフと出力電圧の関係を図21に示す。リフトオフが小さいとき、出力電圧は減少するが、リフトオフが大きくなるにつれ出力電圧は逆転して大きくなる。この領域3では現象Aと現象Bが複雑に絡み合っている。ただし、リフトオフが小さい範囲に限定すれば、感度を高く取ることができるので1mmから1μmの変量を測定用として適していた。  FIG. 21 shows the relationship between the lift-off and the output voltage in the hatched region 3 existing between the region 1 and the region 2. When the lift-off is small, the output voltage decreases. However, as the lift-off increases, the output voltage reverses and increases. In this region 3, phenomenon A and phenomenon B are intertwined in a complicated manner. However, if the lift-off is limited to a small range, the sensitivity can be increased, so that a variable of 1 mm to 1 μm is suitable for measurement.

領域2で磁コイル2周縁外部とMI素子3を固定した構成からなる検出センサ7のリフトオフと出力電圧の関係を図22に示す。リフトオフが大きくなるにつれて非磁性導体対象物1上の渦電流による反磁界の影響が減少し、出力電圧値は最小値から順次高い値に移行した。
実施例3
FIG. 22 shows the relationship between the lift-off of the detection sensor 7 having a configuration in which the MI element 3 is fixed to the outside of the periphery of the magnetic coil 2 in the region 2 and the output voltage. As the lift-off increased, the influence of the demagnetizing field due to the eddy current on the nonmagnetic conductor object 1 decreased, and the output voltage value shifted from the minimum value to the higher value sequentially.
Example 3

試−5
真鍮を非磁性導体対象物1とした場合の励磁コイル2内の軸線に平行にMI素子3を配置する図6の様態からなる検出センサ7であって、高感度、高精度が取得できる確実な感度調整方法について説明する。MIセンサ3及び励磁コイル2は真鍮製非磁性導体対象物1からの渦電流反磁界の影響を受けない距離例えば200mm以上の間隔にした。MI素子3を励磁コイル2内部で出力電圧を測定しながら真鍮製非磁性導体対象物1側の励磁コイル2側面から移動させると、出力電圧はMI素子3の移動につれて下降しほぼ零近くまで到達後再度上昇したことにより最小値を得ることができた。この最小値を示す位置で励磁コイル2とMI素子3の両方を接着剤または機械的に固定した検出センサ7を作成した。この検出センサ7を用いて図27にリフトオフと電圧出力値の関係を示す。アルミニウム同等の高い感度である。
試−6
Trial-5
The detection sensor 7 having the mode shown in FIG. 6 in which the MI element 3 is arranged in parallel to the axis in the exciting coil 2 when brass is used as the nonmagnetic conductor object 1, and can be obtained with high sensitivity and high accuracy. A sensitivity adjustment method will be described. The MI sensor 3 and the exciting coil 2 were set to a distance not affected by the eddy current demagnetizing field from the brass nonmagnetic conductor object 1, for example, 200 mm or more. When the MI element 3 is moved from the side of the exciting coil 2 on the brass non-magnetic conductor object 1 side while measuring the output voltage inside the exciting coil 2, the output voltage decreases as the MI element 3 moves and reaches nearly zero. The minimum value could be obtained by raising again later. A detection sensor 7 in which both the exciting coil 2 and the MI element 3 were fixed with an adhesive or mechanically at a position showing the minimum value was prepared. FIG. 27 shows the relationship between the lift-off and the voltage output value using this detection sensor 7. High sensitivity equivalent to aluminum.
Trial-6

真鍮を非磁性導体対象物1とした場合の励磁コイル2軸線上に沿ってMI素子3を配置する図6の様態からなる検出センサ7であって、高感度、高精度が取得できる第2の確実な感度調整方法について説明する。MIセンサ3及び励磁コイル2は真鍮製非磁性導体対象物1からの渦電流反磁界の影響を積極的に受けるように近接して配置した。出力電圧はMI素子3の移動につれ最大値と最小値が見つかるが、最小値でMIセンサ3と励磁コイル2を固定して検出センサ7を作成した。この検出センサ7を用いて図28にリフトオフと電圧出力値の関係を示す。アルミニウム同等の高い感度である。
実施例4
A detection sensor 7 having the form of FIG. 6 in which the MI element 3 is arranged along the axis of the exciting coil 2 when brass is used as the nonmagnetic conductor object 1, and is a second sensor that can acquire high sensitivity and high accuracy. A reliable sensitivity adjustment method will be described. The MI sensor 3 and the exciting coil 2 were arranged close to each other so as to be positively affected by the eddy current demagnetizing field from the brass nonmagnetic conductor object 1. As the output voltage, the maximum value and the minimum value are found as the MI element 3 moves, and the detection sensor 7 is created by fixing the MI sensor 3 and the excitation coil 2 at the minimum value. FIG. 28 shows the relationship between lift-off and voltage output value using this detection sensor 7. High sensitivity equivalent to aluminum.
Example 4

ステンレスを非磁性導体対象物1とした場合の励磁コイル2軸線上にMI素子3を配置する図6の様態からなる検出センサ7であって、高感度、高精度が取得できる確実な感度調整方法について説明する。MIセンサ3及び励磁コイル2はステンレス製非磁性導体対象物1からの渦電流反磁界の影響を受けない距離例えば200mm以上の間隔にした。MI素子3を励磁コイル2内部で出力電圧を測定しながらステンレス製非磁性導体対象物1側の励磁コイル2側面から移動させると、出力電圧はMI素子3の移動につれて下降しほぼ20mVまで到達後、励磁コイル2とMI素子3の両方を接着剤または機械的に固定した検出センサ7を作成した。この検出センサ7を用いて図29にリフトオフと電圧出力値の関係を示す。
実施例5
6 is a detection sensor 7 configured as shown in FIG. 6 in which the MI element 3 is arranged on the axis of the exciting coil 2 when stainless steel is used as the nonmagnetic conductor object 1, and a reliable sensitivity adjustment method capable of obtaining high sensitivity and high accuracy. Will be described. The MI sensor 3 and the exciting coil 2 were set to a distance not affected by the eddy current demagnetizing field from the stainless nonmagnetic conductor object 1, for example, 200 mm or more. When the MI element 3 is moved from the side of the exciting coil 2 on the stainless steel nonmagnetic conductor object 1 side while measuring the output voltage inside the exciting coil 2, the output voltage decreases as the MI element 3 moves and reaches approximately 20 mV. Then, a detection sensor 7 in which both the exciting coil 2 and the MI element 3 were fixed with an adhesive or mechanically was prepared. FIG. 29 shows the relationship between lift-off and voltage output value using this detection sensor 7.
Example 5

鉄を非磁性導体対象物1とした場合の励磁コイル2軸線上にMI素子3を配置する図6の様態からなる検出センサ7であって、高感度、高精度が取得できる確実な感度調整方法について説明する。MI素子3及び励磁コイル2は鉄製非磁性導体対象物1からの渦電流反磁界の影響を受けない距離例えば200mm以上の間隔にした。MI素子3を励磁コイル2内部で出力電圧を測定しながら鉄製非磁性導体対象物1側の励磁コイル2側面から移動させると、出力電圧はMI素子の移動につれて下降しほぼ10mVまで到達後、励磁コイル2とMI素子3の両方を接着剤または機械的に固定した検出センサ7を作成した。この検出センサ7を用いて図30にリフトオフと電圧出力値の関係を示す。6 is a detection sensor 7 configured as shown in FIG. 6 in which the MI element 3 is arranged on the two axes of the exciting coil when iron is used as the nonmagnetic conductor object 1, and a reliable sensitivity adjustment method capable of obtaining high sensitivity and high accuracy. Will be described. The MI element 3 and the exciting coil 2 are set to a distance that is not affected by the eddy current demagnetizing field from the iron nonmagnetic conductor object 1, for example, 200 mm or more. When the MI element 3 is moved from the side of the exciting coil 2 on the iron non-magnetic conductor object 1 side while measuring the output voltage inside the exciting coil 2, the output voltage decreases as the MI element moves and reaches approximately 10 mV, and then the exciting voltage is increased. A detection sensor 7 in which both the coil 2 and the MI element 3 were fixed with an adhesive or mechanically was prepared. FIG. 30 shows the relationship between the lift-off and the voltage output value using this detection sensor 7.

本発明の検出センサの基本概念図  Basic conceptual diagram of the detection sensor of the present invention 非磁性導体対象物、励磁コイル、MI素子の順でコイル軸上に配置した検出センサの構成概念図  Conceptual diagram of the configuration of the detection sensor placed on the coil axis in the order of non-magnetic conductor object, exciting coil, MI element 非磁性導体対象物、励磁コイル、MI素子の順でコイル軸上に配置した検センサのリフトオフ−出力電圧図  Non-magnetic conductor object, exciting coil, MI element in order of lift-off output voltage diagram of the sensor arranged on the coil axis 非磁性導体対象物、MI素子、励磁コイルの順でコイル軸上に配置した検センサの構成概念図  Non-magnetic conductor object, MI element, excitation conceptual diagram of the sensor arranged on the coil axis in this order 非磁性導体対象物、MI素子、励磁コイルの順で一列に配置した検出セサのリフトオフー出力電圧図  Lift-off output voltage diagram of detection sensor arranged in a line in the order of non-magnetic conductor object, MI element, excitation coil MI素子を励磁コイル内部に配置した検出センサの構成概念図  Configuration conceptual diagram of detection sensor with MI element placed inside excitation coil 図6において、非磁性導体対象物の渦電流反磁界の影響を無視できる距離であって、励磁コイルとMI素子の位置関係による出力電圧の依存性  In FIG. 6, it is a distance where the influence of the eddy current demagnetizing field of the nonmagnetic conductor object can be ignored, and the dependence of the output voltage on the positional relationship between the exciting coil and the MI element. 図6において、非磁性導体対象物の渦電流反磁界の影響を無視できる距離であって、出力電圧が励磁コイル内で最小値を示す位置にMI素子を固定した検出センサのリトオフー出力電圧図  In FIG. 6, a litho-off output voltage diagram of a detection sensor in which the MI element is fixed at a position where the influence of the eddy current demagnetizing field of the non-magnetic conductor object can be ignored and the output voltage shows the minimum value in the exciting coil. 図6において、非磁性導体対象物が励磁コイルに近接した状態であって励磁コイルとMI素子の位置関係による出力電圧の依存性  In FIG. 6, the output voltage depends on the positional relationship between the exciting coil and the MI element when the nonmagnetic conductor object is close to the exciting coil. 図6おいて、非磁性導体対象物が励磁コイルに近接した状態であって、出力電圧が励磁コイル内で最小値を示す位置にMI素子を固定した検出センサのリフトオフー出力電圧図  In FIG. 6, the lift-off output voltage diagram of the detection sensor in which the MI element is fixed at a position where the nonmagnetic conductor object is close to the exciting coil and the output voltage shows the minimum value in the exciting coil. 図6おいて、非磁性導体対象物が励磁コイルに近接した状態であって、出電圧が励磁コイル内で最大値を示す位置にMI素子を固定した検出センサリフトオフー出力電圧図  In FIG. 6, a detection sensor lift-off output voltage diagram in which the MI element is fixed at a position where the non-magnetic conductor object is close to the excitation coil and the output voltage shows the maximum value in the excitation coil. 非磁性導体対象物に対向した励磁コイルの斜めした後方にMI素子を配置した検出センサの概念図  Conceptual diagram of a detection sensor in which an MI element is arranged obliquely behind an exciting coil facing a non-magnetic conductor object 非磁性導体対象物に対向した励磁コイルの斜めした後方にMI素子を配置した検出センサのリフトオフー出力電圧図  Lift-off output voltage diagram of detection sensor with MI element placed diagonally behind exciting coil facing non-magnetic conductor object 非磁性導体対象物に対向したMI素子の斜め後方に励磁コイルを配置した検出センサの概念図  Conceptual diagram of a detection sensor in which an exciting coil is disposed obliquely behind an MI element facing a nonmagnetic conductor object 非磁性導体対象物に対向したMI素子の斜め後方に励磁コイルを配置した検出センサのリフトオフー出力電圧図  Lift-off output voltage diagram of detection sensor with exciting coil placed diagonally behind MI element facing non-magnetic conductor object MI素子を励磁コイル周縁外部に配置した検出センサの構成概念図  Configuration conceptual diagram of detection sensor with MI element arranged outside the excitation coil periphery 図16のMI素子を励磁コイル周縁外部に配置した検出センサにおいて、非磁性導体対象物の渦電流反磁界の影響を無視できる距離であって、励磁コイルとMI素子の位置関係による出力電圧の依存性  In the detection sensor in which the MI element shown in FIG. 16 is arranged outside the periphery of the exciting coil, the distance is such that the influence of the eddy current demagnetizing field of the nonmagnetic conductor object can be ignored, and the output voltage depends on the positional relationship between the exciting coil and the MI element. sex 図16のMI素子を励磁コイル周縁外部に配置した検出センサにおいて、非磁性導体対象物の渦電流反磁界の影響を無視できる距離であって、励磁コイル内とMI素子を最小出力電圧で固定して作成したセンサのリフトオフー出力電圧図  In the detection sensor in which the MI element shown in FIG. 16 is arranged outside the periphery of the exciting coil, the distance between the nonmagnetic conductor object and the eddy current demagnetizing field is negligible, and the inside of the exciting coil and the MI element are fixed at the minimum output voltage. Lift-off output voltage diagram of sensor created 図16のMI素子を励磁コイル周縁外部に配置した検出センサにおいて、非磁性導体対象物が励磁コイルに近接した状態であって、励磁コイルとMI素子の位置関係による出力電圧の依存性  In the detection sensor in which the MI element shown in FIG. 16 is arranged outside the periphery of the excitation coil, the nonmagnetic conductor object is close to the excitation coil and the output voltage depends on the positional relationship between the excitation coil and the MI element. 図16のMI素子を励磁コイル周縁外部に配置した検出センサにおいて非磁性導体対象物が励磁コイルに近接した状態であって、出電圧が励磁イル内で最大値を示す位置にMI素子を固定した検出センサのリフトオフー出力電圧図  In the detection sensor in which the MI element shown in FIG. 16 is arranged outside the periphery of the exciting coil, the MI element is fixed at a position where the nonmagnetic conductor object is close to the exciting coil and the output voltage shows the maximum value in the exciting coil. Detection sensor lift-off output voltage diagram 図16のMI素子を励磁コイル周縁外部に配置した検出センサにおいて非磁性導体対象物が励磁コイルに近接した状態であって、検出電圧が励磁コイル内で最大値から最小値に移行する過程の位置でMI素子を固定した検出センサのリフトオフー出力電圧図  In the detection sensor in which the MI element shown in FIG. 16 is arranged outside the periphery of the excitation coil, the nonmagnetic conductor object is close to the excitation coil, and the position of the process in which the detection voltage shifts from the maximum value to the minimum value in the excitation coil Figure of lift-off output voltage of detection sensor with fixed MI element 図16のMI素子を励磁コイル周縁外部に配置した検出センサにおいて非磁性導体対象物が励磁コイルに近接した状態であって、出力電圧が励磁イル内で最小値を示す位置にMI素子を固定した検出センサリフトオフー出力電圧図  In the detection sensor in which the MI element of FIG. 16 is arranged outside the periphery of the excitation coil, the MI element is fixed at a position where the nonmagnetic conductor object is close to the excitation coil and the output voltage shows the minimum value in the excitation coil. Detection sensor lift-off output voltage diagram 図6のMI素子を励磁コイル内部に配置した検出センサにおいて非磁性導体対象物が励磁コイルに近接した状態であって、出力電圧が励磁コイル内で最大値から最小値に移行する過程の位置でMI素子を固定した検出センサのリフトオフー出力電圧図  In the detection sensor in which the MI element shown in FIG. 6 is arranged inside the exciting coil, the non-magnetic conductor object is close to the exciting coil, and the position where the output voltage shifts from the maximum value to the minimum value in the exciting coil. Lift-off output voltage diagram of detection sensor with fixed MI element 図6のMI素子を励磁コイル内部に配置した検出センサのオシロスコープによる出力電圧波形例 10mV以下  Example of output voltage waveform by oscilloscope of detection sensor in which MI element of Fig. 6 is arranged inside exciting coil 10mV or less 図6のMI素子を励磁コイル内部に配置した検出センサのオシロスコープによる出力電圧波形例 約 150mV  Example of output voltage waveform by oscilloscope of detection sensor in which MI element of Fig. 6 is arranged inside exciting coil About 150mV 図6のMI素子を励磁コイル内部に配置した検出センサのオシロスコープによる出力電圧波形例 約 400mV  Example of output voltage waveform using an oscilloscope of a detection sensor in which the MI element shown in FIG. 非磁性導体対象物を真鍮とし、図6のMI素子を励磁コイル内部に配置した検出センサの構成において、非磁性導体対象物の渦電流反磁界の影響を受けない距離で、励磁コイル内の出力電圧が最小となる位置でMI素子を固定して作成した検出センサのリフトオフー出力電圧図  In the configuration of the detection sensor in which the nonmagnetic conductor object is brass and the MI element of FIG. 6 is arranged inside the excitation coil, the output in the excitation coil is at a distance not affected by the eddy current demagnetizing field of the nonmagnetic conductor object. Lift-off output voltage diagram of the detection sensor created by fixing the MI element at the position where the voltage is minimum 非磁性導体対象物を真鍮とし、図6のMI素子を励磁コイル内部に配置した検出センサの構成において、非磁性導体対象物に近接して、励磁コイル内の出力電圧が最大となる位置でMI素子を固定して作成した検出センサのリフトオフー出力電圧図  In the configuration of the detection sensor in which the nonmagnetic conductor object is brass and the MI element shown in FIG. 6 is arranged inside the excitation coil, the MI is located near the nonmagnetic conductor object and at the position where the output voltage in the excitation coil becomes maximum. Lift-off output voltage diagram of detection sensor created with fixed elements 非磁性導体対象物をステンレスとし、図6のMI素子を励磁コイル内部に配置した検出センサの構成において、非磁性導体対象物の渦電流反磁界の影響を受けない距離で、励磁コイル内の出力電圧が最小となる位置でMI素子を固定して作成した検出センサのリフトオフー出力電圧図  In the configuration of the detection sensor in which the nonmagnetic conductor object is made of stainless steel and the MI element of FIG. 6 is arranged inside the excitation coil, the output in the excitation coil is at a distance not affected by the eddy current demagnetizing field of the nonmagnetic conductor object. Lift-off output voltage diagram of the detection sensor created by fixing the MI element at the position where the voltage is minimum 非磁性導体対象物を鉄とし、図6のMI素子を励磁コイル内部に配置した検出センサの構成において、非磁性導体対象物の渦電流反磁界の影響を受けない距離で、励磁コイル内の出力電圧が最小となる位置でMI素子を固定して作成した検出センサのリフトオフー出力電圧図  In the configuration of the detection sensor in which the nonmagnetic conductor object is iron and the MI element of FIG. 6 is arranged inside the excitation coil, the output in the excitation coil is at a distance not affected by the eddy current demagnetizing field of the nonmagnetic conductor object. Lift-off output voltage diagram of the detection sensor created by fixing the MI element at the position where the voltage is minimum 従来の検出センサ概念図  Conventional detection sensor conceptual diagram

符号の説明Explanation of symbols

1 非磁性導体対象物
2 励磁コイル
3 MI素子
4 電子回路
5 回路基板
6 接続ケーブル
7 検出センサ
8 交流磁束
9 空芯コイル
10 発振回路
11 増幅器
12 信号処理回路
13 センサヘッド部
14 励磁用発振回路
15 MI素子用発振回路
16 抵抗
17 保持回路
18 演算回路
DESCRIPTION OF SYMBOLS 1 Nonmagnetic conductor object 2 Excitation coil 3 MI element 4 Electronic circuit 5 Circuit board 6 Connection cable 7 Detection sensor 8 AC magnetic flux 9 Air core coil 10 Oscillation circuit 11 Amplifier 12 Signal processing circuit 13 Sensor head part 14 Oscillation circuit 15 for excitation MI element oscillation circuit 16 resistor 17 holding circuit 18 arithmetic circuit

Claims (4)

磁気インピーダンス素子の外部磁場方向が励磁コイルの軸に対して垂直に配置され、かつ非磁性導体対象物の被検出面に対して、水平に配置された検出センサにおいて、非磁性導体対象物が該励磁コイルに近接した状態で、該励磁コイルの非磁性導体対象物側端面外部、内部、非磁性導体対象物と反対側端面外部へと該磁気インピーダンス素子測定点を移動する過程で生じる出力電圧の増大するところから、最大値、減少する領域、最小値、再度増大する範囲に設定値を設けることを特徴とする検出センサ  In the detection sensor in which the direction of the external magnetic field of the magneto-impedance element is arranged perpendicular to the axis of the excitation coil and is arranged horizontally with respect to the detection surface of the non-magnetic conductor object, the non-magnetic conductor object is In the state of being close to the exciting coil, the output voltage generated in the process of moving the measurement point of the magneto-impedance element to the outside of the non-magnetic conductor object side end face of the exciting coil, to the outside of the non-magnetic conductor object opposite end face A detection sensor characterized in that a set value is provided in a range from increasing to maximum value, decreasing region, minimum value, and increasing again. 磁気インピーダンス素子外部磁場方向が励磁コイルの軸に対して垂直に配置され、かつ非磁性導体対象物の被検出面に対して、水平に配置された検出センサにおいて、非磁性導体対象物からの磁気的影響ない状態において、該励磁コイルの非磁性導体対象物側端面外部、内部、非磁性導体対象物と反対側端面外部へと該磁気インピーダンス素子測定点を移動する過程で生じる出力電圧の減少するところから、最小値、増大する範囲に設定値を設けることを特徴とする検出センサ。  In the detection sensor in which the direction of the external magnetic field of the magneto-impedance element is arranged perpendicular to the axis of the excitation coil and is arranged horizontally with respect to the detection surface of the non-magnetic conductor object, the magnetism from the non-magnetic conductor object In a state where no influence is exerted, the output voltage generated during the process of moving the measurement point of the magneto-impedance element to the outside of the end surface of the exciting coil on the nonmagnetic conductor object side, to the outside, to the outside of the nonmagnetic conductor object end surface is reduced. Accordingly, a detection sensor characterized in that a set value is provided in a minimum value and an increasing range. 磁気インピーダンス素子の外部磁場方向が励磁コイルの軸に対して垂直に配置され、かつ非磁性導体対象物の被検出面に対して、水平に配置された検出センサにおいて、非磁性導体対象物が該励磁コイルに近接した状態で、該励磁コイルの非磁性導体対象物側周縁端面外部、周縁外部、非磁性導体対象物と反対側周縁端面外部へと該磁気インピーダンス素子の測定点を移動する過程で生じる出力電圧の増大するところから、最大値、減少、最小値、再度増大する範囲に設定値を設けることを特徴とする検出センサ  In the detection sensor in which the direction of the external magnetic field of the magneto-impedance element is arranged perpendicular to the axis of the excitation coil and is arranged horizontally with respect to the detection surface of the non-magnetic conductor object, the non-magnetic conductor object is In the process of moving the measurement point of the magneto-impedance element to the outside of the peripheral edge of the nonmagnetic conductor object side of the excitation coil, to the outside of the peripheral edge, or outside the peripheral edge of the opposite side of the nonmagnetic conductor object in the state of being close to the excitation coil A detection sensor characterized in that a set value is provided in a range in which a maximum value, a decrease, a minimum value, and a value that increases again from where the generated output voltage increases. 磁気インピーダンス素子の外部磁場方向が励磁コイルの軸に対して垂直に配置され、かつ非磁性導体対象物の被検出面に対して、水平に配置された検出センサにおいて、非磁性導体対象物からの磁気的影響ない状態において、該励磁コイルの非磁性導体対象物側周縁端面外部、周縁外部、非磁性導体対象物と反対側端面周縁外部へと該磁気インピーダンス素子測定点を移動する過程で生じる出力電圧の減少するところから、最小値、増大する範囲に設定値を設けることを特徴とする検出センサ  In the detection sensor in which the direction of the external magnetic field of the magneto-impedance element is arranged perpendicular to the axis of the exciting coil and is arranged horizontally with respect to the detection surface of the non-magnetic conductor object, Output generated in the process of moving the measurement point of the magneto-impedance element to the outside of the peripheral edge of the non-magnetic conductor object side of the excitation coil, outside of the peripheral edge, and outside of the edge of the opposite side of the non-magnetic conductor object in a state where there is no magnetic influence A detection sensor characterized in that a set value is provided in a range where the voltage decreases from a minimum value to an increase range.
JP2004268973A 2004-08-20 2004-08-20 Sensing sensor Pending JP2006058274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268973A JP2006058274A (en) 2004-08-20 2004-08-20 Sensing sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268973A JP2006058274A (en) 2004-08-20 2004-08-20 Sensing sensor

Publications (1)

Publication Number Publication Date
JP2006058274A true JP2006058274A (en) 2006-03-02

Family

ID=36105832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268973A Pending JP2006058274A (en) 2004-08-20 2004-08-20 Sensing sensor

Country Status (1)

Country Link
JP (1) JP2006058274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213004A1 (en) * 2016-06-09 2017-12-14 愛知製鋼株式会社 Rotary machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213004A1 (en) * 2016-06-09 2017-12-14 愛知製鋼株式会社 Rotary machine
JP2017219455A (en) * 2016-06-09 2017-12-14 愛知製鋼株式会社 Rotary machine
US10900988B2 (en) 2016-06-09 2021-01-26 Aichi Steel Corporation Rotary machine

Similar Documents

Publication Publication Date Title
JP4529783B2 (en) Magnet impedance sensor element
JP2018072220A (en) Current measurement device
WO2015058733A1 (en) Contactless magnetic sensor of the magnetic or electrically conductive objects´position
JP2012185103A5 (en)
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP2011149827A (en) Energization information measuring device
JP3352366B2 (en) Pulse signal generator
JP6132085B2 (en) Magnetic detector
JP6974898B2 (en) Current converter
JP4209114B2 (en) Magnetic field sensor
JP2006038849A (en) Displacement sensor
JP2013101129A (en) Eddy current sensor and detection object discrimination circuit
JP3764834B2 (en) Current sensor and current detection device
JP4732705B2 (en) Magnetic field sensor
JP2008151534A (en) Magnetic flux measurement method and magnetic sensor
JP2006058274A (en) Sensing sensor
JP6839399B1 (en) Magnetic field detection element
JP5209994B2 (en) Eddy current sensor
JP2005300510A (en) Detection sensor
JP2006343300A (en) Eddy current detector
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP2004239828A (en) Flux gate magnetic field sensor
JP2017215256A (en) Magnetic field sensor
JP5139822B2 (en) Magnetic field probe
EP2130056B1 (en) Fluxgate sensor