JP2006051446A - Undistorted surface treatment apparatus and surface treatment technology of optical material - Google Patents

Undistorted surface treatment apparatus and surface treatment technology of optical material Download PDF

Info

Publication number
JP2006051446A
JP2006051446A JP2004235023A JP2004235023A JP2006051446A JP 2006051446 A JP2006051446 A JP 2006051446A JP 2004235023 A JP2004235023 A JP 2004235023A JP 2004235023 A JP2004235023 A JP 2004235023A JP 2006051446 A JP2006051446 A JP 2006051446A
Authority
JP
Japan
Prior art keywords
optical substrate
optical
solution
surface processing
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004235023A
Other languages
Japanese (ja)
Other versions
JP4725767B2 (en
Inventor
Tomozumi Kamimura
共住 神村
Hideo Horibe
英夫 堀邊
Masafumi Yamamoto
雅史 山本
Ichiro Yamato
一郎 山戸
Haruya Shiba
治也 芝
Kunio Yoshida
國雄 吉田
Sadao Nakai
貞雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to JP2004235023A priority Critical patent/JP4725767B2/en
Publication of JP2006051446A publication Critical patent/JP2006051446A/en
Application granted granted Critical
Publication of JP4725767B2 publication Critical patent/JP4725767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an undistorted treatment apparatus that provides an inexpensive and easy surface treatment step of an optical material such as a quartz glass as a material of miller or prism and a nonlinear optical crystal as a material of a wavelength transducer. <P>SOLUTION: The undistorted surface treatment apparatus rotates a disk 4 having a mesh-like trough established on the face that is processed to extreme planarity with a high speed to mount an optical substrate 2 on the rotation face and to supply a reactive solution in a state of fine drop with a porous sponge 3 and treats the surface with only chemical reaction by controlling the vertical direction etching rate to the optical substrate. Thus, the undistorted optical miller face is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ミラーやプリズムの材料である石英ガラスや波長変換素子などの材料である非線形光学結晶などの光学材料の表面加工工程において必然的に生じる歪み層や欠陥層、加工剤埋没層などの表面変質層の除去された無歪みの表面を、安価で容易に得る表面加工装置およびこれを用いた表面加工技術に関するものである。   The present invention provides a strain layer, a defect layer, a processing agent buried layer, and the like that are inevitably generated in a surface processing step of an optical material such as a nonlinear optical crystal that is a material such as quartz glass or a wavelength conversion element that is a material of a mirror or a prism. The present invention relates to a surface processing apparatus that easily and inexpensively obtains an undistorted surface from which a surface-modified layer has been removed, and a surface processing technique using the same.

ミラーやプリズムの材料である石英ガラスや波長変換素子などの材料である非線形光学結晶などの光学材料を光学素子に加工する工程は、光学材料を切り出す切断加工工程と切り出した光学材料表面を光学的に平坦な鏡面に仕上げる表面加工工程の2つに大きく分けられる。切断加工工程では、ダイヤモンドカッターなどを用いて物理的に光学材料を切り出すため、光学材料の表面近傍に大きな応力がかかり、光学材料表面に厚さ数百μm程度の歪みや欠陥などの機械的ストレスが蓄積された層が形成される。また、表面加工工程において、切断加工によって生じた光学材料表面の微小な凹凸を研磨砥粒などを用いて取り除く過程(光学研磨)で、研磨により細かく砕けた研磨剤が表面近傍に埋没しストレスが蓄積されるとともに研磨剤の埋没した層が形成される。以上のことから、市販の光学素子の表面は、その表面にこれら加工工程における機械的ストレスや研磨砥粒により必然的に生じる歪み層や欠陥層、加工剤埋没層などの表面変質層(図2)を含んでおり、光学素子表面のレーザー耐力は内部のそれに比べ低下してしまう。近年のレーザー光源の高出力化に伴い、光学素子には高いレーザー耐力が要求されている。表面の高レーザー耐力化を図る上では、これら表面加工工程において表面変質層を新たに発生させない加工技術が必要であり、また切断加工によって発生した表面変質層を除去する表面加工技術が必要とされる。特に、光学材料を切り出す切断加工工程において表面変質層を生じない切断加工技術は確立されていないため、表面加工工程において除去する技術が必要である。   The process of processing optical materials such as quartz glass, which is a material for mirrors and prisms, and nonlinear optical crystals, which are materials such as wavelength conversion elements, into optical elements consists of a cutting process for cutting out the optical material and an optical surface for the cut optical material surface. It can be roughly divided into two types of surface processing steps to finish a flat mirror surface. In the cutting process, the optical material is physically cut out using a diamond cutter, etc., so a large stress is applied near the surface of the optical material, and mechanical stress such as strain and defects with a thickness of several hundreds of μm is applied to the surface of the optical material. A layer in which is accumulated is formed. Also, in the surface processing step, in the process of removing minute irregularities on the surface of the optical material caused by cutting using polishing abrasive grains (optical polishing), the abrasive finely crushed by polishing is buried near the surface and stress is applied. An accumulated layer of abrasive is formed as it accumulates. From the above, the surface of a commercially available optical element is a surface-modified layer such as a strained layer, a defect layer, or a processing agent buried layer inevitably generated by mechanical stress or polishing abrasive grains in these processing steps (see FIG. 2). ), And the laser resistance of the optical element surface is lower than that of the inside. With the recent increase in output of laser light sources, optical elements are required to have high laser resistance. In order to increase the laser resistance of the surface, it is necessary to have a processing technology that does not generate a new surface-modified layer in these surface processing steps, and a surface processing technology that removes the surface-modified layer generated by cutting. The In particular, a cutting technique that does not produce a surface-modified layer in a cutting process that cuts out an optical material has not been established. Therefore, a technique that removes it in the surface processing process is necessary.

切断加工工程において生じた表面変質層を除去し、かつ表面加工工程において新たな表面変質層を生じることなく表面加工を可能にする方法としては、ケミカルエッチングのような化学的な技術が知られている。しかしながら、この方法では以下の理由により光学的な鏡面が得られていない。ケミカルエッチングでは表面上における局所的な化学反応を制御できないことから光学材料表面全体に渡って均一に材料を処理することができないばかりか、最初から物理的な欠陥が存在していればその部分が選択的にエッチング(エッチピット)されてしまい、エッチング前よりもかえって表面状態が劣化してしまうという問題がある。このため、既存のエッチング技術では光学的な鏡面が得られず、これを表面加工技術として適用することができない。
また、表面加工工程において新たな表面変質層を生じない比較的実用的な表面加工技術としては以下のものがある。物理的加工法で表面変質層を比較的生じないMRF(Magnetorheological Finishing)、化学的加工法で表面変質層を一切生じないプラズマCVM(Plasma Chemical Vaporization Machining)、EEM(Elastic Emission Machining)などの原子オーダー的な加工方式である。しかしながら、これらの技術は点加工で加工速度が遅いため仕上げ加工にのみ用いられ、初期の切断加工工程で生じた歪み層や欠陥層などの比較的厚い表面変質層を取り除くことは非常に難しい。また、大がかりな装置が必要とされるほか、材料によっては加工が困難である、などの技術的課題も残されている。これらの加工方法における特徴を表1に示す。
A chemical technique such as chemical etching is known as a method for removing a surface-modified layer generated in the cutting process and enabling surface processing without generating a new surface-modified layer in the surface process. Yes. However, in this method, an optical mirror surface is not obtained for the following reason. Since chemical etching cannot control the local chemical reaction on the surface, it cannot process the material uniformly over the entire surface of the optical material, and if there is a physical defect from the beginning, that part will be There is a problem that etching (etch pit) is selectively performed and the surface state is deteriorated rather than before etching. For this reason, an optical mirror surface cannot be obtained with the existing etching technique, and this cannot be applied as a surface processing technique.
Further, as a relatively practical surface processing technique that does not generate a new surface deteriorated layer in the surface processing step, there are the following. Atomic orders such as MRF (Magnetorheological Finishing), which does not produce a surface alteration layer relatively by physical processing, Plasma CVM (Plasma Chemical Vaporization Machining), EEM (Elastic Emission Machining), etc. Processing method. However, these techniques are used only for finishing because they are spot processing and the processing speed is slow, and it is very difficult to remove relatively thick surface alteration layers such as strain layers and defect layers generated in the initial cutting process. In addition to the need for large-scale equipment, there are still technical problems such as difficulty in processing depending on the material. Table 1 shows the characteristics of these processing methods.

以上のような表面加工に関する問題を解決するため、現在でもさまざまな開発が行われている。これまでにすでに特許化されている表面加工技術の方式としては、大きく分けて化学的な手法(ケミカルポリッシング)と化学・機械的な研磨加工(ケミカルメカニカルポリッシング(CMP法))がある。以下に具体的な特許例を挙げ、簡単に述べる。特開平7-215736号公報には、フッ化水素(HF)と硝酸(HNO3)の重量比が0.08:1〜15:1、両者を合わせた混酸濃度が0.01〜4.0wt%である混酸水溶液を含む処理液とガラス体表面を動的接触させることを特徴とする化学的加工法が記載されている。この特許は、被処理ガラス体を光ファイバー形成用のプリフォームガラスとし、ガラス体を処理液と接触させた状態で回転させる、処理液を回転子や超音波等により攪拌する、ガラス体を処理液に浸漬させた状態で処理液の容器全体を回転や上下動等により振とうする、もしくはこれらを組み合わせることでガラス体と処理液を動的接触させて化学的加工を行うものである。また、特開2003-103452号公報には、セラミック、ガラス、結晶物質、アモルファス物質、金属等の硬質の被研磨加工物に対してスクラッチを発生させることなく表面を化学的に加工する方法が記載されている。この特許は、砥粒を含まない加工液として硝酸ニアンモニウムセリウム(VI)を用い、これを研磨工具と被研磨加工物との間に供給して研磨工具及び被研磨加工物を相対的に移動させながらケミカルポリッシングするものである。特開平11-140429号公報には、ケミカルメカニカルによる加工方法が記載されている。この特許は、フッ化物砥粒あるいはフッ化物水和物砥粒を含む加工材およびこれを用いてセラミック、ガラス、結晶物質、アモルファス物質、金属等の硬質の被研磨加工物をケミカルメカニカルポリッシングするものである。
特開平7-215736号公報 特開平11-140429号公報 特開2003-103452号公報
In order to solve the above problems related to surface processing, various developments are still in progress. The surface processing techniques already patented so far can be broadly divided into chemical methods (chemical polishing) and chemical / mechanical polishing (chemical mechanical polishing (CMP method)). The following is a brief description of specific patent examples. JP-A-7-215736 discloses a mixed acid aqueous solution in which the weight ratio of hydrogen fluoride (HF) and nitric acid (HNO 3 ) is 0.08: 1 to 15: 1 and the combined acid concentration of both is 0.01 to 4.0 wt%. The chemical processing method characterized by making the processing liquid containing this and the glass body surface contact dynamically is described. In this patent, a glass body to be treated is a preform glass for forming an optical fiber, the glass body is rotated in contact with the treatment liquid, the treatment liquid is agitated by a rotor, ultrasonic waves, or the like. In this state, the entire container of the processing solution is shaken by rotation, vertical movement, or the like, or a combination thereof is used to dynamically contact the glass body and the processing solution to perform chemical processing. Japanese Patent Laid-Open No. 2003-103452 describes a method for chemically processing the surface of a hard workpiece such as ceramic, glass, crystalline substance, amorphous substance, metal, etc. without causing scratches. Has been. This patent uses diammonium cerium (VI) nitrate as a machining fluid that does not contain abrasive grains, and supplies it between the polishing tool and the workpiece to be moved to relatively move the polishing tool and the workpiece to be polished. Chemical polishing is performed while Japanese Patent Application Laid-Open No. 11-140429 describes a chemical mechanical processing method. This patent describes chemical mechanical polishing of workpieces containing fluoride abrasive grains or fluoride hydrate abrasive grains and hard workpieces such as ceramics, glass, crystalline substances, amorphous substances, and metals using the same. It is.
Japanese Patent Laid-Open No. 7-215736 Japanese Patent Laid-Open No. 11-140429 Japanese Patent Laid-Open No. 2003-103452

一般に、ケミカルメカニカルポリッシングは、メカニカルポリッシングと同様に砥粒による機械的な光学研磨加工だけでなく、砥粒や加工液に含まれる成分と被研磨加工物の化学反応を利用するものであり、これにより効率良く表面粗さや形状精度を向上させるものである。しかしながら、この手法では研磨砥粒を用いるために、被研磨加工物の表面に研磨砥粒による歪みが生じたり、研磨砥粒が表面近傍に埋没するなどして表面変質層を形成し、結果として、光学素子としての光学的性能を低下させる要因になり得る。表面変質層を生じない表面処理としては、従来からケミカルエッチングなどの化学的な手段が知られている。しかしながら、材料表面に対する垂直方向と水平方向のエッチング速度の制御が困難であることから光学材料表面全体に渡って均一に材料をエッチングすることができないばかりか、表面上に欠陥があればその場所が選択的にエッチングされたり(エッチピット)、溶液の濃度(溶解度)をサンプル表面で均一にできないため形状が変化するなどの問題があり、結果的に材料の形状が崩れて表面状態が劣化してしまい光学素子としての鏡面を得られない。また、表面加工工程において用いられる物理的加工法で表面変質層を比較的生じないMRFや化学的加工法で表面変質層を一切生じないプラズマCVM、EEMなどの原子オーダー的な加工方式がある。しかしながら、これらの技術は点加工で加工速度が遅いため仕上げ加工にのみ用いられ、初期の切断加工工程で生じた歪み層や欠陥層などの比較的厚い表面変質層を取り除くことは非常に難しい。さらに、大掛かりな装置が必要とされるほか、材料によっては加工が困難である、などの技術的課題も残されている。   In general, chemical mechanical polishing uses not only mechanical optical polishing with abrasive grains, but also chemical reactions between the components contained in the abrasive grains and working fluid and the workpiece to be polished. Thus, the surface roughness and the shape accuracy are improved efficiently. However, since this method uses abrasive grains, the surface of the workpiece is distorted by the abrasive grains, or the surface altered layer is formed as a result of the abrasive grains being buried near the surface. This can be a factor that degrades the optical performance of the optical element. Conventionally, chemical means such as chemical etching is known as a surface treatment that does not generate a surface-modified layer. However, since it is difficult to control the etching rate in the vertical and horizontal directions with respect to the material surface, the material cannot be etched uniformly over the entire surface of the optical material. There are problems such as selective etching (etch pits) and changes in shape because the concentration (solubility) of the solution cannot be made uniform on the sample surface, resulting in the deterioration of the surface state due to the shape of the material collapsed. Therefore, a mirror surface as an optical element cannot be obtained. In addition, there are atomic order processing methods such as MRF that does not generate a surface-modified layer relatively by a physical processing method used in the surface processing process, and plasma CVM, EEM that does not generate a surface-modified layer by a chemical processing method. However, these techniques are used only for finishing because they are spot processing and the processing speed is slow, and it is very difficult to remove relatively thick surface alteration layers such as strain layers and defect layers generated in the initial cutting process. Furthermore, in addition to the need for a large-scale device, technical problems such as difficulty in processing depending on the material remain.

本発明は、ミラーやプリズムの材料である石英ガラスや波長変換素子などの材料である非線形光学結晶などの光学材料の表面加工工程において必然的に生じる歪み層や欠陥層、加工剤埋没層などの表面変質層の除去された無歪みの表面を得ることにより、光学材料の表面レーザー耐力を向上させることを目的とし、上述のように既存の表面加工技術やケミカルエッチングにおける技術的課題を解決するための安価で容易な無歪み表面加工装置およびこれを用いた表面加工技術を提供することを課題とする。   The present invention provides a strain layer, a defect layer, a processing agent buried layer, and the like that are inevitably generated in a surface processing step of an optical material such as a nonlinear optical crystal that is a material such as quartz glass or a wavelength conversion element that is a material of a mirror or a prism. To improve the surface laser resistance of optical materials by obtaining an unstrained surface with the surface-modified layer removed, and to solve the technical problems in the existing surface processing technology and chemical etching as described above It is an object of the present invention to provide an inexpensive and easy strain-free surface processing apparatus and a surface processing technology using the same.

前述のように、研磨砥粒を使用する機械的な研磨加工を含むCMP法などでは表面変質層を取り除くことは困難である。この解決のためには化学的な手法を用いることが不可欠とされる。化学的加工方法としては、特開平7-215736号公報に光ファイバー形成用のプリフォームガラス表面の化学的加工法が記載されている。また、特開2003-103452号公報に硬質の被研磨加工物に対してスクラッチを発生させることなく表面を化学的に加工する方法が記載されている。これに対し、本発明は、ミラーやプリズムの材料である石英ガラスや波長変換素子などの材料である非線形光学結晶などの光学材料の表面加工工程において、化学的な加工法のみを用いることにより表面変質層を生じることなく光学的鏡面を得るためのもので、研磨砥粒を使用する機械的な研磨加工を含むCMP法などの手段とは異なりかつその効果において根本的に異なっている。本発明は、ミラーやプリズムの材料である石英ガラスや波長変換素子などの材料である非線形光学結晶などの光学材料の表面加工工程に用いるものであり、既特許に記載されている光ファイバーなどに用いる光ファイバー形成用のプリフォームガラスのような細い円柱状ガラス体の側面を加工することにのみ限定されるものではないため、使用用途、手段が異なっている。本発明は、超平滑に加工された面に網目状の溝を設けた撥水性の高い回転円盤の上に光学基板と反応性溶液を載せ、光学基板の位置を固定した状態で回転円盤を回転させるとともに光学基板自身を自転させることで光学基板と反応性溶液を動的接触させ化学的加工を行うものであり、既特許のように被研磨加工物を反応性溶液に浸漬し、これらを動かす、もしくは容器そのものを動かすことで動的接触させ化学的加工を行うものではなく、実施形態が異なっている。本発明は、光学素子としての性能を向上させるために光学素子表面の表面変質層を除去することで高いレーザー損傷耐力を実現することを目的としているが、既特許はガラス体の表面平滑度の向上を目的としており、実施例で表面荒さ、化学加工によるガラス体の引っ張り強度について言及しているだけである。本発明では表面加工用反応性溶液としてフッ化水素を含む酸性溶液を用いるものであり、加工液として硝酸ニアンモニウムセリウム(VI)を用いる既特許とは使用する溶液が異なる。本発明では、超平滑に加工された面に網目状の溝を設けた回転円盤が有する高い撥水性により被研磨加工物への反応性溶液の供給および排出を高効率に行うものであり、既特許に記載されている反応後の被研磨加工物の成分が溶け込んだ処理溶液を拭き取る研磨工具を必要としない。本発明は光学的鏡面を光学顕微鏡、表面粗さ計、レーザー損傷耐力測定により定量的に評価しており、既特許とは最終的な評価方法が異なっている。本発明は光学素子の表面加工において表面変質層の除去された表面を得ることで光学素子表面の高レーザー耐力化を実現するものであり、既特許とは目的としている成果が異なっている。   As described above, it is difficult to remove the surface-affected layer by the CMP method including mechanical polishing using abrasive grains. In order to solve this problem, it is essential to use a chemical method. As a chemical processing method, JP-A-7-215736 discloses a chemical processing method for the surface of a preform glass for forming an optical fiber. Japanese Patent Laid-Open No. 2003-103452 describes a method of chemically processing a surface without generating scratches on a hard workpiece. In contrast, the present invention provides a surface by using only a chemical processing method in a surface processing step of an optical material such as quartz glass which is a material of a mirror or a prism or a nonlinear optical crystal which is a material of a wavelength conversion element. It is for obtaining an optical mirror surface without generating a deteriorated layer, and is different from means such as the CMP method including mechanical polishing using abrasive grains and is fundamentally different in its effect. INDUSTRIAL APPLICABILITY The present invention is used for a surface processing step of an optical material such as a quartz glass which is a material of a mirror or a prism or a nonlinear optical crystal which is a material of a wavelength conversion element, and is used for an optical fiber described in a patent. Since it is not limited to processing only the side surface of a thin cylindrical glass body such as a preform glass for forming an optical fiber, the usage and means are different. In the present invention, an optical substrate and a reactive solution are placed on a highly water-repellent rotating disc having a mesh-like groove formed on an ultra-smooth surface, and the rotating disc is rotated while the position of the optical substrate is fixed. In addition, the optical substrate itself is rotated to dynamically contact the optical substrate and the reactive solution to perform chemical processing, and the workpiece to be polished is immersed in the reactive solution and moved as in the patented patent. Alternatively, the container itself is not moved dynamically to perform chemical processing, but the embodiments are different. The purpose of the present invention is to achieve high laser damage resistance by removing the surface alteration layer on the surface of the optical element in order to improve the performance as an optical element. For the purpose of improvement, only the surface roughness and the tensile strength of the glass body by chemical processing are mentioned in the examples. In the present invention, an acidic solution containing hydrogen fluoride is used as a reactive solution for surface processing, and the used solution is different from the existing patent using cerium nitrate (VI) nitrate as a processing solution. In the present invention, the high water repellency of the rotating disk provided with the mesh-like grooves on the ultra-smooth processed surface allows the supply and discharge of the reactive solution to the workpiece to be polished with high efficiency. There is no need for a polishing tool for wiping off the processing solution in which the components of the workpiece to be polished after the reaction described in the patent are dissolved. In the present invention, the optical mirror surface is quantitatively evaluated by an optical microscope, a surface roughness meter, and laser damage resistance measurement, and the final evaluation method is different from that of the existing patent. The present invention achieves high laser resistance on the surface of the optical element by obtaining the surface from which the surface-modified layer has been removed in the surface processing of the optical element, and the intended result is different from that of the existing patent.

これらの問題を解決する方法として、本発明では光学基板と反応性溶液を、超平滑に加工された面に網目状の溝を設けることで撥水効率を向上させたポリテトラフルオロエチレン製の回転円盤の上に載せ、光学基板の位置を固定した状態で回転円盤を回転させるとともに光学基板自身が自転することで反応性溶液との反応時間を抑制すると同時に、新しい溶液の供給および廃液の排出を高効率に行うことを可能にする。さらに、超平滑に加工された面に網目状の溝を施した撥水性の高いポリテトラフルオロエチレン製の回転円盤を動かし、溶液に対して強制的に水平方向への力をかけることで、水平方向へのエッチング速度を垂直方向のエッチング速度よりも相対的に大きくし、光学基板自身を自転させることで光学材料表面全体に渡って均一に化学処理することを可能にする。   As a method for solving these problems, in the present invention, an optical substrate and a reactive solution are made of polytetrafluoroethylene, which has improved water repellency efficiency by providing a mesh-like groove on a surface that has been processed ultra-smoothly. Place on the disk, rotate the rotating disk with the position of the optical substrate fixed, and the optical substrate itself rotates to suppress the reaction time with the reactive solution, and at the same time supply new solution and discharge waste liquid Enables high efficiency. Furthermore, by moving a rotating disk made of polytetrafluoroethylene with high water repellency with mesh grooves on the ultra-smooth surface, the horizontal force is applied to the solution by force. By making the etching rate in the direction relatively larger than the etching rate in the vertical direction and rotating the optical substrate itself, it is possible to perform chemical treatment uniformly over the entire surface of the optical material.

本発明の第1の方法は、超平滑に加工された面に網目状の溝を設けた撥水性の高いポリテトラフルオロエチレン製の円盤を高速で回転させて、その回転面上に反応性溶液を微滴状に供給し、微滴上の反応性溶液の供給された円盤上に光学基板を水平方向に固定し、光学基板表面に対する垂直方向のエッチング速度を制御することで光学基板表面を化学反応だけにより処理し、無歪みの光学的鏡面を得ることを特徴とする光学基板の無歪み表面加工装置を用いる方法である。   The first method of the present invention is to rotate a disk made of polytetrafluoroethylene having high water repellency having a mesh-like groove on a surface processed to be ultra-smooth at high speed, and to react the reactive solution on the rotating surface. The surface of the optical substrate is chemically controlled by controlling the etching rate in the direction perpendicular to the surface of the optical substrate by fixing the optical substrate horizontally on the disk supplied with the reactive solution on the microdroplets. It is a method of using an undistorted surface processing apparatus for an optical substrate, characterized in that it is processed only by reaction to obtain an undistorted optical mirror surface.

本発明の第2の方法は、第1の方法において、反応性溶液が、表面加工を行う光学基板材料に対して溶解性があり、かつポリテトラフルオロエチレン製の円盤に対して不活性であり、さらに撥水性が良い溶液であることを特徴とする。   According to a second method of the present invention, in the first method, the reactive solution is soluble in the optical substrate material to be surface-processed and is inactive with respect to the disc made of polytetrafluoroethylene. Further, the solution is characterized by being a water-repellent solution.

本発明の第3の方法は、第2の方法において、反応性溶液が酸性液であることを特徴とする。   The third method of the present invention is characterized in that, in the second method, the reactive solution is an acidic solution.

本発明の第4の方法は、第3の方法において、酸性液がフッ酸水溶液であることを特徴とする。   The fourth method of the present invention is characterized in that, in the third method, the acidic liquid is a hydrofluoric acid aqueous solution.

本発明の第5の方法は、第4の方法において、フッ酸水溶液の濃度が0.1%〜30%、好ましくは0.1%〜10%であることを特徴とする。   The fifth method of the present invention is characterized in that, in the fourth method, the concentration of the hydrofluoric acid aqueous solution is 0.1% to 30%, preferably 0.1% to 10%.

本発明の第6の方法は、第1の方法において、ポリテトラフルオロエチレン製の円盤と光学基板の相対速度が3.1cm/s〜1880cm/s、好ましくは31.4cm/s〜628cm/sであることを特徴とする。   According to a sixth method of the present invention, in the first method, the relative velocity between the polytetrafluoroethylene disk and the optical substrate is 3.1 cm / s to 1880 cm / s, preferably 31.4 cm / s to 628 cm / s. It is characterized by that.

本発明の第7の方法は、第1の方法において、ポリテトラフルオロエチレン製の円盤の平坦部の幅と溝の幅の比(平坦部の幅/溝の幅、以下「凹凸比」という)が1〜5であることを特徴とする。   The seventh method of the present invention is the ratio of the flat portion width to the groove width of the polytetrafluoroethylene disk (flat portion width / groove width, hereinafter referred to as “concave / convex ratio”) in the first method. Is 1-5.

本発明の第8の方法は、第1の方法において、光学基板自身が自転することを特徴とする。   The eighth method of the present invention is characterized in that, in the first method, the optical substrate itself rotates.

本発明が提案する無歪み表面加工装置において、超平滑に加工された面に網目状の溝を設けたポロテトラフルオロエチレン製の円盤を高速で回転させて、多孔性スポンジで反応性溶液を微滴状に供給し、光学基板に対する垂直方向のエッチング速度を制御することで、表面を化学反応により処理し、安価で容易に無歪みの鏡面を得ることが可能となる。
前記の加工装置において、超平滑に加工された面に網目状の溝を設けた円盤と光学基板の相対速度を31.4cm/s〜628cm/sとすることで反応性溶液と光学基板を動的接触させ、表面の凸部を選択的にエッチングすることができる。さらに、光学基板表面に対する水平方向のエッチング速度を垂直方向のそれに比べ相対的に大きくすることで、光学基板表面全体に渡って均一に材料をエッチングすることが可能となる。
前記の加工装置において、反応性溶液としてフッ化水素を含む低濃度の酸性水溶液を用いることで表面変質層の除去された表面を得ることが可能となる。
前記の加工装置において、円盤を化学的に安定で撥水性の高いポリテトラフルオロエチレン製とし、ポリテトラフルオロエチレン製の円盤の凹凸比を1〜5とすることで光学基板への反応性溶液の供給および排出を高効率に行うことが可能となる。
前記の加工装置において、光学基板自身を自転させることで機械的な研磨加工に要する時間とほぼ同じ化学処理時間で、市販の光学素子と同様の表面粗さを持つ無歪みの表面を得ることが可能となる。
In the non-strained surface processing apparatus proposed by the present invention, a reactive solution is finely dispersed with a porous sponge by rotating a disk made of polytetrafluoroethylene having a mesh-like groove on an ultra-smooth surface at high speed. By supplying the liquid droplets and controlling the etching rate in the direction perpendicular to the optical substrate, the surface can be processed by a chemical reaction, and an undistorted mirror surface can be easily obtained at low cost.
In the above processing apparatus, the reactive solution and the optical substrate are dynamically changed by setting the relative speed of the disc and the optical substrate having a mesh-like groove on the ultra-smooth processed surface to 31.4 cm / s to 628 cm / s. The protrusions on the surface can be selectively etched. Furthermore, by making the etching rate in the horizontal direction relative to the optical substrate surface relatively higher than that in the vertical direction, it becomes possible to etch the material uniformly over the entire optical substrate surface.
In the above processing apparatus, it is possible to obtain a surface from which the surface-modified layer has been removed by using a low-concentration acidic aqueous solution containing hydrogen fluoride as the reactive solution.
In the above processing apparatus, the disk is made of chemically stable and highly water-repellent polytetrafluoroethylene, and the unevenness ratio of the polytetrafluoroethylene disk is 1 to 5, so that the reactive solution on the optical substrate Supply and discharge can be performed with high efficiency.
In the above processing apparatus, an undistorted surface having the same surface roughness as a commercially available optical element can be obtained in substantially the same chemical processing time as that required for mechanical polishing by rotating the optical substrate itself. It becomes possible.

図1に本発明で提案する無歪み表面加工装置の概略図を示す。超平滑に加工された面に網目状の溝を設けた撥水性の高い直径14cmのポリテトラフルオロエチレン製の円盤4の上にサンプル1を固定したサンプル錘2と反応性溶液を染み込ませた多孔性スポンジ3を固定し、モーター5を駆動させてポリテトラフルオロエチレン製の円盤を回転させるともに光学基板自身を自転させることで反応性溶液とサンプルを動的接触させる。これにより、図3の模式図に示すように表面の凸部を選択的にエッチングすることができる。さらに、ポリテトラフルオロエチレン製の円盤の回転により強制的に光学基板表面に対する水平方向のエッチング速度を垂直方向のそれに比べ相対的に大きくすることで、表面を高効率かつ均一に光学的鏡面に仕上げることを可能にしている。
以下、本発明の実施の形態を具体的に説明する。ただし、この実施形態は、発明の趣旨をよりよく理解させるための具体的な説明をするものであり、特に指定のない限り発明の内容を限定するものではない。
FIG. 1 shows a schematic view of an unstrained surface processing apparatus proposed in the present invention. Porous sample impregnated with a sample weight 2 and a reactive solution fixed on a polytetrafluoroethylene disk 4 having a diameter of 14 cm and having a high water repellency and having a mesh-like groove on the ultra-smooth surface. The reactive sponge 3 is fixed, the motor 5 is driven to rotate the disk made of polytetrafluoroethylene, and the optical substrate itself is rotated to dynamically contact the reactive solution and the sample. Thereby, as shown in the schematic diagram of FIG. 3, the convex part of the surface can be selectively etched. In addition, by rotating the polytetrafluoroethylene disk, the etching rate in the horizontal direction relative to the surface of the optical substrate is forcibly increased relative to that in the vertical direction, so that the surface is finished to an optical mirror surface with high efficiency and uniformity. Making it possible.
Hereinafter, embodiments of the present invention will be specifically described. However, this embodiment provides a specific description for better understanding of the gist of the invention, and does not limit the content of the invention unless otherwise specified.

被研磨加工物として砥粒番号1500による加工のみを施した砂目状の表面を持つ光学基板(石英ガラス)を用い、直径14cmのポリテトラフルオロエチレン製の円盤は凹凸比が3のものとした。ポリテトラフルオロエチレン円盤の回転数(周速)を600rpm一定とし、反応性溶液には濃度0.05%、0.12%、1.18%、2.35%、4.7%、9.4%、11.8%、35.3%のフッ化水素水溶液を使用して、光学基板自身が自転しない状態で実験を行った。サンプルを固定した位置は、光学基板自身を自転させた場合の中心がポリテトラフルオロエチレン製の円盤の中心から5cmのところにした。そして、各濃度で処理を施した表面について、波長266nm、パルス幅4-5nsecの紫外レーザーを用いて1-on-1法による表面レーザー損傷閾値の測定を行った。この結果、表1に示すように、HF濃度が1.18%〜9.4%の範囲において表面のレーザー損傷耐力の向上が見られ、特に濃度2.35%のフッ化水素溶液を用いることで最も高い表面レーザー損傷耐力を有する表面を得ることができた。しかしながら、濃度0.09%では濃度が低いため局所的にしか化学反応されておらず、表面加工が均一に行われなかったため表面状態は劣化し、表面レーザー損傷耐力も市販の光学素子はそれに比べて低くなった。また、濃度35.3%では濃度が高いためサンプル表面に対して垂直方向のエッチング速度を制御することが困難となり、表面状態が劣化して表面レーザー損傷耐力は市販の光学素子のそれに比べて低くなった。以上の結果から、HF濃度は0.1〜30%、好ましくは0.5%〜10%とすることが良いと考えられる。   An optical substrate (quartz glass) with a grain-like surface that was processed only with abrasive grain number 1500 was used as the workpiece to be polished, and a 14-cm diameter polytetrafluoroethylene disc had an unevenness ratio of 3 . The rotation speed (peripheral speed) of the polytetrafluoroethylene disk is constant at 600 rpm, and the reactive solution contains hydrogen fluoride at concentrations of 0.05%, 0.12%, 1.18%, 2.35%, 4.7%, 9.4%, 11.8%, 35.3%. The experiment was performed using an aqueous solution in a state where the optical substrate itself did not rotate. The sample was fixed at a position 5 cm from the center of the polytetrafluoroethylene disc when the optical substrate itself was rotated. Then, the surface laser damage threshold was measured by the 1-on-1 method using an ultraviolet laser having a wavelength of 266 nm and a pulse width of 4-5 nsec for the surface treated with each concentration. As a result, as shown in Table 1, the surface laser damage resistance was improved when the HF concentration was in the range of 1.18% to 9.4%, and the highest surface laser damage was obtained by using a hydrogen fluoride solution with a concentration of 2.35%. A proof surface could be obtained. However, at a concentration of 0.09%, the chemical reaction is only locally because the concentration is low, the surface processing is not performed uniformly, the surface condition deteriorates, and the surface laser damage resistance is also lower than that of commercially available optical elements. became. In addition, at a concentration of 35.3%, since the concentration is high, it becomes difficult to control the etching rate in the direction perpendicular to the sample surface, the surface state deteriorates, and the surface laser damage resistance is lower than that of commercially available optical elements. . From the above results, it is considered that the HF concentration should be 0.1-30%, preferably 0.5-10%.

*1 回転数(周速):600rpm
*2 ポリテトラフルオロエチレン製の円盤の凹凸比:3
*3 市販の光学素子の表面レーザー耐力との比
* 1 Rotation speed (circumferential speed): 600rpm
* 2 Convex / concave ratio of polytetrafluoroethylene disc: 3
* 3 Ratio to surface laser resistance of commercially available optical elements

光学基板自身の自転は行わず、光学基板の固定位置については実施例1.と同様とし、直径14cmのポリテトラフルオロエチレンの回転数(周速)を10rpm、100rpm、300rpm、600rpm、900rpm、2000rpm、3500rpmと変えて実験を行った。フッ化水素水溶液の濃度は2.35%、ポリテトラフルオロエチレン製の円盤の凹凸比は3とした。そして、各回転数(周速)において処理を施した表面について、波長266nm、パルス幅4-5nsecの紫外レーザーを用いて1-on-1法による表面レーザー損傷閾値の測定を行った。この結果、表2に示すように、回転数(周速)100〜900rpmの範囲において表面のレーザー損傷耐力の向上が見られ、特に回転数(周速)を600rpmとしたとき最も高いレーザー耐力を有する表面を得ることができた。しかしながら、回転数(周速)10rpmでは回転速度が低いためサンプル表面に対して垂直方向のエッチング速度を制御することが困難となり、表面レーザー損傷耐力は市販の光学素子と同程度となった。また、回転数(周速)3500rpmでは回転速度が高いためサンプル表面とポリテトラフルオロエチレン製の円盤との物理的接触による磨耗が大きくなり、表面状態が劣化して表面レーザー損傷耐力は市販の光学素子のそれに比べて低くなった。以上の結果から、ポリテトラフルオロエチレン製の円盤と光学基板の相対速度は3.1cm/s(中心から3cm、回転数10rpm)〜1880cm/s(中心から6cm、回転数3000rpm)、好ましくは31.4cm/s(中心から3cm、回転数100rpm)〜628cm/s(中心から6cm、回転数1000rpm)とすることが良いと考えられる。   The optical substrate itself does not rotate, and the fixing position of the optical substrate is the same as in Example 1. The rotation speed (peripheral speed) of polytetrafluoroethylene having a diameter of 14 cm is 10 rpm, 100 rpm, 300 rpm, 600 rpm, 900 rpm, 2000 rpm. The experiment was conducted at 3500 rpm. The concentration of the aqueous hydrogen fluoride solution was 2.35%, and the unevenness ratio of the polytetrafluoroethylene disc was 3. Then, the surface laser damage threshold was measured by the 1-on-1 method using an ultraviolet laser having a wavelength of 266 nm and a pulse width of 4-5 nsec for the surface treated at each rotation speed (circumferential speed). As a result, as shown in Table 2, the laser damage resistance of the surface is improved in the range of rotation speed (peripheral speed) of 100 to 900 rpm, and the highest laser resistance is obtained especially when the rotation speed (peripheral speed) is 600 rpm. It was possible to obtain a surface having the same. However, since the rotational speed is low at a rotational speed (circumferential speed) of 10 rpm, it becomes difficult to control the etching speed in the direction perpendicular to the sample surface, and the surface laser damage resistance is comparable to that of a commercially available optical element. In addition, since the rotation speed (circumferential speed) is 3500 rpm, the rotation speed is high, so wear due to physical contact between the sample surface and the polytetrafluoroethylene disk increases, the surface condition deteriorates, and surface laser damage resistance is a commercially available optical It was lower than that of the device. From the above results, the relative speed of the polytetrafluoroethylene disk and the optical substrate is 3.1 cm / s (3 cm from the center, 10 rpm) to 1880 cm / s (6 cm from the center, 3000 rpm), preferably 31.4 cm / s (3 cm from the center, rotation speed 100 rpm) to 628 cm / s (6 cm from the center, rotation speed 1000 rpm) is considered good.

*1 HF濃度:2.35%
*2 ポリテトラフルオロエチレン製の円盤の凹凸比:3
*3 市販の光学素子の表面レーザー耐力との比
* 1 HF concentration: 2.35%
* 2 Convex / concave ratio of polytetrafluoroethylene disc: 3
* 3 Ratio to surface laser resistance of commercially available optical elements

光学基板自身の自転は行わず、光学基板の固定位置については実施例1.と同様とし、直径14cmのポリテトラフルオロエチレン製の円盤の凹凸比を1、3、5として実験を行った。フッ化水素溶液の濃度は2.35%、ポリテトラフルオロエチレンの回転数(周速)は600rpmとした。そして、各凹凸比において処理を施した表面について、波長266nm、パルス幅4-5nsecの紫外レーザーを用いて1-on-1法による表面レーザー損傷閾値の測定を行った。この結果、表3に示すように、ポリテトラフルオロエチレン製の円盤の凹凸比を1〜5としたとき表面レーザー損傷耐力の向上がみられ、特にポリテトラフルオロエチレン製の円盤の凹凸比を3としたとき最も高いレーザー耐力を有する表面を得ることができた。 The optical substrate itself was not rotated. The fixing position of the optical substrate was the same as in Example 1. The experiment was performed with the unevenness ratio of a polytetrafluoroethylene disk having a diameter of 14 cm being 1, 3, and 5. The concentration of the hydrogen fluoride solution was 2.35%, and the rotation speed (circumferential speed) of polytetrafluoroethylene was 600 rpm. Then, the surface laser damage threshold was measured by a 1-on-1 method using an ultraviolet laser having a wavelength of 266 nm and a pulse width of 4-5 nsec for the surface treated at each unevenness ratio. As a result, as shown in Table 3, when the unevenness ratio of the polytetrafluoroethylene disc is 1 to 5, the surface laser damage resistance is improved. In particular, the unevenness ratio of the polytetrafluoroethylene disc is 3 The surface having the highest laser resistance was obtained.

*1 HF濃度:2.35%
*2 回転数(周速):600rpm
*3 市販の光学素子の表面レーザー耐力との比
* 1 HF concentration: 2.35%
* 2 Rotation speed (circumferential speed): 600rpm
* 3 Ratio to surface laser resistance of commercially available optical elements

以上の実施例から得られた最適と考えられる条件である回転数(周速)、フッ化水素水溶液の濃度および直径14cmのポリテトラフルオロエチレン製の円盤の凹凸比を、それぞれ600rpm、2.35%、3として、光学基板自身の自転を可能にして実験を行った。光学基板を固定した位置は、実施例1と同様に、光学基板自身の自転中心がポリテトラフルオロエチレン製の円盤の中心から5cmのところにした。その結果、図4及び図5に示すように砥粒番号1500により加工した光学基板(石英ガラス)表面の表面粗さが4300Å rms程度であるのに対し、本発明により化学処理を施した表面の表面粗さは3.5Å rmsであり、市販の光学素子と同様の表面粗さを持つ無歪みの鏡面を得た。また、本発明で要した時間は、従来の機械的な研磨加工工程に要する時間とほぼ同じあった。   The rotation speed (peripheral speed), the concentration of the hydrogen fluoride aqueous solution, and the unevenness ratio of the polytetrafluoroethylene disk having a diameter of 14 cm, which are the optimum conditions obtained from the above examples, are 600 rpm, 2.35%, As an experiment, the optical substrate itself was allowed to rotate. The position where the optical substrate was fixed was set so that the rotation center of the optical substrate itself was 5 cm from the center of the polytetrafluoroethylene disk, as in Example 1. As a result, as shown in FIGS. 4 and 5, the surface roughness of the surface of the optical substrate (quartz glass) processed with the abrasive grain number 1500 is about 4300 mm rms, whereas the surface subjected to the chemical treatment according to the present invention. The surface roughness was 3.5 mm rms, and an undistorted mirror surface having the same surface roughness as a commercially available optical element was obtained. The time required for the present invention was almost the same as the time required for the conventional mechanical polishing process.

(比較例1)
従来のケミカルエッチングにより、石英ガラス基板表面に化学処理を施した。具体的にはHF濃度47%の水溶液に10時間浸漬させることで300μmエッチングした表面の光学顕微鏡写真、及び処理前の表面の光学顕微写真を図6に示す。この結果、ケミカルエッチングでは、前述したようにエッチング前よりもかえって表面状態が劣化してしまい、光学的な鏡面を得られなかった。
(Comparative Example 1)
The quartz glass substrate surface was chemically treated by conventional chemical etching. Specifically, FIG. 6 shows an optical micrograph of the surface etched by 300 μm by immersion in an aqueous solution having an HF concentration of 47% and an optical micrograph of the surface before processing. As a result, in the chemical etching, as described above, the surface state deteriorates rather than before etching, and an optical mirror surface cannot be obtained.

(比較例2)
市販の光学素子表面の光学顕微鏡写真は図6に示した。この表面と本発明により得られた表面について表面レーザー損傷耐力を測定した結果を図7に示す。この結果から、表面粗さをほとんど変えることなく、高い紫外レーザーに対して表面レーザー損傷耐力を有する表面を得ることができた。本発明に要する時間は通常の研磨加工工程にかかる時間とほぼ同様であり、100時間の処理を施すことで従来に比べてレーザー耐力が高く表面粗さの小さい無歪みの表面を、容易に得ることができる。
(Comparative Example 2)
An optical micrograph of the surface of a commercially available optical element is shown in FIG. The results of measuring the surface laser damage resistance of this surface and the surface obtained by the present invention are shown in FIG. From this result, it was possible to obtain a surface having surface laser damage resistance against a high ultraviolet laser with almost no change in surface roughness. The time required for the present invention is almost the same as the time required for a normal polishing process. By performing the treatment for 100 hours, an undistorted surface having a high laser resistance and a small surface roughness can be easily obtained. be able to.

本発明が提案する無歪み表面加工装置の概観図Overview of the unstrained surface processing device proposed by the present invention 市販の光学素子表面における表面変質層の模式図Schematic diagram of a surface-modified layer on the surface of a commercially available optical element サンプルとポリテトラフルオロエチレン製の円盤の界面におけるケミカルポリッシングの模式図Schematic diagram of chemical polishing at the interface between the sample and polytetrafluoroethylene disc 砥粒番号1500により加工した石英ガラス基板表面と本発明により得られた表面の光学顕微鏡写真Optical micrograph of quartz glass substrate surface processed with abrasive grain number 1500 and surface obtained by the present invention 表面粗さ計により計測した、砥粒番号1500により加工した石英ガラス基板表面と本発明により化学処理した表面の表面状態Surface condition of quartz glass substrate surface processed with abrasive grain number 1500 and surface chemically treated according to the present invention, measured by surface roughness meter 市販の光学素子表面および従来のケミカルエッチング処理を施した表面の光学顕微鏡写真Optical micrographs of commercially available optical element surfaces and conventional chemical-etched surfaces 研磨加工サンプルと市販の石英ガラス基板のHF処理前後での表面レーザー損傷耐力の測定結果Measurement results of surface laser damage resistance before and after HF treatment of polished samples and commercially available quartz glass substrates

符号の説明Explanation of symbols

1:サンプル錘
2:サンプル
3:多孔性スポンジ
4:ポリテトラフルオロエチレン板
5:モーター
6:サンプル固定子
7:反応性溶液
1: Sample weight 2: Sample 3: Porous sponge 4: Polytetrafluoroethylene plate 5: Motor 6: Sample stator 7: Reactive solution

Claims (16)

光学基板表面を化学反応により処理するためのものであって、超平滑に加工された面に網目状の溝を設けたポリテトラフルオロエチレン製の材料からなり高速で回転させることができる円盤と円盤の回転面上に反応性溶液を微滴状に供給する反応液供給装置と円盤の回転面に接するように光学基板の水平方向の位置を固定する光学基板固定装置からなる無歪み表面加工装置。   Discs and discs for processing the surface of an optical substrate by a chemical reaction, which are made of a material made of polytetrafluoroethylene having a mesh-like groove on an ultra-smooth surface and can be rotated at high speed A non-strained surface processing apparatus comprising: a reaction solution supply device for supplying a reactive solution in a fine droplet form on a rotating surface of the optical substrate; and an optical substrate fixing device for fixing a horizontal position of the optical substrate so as to contact the rotating surface of the disk. 反応性溶液が、表面加工を行う光学基板材料に対して溶解性があり、かつポリテトラフルオロエチレン製の円盤に対して不活性でありさらに撥水性が良い溶液であることが特徴である請求項1記載の表面加工装置。   The reactive solution is a solution that is soluble in an optical substrate material to be surface-treated, is inert to a polytetrafluoroethylene disc, and has a good water repellency. The surface processing apparatus according to 1. 反応性溶液が酸性液であることが特徴である請求項2記載の表面加工装置。   The surface processing apparatus according to claim 2, wherein the reactive solution is an acidic liquid. 酸性液がフッ酸水溶液であることが特徴である請求項3記載の表面加工装置。   The surface processing apparatus according to claim 3, wherein the acidic liquid is a hydrofluoric acid aqueous solution. ポリテトラフルオロエチレン製の円盤において平坦部の幅と溝の幅の比(平坦部の幅/溝の幅、以下「凹凸比」という)が1〜5であることを特徴とする請求項1記載の光学基板の無歪み表面加工装置。   2. The ratio of the width of the flat portion to the width of the groove (flat portion width / groove width, hereinafter referred to as “concave / convex ratio”) in a polytetrafluoroethylene disk is 1 to 5. No distortion surface processing equipment for optical substrates. 光学基板自身が水平方向に自転することが可能なように光学基板を固定することを特徴とする請求項1記載の光学基板の無歪み表面加工装置。   2. The non-strained surface processing apparatus for an optical substrate according to claim 1, wherein the optical substrate is fixed so that the optical substrate itself can rotate in the horizontal direction. 超平滑に加工された面に網目状の溝を設けたポリテトラフルオロエチレン製の円盤を高速で回転させて、その回転面上に反応性溶液を微滴状に供給し、微滴状の反応性溶液の供給された円盤上に光学基板を水平方向に固定し、光学基板表面を化学反応により処理することを特徴とする無歪み表面加工方法。   A polytetrafluoroethylene disk with a mesh-like groove on the ultra-smooth surface is rotated at high speed, and the reactive solution is supplied onto the rotating surface in the form of fine droplets. A non-strained surface processing method comprising: fixing an optical substrate horizontally on a disk supplied with a functional solution; and processing the surface of the optical substrate by a chemical reaction. 反応性溶液が、表面加工を行う材料に対して溶解性があり、かつポリテトラフルオロエチレン製の円盤に対して不活性でありさらに撥水性が良い溶液であることが特徴である請求項7記載の表面加工方法。   8. The reactive solution is a solution that is soluble in a material to be surface-treated, is inert to a polytetrafluoroethylene disc, and has a good water repellency. Surface processing method. 反応性溶液が酸性液であることが特徴である請求項8記載の表面加工方法。   The surface processing method according to claim 8, wherein the reactive solution is an acidic solution. 酸性液がフッ酸水溶液であることが特徴である請求項9記載の表面加工方法。   The surface processing method according to claim 9, wherein the acidic liquid is a hydrofluoric acid aqueous solution. フッ酸水溶液の濃度が0.1%〜30%であることを特徴とする請求項10記載の光学基板の無歪み表面加工方法。   The non-strained surface processing method for an optical substrate according to claim 10, wherein the concentration of the hydrofluoric acid aqueous solution is 0.1% to 30%. フッ酸水溶液の濃度が0.5%〜10%であることを特徴とする請求項11記載の光学基板の無歪み表面加工方法。   12. The non-strained surface processing method for an optical substrate according to claim 11, wherein the concentration of the hydrofluoric acid aqueous solution is 0.5% to 10%. ポリテトラフルオロエチレン製の円盤と光学基板の相対速度が3.1cm/s〜1880cm/sであることを特徴とする請求項7記載の光学基板の無歪み表面加工方法。   8. The non-strained surface processing method for an optical substrate according to claim 7, wherein a relative speed between the polytetrafluoroethylene disk and the optical substrate is 3.1 cm / s to 1880 cm / s. ポリテトラフルオロエチレン製の円盤と光学基板の相対速度が31.4cm/s〜628cm/sであることを特徴とする請求項13記載の光学基板の無歪み表面加工方法。   The non-strained surface processing method for an optical substrate according to claim 13, wherein the relative velocity between the polytetrafluoroethylene disk and the optical substrate is 31.4 cm / s to 628 cm / s. ポリテトラフルオロエチレン製の円盤において凹凸比が1〜5であることを特徴とする請求項7記載の光学基板の無歪み表面加工方法。   The distortion-free surface processing method for an optical substrate according to claim 7, wherein the unevenness ratio of the polytetrafluoroethylene disk is 1 to 5. 光学基板自身が水平方向に自転することを特徴とする請求項7記載の光学基板の無歪み表面加工方法。
8. The strain-free surface processing method for an optical substrate according to claim 7, wherein the optical substrate itself rotates in the horizontal direction.
JP2004235023A 2004-08-12 2004-08-12 Strain-free surface processing equipment and surface processing technology for optical materials Expired - Fee Related JP4725767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235023A JP4725767B2 (en) 2004-08-12 2004-08-12 Strain-free surface processing equipment and surface processing technology for optical materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235023A JP4725767B2 (en) 2004-08-12 2004-08-12 Strain-free surface processing equipment and surface processing technology for optical materials

Publications (2)

Publication Number Publication Date
JP2006051446A true JP2006051446A (en) 2006-02-23
JP4725767B2 JP4725767B2 (en) 2011-07-13

Family

ID=36029241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235023A Expired - Fee Related JP4725767B2 (en) 2004-08-12 2004-08-12 Strain-free surface processing equipment and surface processing technology for optical materials

Country Status (1)

Country Link
JP (1) JP4725767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010675A1 (en) * 2005-07-22 2007-01-25 Brother Kogyo Kabushiki Kaisha Antenna and radio tag
CN104655424A (en) * 2015-03-05 2015-05-27 西安交通大学 Testing device for sliding bearing based on bionic ultra-smooth surface
JP2018049199A (en) * 2016-09-23 2018-03-29 Hoya株式会社 Local wet etching device and manufacturing method of substrate for photomask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166726A (en) * 1982-03-29 1983-10-01 Shin Etsu Handotai Co Ltd Etching device for wafer
JPH1076461A (en) * 1996-07-09 1998-03-24 Lg Semicon Co Ltd Mechanical and chemical polishing device for semiconductor wafer, and control method thereof
JP2000228391A (en) * 1998-11-30 2000-08-15 Canon Inc Method and apparatus for precise-polishing semiconductor substrate
JP2001502610A (en) * 1996-10-18 2001-02-27 マイクロン テクノロジー,インコーポレイテッド Method for chemical mechanical planarization of substrate on fixed abrasive polishing pad
JP2001298009A (en) * 2001-03-19 2001-10-26 Hitachi Ltd Polishing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166726A (en) * 1982-03-29 1983-10-01 Shin Etsu Handotai Co Ltd Etching device for wafer
JPH1076461A (en) * 1996-07-09 1998-03-24 Lg Semicon Co Ltd Mechanical and chemical polishing device for semiconductor wafer, and control method thereof
JP2001502610A (en) * 1996-10-18 2001-02-27 マイクロン テクノロジー,インコーポレイテッド Method for chemical mechanical planarization of substrate on fixed abrasive polishing pad
JP2000228391A (en) * 1998-11-30 2000-08-15 Canon Inc Method and apparatus for precise-polishing semiconductor substrate
JP2001298009A (en) * 2001-03-19 2001-10-26 Hitachi Ltd Polishing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010675A1 (en) * 2005-07-22 2007-01-25 Brother Kogyo Kabushiki Kaisha Antenna and radio tag
US7652637B2 (en) 2005-07-22 2010-01-26 Brother Kogyo Kabushiki Kaisha Antenna, and radio-frequency identification tag
CN104655424A (en) * 2015-03-05 2015-05-27 西安交通大学 Testing device for sliding bearing based on bionic ultra-smooth surface
JP2018049199A (en) * 2016-09-23 2018-03-29 Hoya株式会社 Local wet etching device and manufacturing method of substrate for photomask

Also Published As

Publication number Publication date
JP4725767B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
TWI353006B (en) Method for manufacturing epitaxial wafer
KR101488987B1 (en) Polishing method of hard crystal substrate and oil-based polishing slurry
Doi et al. Advances in CMP polishing technologies
JP2008081389A (en) Catalyst-aided chemical processing method and apparatus
JP2006095677A (en) Polishing method
WO1995031310A1 (en) Apparatus and method of polishing and planarizing polycrystalline diamonds
JP4725767B2 (en) Strain-free surface processing equipment and surface processing technology for optical materials
CN109913133B (en) Efficient high-quality chemical mechanical polishing solution for yttrium aluminum garnet crystals
JP2006224252A (en) Polishing apparatus
JP2004031772A (en) Chemical mechanical polishing pad and its manufacturing method
Davisson Surface finishing of alkali halides
JP2009055039A (en) Method for manufacturing silicon wafers
JP2008288240A (en) SiC CRYSTAL POLISHING METHOD
CN113182938A (en) Method for processing surface of diamond complex phase material
US5447466A (en) Chemically assisted process for the machining of ceramics
JP2010238298A (en) Method for manufacturing glass substrate for magnetic disk
JP2010238310A (en) Method for manufacturing substrate for magnetic disk
JP4064391B2 (en) SiC substrate for polishing pad processing
JPH07100737A (en) Method for polishing semiconductor wafer
JP2019155232A (en) Cleaning method and cleaning device
JP2004098242A (en) Method for polishing article, its polishing liquid, and method for manufacturing optical article
JP2008124383A (en) Surface working method for silicon wafer
Li et al. Effect of FAP characteristics on fixed abrasive polishing of CaF2 crystal
JP4642404B2 (en) Polishing method of ionic organic crystal and ionic organic crystal polished by polishing method of ionic organic crystal
US6428395B1 (en) Method of polishing at least one surface of a silicon-based part

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees