JP2006047166A - Turbidimeter - Google Patents

Turbidimeter Download PDF

Info

Publication number
JP2006047166A
JP2006047166A JP2004230129A JP2004230129A JP2006047166A JP 2006047166 A JP2006047166 A JP 2006047166A JP 2004230129 A JP2004230129 A JP 2004230129A JP 2004230129 A JP2004230129 A JP 2004230129A JP 2006047166 A JP2006047166 A JP 2006047166A
Authority
JP
Japan
Prior art keywords
scattered light
turbidity
light detector
scattered
turbidimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004230129A
Other languages
Japanese (ja)
Inventor
Junko Hirano
Takashi Kitamoto
Takeshi Kuwagata
尚 北本
順子 平野
武志 鍬形
Original Assignee
Yokogawa Electric Corp
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, 横河電機株式会社 filed Critical Yokogawa Electric Corp
Priority to JP2004230129A priority Critical patent/JP2006047166A/en
Publication of JP2006047166A publication Critical patent/JP2006047166A/en
Application status is Withdrawn legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To realize a turbidimeter capable of measuring a wide range of turbidity by the same measuring cell length.
SOLUTION: In this turbidimeter, light scattered by fine particles in a measuring liquid is detected by a scattered light detector to measure the turbidity thereof. The scattered light detector is constituted to make its position movable or selectable.
COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、濁度計、特に、透過光と散乱光の量をもとに光学的に濁度を求める濁度計に関するものである。 The present invention, turbidimeter, in particular, the amount of transmitted light and scattered light relates turbidimeter obtaining optically turbidity based.

浄水及び排水の水処理プロセスでは、濁度の測定及び管理は重要な項目となっており、濁度計が用いられている。 The water purification and drainage water treatment processes, measurement and management of the turbidity is an important item, turbidimeter is used.
濁度計の方式には、透過光方式、散乱光方式、表面散乱光方式、透過散乱光方式があるが、特に、透過光と散乱光の量の比により光学的に濁度を求める透過散乱光方式は低濁度から高濁度まで測定が可能である。 The method turbidimeter, transmitted light method, the scattered light method, surface scattering light method, it is transmitted and scattered light method, in particular, the transmitted scattered for obtaining the optically turbidity by the ratio of the amount of transmitted light and scattered light light system can be measured to high turbidity from low turbidity.

図4は従来の透過散乱方式の濁度計の模式図である。 Figure 4 is a schematic diagram of a turbidimeter conventional transmission scattering method.
図4で、光源1からの光束はレンズ2で集光され平行光となる。 In Figure 4, the light beam from the light source 1 is condensed by the lens 2 becomes parallel light.
測定セル3の両端は透明ガラス4a、4bにより仕切られており、測定セル3を流れる測定液31の濁度成分(微粒子)によって平行光の一部は散乱され、散乱光検出器5によりその光量が測定され、散乱によって減衰した平行光は透過光検出器6によりその光量が測定される。 Across the transparent glass 4a of the measuring cell 3 are partitioned by 4b, a part of the parallel light by the turbidity component of the measured fluid 31 flowing through the measuring cell 3 (fine particles) is scattered, the light amount by the scattered light detector 5 There are measured, the parallel light attenuated by scattering the light amount is measured by the transmitted light detector 6.
この図で、散乱光検出器5は円環状の光電池、透過光検出器6は円板状の光電池を使用している例を示している。 In this figure, the scattered light detector 5 annular photocell, the transmitted light detector 6 shows an example using the disk-shaped photovoltaic cells. 図のAとBに散乱光検出器5と透過光検出器6の受光面の形状を示す。 The A and B of Figure shows a scattered light detector 5 and the shape of the light-receiving surface of the transmitted light detector 6.
濁度成分濃度が大きくなるに従って、散乱光検出器5により測定される光量は増加する。 According turbidity component concentration is increased, light amount measured by the scattered light detector 5 is increased.
濁度は、透過光検出器6により測定された透過光量に対する散乱光検出器5により測定された散乱光量の比により求める。 Turbidity is determined by the ratio of the measured amount of scattered light by the scattered light detector 5 for the amount of transmitted light measured by the transmitted light detector 6.

透過散乱光方式の濁度計の構成を示したものとして、例えば特許文献1に記載されたものがあった。 As shows the structure of a turbidimeter transmitted scattered light method, for example, there is one described in Patent Document 1.
特開2000−206030号公報 JP 2000-206030 JP

しかし、図4の従来例では次の問題点があった。 However, there are the following problems in the conventional example of FIG.
濁度は、(散乱光量)/(透過光量)の比で求めるため、散乱光量は大きいほど濁度の測定精度を高くすることができる。 Turbidity, it is possible to increase the measurement accuracy of turbidity as for, the amount of scattered light is large for obtaining a ratio of (amount of scattered light) / (amount of transmitted light).
散乱光検出器は平均散乱角の延長線上にあるときに最適感度となり散乱光量を大きくすることができるが、平均散乱角は測定液の濁度成分濃度や測定セル長によって変化する。 Although the scattered light detector can be increased the amount of scattered light becomes optimum sensitivity when an extension of the average scattering angle, average scattering angle will vary with turbidity component concentration and measuring cell length of the test solution.
ここで、散乱光検出器は位置が固定されているので、最適感度を得るためには測定液の濁度成分濃度に応じて最適な測定セル長を選択する必要がある。 Since the scattered light detector is located is fixed, it is necessary to select the optimum measurement cell length in accordance with the turbidity component concentration of the test solution in order to obtain optimum sensitivity.

以上のように従来は、測定液の濁度成分濃度に応じて最適な測定セル長を選択することができるように各種の測定セル長を用意しておく必要があるという問題点があった。 Above manner conventionally, there has been measured solution problem turbidity component according to the concentration optimum measurement cell length it is necessary to prepare various measurement cell length to be able to select a.

本発明は上述した問題点を解決するためになされたものであり、同一の測定セル長にて広範囲の濁度の測定を可能とする濁度計を実現することを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to realize a turbidity meter that allows the measurement of a wide range of turbidity in the same measurement cell length.

このような課題を達成するために、本発明は次のとおりの構成になっている。 To achieve this object, the present invention is in the construction of the following.
(1)測定液に光束を照射し、前記測定液を透過する透過光を透過光検出器で検出し、前記測定液中の微粒子によって散乱される散乱光を散乱光検出器で検出し、検出した透過光と散乱光の量の比により濁度を測定する濁度計において、 (1) irradiating a light beam to the measurement solution, the transmitted light transmitted through the measurement liquid is detected by transmitted light detector, a scattered light scattered is detected by the scattered light detector by micronization of the measurement liquid, the detection in turbidimeter to measure the turbidity by the ratio of the amount of transmitted light and scattered light,
前記散乱光検出器は位置が移動可能なことを特徴とする濁度計。 The scattered light detector turbidimeter, wherein the position is movable.

(2)測定液に光束を照射し、前記測定液を透過する透過光を透過光検出器で検出し、前記測定液中の微粒子によって散乱される散乱光を散乱光検出器で検出し、検出した透過光と散乱光の量の比により濁度を測定する濁度計において、 (2) irradiating the light beam to the measurement solution, the transmitted light transmitted through the measurement liquid is detected by transmitted light detector, a scattered light scattered is detected by the scattered light detector by micronization of the measurement liquid, the detection in turbidimeter to measure the turbidity by the ratio of the amount of transmitted light and scattered light,
前記散乱光検出器は位置が選択可能なことを特徴とする濁度計。 The scattered light detector turbidimeter, wherein the position-selectable.

(3)前記散乱光検出器は前記光束の光路方向及び光路と垂直方向の少なくともいずれかの方向に位置が移動可能なことを特徴とする(1)記載の濁度計。 (3) the scattered light detector located in at least one direction of the optical path direction and the optical path perpendicular direction of the light beam and wherein the movable (1) turbidity meter according.

(4)前記透過光検出器は前記光束の光路方向に位置が移動可能なことを特徴とする(1)乃至(3)のいずれかに記載の濁度計。 (4) the turbidity meter according to any one of the transmitted light detector, wherein the movable position in the optical path direction of the light beam (1) to (3).

本発明によれば次のような効果がある。 According to the present invention has the following effects.
測定液の濁度成分濃度により平均散乱角が変化した場合に、散乱光検出器を平均散乱角の延長線上の位置になるように移動して散乱光検出器の感度を上げることにより、同一の測定セル長にて散乱光量を大きくし濁度の測定精度を高くすることができる。 When the average scattering angle turbidity component concentration of the test solution is changed, by increasing the sensitivity of the scattered light detector to move so that the scattered light detector at a position on an extension line of the average scattering angle, the same increase the amount of scattered light at the measurement cell length can be increased accuracy of measurement of turbidity.

また、測定液の濁度成分濃度により平均散乱角が変化した場合に、散乱光検出器のうち平均散乱角の延長線上の位置にあるものを選択して散乱光検出器の感度の高いものを使用することにより、同一の測定セル長にて散乱光量を大きくし濁度の測定精度を高くすることができる。 Further, when the average scattering angle turbidity component concentration of the test solution is changed, the higher sensitivity of the selected scattered light detector what is the position of an extension of the mean scattering angle of the scattered light detector the use, it is possible to increase the measurement accuracy of the scattered light to increase the turbidity in the same measurement cell length.

よって、測定液の濁度成分濃度に影響されることなく、低濁度から高濁度まで広範囲の濁度を同一の測定セル長にて測定することが可能となる。 Thus, without being influenced by the turbidity component concentration of the test solution, it is possible to measure a wide range of turbidity in the same measurement cell length to high turbidity from low turbidity.

以下、図面を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
図1は本発明の一実施例を示す構成図である。 Figure 1 is a block diagram showing an embodiment of the present invention. 前出の図と同一のものは同一符号を付ける。 The preceding figure identical to those put by the same reference numerals.
図1で、光源1からの光束はレンズ2で集光され平行光となる。 In Figure 1, the light beam from the light source 1 is condensed by the lens 2 becomes parallel light.
測定セル3の両端は透明ガラス4a、4bにより仕切られており、測定セル3を流れる測定液31の濁度成分(微粒子)によって平行光の一部は散乱され、散乱光検出器10a、10bによりその光量が測定され、散乱によって減衰した平行光は透過光検出器11によりその光量が測定される。 Across the transparent glass 4a of the measuring cell 3 are partitioned by 4b, a part of the parallel light by the turbidity component of the measured fluid 31 flowing through the measuring cell 3 (fine particles) is scattered, the scattered light detector 10a, the 10b the amount of light is measured, the amount of light is measured by the transmitted light detector 11 parallel light attenuated by scattering.
濁度は、(散乱光量)/(透過光量)の比で求めるため、散乱光量は大きいほど濁度の測定精度を高くすることができる。 Turbidity, it is possible to increase the measurement accuracy of turbidity as for, the amount of scattered light is large for obtaining a ratio of (amount of scattered light) / (amount of transmitted light).
散乱光検出器10a、10b及び透過光検出器11は、例えば、フォトダイオード等が用いられる。 Scattered light detector 10a, 10b and the transmitted light detector 11, for example, a photodiode or the like is used.

測定セル3を流れる測定液31の濁度成分濃度が大きくなるに従って、平均散乱角は大きくなり、測定液31の濁度成分濃度が小さくなるに従って、平均散乱角は小さくなる。 According turbidity component concentration of the measured solution 31 flowing through the measuring cell 3 is increased, the mean scattering angle increases, according to the turbidity component concentration of the measurement solution 31 is decreased, the average scattering angle is small.
この図で、散乱光検出器10a、10bは平均散乱角がθ1のときに最適感度となる位置にあるので、測定液31の濁度成分濃度が大きくなり平均散乱角がθ1からθ2になった場合、散乱光検出器10a、10bの感度は低下し、散乱光量は小さくなる。 In this figure, the scattered light detector 10a, the 10b since a position average scattering angle is the optimum sensitivity during .theta.1, the average scattering angle turbidity component concentration is increased in the measurement solution 31 changes from .theta.1 to θ2 If, scattered light detector 10a, the sensitivity of 10b decreases, the amount of scattered light is reduced.
そこで、散乱光検出器10a、10bを光束の光路と垂直方法に移動し、平均散乱角θ2の延長線上の位置になるようにすることにより、測定セル長は同一のまま散乱光検出器10a、10bの感度を上げ、散乱光量を大きくし、濁度の測定精度を高くすることができる。 Therefore, the scattered light detector 10a, 10b to move in the optical path perpendicular method of the light beam, by the so that the position of the extension of the average scattering angle .theta.2, measurement cell length same remains scattered light detector 10a, increase sensitivity of 10b, and scattered light is increased, it is possible to increase the measurement accuracy of the turbidity.

図2は本発明の他の実施例を示す構成図である。 Figure 2 is a block diagram showing another embodiment of the present invention.
図2で、測定液31の濁度成分濃度が小さくなり平均散乱角がθ1からθ3になった場合、散乱光検出器10a、10bの感度は低下し、散乱光量は小さくなる。 In Figure 2, when the average scattering angle turbidity component concentration of the measurement solution 31 is decreased changes from θ1 to .theta.3, scattered light detector 10a, the sensitivity of 10b decreases, the amount of scattered light is reduced.
そこで、散乱光検出器10a、10bを光束の光路方向に移動し、平均散乱角θ3の延長線上の位置になるようにすることにより、測定セル長は同一のまま散乱光検出器10a、10bの感度を上げ、散乱光量を大きくし、濁度の測定精度を高くすることができる。 Therefore, the scattered light detector 10a, and 10b moves in the optical path direction of the light beam, by the so that the position of the extension of the average scattering angle .theta.3, measurement cell length same remains scattered light detector 10a, 10b of the increase sensitivity, the amount of scattered light is increased, it is possible to increase the measurement accuracy of the turbidity.

図1及び図2で、散乱光検出器は、数が2個で、位置が上下に配置されている例を示しているが、散乱光検出器の数及び位置はこれ以外であってもよい。 In Figures 1 and 2, the scattered light detector, number of two, the position indicates the example that is disposed vertically, the number and location of the scattered light detector may be other than this .

図3は本発明の他の実施例を示す構成図である。 Figure 3 is a block diagram showing another embodiment of the present invention.
図3で、散乱光検出器10a、10b、12a、12bは光束の光路と垂直方向に並んでおり、散乱光検出器10a、10bは平均散乱角がθ1のときに最適感度となる位置にあり、散乱光検出器12a、12bは平均散乱角がθ2のときに最適感度となる位置にある。 In Figure 3, the scattered light detector 10a, 10b, 12a, 12b are aligned in the optical path perpendicular direction of the light beam, the scattered light detector 10a, 10b is at a position where the average scattering angle is the optimum sensitivity when θ1 , scattered light detector 12a, 12b is in the position average scattering angle is the optimum sensitivity during .theta.2.
したがって、測定液31の濁度成分濃度の変化により平均散乱角がθ1になった場合、散乱光検出器10a、10bを選択し、平均散乱角がθ2になった場合、散乱光検出器12a、12bを選択することにより、測定セル長は同一のまま散乱光量を大きくし、濁度の測定精度を高くすることができる。 Therefore, when the average scattering angle by a change in the turbidity component concentration of the measured solution 31 becomes .theta.1, select the scattered light detector 10a, 10b, when the average scattering angle becomes .theta.2, scattered light detector 12a, by selecting 12b, measurement cell length can increase the same while the amount of scattered light, to increase the measurement accuracy of the turbidity.

図3で、散乱光検出器は、数が4個で、位置が上下に配置されている例を示しているが、散乱光検出器の数及び位置はこれ以外であってもよい。 In Figure 3, the scattered light detector, number of four, an example is shown in which the position is located vertically, the number and location of the scattered light detector may be other than this.

濁度は(散乱光量)/(透過光量)の比で求めるため、(散乱光量)/(透過光量)が濁度成分濃度と直線関係にあることが必要とされる。 Because turbidity is calculated by the ratio of (amount of scattered light) / (amount of transmitted light) is required to be in the (scattered light) / (amount of transmitted light) of the turbidity component concentration linearly related.
これは透過光検出器11の位置を光束の光路方向に移動することによって直線性を調整することができる。 This can be adjusted linearity by moving the position of the transmitted light detector 11 in the optical path direction of the light beam.

図1〜図3で、透過光検出器は、数が1個の場合の例を示しているが、2個以上であってもよい。 In FIGS. 1 to 3, the transmitted light detector, the number indicates the example where one but may be two or more.

本発明の一実施例を示す構成図である。 Is a block diagram showing an embodiment of the present invention. 本発明の他の実施例を示す構成図である。 It is a block diagram showing another embodiment of the present invention. 本発明の他の実施例を示す構成図である。 It is a block diagram showing another embodiment of the present invention. 従来の透過散乱方式の濁度計の模式図である。 It is a schematic diagram of a turbidimeter conventional transmission scattering method.

符号の説明 DESCRIPTION OF SYMBOLS

10a、10b、12a、12b 散乱光検出器 11 透過光検出器 31 測定液 10a, 10b, 12a, 12b scattered light detector 11 transmitted light detector 31 measuring solution

Claims (4)

  1. 測定液中の微粒子によって散乱される光を散乱光検出器で検出し、濁度を測定する濁度計において、 The light scattered by the particle measurement liquid detected by the scattered light detector, in turbidimeter to measure the turbidity,
    前記散乱光検出器は位置が移動可能なことを特徴とする濁度計。 The scattered light detector turbidimeter, wherein the position is movable.
  2. 測定液中の微粒子によって散乱される光を散乱光検出器で検出し、濁度を測定する濁度計において、 The light scattered by the particle measurement liquid detected by the scattered light detector, in turbidimeter to measure the turbidity,
    前記散乱光検出器は位置が選択可能なことを特徴とする濁度計。 The scattered light detector turbidimeter, wherein the position-selectable.
  3. 前記散乱光検出器は前記光束の光路方向及び光路と垂直方向の少なくともいずれかの方向に位置が移動可能なことを特徴とする請求項1記載の濁度計。 The scattered light detector turbidimeter according to claim 1, wherein the position in at least one direction of the optical path direction and the optical path perpendicular direction of the light beam that can move.
  4. 前記透過光検出器は前記光束の光路方向に位置が移動可能なことを特徴とする請求項1乃至3のいずれかに記載の濁度計。 Turbidity meter according to any one of claims 1 to 3 wherein the transmitted light detector and wherein the movable position in the optical path direction of the light beam.
JP2004230129A 2004-08-06 2004-08-06 Turbidimeter Withdrawn JP2006047166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230129A JP2006047166A (en) 2004-08-06 2004-08-06 Turbidimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230129A JP2006047166A (en) 2004-08-06 2004-08-06 Turbidimeter

Publications (1)

Publication Number Publication Date
JP2006047166A true JP2006047166A (en) 2006-02-16

Family

ID=36025870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230129A Withdrawn JP2006047166A (en) 2004-08-06 2004-08-06 Turbidimeter

Country Status (1)

Country Link
JP (1) JP2006047166A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012782A (en) * 2006-07-06 2008-01-24 Ricoh Elemex Corp Liquid-discharge fault detector, inkjet recorder and liquid-discharge fault detecting method
JP2008162148A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Defective discharge detector and inkjet recording device
JP2010101877A (en) * 2008-09-26 2010-05-06 Horiba Ltd Instrument for measuring physical properties of particles
US8355132B2 (en) 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8625093B2 (en) 2008-09-26 2014-01-07 Horiba, Ltd. Particle characterization device
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
WO2016085469A1 (en) * 2014-11-25 2016-06-02 Halliburton Energy Services, Inc. Evaluating solid particle separation in wellbore fluids
JP2016517965A (en) * 2013-05-13 2016-06-20 ハッハ ランゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングHach Lange Gmbh Turbidimeter
US9476895B2 (en) 2007-04-06 2016-10-25 Becton, Dickinson And Company Open platform automated sample processing system
CN106338456A (en) * 2016-08-30 2017-01-18 重庆长江造型材料(集团)股份有限公司 Self-suspension proppant suspension performance detection method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012782A (en) * 2006-07-06 2008-01-24 Ricoh Elemex Corp Liquid-discharge fault detector, inkjet recorder and liquid-discharge fault detecting method
JP2008162148A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Defective discharge detector and inkjet recording device
US8355132B2 (en) 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
US9476895B2 (en) 2007-04-06 2016-10-25 Becton, Dickinson And Company Open platform automated sample processing system
JP2010101877A (en) * 2008-09-26 2010-05-06 Horiba Ltd Instrument for measuring physical properties of particles
US8625093B2 (en) 2008-09-26 2014-01-07 Horiba, Ltd. Particle characterization device
JP2016517965A (en) * 2013-05-13 2016-06-20 ハッハ ランゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングHach Lange Gmbh Turbidimeter
WO2016085469A1 (en) * 2014-11-25 2016-06-02 Halliburton Energy Services, Inc. Evaluating solid particle separation in wellbore fluids
GB2548708A (en) * 2014-11-25 2017-09-27 Halliburton Energy Services Inc Evaluating solid particle separation in wellbore fluids
US10161869B2 (en) 2014-11-25 2018-12-25 Halliburton Energy Services, Inc. Evaluating solid particle separation in wellbore fluids
CN106338456A (en) * 2016-08-30 2017-01-18 重庆长江造型材料(集团)股份有限公司 Self-suspension proppant suspension performance detection method
CN106338456B (en) * 2016-08-30 2018-11-02 重庆长江造型材料(集团)股份有限公司 Suspending proppant suspension properties from the detection method

Similar Documents

Publication Publication Date Title
US3713743A (en) Forward scatter optical turbidimeter apparatus
Nylander et al. Gas detection by means of surface plasmon resonance
US6124937A (en) Method and device for combined absorption and reflectance spectroscopy
EP0106684B1 (en) Particle diameter measuring device
JP4605838B2 (en) Apparatus and method for measuring the particle size distribution
US20130107247A1 (en) Inspecting Method and Inspecting Apparatus For Substrate Surface
CA1130604A (en) Oil-in-water method and detector
US20080285032A1 (en) Light scattering detector
EP0389571A4 (en) Differential refractometer
JP2010164572A (en) Sensor and method for high-sensitivity optical particle counting and sizing
JP2005062166A (en) Number density of particles in monodisperse in solution, and method for calculating fractionated differential number distribution for suspension in particle of polydisperse
US5637881A (en) Method to detect non-spherical particles using orthogonally polarized light
JP4498024B2 (en) Optical Encoder
JPH03272406A (en) Alignment apparatus
JP2010112961A (en) Flow cell
EP0899548A2 (en) Cross-correlation method and apparatus for suppressing the effects of multiple scattering
EP0057718A1 (en) Method and apparatus for photometric detection in fluids
US8493572B2 (en) Optical encoder having contamination and defect resistant signal processing
JP2008002843A (en) Flaw detection method of pattern shape and flaw detector of pattern shape
FI78355C (en) Method Foer maetning of the glans and the apparatus Foer tillaempning of metoden.
US8259294B2 (en) Method and device for measuring optical characteristic variables of transparent, scattering measurement objects
KR101230791B1 (en) Ozone concentration sensor
EP2361375A1 (en) Cell construction for light scatter detectors having self-focusing properties
US7027138B2 (en) Enhanced sensitivity differential refractometer incorporating a photodetector array
WO2005015120A3 (en) Method and arrangement for focusing detection in an optical measurement and method and arrangement for migitating the effect of surface reflection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Effective date: 20090827

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091021

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100125