JP2006046878A - Exhaust heat using air conditioning system - Google Patents

Exhaust heat using air conditioning system Download PDF

Info

Publication number
JP2006046878A
JP2006046878A JP2004232506A JP2004232506A JP2006046878A JP 2006046878 A JP2006046878 A JP 2006046878A JP 2004232506 A JP2004232506 A JP 2004232506A JP 2004232506 A JP2004232506 A JP 2004232506A JP 2006046878 A JP2006046878 A JP 2006046878A
Authority
JP
Japan
Prior art keywords
heat
refrigeration cycle
air conditioner
refrigerant
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232506A
Other languages
Japanese (ja)
Other versions
JP4546188B2 (en
Inventor
Koichi Yamaguchi
山口  広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004232506A priority Critical patent/JP4546188B2/en
Publication of JP2006046878A publication Critical patent/JP2006046878A/en
Application granted granted Critical
Publication of JP4546188B2 publication Critical patent/JP4546188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat using air conditioning system that uses exhaust heat from a heat source, in a simple structure, without using a batch system, without evacuating (creating a vacuum in) the system and without interposing heat exchangers between generated heat and a refrigerant in an air conditioner. <P>SOLUTION: An exhaust-heat-driven Rankine cycle R connects an exhaust heat treating heat exchanger 1 for heat exchange with exhaust heat from a distributed power source N, an expander 2, an expander cycle condenser 4, and a pump 6. A heat generating refrigeration cycle H connects a compressor 3 mechanically coupled to and driven by the expander of the Rankine cycle, a heat generating outdoor heat exchanger 5 juxtaposed with the expander cycle condenser, and an expansion valve 7. A refrigeration cycle S for the air conditioner K connects a compressor 14, a four-way selector valve 13, an outdoor heat exchanger 11, and an indoor heat exchanger 12. A heat transfer mechanism D merges a refrigerant in the heat generating refrigeration cycle into a refrigerant led to the refrigeration cycle S for the air conditioner K to transfer heat to the air conditioner refrigeration cycle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、たとえば分散型電源の排熱を空気調和機の冷凍サイクルに利用する、排熱利用空調システムに関する。   The present invention relates to an exhaust heat utilization air conditioning system that uses, for example, exhaust heat of a distributed power source in a refrigeration cycle of an air conditioner.

石炭、石油等のいわゆる一次燃料に対する削減化を得るために、たとえばリン酸型燃料電池、ガスエンジン発電機、マイクロガスタービン発電機などの分散型電源がコージェネレーションの形で市場化されている。
そして、近年、さらに小規模(たとえば、発電能力が10KW以下)の分散型電源の開発に力が注がれている。このような小規模分散型電源においては、その主力として、小規模でありながら発電効率が良く、取扱いが容易である固体高分子型の燃料電池が注目されている。
しかしながら、この種の分散型電源は、コージェネレーションの形にしてはじめて一次燃料を削減できるため、冬場はともかく、夏場における発電時の排熱処理が重要となる。一般的に、夏場における排熱処理は吸収式冷凍機を用いて、冷熱への変化という形で行われているが、排熱温度が80℃程度と低いために稼働効率は0.1にも満たない。
In order to obtain a reduction in so-called primary fuels such as coal and oil, distributed power sources such as phosphoric acid fuel cells, gas engine generators, and micro gas turbine generators have been put on the market in the form of cogeneration.
In recent years, efforts have been made to develop a distributed power supply of a smaller scale (for example, a power generation capacity of 10 KW or less). In such small-scale distributed power sources, attention has been focused on solid polymer fuel cells that are small in scale, have good power generation efficiency, and are easy to handle.
However, since this type of distributed power source can reduce primary fuel only in the form of cogeneration, waste heat treatment during power generation in summer is important, regardless of winter. In general, waste heat treatment in summer is performed using an absorption refrigerator in the form of change to cold, but the operating efficiency is less than 0.1 because the waste heat temperature is as low as 80 ° C. Absent.

最近では、吸着剤を用いた吸着式冷凍機の開発が行われているが、この種の装置においても効率は0.5程度でしかない。その一方で、上述の分散型電源から排出される熱量は、経済的な設置台数から考えると概ね15KW程度であって、たとえ吸着式冷凍機を用いても、この排熱だけで冷房負荷の全てをまかなうことは困難である。
そこで、[特許文献1]には、ターボ冷凍機と、吸収式冷凍機と、これらの冷凍機の間で冷熱を伝達するために冷媒を循環させる冷熱伝達循環系とを用いて、吸収式冷凍機で生成した冷熱を、冷熱伝達循環系を介してターボ冷凍機に供給し、液冷媒を過冷却する技術が開示されている。すなわち、得られた冷熱を空気調和機の凝縮器出口側冷媒に対する過冷却増加に利用している。
特開2003−207224号公報
Recently, an adsorption refrigerator using an adsorbent has been developed. Even in this type of apparatus, the efficiency is only about 0.5. On the other hand, the amount of heat discharged from the above distributed power source is about 15 kW when considering the number of economically installed units, and even if an adsorption refrigeration machine is used, all of the cooling load can be achieved only with this exhaust heat. It is difficult to cover.
[Patent Document 1] describes an absorption refrigeration system using a turbo chiller, an absorption chiller, and a cold heat transfer circulation system that circulates a refrigerant in order to transfer cold heat between these chillers. A technology for supercooling liquid refrigerant by supplying cold heat generated by a machine to a turbo refrigerator via a cold heat transfer circulation system is disclosed. That is, the obtained cold energy is utilized for the increase in supercooling with respect to the refrigerant | coolant exit side refrigerant | coolant of an air conditioner.
JP 2003-207224 A

当然ではあるが、同様な手段は近時、注目されている吸着式冷凍機を使用しても可能である。しかしながら、実際には、このような吸着式冷凍機を用いても、以下に述べるような欠点が存在している。
(1) 連続出力するためには、同一形式のシステムを複数用いるバッチシステムになってしまい、高コストで、かつシステム容積が大きくなる。
(2) 吸着式冷凍機の場合は、水を熱媒体として得られた冷熱を空気調和機の冷凍サイクルの冷媒へ伝えるため、発生冷熱と冷媒との間に熱交換器が2つ介在しなければならず、効率が低下する。
(3) 系内の真空度によって効率が大きく作用される。したがって、高い真空度を維持するために定期的なメンテナンスが必要であり、手間がかかる。
Of course, the same means can be used by using an adsorption refrigerator that has been attracting attention recently. However, actually, even if such an adsorption refrigerator is used, there are the following drawbacks.
(1) In order to output continuously, it becomes a batch system using a plurality of systems of the same type, which is expensive and increases the system volume.
(2) In the case of an adsorption refrigeration machine, two heat exchangers must be interposed between the generated cold heat and the refrigerant in order to transmit the cold heat obtained using water as a heat medium to the refrigerant in the refrigeration cycle of the air conditioner. The efficiency is reduced.
(3) The efficiency is greatly affected by the degree of vacuum in the system. Therefore, regular maintenance is required to maintain a high degree of vacuum, which is troublesome.

本発明は上記事情に着目してなされたものであり、その目的とするところは、熱源(分散型電源)の排熱を、バッチシステムを用いず、系内を負圧(真空側)とすることなく、しかも発生熱と空気調和機の冷媒との間の熱交換器を不要として、簡素な構成で熱効率の良いの排熱利用空調システムを提供しようとするものである。   The present invention has been made paying attention to the above circumstances, and the object of the present invention is to use exhaust heat of a heat source (distributed power source) as a negative pressure (vacuum side) without using a batch system. In addition, it is an object of the present invention to provide an exhaust heat utilization air conditioning system having a simple configuration and good thermal efficiency, without requiring a heat exchanger between the generated heat and the refrigerant of the air conditioner.

上述の目的を満足するため本発明の排熱利用空調システムは、熱源から導かれる排熱と熱交換する排熱処理用熱交換器、膨張機、膨張機サイクル用凝縮器およびポンプが順次連通される排熱駆動型のランキンサイクルと、この排熱駆動型のランキンサイクルにおける上記膨張機と機械的に連結され膨張機によって駆動される圧縮機、膨張機サイクル用凝縮器と並設される熱発生用室外熱交換器および膨張弁が順次連通される熱発生用冷凍サイクルと、圧縮機、四方切換え弁、室外熱交換器および室内熱交換器が順次連通される冷凍サイクルを備えた空気調和機と、この空気調和機の冷凍サイクルに導かれる冷媒に対し熱発生用冷凍サイクルに導かれる冷媒を合流混合させて空気調和機の冷凍サイクルへ熱伝達する熱伝達手段とを具備する。   In order to satisfy the above-described object, in the exhaust heat utilization air conditioning system of the present invention, an exhaust heat treatment heat exchanger, an expander, an expander cycle condenser, and a pump are sequentially communicated with the exhaust heat guided from a heat source. Exhaust heat drive type Rankine cycle, a compressor that is mechanically connected to the expander in the exhaust heat drive type Rankine cycle and driven by the expander, and a heat generator that is arranged in parallel with the condenser for the expander cycle A refrigeration cycle for heat generation in which an outdoor heat exchanger and an expansion valve are sequentially communicated, and an air conditioner having a refrigeration cycle in which a compressor, a four-way switching valve, an outdoor heat exchanger and an indoor heat exchanger are sequentially communicated, and Heat transfer means for transferring heat to the refrigeration cycle of the air conditioner by combining and mixing the refrigerant guided to the refrigeration cycle for heat generation with the refrigerant guided to the refrigeration cycle of the air conditioner.

本発明によれば、熱源である、たとえば分散型電源の排熱を利用して、空気調和機の効率向上化を得るという効果を奏する。   Advantageous Effects of Invention According to the present invention, there is an effect that the efficiency of an air conditioner is improved by using, for example, exhaust heat of a distributed power source that is a heat source.

以下、図面を参照して本発明の実施の形態に係る排熱利用空調システムを図面にもとづいて説明する。
図1は、本発明における第1の実施の形態に係る排熱利用空調システムの構成図であり、図1(A)は冷房運転時、図1(B)は暖房運転時を示している。
排熱利用空調システムは、排熱処理用熱交換器1と、膨張機2と、膨張機サイクル用凝縮器4および、ポンプ6が順次、冷媒管Paを介して連通され、冷媒を循環させる排熱駆動型のランキンサイクルRを備えている。
Hereinafter, an exhaust heat utilization air conditioning system according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an exhaust heat utilization air conditioning system according to a first embodiment of the present invention, in which FIG. 1 (A) shows a cooling operation and FIG. 1 (B) shows a heating operation.
The exhaust heat utilization air conditioning system includes an exhaust heat treatment heat exchanger 1, an expander 2, an expander cycle condenser 4, and a pump 6 that are sequentially communicated via a refrigerant pipe Pa to circulate the refrigerant. A drive type Rankine cycle R is provided.

上記排熱処理用熱交換器1は、高熱熱源である、たとえば分散型電源Nにおいて生成される排熱を、排熱管Pbを介して導びき、上記ランキンサイクルRにおいて循環する冷媒と熱交換をさせるようになっている。排熱処理用熱交換器1で熱交換した後の排熱は、再び分散型電源Nに導かれる。
さらに排熱利用空調システムは、上記ランキンサイクルRを構成する膨張機2に対して機械的に連結される圧縮機3と、上記膨張機サイクル用凝縮器4と熱交換可能に組合わされる熱発生用凝縮器5および、膨張弁7とから構成される。上記膨張弁7と圧縮機3との間には後述する熱伝達機構(熱伝達手段)Dが介在され、これらを順次冷媒管Pcを介して連通し冷媒を循環させる熱発生用冷凍サイクルHを備えている。
The exhaust heat treatment heat exchanger 1 guides exhaust heat generated in, for example, a distributed power source N, which is a high heat source, through an exhaust heat pipe Pb, and exchanges heat with the refrigerant circulating in the Rankine cycle R. It is like that. The exhaust heat after the heat exchange by the exhaust heat treatment heat exchanger 1 is led to the distributed power source N again.
Further, the exhaust heat utilization air conditioning system includes a compressor 3 mechanically connected to the expander 2 constituting the Rankine cycle R, and heat generation combined with the expander cycle condenser 4 so that heat exchange is possible. The condenser 5 and the expansion valve 7 are used. A heat transfer mechanism (heat transfer means) D, which will be described later, is interposed between the expansion valve 7 and the compressor 3, and a heat generating refrigeration cycle H for sequentially circulating the refrigerant through the refrigerant pipe Pc is provided. I have.

さらに排熱利用空調システムは、圧縮機14と、四方切換え弁13と、室外熱交換器11および、室内熱交換器12から構成される。室外熱交換器11と室内熱交換器12との間には上記熱伝達機構Dが介在され、これらを順次、冷媒管Pdを介して連通して冷媒を循環させる冷凍サイクルSを備えている。そして、この冷凍サイクルSは、図中破線で示す空気調和機Kに備えられる。
上記熱伝達機構Dは、冷凍サイクルSを構成する室外熱交換器11と室内熱交換器12との間を接続する冷媒管Pdに直列に設けられる第1の膨張弁9とアキュームレータ8および第2の膨張弁10を備えている。さらに、第1の膨張弁9には開閉弁16が並列に接続される並列回路aが構成され、かつアキュームレータ8と第2の膨張弁10との直列回路に開閉弁15が並列に接続される並列回路bが構成される。
Further, the exhaust heat utilization air conditioning system includes a compressor 14, a four-way switching valve 13, an outdoor heat exchanger 11, and an indoor heat exchanger 12. The heat transfer mechanism D is interposed between the outdoor heat exchanger 11 and the indoor heat exchanger 12, and a refrigeration cycle S for sequentially circulating the refrigerant through the refrigerant pipe Pd is provided. And this refrigeration cycle S is provided in the air conditioner K shown with the broken line in a figure.
The heat transfer mechanism D includes a first expansion valve 9, an accumulator 8, and a second accumulator 8 provided in series with a refrigerant pipe Pd that connects between the outdoor heat exchanger 11 and the indoor heat exchanger 12 constituting the refrigeration cycle S. The expansion valve 10 is provided. Further, the first expansion valve 9 is configured with a parallel circuit a in which an on-off valve 16 is connected in parallel, and an on-off valve 15 is connected in parallel with a series circuit of the accumulator 8 and the second expansion valve 10. A parallel circuit b is configured.

また、上記熱発生用冷凍サイクルHにおいて、一端部が圧縮機3に接続される冷媒管Pcの他端部は、上記アキュームレータ8内に挿入され、ここで気液分離されたうちのガス冷媒を導入して上記圧縮機3に導く、もしくは圧縮機3から冷媒ガスをアキュームレータ8へ導くことができるようになっている。
さらに、上記熱発生用冷凍サイクルHにおいて、一端部が膨張弁7に接続される冷媒管Pcの他端部は、上記アキュームレータ8と第1の膨張弁9および開閉弁16の並列回路aとの間の冷媒管Pdに接続され、膨張弁7から冷媒を上記アキュームレータ8と並列回路aとの間に導く、もしくは逆方向に導くことができるようになっている。
In the heat generating refrigeration cycle H, the other end of the refrigerant pipe Pc, one end of which is connected to the compressor 3, is inserted into the accumulator 8, where the gas refrigerant separated from the gas and liquid is used. The refrigerant gas can be introduced and guided to the compressor 3, or refrigerant gas can be guided from the compressor 3 to the accumulator 8.
Further, in the refrigeration cycle H for heat generation, the other end of the refrigerant pipe Pc whose one end is connected to the expansion valve 7 is connected to the accumulator 8 and the parallel circuit a of the first expansion valve 9 and the on-off valve 16. The refrigerant is connected to the refrigerant pipe Pd therebetween, and the refrigerant can be led from the expansion valve 7 between the accumulator 8 and the parallel circuit a or in the reverse direction.

このようにして構成される熱伝達機構Dは、上記熱発生用冷凍サイクルHと、空気調和機Kの冷凍サイクルSとが共有するところとなり、熱発生用冷凍サイクルHでは通常の冷凍サイクルが構成され、空気調和機Kの冷凍サイクルSでは、いわゆるヒートポンプ式冷凍サイクルを構成している。
このような排熱利用空調システムにおいて、空気調和機Kが冷房運転をなす場合について、図1(A)から説明する。
熱源である分散型電源Nで生成される排熱が、排熱管Pbを介してランキンサイクルRを構成する排熱処理用熱交換器1に導かれ、ここで冷媒管Paに循環する冷媒と熱交換する。熱交換して温度低下した排熱は排熱処理用熱交換器1から導出されて分散型電源Nに導かれる。その一方で、排熱処理用熱交換器1で熱交換して高温高圧化した冷媒ガスは膨張機2へ導かれ、膨張仕事による動力を発生させる。
The heat transfer mechanism D configured in this way is shared by the refrigeration cycle H for heat generation and the refrigeration cycle S of the air conditioner K, and the refrigeration cycle H for heat generation constitutes a normal refrigeration cycle. In the refrigeration cycle S of the air conditioner K, a so-called heat pump refrigeration cycle is configured.
In such an exhaust heat utilization air conditioning system, the case where the air conditioner K performs a cooling operation will be described with reference to FIG.
Exhaust heat generated by the distributed power source N that is a heat source is guided to the heat treatment heat exchanger 1 for exhaust heat treatment constituting the Rankine cycle R through the exhaust heat pipe Pb, and exchanges heat with the refrigerant circulating in the refrigerant pipe Pa. To do. Exhaust heat whose temperature has dropped due to heat exchange is led out from the heat exchanger 1 for waste heat treatment and led to the distributed power source N. On the other hand, the refrigerant gas that has been subjected to heat exchange in the heat exchanger for exhaust heat treatment 1 and increased in temperature and pressure is guided to the expander 2 to generate power by expansion work.

膨張機2で膨張仕事をすることにより冷媒ガスは低圧化し、膨張機サイクル用凝縮器4に導かれて熱発生用熱交換器5と熱交換したあと、ポンプ7に導かれて昇圧される。ついで、再び排熱処理用熱交換器1に導かれて排熱を吸収し、さらに上述の径路を循環して同様の作用を繰り返す。
また、上記膨張機2が圧縮仕事をなすことにより、膨張機2と機械的に連結される熱発生用冷凍サイクルHの圧縮機3を駆動する。圧縮機3から吐出された高温高圧の冷媒ガスは、熱発生用熱交換器5に導かれてランキンサイクルRを構成する膨張機サイクル用凝縮器4と熱交換する。ここで凝縮液化した冷媒は膨張弁7に導かれ中温中圧の状態となって熱伝達機構Dを構成するアキュームレータ8に導入される。
By performing expansion work in the expander 2, the refrigerant gas is reduced in pressure, guided to the expander cycle condenser 4 and exchanged heat with the heat generating heat exchanger 5, and then guided to the pump 7 to be pressurized. Next, it is led again to the heat exchanger for exhaust heat treatment 1 to absorb the exhaust heat, and is further circulated through the above-mentioned path to repeat the same operation.
Further, when the expander 2 performs compression work, the compressor 3 of the refrigeration cycle H for heat generation that is mechanically connected to the expander 2 is driven. The high-temperature and high-pressure refrigerant gas discharged from the compressor 3 is led to the heat generating heat exchanger 5 and exchanges heat with the expander cycle condenser 4 constituting the Rankine cycle R. Here, the condensed and liquefied refrigerant is guided to the expansion valve 7 and is introduced into the accumulator 8 constituting the heat transfer mechanism D in a state of intermediate temperature and intermediate pressure.

一方、空気調和機Kにおいては圧縮機14が駆動され、高温高圧の冷媒ガスが四方切換え弁13を介して室外熱交換器11に導かれ凝縮液化する。この液冷媒は熱伝達機構Dを構成する第1の膨張弁9に導かれて減圧され、中温中圧の状態となってアキュームレータ8に導入される。
すなわち、熱伝達機構Dのアキュームレータ8において熱発生用冷凍サイクルHから導かれる中温中圧の液冷媒と、空気調和機Kの冷凍サイクルSから導かれる中温中圧の液冷媒が混合し、かつ気液分離される。アキュームレータ8において気液分離されたガス冷媒は、熱発生用冷凍サイクルHの冷媒管Pcを介して圧縮機3に吸込まれ、ランキンサイクルRの膨張仕事にともなって圧縮される。そして、上述した径路を再び循環する。
また、アキュームレータ8で分離された液冷媒は、アキュームレータから導出されて第2の膨張弁10に導かれ、再度減圧される。そのたあと、室内熱交換器12に導かれて蒸発し、室内の冷房作用をなす。
On the other hand, in the air conditioner K, the compressor 14 is driven, and the high-temperature and high-pressure refrigerant gas is led to the outdoor heat exchanger 11 via the four-way switching valve 13 to be condensed and liquefied. This liquid refrigerant is guided to the first expansion valve 9 constituting the heat transfer mechanism D and depressurized, and is introduced into the accumulator 8 in an intermediate temperature / intermediate pressure state.
That is, the medium-temperature / medium-pressure liquid refrigerant led from the heat generation refrigeration cycle H in the accumulator 8 of the heat transfer mechanism D and the medium-temperature / medium-pressure liquid refrigerant led from the refrigeration cycle S of the air conditioner K are mixed and Liquid separation. The gas refrigerant separated into gas and liquid in the accumulator 8 is sucked into the compressor 3 through the refrigerant pipe Pc of the heat generating refrigeration cycle H, and is compressed along with the expansion work of the Rankine cycle R. And it circulates through the path mentioned above again.
Further, the liquid refrigerant separated by the accumulator 8 is led out from the accumulator, led to the second expansion valve 10, and decompressed again. After that, it is led to the indoor heat exchanger 12 to evaporate, and the room is cooled.

このようにして、本発明の排熱利用空調システムでは、熱発生用冷凍サイクルHで発生した冷熱を熱交換器を介さずに、熱伝達機構Dを構成するアキュームレータ8において空気調和機Kの冷凍サイクルSへ伝達することができる。しかも、本システムはバッチシステムではなく、また吸着式冷凍機とは相違して系内には空調用冷媒が充満しているために負圧にならずにすみ、メンテナンスが不要であるとともに、システムがコンパクト化するなどの有利な条件を備える。
つぎに、上記排熱利用空調システムにおいて、空気調和機Kが暖房運転をなす場合について、図1(B)から説明する。
このとき分散型電源Nで生成される排熱は、たとえば給湯槽に導かれて給湯に供せられる。すなわち分散型電源Nの排熱はランキンサイクルRへは導かれず、したがってランキンサイクルは駆動しない。
Thus, in the exhaust heat utilization air conditioning system of the present invention, the cold heat generated in the heat generation refrigeration cycle H is refrigerated by the air conditioner K in the accumulator 8 constituting the heat transfer mechanism D without passing through the heat exchanger. Can be transmitted to cycle S. In addition, this system is not a batch system, and unlike the adsorption refrigeration machine, the system is filled with air-conditioning refrigerant, so there is no negative pressure and maintenance is not required. Has advantageous conditions such as compactness.
Next, the case where the air conditioner K performs the heating operation in the exhaust heat utilization air conditioning system will be described with reference to FIG.
At this time, the exhaust heat generated by the distributed power source N is guided to, for example, a hot water tank and used for hot water supply. That is, the exhaust heat of the distributed power source N is not led to the Rankine cycle R, and therefore the Rankine cycle is not driven.

ランキンサイクルRが駆動しないことで膨張機2において膨張仕事が発生しないから、熱発生用冷凍サイクルHを構成する圧縮機3も駆動されず、この冷凍サイクルHにおいて冷媒の循環はない。すなわち、冷房運転時のように熱伝達機構Dに中温中圧の冷媒が導かれることはない。
空気調和機Kにおける冷凍サイクルSの四方切換え弁13が切換るとともに、熱伝達機構Dの開閉弁15が開放される。冷凍サイクルSの圧縮機14が駆動され、ここで圧縮された高温高圧の冷媒ガスが室内熱交換器12に導かれて凝縮熱を放出し、室内の暖房作用をなす。
室内熱交換器12から導出された液冷媒は、熱伝達機構Dにおける開閉弁15に導かれて第1の膨張弁10とアキュームレータ8をバイパスする。さらに、室外熱交換器11に搭載されている膨張弁の有無により、膨張弁9にて減圧させられるか、バイパスさせられ、室外熱交換器11に導かれて蒸発する。再び四方切換え弁13を介して圧縮機14に吸込まれて圧縮され、上述の径路の循環する。
すなわち、第1の実施の形態における暖房運転時では、分散型電源Nの排熱を利用しないところから、空気調和機Kにおいては純然たるヒートポンプ式の冷凍サイクルSによるものとなる。
Since the Rankine cycle R is not driven, expansion work is not generated in the expander 2, so the compressor 3 constituting the heat generating refrigeration cycle H is not driven, and no refrigerant is circulated in the refrigeration cycle H. That is, the medium-temperature and medium-pressure refrigerant is not led to the heat transfer mechanism D as in the cooling operation.
While the four-way switching valve 13 of the refrigeration cycle S in the air conditioner K is switched, the on-off valve 15 of the heat transfer mechanism D is opened. The compressor 14 of the refrigeration cycle S is driven, and the high-temperature and high-pressure refrigerant gas compressed here is led to the indoor heat exchanger 12 to release the condensation heat, and the room is heated.
The liquid refrigerant derived from the indoor heat exchanger 12 is guided to the opening / closing valve 15 in the heat transfer mechanism D and bypasses the first expansion valve 10 and the accumulator 8. Further, depending on the presence or absence of the expansion valve mounted on the outdoor heat exchanger 11, the pressure is reduced or bypassed by the expansion valve 9, and is led to the outdoor heat exchanger 11 to evaporate. Again, it is sucked into the compressor 14 through the four-way switching valve 13 and compressed, and circulates in the above-mentioned path.
That is, during the heating operation in the first embodiment, the exhaust heat of the distributed power supply N is not used, and therefore the air conditioner K is based on the pure heat pump refrigeration cycle S.

図2は、本発明における第2の実施の形態に係る排熱利用空調システムの構成図であり、図2(A)は冷房運転時、図2(B)は暖房運転時を示している。
後述するように、先に図1で説明した第1の実施の形態と相違する部位にのみ説明し、同一部位については同番号を付して新たな説明を省略する。
熱発生用冷凍サイクルHaを構成する圧縮機3の吐出側に四方切換え弁20が設けられる。この四方切換え弁の残りのポートには、圧縮機3の吸込み側と、熱発生用室外熱交換器5および熱伝達機構Daのアキュームレータ8にそれぞれ連通する冷媒管Pcが接続される。
FIG. 2 is a configuration diagram of an exhaust heat utilization air conditioning system according to the second embodiment of the present invention, in which FIG. 2 (A) shows a cooling operation and FIG. 2 (B) shows a heating operation.
As will be described later, only parts different from those of the first embodiment described above with reference to FIG. 1 will be described, and the same parts will be denoted by the same reference numerals and new description will be omitted.
A four-way switching valve 20 is provided on the discharge side of the compressor 3 constituting the heat generating refrigeration cycle Ha. The remaining ports of the four-way switching valve are connected to the suction side of the compressor 3 and the refrigerant pipes Pc communicating with the heat generating outdoor heat exchanger 5 and the accumulator 8 of the heat transfer mechanism Da, respectively.

また、圧縮機3の吐出側と四方切換え弁20とを連通する冷媒管Pcと、ランキンサイクルRaの膨張機2と膨張機サイクル用凝縮器4とを連通する冷媒管Paとの間には、第3の開閉弁21を備えたバイパス管Peが接続される。
ランキンサイクルRaにおける膨張機サイクル用凝縮器4の前後側冷媒管Paには補助開閉弁17,18が設けられる。一方の補助開閉弁18とポンプ6との間にバイパス管Pfの一端部が接続され、熱発生用冷凍サイクルHaの膨張弁7と熱伝達機構Daとを連通する冷媒管Pcの中途部にバイパス管Pfの他端部が接続され、このバイパス管Pfの中途部には補助開閉弁19が設けられる。
Further, between the refrigerant pipe Pc that communicates the discharge side of the compressor 3 and the four-way switching valve 20 and the refrigerant pipe Pa that communicates the expander 2 of Rankine cycle Ra and the condenser 4 for expander cycle, A bypass pipe Pe provided with a third on-off valve 21 is connected.
Auxiliary on-off valves 17 and 18 are provided in the front and rear refrigerant pipes Pa of the expander cycle condenser 4 in the Rankine cycle Ra. One end of a bypass pipe Pf is connected between one auxiliary on-off valve 18 and the pump 6, and is bypassed in the middle of the refrigerant pipe Pc that communicates the expansion valve 7 of the refrigeration cycle Ha for heat generation and the heat transfer mechanism Da. The other end of the pipe Pf is connected, and an auxiliary opening / closing valve 19 is provided in the middle of the bypass pipe Pf.

熱伝達機構Daは、第1の膨張弁9と、アキュームレータ8と、第2の膨張弁10および開閉弁16の並列回路cが、冷凍サイクルSの室外熱交換器11と室内熱交換器12との間に直列に設けられる。
上記アキュームレータ8には、先に説明したように熱発生用冷凍サイクルHaにおける四方切換え弁20と連通する冷媒管Pcが挿入され、かつ上記バイパス管Pfが接続される熱発生用冷凍サイクルHaの冷媒管Pcが挿入される。この冷媒管Pcはアキュームレータ8内において分離された液冷媒を導入し、もしくは冷媒管Pcから液冷媒を導出するようになっている。
The heat transfer mechanism Da includes a first expansion valve 9, an accumulator 8, a parallel circuit c of the second expansion valve 10 and the on-off valve 16, an outdoor heat exchanger 11 and an indoor heat exchanger 12 in the refrigeration cycle S. Are provided in series.
As described above, the accumulator 8 is inserted with the refrigerant pipe Pc communicating with the four-way switching valve 20 in the heat generation refrigeration cycle Ha, and the refrigerant of the heat generation refrigeration cycle Ha to which the bypass pipe Pf is connected. Tube Pc is inserted. The refrigerant pipe Pc introduces the liquid refrigerant separated in the accumulator 8, or leads out the liquid refrigerant from the refrigerant pipe Pc.

さらに熱伝達機構Daは、一端部がアキュームレータ8の側部に接続され、他端部が上記冷媒管Pcと冷凍サイクルSの冷媒管Pdとの合流点から上記第1の膨張弁9との間に接続されるバイパス管Pgを備えていて、このバイパス管Pgには開閉弁15が設けられる。
図2(A)に示す冷房運転時は、ランキンサイクルRaの膨張機2吐出側と熱発生用冷凍サイクルHaの圧縮機3吐出側とを連通するバイパス管Peに設けられる開閉弁21および、冷媒管Pfの中途部に設けられる開閉弁19は閉成される。ただし、膨張機サイクル用凝縮器4の前後に設けられる補助開閉弁17,18は開放される。したがって、ランキンサイクルRにおいては第1の実施の形態と全く同一の作用をなすので、ここでは新たな説明は省略する。
Furthermore, the heat transfer mechanism Da has one end connected to the side of the accumulator 8 and the other end between the refrigerant pipe Pc and the refrigerant pipe Pd of the refrigeration cycle S and the first expansion valve 9. The bypass pipe Pg connected to is provided, and an open / close valve 15 is provided in the bypass pipe Pg.
At the time of the cooling operation shown in FIG. 2 (A), the opening / closing valve 21 provided in the bypass pipe Pe that connects the expander 2 discharge side of the Rankine cycle Ra and the compressor 3 discharge side of the heat generating refrigeration cycle Ha, and the refrigerant The on-off valve 19 provided in the middle part of the pipe Pf is closed. However, the auxiliary on-off valves 17 and 18 provided before and after the expander cycle condenser 4 are opened. Accordingly, the Rankine cycle R has exactly the same operation as that of the first embodiment, and a new description is omitted here.

熱発生用冷凍サイクルHaにおいては、ランキンサイクルRaの膨張機2によって駆動される圧縮機3から吐出される冷媒ガスが、新たに設けられた四方切換え弁20を介して熱発生用熱交換器5に導かれ、ランキンサイクルRaの膨張機サイクル用凝縮器4に導かれる冷媒と熱交換する。
そして、膨張弁7を介して熱伝達機構Daに導かれ、アキュームレータ8で気液分離される。ガス冷媒のみアキュームレータ8から四方切換え弁20を介して圧縮機3に吸込まれる。一方、空気調和機Kの冷凍サイクルSにおいては圧縮機14が駆動され、先に第1の実施の形態での冷房運転時と全く同一の作用をなし、同一の効果を得られる。したがって、これ以上の冷凍サイクルSでの作用の説明は省略する。
In the heat generation refrigeration cycle Ha, the refrigerant gas discharged from the compressor 3 driven by the expander 2 of the Rankine cycle Ra is supplied to the heat generation heat exchanger 5 via the newly provided four-way switching valve 20. And exchanges heat with the refrigerant guided to the expander cycle condenser 4 of the Rankine cycle Ra.
Then, it is guided to the heat transfer mechanism Da through the expansion valve 7 and is separated into gas and liquid by the accumulator 8. Only the gas refrigerant is sucked into the compressor 3 from the accumulator 8 through the four-way switching valve 20. On the other hand, in the refrigeration cycle S of the air conditioner K, the compressor 14 is driven and performs the same operation as in the cooling operation in the first embodiment, and the same effect can be obtained. Therefore, further explanation of the operation in the refrigeration cycle S is omitted.

図2(B)に示す暖房運転時は、以下に述べるようになる。
ランキンサイクルRaの補助開閉弁17,18は閉成され、ランキンサイクルRaと熱発生用冷凍サイクルHaとを連通する開閉弁21および開閉弁19は開放される。そして、分散型電源Nの排熱とランキンサイクルRaの排熱処理用熱交換器1に導かれる冷媒が熱交換して膨張機2に導かれる。熱交換して温度低下した排熱は排熱処理用熱交換器1から導出され、再び分散型電源Nに導かれる一方で、上記熱交換器1で高温高圧化した冷媒ガスが膨張機2へ導かれ、膨張仕事による動力を発生させる。
膨張機2で膨張仕事をすることにより低圧化した冷媒ガスは、全てバイパス管Peから開閉弁21を介して熱発生用冷凍サイクルHaへ導かれ、膨張機サイクル用凝縮器4には戻らない。ランキンサイクルRaから熱発生用冷凍サイクルHaへ導かれた冷媒ガスは、この冷凍サイクルの圧縮機3から吐出される高温高圧のガス冷媒と混合して四方切換え弁20に導かれる。四方切換え弁20は冷房運転時とは切換っていて、混合冷媒は四方切換え弁を介してアキュームレータ8に導かれ気液分離される。
The heating operation shown in FIG. 2 (B) will be described below.
The auxiliary on-off valves 17 and 18 of the Rankine cycle Ra are closed, and the on-off valve 21 and the on-off valve 19 that connect the Rankine cycle Ra and the heat generating refrigeration cycle Ha are opened. And the refrigerant | coolant guide | induced to the heat exchanger 1 for exhaust heat processing of the distributed power supply N and the heat processing 1 of Rankine cycle Ra heat-exchanges, and is guide | induced to the expander 2. FIG. Exhaust heat whose temperature has decreased due to heat exchange is led out from the heat exchanger 1 for waste heat treatment, and again led to the distributed power source N. On the other hand, the refrigerant gas increased in temperature and pressure in the heat exchanger 1 is led to the expander 2. It generates power from expansion work.
The refrigerant gas whose pressure has been reduced by performing expansion work in the expander 2 is all guided from the bypass pipe Pe to the heat generating refrigeration cycle Ha via the on-off valve 21 and does not return to the expander cycle condenser 4. The refrigerant gas led from the Rankine cycle Ra to the heat generating refrigeration cycle Ha is mixed with the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 of the refrigeration cycle and led to the four-way switching valve 20. The four-way switching valve 20 is switched from that during the cooling operation, and the mixed refrigerant is guided to the accumulator 8 through the four-way switching valve to be gas-liquid separated.

一方、空気調和機Kの冷凍サイクルSにおいては、圧縮機14が駆動されて高温高圧の冷媒ガスが室内熱交換器12に導かれて凝縮し、凝縮熱を放出して室内の暖房作用をなす。室内熱交換器12から導出される液冷媒は、第2の膨張弁10をバイパスして開閉弁16からアキュームレータ8に導かれ気液分離される。
このアキュームレータ8には、先に説明したように熱発生用冷凍サイクルHaから、ランキンサイクルRaとの混合冷媒が導かれていて、アキュームレータ8において冷凍サイクルSと互いに直接接触による熱交換を行う。
冷凍サイクルSの液冷媒はアキュームレータ8で吸熱し、温度上昇してアキュームレータから導出され、さらにアキュームレータ8で分離されたガス冷媒が開閉弁15を介して導かれ混合する。そして、第1の膨張弁7において減圧され、室外熱交換器11で蒸発してから四方切換え弁13を介して圧縮機14に吸込まれる。
On the other hand, in the refrigeration cycle S of the air conditioner K, the compressor 14 is driven, and the high-temperature and high-pressure refrigerant gas is led to the indoor heat exchanger 12 to condense, and the condensed heat is released to perform the indoor heating function. . The liquid refrigerant led out from the indoor heat exchanger 12 bypasses the second expansion valve 10 and is led from the on-off valve 16 to the accumulator 8 to be separated into gas and liquid.
As described above, the accumulator 8 is supplied with the refrigerant mixture with the Rankine cycle Ra from the refrigeration cycle Ha for heat generation, and performs heat exchange with the refrigeration cycle S in direct contact with the accumulator 8.
The liquid refrigerant in the refrigeration cycle S absorbs heat in the accumulator 8, rises in temperature, is led out from the accumulator, and the gas refrigerant separated in the accumulator 8 is led through the on-off valve 15 and mixed. Then, the pressure is reduced in the first expansion valve 7, evaporated in the outdoor heat exchanger 11, and then sucked into the compressor 14 through the four-way switching valve 13.

一方、アキュームレータ8から導出される液冷媒の一部は、熱発生用冷凍サイクルHaの膨張弁7を介して熱発生用室外熱交換器5に導かれ、さらに四方切換え弁20から膨張機2で駆動される圧縮機3に吸込まれ、上述の径路を循環する。
アキュームレータ8から導出される液冷媒の一部は、補助開閉弁19を介してランキンサイクルRaのポンプ6に導かれる。ポンプ6に導かれた冷媒は、昇圧されて排熱処理用熱交換器1へ流入し、以上の径路を循環する。
このようにして、暖房運転時にはランキンサイクルRaと熱発生用冷凍サイクルHaとの混合冷媒を熱伝達機構Daに導いて、空気調和機Kの冷凍サイクルSに導かれる冷媒へ合流混合させ、空気調和機Kの冷凍サイクルSに対して温熱を熱伝達する。
On the other hand, a part of the liquid refrigerant led out from the accumulator 8 is led to the heat generation outdoor heat exchanger 5 through the expansion valve 7 of the heat generation refrigeration cycle Ha, and further from the four-way switching valve 20 to the expander 2. It is sucked into the driven compressor 3 and circulates in the above-mentioned path.
A part of the liquid refrigerant led out from the accumulator 8 is guided to the pump 6 of the Rankine cycle Ra via the auxiliary on-off valve 19. The refrigerant guided to the pump 6 is pressurized and flows into the exhaust heat treatment heat exchanger 1 and circulates in the above-described path.
In this way, during the heating operation, the mixed refrigerant of Rankine cycle Ra and heat generation refrigeration cycle Ha is guided to heat transfer mechanism Da and merged and mixed with the refrigerant guided to refrigeration cycle S of air conditioner K, thereby air conditioning. Heat is transferred to the refrigeration cycle S of the machine K.

したがって、分散型電源Nにおける高温の排熱を空気調和機Kの暖房運転に用いることができて、暖房効率の向上化を得られる。しかも、熱発生用冷凍サイクルHaにて外気から吸熱するため、排熱処理用熱交換器1に流入した以上の熱を空調に役立たせることができる。
図3は、本発明における第2の実施の形態での変形例に係る排熱利用空調システムの構成図であり、図3(A)は冷房運転時、図3(B)は暖房運転時を示している。
後述するように、先に図2で説明した第2の実施の形態と相違する部位にのみ説明し、同一部位については同番号を付して新たな説明を省略する。
熱伝達機構Dbは、熱発生用冷凍サイクルHaの四方切換え弁20と熱伝達機構Dbのアキュームレータ8とを連通する冷媒管Pcの中途部に開閉弁22が設けられる。そして、開閉弁22と四方切換え弁20との間にバイパス管Phの一端部が接続される。バイパス管Phの他端部は冷凍サイクルSの室内熱交換器12をバイパスして、圧縮機14の吐出側に接続される。
Therefore, the high-temperature exhaust heat in the distributed power source N can be used for the heating operation of the air conditioner K, and the heating efficiency can be improved. In addition, since heat is absorbed from the outside air in the heat generation refrigeration cycle Ha, more heat that has flowed into the exhaust heat treatment heat exchanger 1 can be used for air conditioning.
FIG. 3 is a configuration diagram of an exhaust heat utilization air conditioning system according to a modification of the second embodiment of the present invention. FIG. 3 (A) shows a cooling operation, and FIG. 3 (B) shows a heating operation. Show.
As will be described later, only portions different from those of the second embodiment described above with reference to FIG. 2 will be described, and the same portions will be denoted by the same reference numerals and new description will be omitted.
The heat transfer mechanism Db is provided with an on-off valve 22 in the middle of the refrigerant pipe Pc that communicates the four-way switching valve 20 of the heat generating refrigeration cycle Ha and the accumulator 8 of the heat transfer mechanism Db. One end of the bypass pipe Ph is connected between the on-off valve 22 and the four-way switching valve 20. The other end of the bypass pipe Ph bypasses the indoor heat exchanger 12 of the refrigeration cycle S and is connected to the discharge side of the compressor 14.

図3(A)に示す冷房運転時は、開閉弁22が開放され、開閉弁23は閉成される以外に、先に図2(A)で説明したように開閉弁21および開閉弁19が閉成され、補助開閉弁17,18は開放される。したがって、ランキンサイクルRと、熱発生用冷凍サイクルHaおよび冷凍サイクルSにおいては第2の実施の形態と全く同一の作用をなし、同一の効果が得られるので、ここでは新たな説明は省略する。
図3(B)に示す暖房運転時は、以下に述べるようになる。
冷房運転時とは逆に、開閉弁22が閉成され、開閉弁23は開放される。また、ランキンサイクルRaの補助開閉弁17,18は閉成され、ランキンサイクルRaと熱発生用冷凍サイクルHaとを連通する開閉弁21および開閉弁19は開放される。
In the cooling operation shown in FIG. 3A, the on-off valve 22 is opened and the on-off valve 23 is closed. The auxiliary on-off valves 17 and 18 are opened. Accordingly, the Rankine cycle R, the heat generating refrigeration cycle Ha, and the refrigeration cycle S perform the same operations as those of the second embodiment, and the same effects can be obtained. Therefore, a new description is omitted here.
During the heating operation shown in FIG.
Contrary to the cooling operation, the on-off valve 22 is closed and the on-off valve 23 is opened. The auxiliary open / close valves 17 and 18 of the Rankine cycle Ra are closed, and the open / close valve 21 and the open / close valve 19 that connect the Rankine cycle Ra and the heat generating refrigeration cycle Ha are opened.

分散型電源Nの排熱とランキンサイクルRaの排熱処理用熱交換器1に導かれる冷媒が熱交換して膨張機2に導かれる。熱交換して温度低下した排熱は排熱処理用熱交換器1から排出され、再び分散型電源Nに導かれる一方で、上記熱交換器1で高温高圧化した冷媒ガスが膨張機2へ導かれ、膨張仕事による動力を発生させる。
膨張機2で膨張仕事をすることにより低圧化した冷媒ガスは、全てバイパス管Peから開閉弁21を介して熱発生用冷凍サイクルHaへ導かれ、膨張機サイクル用凝縮器4には戻らない。ランキンサイクルRaから熱発生用冷凍サイクルHaへ導かれた冷媒ガスは、この冷凍サイクルの圧縮機3から吐出される高温高圧のガス冷媒と混合して四方切換え弁20に導かれる。
Exhaust heat of the distributed power source N and the refrigerant guided to the heat exchanger 1 for exhaust heat treatment of the Rankine cycle Ra are heat-exchanged and guided to the expander 2. Exhaust heat whose temperature has dropped due to heat exchange is exhausted from the heat exchanger 1 for exhaust heat treatment, and is led to the distributed power source N again. On the other hand, the refrigerant gas increased in temperature and pressure by the heat exchanger 1 is led to the expander 2. It generates power from expansion work.
The refrigerant gas whose pressure has been reduced by performing expansion work in the expander 2 is all guided from the bypass pipe Pe to the heat generating refrigeration cycle Ha via the on-off valve 21 and does not return to the expander cycle condenser 4. The refrigerant gas led from the Rankine cycle Ra to the heat generating refrigeration cycle Ha is mixed with the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 of the refrigeration cycle and led to the four-way switching valve 20.

混合冷媒は、四方切換え弁20から新たに設けられたバイパス管Phに導かれ、開閉弁23を通過して冷凍サイクルSにおける圧縮機14から吐出される高温高圧の冷媒ガスと合流混合する。
したがって、充分な冷媒量で、かつ高温高圧の冷媒ガスが室内熱交換器12に導かれて凝縮し、凝縮熱を放出して室内の暖房作用をなす。室内熱交換器12から導出される液冷媒は、第2の膨張弁10をバイパスして開閉弁16からアキュームレータ8に導かれ気液分離される。
アキュームレータ8で分離された液冷媒は第1の膨張弁9に導かれて減圧され、室外熱交換器11に導かれ蒸発する。そして、四方切換え弁13から圧縮機14に吸込まれて上述の径路を循環する。
The mixed refrigerant is guided from the four-way switching valve 20 to the newly provided bypass pipe Ph, and is mixed and mixed with the high-temperature and high-pressure refrigerant gas discharged from the compressor 14 in the refrigeration cycle S through the on-off valve 23.
Accordingly, a sufficient amount of refrigerant and high-temperature and high-pressure refrigerant gas is led to the indoor heat exchanger 12 to condense, and the condensation heat is released to perform the indoor heating operation. The liquid refrigerant led out from the indoor heat exchanger 12 bypasses the second expansion valve 10 and is led from the on-off valve 16 to the accumulator 8 to be separated into gas and liquid.
The liquid refrigerant separated by the accumulator 8 is led to the first expansion valve 9 to be depressurized, and led to the outdoor heat exchanger 11 to evaporate. And it is sucked into the compressor 14 from the four-way switching valve 13 and circulates in the above-mentioned path.

一方、アキュームレータ8から導出される液冷媒の一部は、熱発生用冷凍サイクルHaの膨張弁7を介して熱発生用室外熱交換器5に導かれ、さらに四方切換え弁20から膨張機で駆動される圧縮機3に吸込まれ上述の径路を循環する。
アキュームレータ8から導出される液冷媒の一部は、バイパス管Pfから補助開閉弁19を介しランキンサイクルRaのポンプ6に導かれる。ポンプ6に導かれた冷媒は昇圧されて排熱処理用熱交換器1へ流入し、以上の径路を循環する。
On the other hand, a part of the liquid refrigerant led out from the accumulator 8 is led to the heat generating outdoor heat exchanger 5 through the expansion valve 7 of the heat generating refrigeration cycle Ha, and further driven by the expander from the four-way switching valve 20. Is sucked into the compressor 3 to be circulated through the above-mentioned path.
A part of the liquid refrigerant led out from the accumulator 8 is led from the bypass pipe Pf to the pump 6 of the Rankine cycle Ra via the auxiliary on-off valve 19. The refrigerant guided to the pump 6 is pressurized and flows into the exhaust heat treatment heat exchanger 1 and circulates in the above-described path.

このようにして、暖房運転時にはランキンサイクルRaと熱発生用冷凍サイクルHaとの混合冷媒を、熱伝達機構Dbを介して冷凍サイクルSにおける圧縮機14で圧縮され吐出される冷媒に合流混合させ、冷凍サイクルSに対して温熱を熱伝達する。
したがって、分散型電源Nにおける高温の排熱を空気調和機Kの暖房運転に用いることができて、暖房効率の向上化を得られる。しかも、熱発生用冷凍サイクルHaにて外気から吸熱するため、排熱処理用熱交換器1に流入した以上の熱を空調に役立たせることができる。
In this way, during the heating operation, the mixed refrigerant of the Rankine cycle Ra and the heat generating refrigeration cycle Ha is merged and mixed with the refrigerant compressed and discharged by the compressor 14 in the refrigeration cycle S via the heat transfer mechanism Db. Heat is transferred to the refrigeration cycle S.
Therefore, the high-temperature exhaust heat in the distributed power source N can be used for the heating operation of the air conditioner K, and the heating efficiency can be improved. In addition, since heat is absorbed from the outside air in the heat generation refrigeration cycle Ha, more heat that has flowed into the exhaust heat treatment heat exchanger 1 can be used for air conditioning.

図4は、図3で説明した第2の実施の形態での変形例を基本的に採用し、かつ一部を追加した排熱利用空調システムの構成図であり、図4(A)は冷房運転時、図4(B)は暖房運転時を示している。
後述するように、先に説明した図3とは相違する部位にのみ説明し、同一部位については同番号を付して新たな説明を省略する。
すなわち、ここではランキンサイクルRaを構成する膨張機2に接続する冷媒管Paに対して、膨張機をバイパスするバイパス管Piが設けられていて、このバイパス管は膨張弁24を備えている。
FIG. 4 is a configuration diagram of an exhaust heat utilization air conditioning system that basically employs a modification of the second embodiment described in FIG. 3 and adds a part thereof. FIG. During operation, FIG. 4B shows the heating operation.
As will be described later, only portions different from those described above with reference to FIG. 3 will be described, and the same portions will be denoted by the same reference numerals and new description will be omitted.
That is, here, a bypass pipe Pi that bypasses the expander is provided for the refrigerant pipe Pa connected to the expander 2 that constitutes the Rankine cycle Ra, and the bypass pipe includes an expansion valve 24.

図4(A)に冷房運転時の状態を示し、図4(B)に暖房運転時の状態を示している。いずれも先に図3(A)で説明した冷房運転状態と、図3(B)で説明した暖房運転状態と同一であり、新たな説明は省略する。
図5(A)(B)は、図4(A)(B)の冷暖房運転時におけるそれぞれの制御フローチャートを示している。
図5(A)は、冷房運転時の制御フローチャート図であって、スタートからステップS10で冷房運転要求があると、冷房運転が開始される。ついで、ステップS11に移って空気調和機Kにおける冷凍サイクルSを構成する室外熱交換器11の温度、すなわち凝縮温度を検出して、その検出信号を制御部(制御手段)30へ送る。
FIG. 4A shows a state during cooling operation, and FIG. 4B shows a state during heating operation. Both are the same as the cooling operation state previously described in FIG. 3A and the heating operation state described in FIG.
5 (A) and 5 (B) show respective control flowcharts during the cooling / heating operation of FIGS. 4 (A) and 4 (B).
FIG. 5A is a control flowchart during cooling operation. When there is a cooling operation request in step S10 from the start, the cooling operation is started. Next, the process proceeds to step S11, where the temperature of the outdoor heat exchanger 11 constituting the refrigeration cycle S in the air conditioner K, that is, the condensation temperature is detected, and the detection signal is sent to the control unit (control means) 30.

つぎに、ステップS12に移って、制御部30は検出した室外熱交換器11での凝縮温度に応じて、ランキンサイクルRaを構成するポンプ6の流量を可変する制御信号を送る。そのため、ランキンサイクルRaを循環する冷媒が排熱処理用熱交換器1において分散型電源Nから得られる排熱の流入量が可変となる。
すなわち、ランキンサイクルRaのポンプ6流量を制御することで、膨張機2における膨張仕事量が左右され、熱伝達機構Dbを介して空気調和機Kの冷凍サイクルSに伝熱する冷熱量を制御可能とする。
図5(B)は暖房運転時のフローチャート図であって、スタートからステップS1において暖房運転要求があると、暖房運転が開始される。ついで、ステップS2に移って暖房運転を継続することにより室内の負荷が軽くなり、空気調和機Kに対する要求運転周波数(すなわち、要求能力)が、予め制御部30に記憶させた第1の設定値c1よりも小さくなった状態(Yes)でステップS3に移って冷凍サイクルSの圧縮機14の運転を停止させる。
Next, moving to step S12, the control unit 30 sends a control signal for changing the flow rate of the pump 6 constituting the Rankine cycle Ra according to the detected condensation temperature in the outdoor heat exchanger 11. Therefore, the inflow amount of exhaust heat obtained from the distributed power source N by the refrigerant circulating through the Rankine cycle Ra in the exhaust heat treatment heat exchanger 1 is variable.
That is, by controlling the flow rate of the pump 6 in the Rankine cycle Ra, the work of expansion in the expander 2 is influenced, and the amount of cold heat transferred to the refrigeration cycle S of the air conditioner K can be controlled via the heat transfer mechanism Db. And
FIG. 5B is a flowchart at the time of the heating operation, and when there is a heating operation request in step S1 from the start, the heating operation is started. Next, the process proceeds to step S2 and the heating operation is continued to reduce the load in the room, and the required operating frequency (that is, the required capacity) for the air conditioner K is stored in the control unit 30 in advance. In a state where it is smaller than c1 (Yes), the process proceeds to step S3, and the operation of the compressor 14 of the refrigeration cycle S is stopped.

この状態では、ランキンサイクルRaにおいて分散型電源Nから排熱を吸収して膨張機2で膨張仕事を継続しており、熱発生用冷凍サイクルHaの圧縮機3を駆動している。したがって、圧縮機3から四方切換え弁20とバイパス管Phおよび開閉弁23を介して高温高圧の冷媒が冷凍サイクルSに導かれ、室内熱交換器12で凝縮することは変りがない。
このようにして、空気調和機Kに対する要求運転周波数が、予め制御部30に記憶させた第1の設定値c1よりも小さくなった状態でも、冷凍サイクルSでの暖房運転が必要最小限だけ継続することになる。
そして、ステップS4に移って、要求運転周波数に応じて膨張機2とバイパスして設けられる膨張弁24のバイパス流量を可変させて、室外熱交換器11からの吸熱量をコントロールする。
In this state, exhaust heat is absorbed from the distributed power source N in the Rankine cycle Ra, and the expansion work is continued in the expander 2, and the compressor 3 of the refrigeration cycle Ha for heat generation is driven. Therefore, the high-temperature and high-pressure refrigerant is guided from the compressor 3 to the refrigeration cycle S through the four-way switching valve 20, the bypass pipe Ph and the opening / closing valve 23 and condensed in the indoor heat exchanger 12.
In this way, even when the required operating frequency for the air conditioner K is smaller than the first set value c1 stored in the control unit 30 in advance, the heating operation in the refrigeration cycle S is continued as much as necessary. Will do.
Then, the process proceeds to step S4, and the amount of heat absorbed from the outdoor heat exchanger 11 is controlled by varying the bypass flow rate of the expansion valve 24 provided to be bypassed with the expander 2 according to the required operating frequency.

この状態が継続すると、室内負荷がさらに小さくなり、空気調和機Kに対する要求運転周波数が、予め制御部30に記憶させた第2の設定値c2よりも小さくなる。そこで、ステップS5に移って、空気調和機Kに対する要求設定周波数が予め制御部30に記憶させた第2の設定値c2よりも小さくなったことを確認(Yes)する。
その後、ステップS6に移ってバイパス管Piの膨張弁24を全開するよう制御して全流量をバイパス管Piに流通させるとともに、要求周波数に応じてポンプ流量および排熱からの吸熱量をコントロールする。これにより、空気調和機Kにおける運転コストの節約が可能となる。
When this state continues, the indoor load is further reduced, and the required operating frequency for the air conditioner K becomes smaller than the second set value c2 stored in the control unit 30 in advance. Then, it moves to step S5 and confirms that the required setting frequency with respect to the air conditioner K became smaller than the 2nd setting value c2 memorize | stored in the control part 30 previously (Yes).
Thereafter, the process proceeds to step S6, where the expansion valve 24 of the bypass pipe Pi is controlled to be fully opened to distribute the entire flow rate to the bypass pipe Pi, and the heat flow rate from the pump flow rate and exhaust heat is controlled according to the required frequency. Thereby, the operating cost in the air conditioner K can be saved.

なお、ステップS1で要求設定周波数が予め定められた設定値c1よりも大きい場合(No)では、ステップS7に移って空気調和機Kの冷凍サイクルSを稼動する。
ステップS8では要求周波数に応じて空気調和機Kの冷凍サイクルSを構成する圧縮機14の運転周波数を変更制御し、ステップS1の前の位置に戻って、再びステップS1からのフローを繰り返す。
また、ステップS5で要求設定周波数が予め定められた設定値c2よりも大きい場合は、ステップS4の前の位置に戻って、再びステップS4からのフローを繰り返す。
When the required set frequency is larger than the preset set value c1 in step S1 (No), the process proceeds to step S7 and the refrigeration cycle S of the air conditioner K is operated.
In step S8, the operation frequency of the compressor 14 constituting the refrigeration cycle S of the air conditioner K is changed and controlled in accordance with the required frequency, the flow returns to the position before step S1, and the flow from step S1 is repeated again.
If the required set frequency is greater than the predetermined set value c2 in step S5, the flow returns to the position before step S4 and the flow from step S4 is repeated again.

本発明における第1の実施の形態を示す、排熱利用空調システムの構成図であって、(A)は冷房運転時、(B)は暖房運転時の冷媒循環を説明する図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the exhaust-heat utilization air conditioning system which shows 1st Embodiment in this invention, Comprising: (A) is at the time of cooling operation, (B) is a figure explaining the refrigerant | coolant circulation at the time of heating operation. 本発明における第2の実施の形態を示す、排熱利用空調システムの構成図であって、(A)は冷房運転時、(B)は暖房運転時の冷媒循環を説明する図。It is a block diagram of the exhaust-heat utilization air-conditioning system which shows 2nd Embodiment in this invention, Comprising: (A) is at the time of cooling operation, (B) is a figure explaining the refrigerant | coolant circulation at the time of heating operation. 同実施の形態の変形例を示す、排熱利用空調システムの構成図であって、(A)は冷房運転時、(B)は暖房運転時の冷媒循環を説明する図。It is a block diagram of the exhaust-heat utilization air-conditioning system which shows the modification of the embodiment, Comprising: (A) is a figure at the time of cooling operation, (B) is a figure explaining the refrigerant | coolant circulation at the time of heating operation. 同実施の形態のさらに異なる変形例を示す、排熱利用空調システムの構成図であって、(A)は冷房運転時、(B)は暖房運転時の冷媒循環を説明する図。It is a block diagram of the exhaust-heat utilization air-conditioning system which shows the further different modification of the embodiment, Comprising: (A) is a figure at the time of cooling operation, (B) is a figure explaining the refrigerant | coolant circulation at the time of heating operation. 同実施の形態の同変形例における制御方法を説明する図であって、(A)は冷房運転時、(B)は暖房運転時の制御フローチャート図。It is a figure explaining the control method in the modification of the embodiment, (A) at the time of cooling operation, (B) is a control flowchart diagram at the time of heating operation.

符号の説明Explanation of symbols

N…分散型電源(熱源)、1…排熱処理用熱交換器、2…膨張機、4…膨張機サイクル用凝縮器、6…ポンプ、R…ランキンサイクル、3…圧縮機、5…熱発生用室外熱交換器、7…膨張弁、H…熱発生用冷凍サイクル、14…圧縮機、13…四方切換え弁、11…室外熱交換器、12…室内熱交換器、S…冷凍サイクル、K…空気調和機、D…熱伝達機構(熱伝達手段)、30…制御部(制御手段)。   N ... distributed power source (heat source), 1 ... heat exchanger for exhaust heat treatment, 2 ... expander, 4 ... condenser for expander cycle, 6 ... pump, R ... Rankine cycle, 3 ... compressor, 5 ... heat generation Outdoor heat exchanger, 7 ... expansion valve, H ... refrigeration cycle for heat generation, 14 ... compressor, 13 ... four-way switching valve, 11 ... outdoor heat exchanger, 12 ... indoor heat exchanger, S ... refrigeration cycle, K ... air conditioner, D ... heat transfer mechanism (heat transfer means), 30 ... control unit (control means).

Claims (3)

熱源から導かれる排熱と熱交換する排熱処理用熱交換器、膨張機、膨張機サイクル用凝縮器およびポンプが順次連通される排熱駆動型のランキンサイクルと、
この排熱駆動型のランキンサイクルにおける上記膨張機と機械的に連結され、膨張機によって駆動される圧縮機、上記膨張機サイクル用凝縮器と並設される熱発生用室外熱交換器および膨張弁が順次連通される熱発生用冷凍サイクルと、
圧縮機、四方切換え弁、室外熱交換器および室内熱交換器が順次連通される冷凍サイクルを備えた空気調和機と、
この空気調和機の冷凍サイクルに導かれる冷媒に対し上記熱発生用冷凍サイクルに導かれる冷媒を合流混合させて、空気調和機の冷凍サイクルへ熱伝達する熱伝達手段と
を具備することを特徴とする排熱利用空調システム。
A heat exchanger for exhaust heat treatment for exchanging heat with exhaust heat derived from a heat source, an expander, a condenser for an expander cycle, and an exhaust heat driven Rankine cycle in which a pump is sequentially communicated;
A compressor that is mechanically connected to and driven by the expander in the exhaust heat driven Rankine cycle, an outdoor heat exchanger for heat generation and an expansion valve that are juxtaposed with the condenser for the expander cycle Refrigeration cycle for heat generation that is sequentially communicated,
An air conditioner having a refrigeration cycle in which a compressor, a four-way switching valve, an outdoor heat exchanger and an indoor heat exchanger are sequentially communicated;
Heat transfer means for transferring heat to the refrigeration cycle of the air conditioner by combining and mixing the refrigerant guided to the refrigeration cycle for heat generation with the refrigerant guided to the refrigeration cycle of the air conditioner. Waste heat utilization air conditioning system.
上記熱伝達手段は、
上記空気調和機による冷房運転時に、上記熱発生用冷凍サイクルの冷媒を空気調和機の冷凍サイクルに導かれる冷媒へ合流混合させて、空気調和機の冷凍サイクルに対し冷熱を熱伝達し、
上記空気調和機による暖房運転時に、上記ランキンサイクルと熱発生用冷凍サイクルとの混合冷媒を空気調和機の冷凍サイクルに導かれる冷媒へ合流混合させて、空気調和機の冷凍サイクルに対し温熱を熱伝達することを特徴とする請求項1記載の排熱利用空調システム。
The heat transfer means is
During the cooling operation by the air conditioner, the refrigerant of the refrigeration cycle for heat generation is merged and mixed with the refrigerant guided to the refrigeration cycle of the air conditioner, and heat is transferred to the refrigeration cycle of the air conditioner,
During the heating operation by the air conditioner, the mixed refrigerant of the Rankine cycle and the heat generating refrigeration cycle is mixed and mixed with the refrigerant guided to the refrigeration cycle of the air conditioner, and heat is heated to the refrigeration cycle of the air conditioner. The exhaust heat utilization air conditioning system according to claim 1, wherein the exhaust heat utilization air conditioning system is transmitted.
上記空気調和機による暖房運転時は、空気調和機に対する要求能力に応じて、冷房運転時は、空気調和機の室内熱交換器の凝縮温度に応じて、それぞれランキンサイクルの膨張機による発生動力を制御する制御手段を備えたことを特徴とする請求項1および請求項2のいずれかに記載の排熱利用空調システム。   During heating operation using the air conditioner, the power generated by the expander of the Rankine cycle is determined according to the required capacity of the air conditioner, and during cooling operation, according to the condensation temperature of the indoor heat exchanger of the air conditioner. 3. The exhaust heat utilization air conditioning system according to claim 1, further comprising control means for controlling.
JP2004232506A 2004-08-09 2004-08-09 Waste heat utilization air conditioning system Expired - Fee Related JP4546188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232506A JP4546188B2 (en) 2004-08-09 2004-08-09 Waste heat utilization air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232506A JP4546188B2 (en) 2004-08-09 2004-08-09 Waste heat utilization air conditioning system

Publications (2)

Publication Number Publication Date
JP2006046878A true JP2006046878A (en) 2006-02-16
JP4546188B2 JP4546188B2 (en) 2010-09-15

Family

ID=36025621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232506A Expired - Fee Related JP4546188B2 (en) 2004-08-09 2004-08-09 Waste heat utilization air conditioning system

Country Status (1)

Country Link
JP (1) JP4546188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606758A (en) * 2017-09-07 2018-01-19 于盟盟 A kind of waste heat collecting system for being used to collect air-conditioning waste heat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619932B (en) * 2009-07-17 2013-02-27 山东泓奥电力科技有限公司 Energy-saving control system for improving condenser vacuum
CN108638794B (en) * 2018-06-19 2021-07-20 三峡大学 Comprehensive system for utilizing waste heat of automobile exhaust

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138958A (en) * 1982-02-10 1983-08-18 株式会社東芝 Rankine cycle air conditioner
JPS58127106U (en) * 1982-02-23 1983-08-29 株式会社東芝 Rankine cycle refrigerator
JPS5924901U (en) * 1982-08-10 1984-02-16 株式会社東芝 Rankine cycle drive cooling system
JPS63220052A (en) * 1987-03-06 1988-09-13 大和興産株式会社 Heat exchanger
JPH10220911A (en) * 1997-01-31 1998-08-21 Toshiba Corp Air conditioner
JP2000146346A (en) * 1999-01-01 2000-05-26 Daikin Ind Ltd Refrigerator
JP2002115931A (en) * 2000-10-12 2002-04-19 Daikin Ind Ltd Air conditioning apparatus
JP2003207224A (en) * 2002-01-16 2003-07-25 Takasago Thermal Eng Co Ltd Operating method of cold generating system, and cold generating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138958A (en) * 1982-02-10 1983-08-18 株式会社東芝 Rankine cycle air conditioner
JPS58127106U (en) * 1982-02-23 1983-08-29 株式会社東芝 Rankine cycle refrigerator
JPS5924901U (en) * 1982-08-10 1984-02-16 株式会社東芝 Rankine cycle drive cooling system
JPS63220052A (en) * 1987-03-06 1988-09-13 大和興産株式会社 Heat exchanger
JPH10220911A (en) * 1997-01-31 1998-08-21 Toshiba Corp Air conditioner
JP2000146346A (en) * 1999-01-01 2000-05-26 Daikin Ind Ltd Refrigerator
JP2002115931A (en) * 2000-10-12 2002-04-19 Daikin Ind Ltd Air conditioning apparatus
JP2003207224A (en) * 2002-01-16 2003-07-25 Takasago Thermal Eng Co Ltd Operating method of cold generating system, and cold generating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606758A (en) * 2017-09-07 2018-01-19 于盟盟 A kind of waste heat collecting system for being used to collect air-conditioning waste heat

Also Published As

Publication number Publication date
JP4546188B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
CN102466374B (en) Heat pump type water heating apparatus
US20060123819A1 (en) Cogeneration system
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
JP2004226015A (en) Cold water/hot water feed system
JP2004218944A (en) Heat pump air conditioning and water heater
JP2012247081A (en) Composite system cum power generation and heat pump
KR20090124765A (en) Hot water production system using 2-steps heat pump cycles
JP5730028B2 (en) Heat source system
KR101142914B1 (en) Hot water and cool water product system using 2-steps heat pump cycles
KR102074415B1 (en) Combined Cycle Combining Fuel Cell, Rankine Cycle, Absorption Chiller and Heat pump
JP4546188B2 (en) Waste heat utilization air conditioning system
JP2000241042A (en) Combined air conditioner
KR20100089741A (en) Apparatus for feusing waste heat of air compressor
JP4152140B2 (en) Waste heat absorption refrigerator
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP2011185571A (en) Heat pump system
KR20090021807A (en) Fuel cell system having air conditioning function
JP4273727B2 (en) Refrigeration system
JP3918980B2 (en) Refrigeration equipment
CN212585239U (en) Flue gas type waste heat recovery unit
JP3830141B2 (en) Power generation and absorption cold / hot water equipment
KR100911777B1 (en) Air condition system using waste heat in steam supply and power generation
JP3871206B2 (en) Refrigeration system combining absorption and compression
KR20230014959A (en) Electric heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees