JP2006038726A - Plate for examination and examination method using the same plate for examination - Google Patents

Plate for examination and examination method using the same plate for examination Download PDF

Info

Publication number
JP2006038726A
JP2006038726A JP2004221198A JP2004221198A JP2006038726A JP 2006038726 A JP2006038726 A JP 2006038726A JP 2004221198 A JP2004221198 A JP 2004221198A JP 2004221198 A JP2004221198 A JP 2004221198A JP 2006038726 A JP2006038726 A JP 2006038726A
Authority
JP
Japan
Prior art keywords
upstream
storage chamber
material
downstream
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004221198A
Other languages
Japanese (ja)
Other versions
JP4370214B2 (en
Inventor
Masamichi Hayashi
Tatsumaro Yamashita
龍麿 山下
政道 林
Original Assignee
Alps Electric Co Ltd
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, アルプス電気株式会社 filed Critical Alps Electric Co Ltd
Priority to JP2004221198A priority Critical patent/JP4370214B2/en
Publication of JP2006038726A publication Critical patent/JP2006038726A/en
Application granted granted Critical
Publication of JP4370214B2 publication Critical patent/JP4370214B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate for examination, in particular, to appropriately leave an up-stream side substance in an up-stream side storage chamber while guiding the substance to a down-stream side storage chamber automatically or at an arbitrary time point after a down-stream side substance is stored, and an examination method using the same plate for examination. <P>SOLUTION: This plate for examination comprises a flow path 4, the up-stream side storage chamber 5 connected to the up-stream side of the flow path while therein storing the up-stream side substance, the down-stream side storage chamber 6 connected to the down-stream side of the flow path while therein storing the down-stream side substance, and a substance contraction means (seal member 12) capable of making the size of the up-stream side substance smaller than a size it has had while being stored in the up-stream side storage chamber. The up-stream side substance is stored in the up-stream side storage chamber for a prescribed period of time while being sent through the flow path into the down-stream side storage chamber when the up-stream side substance is reduced to a prescribed size by the contraction means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば血液検査、尿検査、あるいはDNA検査を医療機関や個人などで行なうことが可能な簡易な検査用プレートに係わり、特に、上流側物質を上流側収納室内に適切に留めておくことともに、下流側物質を収納した後、自動的に、あるいは任意のタイミングで、前記上流側物質を前記下流側収納室まで導くことが可能な検査用プレートと、前記検査用プレートを用いた検査方法に関する。 The present invention is, for example, blood test, urine test, or relates to DNA testing a simple testing plate capable of performing at medical institutions and individuals, in particular, kept properly fasten the upstream material to the upstream storage chamber with this, after storing downstream material, automatically inspected, or at an arbitrary timing, testing and plate capable of directing the upstream material to the downstream storage chamber, with the testing plate a method for.

近年、血液や尿など、人体からの採取物に対する検査用のチップの開発が盛んになっている。 In recent years, such as blood or urine, the development of a chip for inspection to the collected material from the human body it has become popular. 例えば、DNAチップは、ガラスなどの基板上に多種類のDNA断片(プローブ)を貼り付けた物で、人から採取した遺伝子(検体,あるいはターゲット)の働き具合(発現)等を一度に測定することが出来る。 For example, DNA chips, those that stuck many kinds of DNA fragments on a substrate such as a glass (probe) to measure gene taken from a person (analyte or target) serves degree (expressed) or the like at a time it can be.

従来、試験管とスポイト、あるいは攪拌機等で行なわれていた生化学反応を前記チップ上で行なうことで、高速度で検査することができ、また検査工程の簡略化を測ることが可能であると考えられ、注目を浴びている。 Conventionally, by performing a test tube and dropper, or biochemical reactions take place at a stirrer or the like on the chip, it can be inspected at high speeds, also that it is possible to simplify the inspection process I thought, is attracting attention.

ところで検査チップは、現在、研究用チップとして大学や研究機関向けに開発されているのが主流であるが、将来的には、医療機関や個人向けへの簡易な検査チップが商品化されることが期待される。 By the way inspection chip, currently, is a mainstream that has been developed in universities and research institutions as research for the chip, in the future, that the simple test chip to medical institutions and individuals for is commercialized There is expected.

下記の特許文献1には、微量試料の分析や検出を簡便に行なうことが可能な分析装置に好適なバルブ機構に関する発明が開示されている。 Patent Document 1 below, the invention relates to suitable valve mechanism in the analyzer which can perform conveniently the analysis and detection of trace samples is disclosed.
特開2003−287479号公報 JP 2003-287479 JP

特許文献1の図3に示されている符号Vは保存槽であり、前記保存槽V内には、吸水ポリマーLが収容されている。 The code V shown in FIG. 3 of Patent Document 1 is a storage tank, wherein the storage tank V, water-absorbing polymeric L is accommodated. 符号Sは液体槽で、符号Wは排液槽であり、分岐したキャピラリ12に、前記保存槽V,液体槽S及び排液槽Wがそれぞれ連結されている。 Reference numeral S in liquid tank, reference numeral W denotes a drainage tank, the branched capillary 12, the storage tank V, the liquid tank S and drain tank W are connected respectively.

特許文献1の図4(a)に示すように、液体槽Sのダイアフラム膜14を押圧すると、前記液体槽S内の液体が矢印のごとく前記キャピラリ12内を流れる。 As shown in FIG. 4 of Patent Document 1 (a), when to press the diaphragm film 14 of the liquid tank S, liquid in the liquid tank S flows in the capillary 12 as the arrow.

次に特許文献1の図4(b)に示すように、保存槽Vのダイアフラム膜14を押圧すると、前記保存槽V内の吸水ポリマーLが押し出されて、前記液体槽Sと排液槽W間を繋ぐキャピラリ12を塞ぎ、前記液体槽Sから前記排液槽Wへ向けて流れる液体の流れを阻止している。 Next, as shown in FIG. 4 of Patent Document 1 (b), when to press the diaphragm film 14 of the storage tank V, the extruded water-absorbing polymeric L storage tank V is, the liquid tank S with the drainage tank W closing the capillary 12 connecting the, and block the flow of liquid flowing toward the discharge liquid tank W from the liquid tank S.

特許文献1では、前記液体槽Sに収納された液体は、まず図4(a)のように、保存槽V及び排液槽Wに流れてしまうが、前記液体槽Sに収納された液体を、所定時間の間、その中に留めておき、任意のタイミングで前記キャピラリ12から所定の槽内へ流したい場合がある。 In Patent Document 1, the liquid stored in the liquid tank S, first as shown in FIG. 4 (a), the but will flow to the storage tank V and the drainage vessel is W, the liquid stored in the liquid tank S , for a predetermined time, keep in therein, you may want to flow from the capillary 12 at an arbitrary timing to a predetermined tank.

例えば、前記液体槽Sに液体状の試薬を収納し、使用するまでの間、前記試薬は前記液体槽S内に留まるようにしておき、他の槽へ検体を収納した後、任意のタイミングで前記液体槽Sから前記試薬が前記他槽内まで流れるようにしたい場合や、あるいは前記他槽へ検体を収納した後、自動的に、前記液体槽Sから前記試薬が前記他槽内まで流れてほしい場合があるが、特許文献1では、そのような方法で検査することが出来ない。 For example, a liquid reagent is accommodated in the liquid tank S, until use, the reagent is leave to remain in the liquid tank S, after storing the sample to another vessel, at any time after the reagent from the liquid tank S is for accommodating the case want to flow to the other chamber and, or analyte to the other vessel, automatically, said reagent from said liquid bath S to flow to said other tank Although it may want, in Patent Document 1, it can not be examined in such a manner.

そこで本発明は上記課題を解決するためのものであり、特に、上流側物質を上流側収納室内に適切に留めておくことともに、下流側物質を収納した後、自動的に、あるいは任意のタイミングで、前記上流側物質を前記下流側収納室まで導くことが可能な検査用プレートと、前記検査用プレートを用いた検査方法を提供することを目的としている。 The present invention has been made to solve the above problems, in particular, both it leaves a upstream material suitably upstream storage chamber, after storing downstream material, automatically or arbitrary timing, in, and its object is to provide testing and the plate capable of directing the upstream material to the downstream storage chamber, an inspection method using the testing plate.

本発明における検査用プレートは、 The testing plate of the present invention,
流路と、前記流路の上流側に連結するとともに、上流側物質を収納するための上流側収納室と、前記流路の下流側に連結するとともに、下流側物質を収納するための下流側収納室と、前記上流側物質の大きさを前記上流側収納室内に収納したときの大きさよりも小さくすることが可能な物質縮小手段と、を有し、 And the flow path, as well as connected to the upstream side of the flow path, the upstream storage chamber for accommodating the upstream material, as well as connected to the downstream side of the flow path, downstream for accommodating the downstream material has a housing chamber, and a material reduction unit which can be smaller than the size when the size of the upstream material and housed in the upstream storage chamber,
前記上流側物質は上流側収納室内に所定の間、収納されているとともに、前記上流側物質が前記物質縮小手段により所定の大きさまで小さくなったときに、前記上流側物質が前記流路を通って前記下流側収納室内まで送られることを特徴とするものである。 The upstream material during the predetermined upstream storage chamber, together are housed, when the upstream material is reduced to a predetermined size by the material reduction unit, the upstream material is through said flow path it is characterized in that the sent to the downstream storage chamber Te.

本発明では、上記のように、上流側物質を上流側収納室内に、所定の間、適切に留めておくことが出来るとともに、例えば、下流側物質を収納した後、自動的に、あるいは任意のタイミングで、前記上流側物質を前記下流側収納室内まで導くことが可能である。 In the present invention, as described above, the upstream material to the upstream storage chamber, predetermined between, suitably with keep it can to bear, for example, after storing the downstream material, automatically, or in any in the timing, it is possible to guide the upstream material to the downstream storage chamber. 特に本発明では、前記物質縮小手段が設けられており、前記物質縮小手段により、前記上流側物質の大きさを所定の大きさまで小さくできる。 Particularly in the present invention, the it is material reduction means is provided by the material reduction means may reduce the size of the upstream material to a predetermined size.

本発明では、前記物質縮小手段は、前記流路内、上流側収納室内、及び下流側収納室内を密閉した後、前記密閉状態から開放することが可能なシール部材であることが好ましい。 In the present invention, the material reduction unit, said flow path, after sealed upstream storage chamber, and the downstream storage chamber, it is preferable that the sealing member that can be opened from the closed state.

あるいは本発明では、前記物質縮小手段は、前記上流側物質に熱を与えるための加熱部材であることが好ましい。 Or in the present invention, the material reduction unit is preferably on the upstream material is a heating member for providing heat.

また、前記上流側収納室の底面は、前記下流側収納室の底面よりも上方に位置し、前記上流側収納室の底面と流路の底面とが前記下流側収納室へ向けて下方向へ傾く傾斜面で形成されることが好ましい。 Further, the bottom surface of the upstream storage chamber is located above the bottom surface of the downstream storage chamber, the bottom surface of the bottom surface and the flow path of the upstream storage chamber to the downward direction toward the downstream storage chamber it is preferably formed by inclined surfaces inclined.

前記物質縮小手段によって所定の大きさまで小さくなった上流側物質は前記傾斜面上を前記上流側収納室から下流側収納室まで滑り落ち、適切に前記下流側収納室内にまで導かれる。 Upstream material becomes smaller to a predetermined size by the material reduction means slide down on the inclined surface to the downstream storage chamber from the upstream storage chamber is suitably guided to the downstream storage chamber.

上記の場合、前記上流側収納室及び/又は流路を構成する少なくとも一部の面は、撥水面であることが、前記上流側収納室内に収納された上流側物質を所定の間、適切に前記上流側収納室内に留めておく事が可能である。 In the above case, at least a portion of the surface constituting the upstream storage chamber and / or channels, it is water-repellent surface is, during the upstream material housed in the upstream storage chamber of predetermined, suitably it is possible to keep in the upstream storage chamber.

また本発明では、前記上流側収納室と流路との両側面が交わる連結部と平行な方向における前記上流側収納室の最大幅寸法は、前記連結部間の間隔よりも大きく、 In the present invention, the maximum width of the upstream storage chamber in the connecting portion in a direction parallel to both side surfaces intersecting with the upstream storage chamber and the flow path is greater than the spacing between the connecting portions,
前記上流側物質が上流側収納室内に収納されたとき、前記上流側物質の最大径は、前記連結部間の間隔よりも大きく、前記上流側物質の大きさが物質縮小手段によって、前記間隔よりも小さくなることで、前記上流側物質は前記連結部間を通過して、前記流路に送られることが好ましい。 When the upstream material is stored in the upstream storage chamber, the maximum diameter of the upstream material is greater than the spacing between the connecting portion, the size of material reduction means of the upstream material, than the distance by also reduced, the upstream material is passed between the connecting portion is preferably delivered to the channel.

上記のように上流側収納室の大きさと連結部間の間隔とを規制することで、前記上流側物質を適切に前記上流側収納室内に留めておく事ができ、前記上流側物質の大きさが前記連結部間の間隔よりも小さくなって初めて前記上流側物質を前記上流側収納室から流路へ送ることが可能になる。 By restricting the distance between the magnitude of the upstream storage chamber and the connecting portion as described above, can be kept properly fastened to the upstream storage chamber to the upstream material, the size of the upstream material There it is possible to send a first time the upstream material is smaller than the distance between the connecting portion from the upstream storage chamber to the flow path.

また本発明では、前記上流側収納室と流路との間には、前記流路の幅よりも小さい間隔が空いたゲート部材が設けられ、前記上流側物質が上流側収納室内に収納されたとき、前記上流側物質の最大径は、前記間隔よりも大きく、前記上流側物質の大きさが物質縮小手段によって、前記ゲート部材に設けられた前記間隔よりも小さくなることで、前記上流側物質は前記ゲート部材を通過して、前記流路に送られることが好ましい。 In the present invention also between the upstream storage chamber and the flow path is smaller interval than the width of the channel is a gate member vacated is provided, the upstream material is stored in the upstream storage chamber when the maximum diameter of the upstream material, the greater than the distance, the size of material reduction means of the upstream material, be less than the distance provided in the gate member, the upstream material passes through the gate member, it is preferable to be sent to the channel. なお前記ゲート部材の前記上流側物質との当接面は、撥水面であることが好ましい。 Note abutment surface between the upstream material of the gate member is preferably a water-repellent surface.

上記のようにゲート部材を設けることで、前記上流側物質を前記上流側収納室内に収納したときに前記上流側物質を適切に前記上流側収納室内に留めておく事ができ、前記上流側物質の大きさが前記ゲート部材の前記間隔よりも小さくなって初めて前記上流側物質を前記上流側収納室から流路へ送ることが可能になる。 By providing the gate members as described above, it can keep the upstream material to properly the upstream storage chamber to the upstream material when received in the upstream storage chamber, the upstream material the size is the first time the upstream material is smaller than the distance of the gate member can be sent from the upstream storage chamber to the flow paths.

本発明は、上記に記載された検査用プレートを用いた検査方法において、 The present invention, in the inspection method using the testing plate described in the above,
前記上流側物質に、揮発性の液体を用い、 Wherein the upstream material, using a volatile liquid,
前記上流側物質を前記上流側収納室内へ収納した後、前記流路上、上流側収納室上、及び下流側収納室上をシール部材によって覆って、前記流路内、上流側収納室内、及び下流側収納室内を密閉状態にし、 After storing the upstream material to the upstream storage chamber, said flow path, upstream storage chamber on, and the upper downstream storage chamber covered by the sealing member, the flow channel, upstream storage chamber, and the downstream the side accommodating chamber in a sealed state,
次に、前記シール部材の少なくとも下流側収納室上を開放して、前記下流側収納室内に下流側物質を収納し、 Next, the open upper least downstream storage chamber of the sealing member, and houses the downstream material in the downstream storage chamber,
前記密閉状態から開放したことで、前記上流側物質を一部揮発させ、これにより前記上流側収納室内に留まっていた前記上流側物質が所定の大きさまで小さくなることで、前記上流側物質が前記上流側収納室内から前記流路へ送られ、さらに前記流路から前記下流側収納室へ送られて、前記下流側収納室内で前記上流側物質と下流側物質とが混合されることを特徴とするものである。 Wherein it was opened from the closed state, the upstream material is partially volatilized, thereby by the upstream material which stayed on the upstream storage chamber is reduced to a predetermined size, the upstream material is the sent from the upstream storage chamber to the flow path, and characterized by further sent to the downstream storage chamber through the flow path, in the downstream storage chamber and the upstream material and the downstream material are mixed it is intended to.

上記のようにシール部材の開放によって、前記揮発性の液体である上流側物質の大きさを小さくでき、これによって前記上流側物質を前記下流側収納室内まで適切に導くことが出来る。 By the opening of the seal member as described above, the volatile possible to reduce the size of the upstream material is a liquid, which makes it possible to guide properly the upstream material to the downstream storage chamber. この発明によれば、前記シール部材の開放により、前記上流側物質の大きさは小さくなって自動的に前記上流側物質を前記下流側収納室内にまで導くことが出来る。 According to the present invention, the by opening the sealing member, the size of the upstream material is automatically the upstream material can be guided to the downstream storage chamber becomes small.

また本発明は、上記に記載された検査用プレートを用いた検査方法において、 According to the present invention, in the inspection method using the testing plate described in the above,
前記上流側物質を前記上流側収納室内へ収納した後、前記下流側物質を下流側収納室へ収納し、 After storing the upstream material to the upstream storage chamber to accommodate the downstream material to downstream storage chamber,
その後、前記加熱部材により、前記上流側物質に熱を加えて、前記上流側物質を一部蒸発させ、 Then, by the heating member, by applying heat, partially evaporated the upstream material in the upstream material,
これにより前記上流側収納室内に留まっていた前記上流側物質が所定の大きさまで小さくなることで、前記上流側物質が前記上流側収納室内から前記流路へ送られ、さらに前記流路から前記下流側収納室へ送られて、前記下流側収納室内で前記上流側物質と下流側物質とが混合されることを特徴とするものである。 By the upstream material which thereby has remained in the upstream storage chamber is reduced to a predetermined size, the upstream material is fed into the flow path from the upstream storage chamber, further the downstream from said flow passage is sent to the side accommodating chamber, it is characterized in that said upstream material in the downstream storage chamber and the downstream material are mixed.

上記のように加熱部材から前記上流側物質へ熱を与えることで、上流側物質の大きさを小さくでき、これによって前記上流側物質を前記下流側収納室内まで適切に導くことが出来る。 By applying heat to the upstream material from the heating element as described above, it can reduce the size of the upstream material, whereby it is possible to guide properly the upstream material to the downstream storage chamber. この発明によれば、前記加熱部材を始動させるタイミングを任意に行なうことができ、検査等を行なうときに、任意のタイミングで前記上流側物質を前記下流側収納室内にまで導くことが出来る。 According to the present invention, the timing for starting the heating member can be arbitrarily performed, when performing the inspection can direct the upstream material at any time up to the downstream storage chamber.

本発明では、上流側物質を上流側収納室内に、所定の間、適切に留めておくことが出来るとともに、例えば、下流側物質を収納した後、自動的に、あるいは任意のタイミングで、前記上流側物質を下流側収納室内まで導くことが可能である。 In the present invention, the upstream material to the upstream storage chamber, predetermined between, it is possible to keep properly fastened, for example, after storing the downstream material, automatically or at an arbitrary timing, the upstream it is possible to guide the side material to downstream storage chamber. 特に本発明では、物質縮小手段が設けられており、前記物質縮小手段により、前記上流側物質の大きさを所定の大きさまで小さくできる。 In particular the present invention is provided with a material reduction means, by the material reduction means may reduce the size of the upstream material to a predetermined size.

図1は本発明における検査用プレートの外観部分斜視図、図2は図1に示す検査用プレートを真上から見たときの部分平面図、図3は図2に示すIII−III線から前記検査用プレートを膜厚方向へ切断し、前記切断面を矢印方向から見た部分断面図、図4は、上流側物質が上流側収納室内に留まっている状態を示す部分拡大平面図、図5は、図1に示す検査用プレートの使用状態を示す部分平面図、図6は図5の次に行なわれる検査用プレートの使用状態を示す部分平面図、図7は、上流側物質が上流側収納室から流路へ流れる状態を示す部分拡大平面図、図8は図7の状態を別の方向から見て説明するための説明図であり、図2に示すIII−III線から前記検査用プレートを膜厚方向へ切断し、前記切断面を矢印方向から見た状態 Figure 1 is an external partial perspective view of the testing plate of the present invention, FIG. 2 is a partial plan view when viewed from directly above the testing plate shown in FIG. 1, FIG. 3 is the from line III-III shown in FIG. 2 cutting the testing plate to the thickness direction, partial cross-sectional view the cut surface is viewed from an arrow direction, FIG. 4 is a partial enlarged plan view showing a state where the upstream material remains in the upstream storage chamber, FIG. 5 is a partial plan view showing a state of use of the testing plate shown in FIG. 1, FIG. 6 is a partial plan view showing a state of use of the testing plate performed in the following figure 5, Figure 7, the upstream material upstream partially enlarged plan view showing a state in which the flow from the storage chamber into the flow path, FIG. 8 is an explanatory view for explaining a look at the state of FIG. 7 from a different direction, for the test from line III-III shown in FIG. 2 state plate was cut into the thickness direction, as viewed the cutting plane direction of the arrows の部分拡大断面図、図9は、ゲート部材を設けた構成の部分拡大平面図、である。 Partially enlarged sectional view of FIG. 9 is a partial enlarged plan view of a structure in which a gate member is.

図1に示す符号1は、検査用プレートである。 Reference numeral 1 shown in FIG. 1 is a testing plate. 図1に示す検査用プレート1は、例えば人体から血液や尿などを採取し、これら採取物(検体)を、所定の試薬などと反応させて所定の検査を行なうためのものである。 Testing plate 1 shown in FIG. 1, for example, to the harvested blood or urine from the human body, they harvest the (analyte) is for reacted like a predetermined reagent performs a predetermined test. 前記検査用プレートを例えばDNAチップとして用いる場合には、採取した前記血液に所定の処理を施して使用する。 Wherein in the case of using a testing plate, for example, as a DNA chip is used for collected the blood is subjected to predetermined processing.

前記検査用プレート1は、例えば、幅方向(図示X1−X2方向)の両端から直角に長さ方向(図示Y1−Y2方向)に延びる所定の厚みを有した矩形状で形成される。 The testing plate 1 is formed, for example, a rectangular shape having a predetermined thickness extending in the width direction (X1-X2 direction) from both ends at right angles to the lengthwise direction of the (not Y1-Y2 direction).

前記検査用プレート1は、ガラスや樹脂などで形成されたものである。 The testing plate 1, and is formed of glass or resin. 前記検査用プレート1は所定の蛍光強度を有する材質で形成される。 The testing plate 1 is formed of a material having a predetermined fluorescence intensity. 特に前記検査用プレート1をDNAチップやプロテインチップ等として用いる場合には、前記検査用プレート1は低蛍光性で、耐薬品性に優れた材質であることが好ましく、例えば石英ガラス、ポリジメチルシロキサン(PDMS)、ポリメタクリル酸メチル(PMMA)などで形成される。 Particularly in the case of using the testing plate 1 as a DNA chip or a protein chip or the like, wherein the testing plate 1 with low fluorescence is preferably a material excellent in chemical resistance, such as quartz glass, polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA) is formed like.

前記検査用プレート1が樹脂で形成されるときは、射出成形によって前記検査用プレート1を成形することが好ましく、場合によっては熱プレスを施して、前記検査用プレート1の表面1aに形成される溝を高アスペクト比のものとして成形する。 When the testing plate 1 is formed of resin, it is preferable to mold the testing plate 1 by injection molding, and subjected to hot pressing in some cases, it is formed on the surface 1a of the testing plate 1 forming a groove as a high aspect ratio. また前記検査用プレート1がガラスで形成されるときは、熱プレスにより成形する。 Also when the testing plate 1 is formed of glass, molded by hot pressing.

図1に示す検査用プレート1の表面1aには、そのほぼ中央に、下流側収納室6が溝形状で形成され、前記下流側収納室6からX1,X2,Y1及びY2方向に向けて4本の流路4が溝形状で形成されている。 On the surface 1a of the testing plate 1 shown in FIG. 1, in its substantially central, downstream storage chamber 6 is formed in a groove shape, toward from the downstream storage chamber 6 to the X1, X2, Y1 and Y2 directions 4 this flow path 4 is formed in a groove shape. また、各流路4の前記下流側収納室6と反対側の端部には、上流側収納室5が溝形状で形成されている。 Further, in the the downstream storage chamber 6 and the opposite end of each flow path 4, the upstream storage chamber 5 is formed in a groove shape.

前記上流側収納室5は物質の流れ方向に対する上流側に位置して、前記流路4と連結され、前記下流側収納室6は物質の流れ方向に対する下流側に位置し、前記流路4と連結されている。 The upstream storage chamber 5 is located on the upstream side relative to the flow direction of the material, is connected to the channel 4, the downstream storage chamber 6 is located on the downstream side with respect to the flow direction of the material, and the flow path 4 it has been linked.

図2に示すように前記流路4は、所定幅T3を有する直線状で形成されている。 The flow path 4 as shown in FIG. 2 is formed in a linear shape with a predetermined width T3. 前記流路4を直線状で形成することで、前記流路4内に物質が流れる際、乱流が生じにくくなり素早く物質を下流側収納室6まで導くことができて好ましい。 By forming the flow path 4 with linear, when the material flows in the flow channel 4, preferably to be able to guide the quick material becomes turbulent hardly occurs until the downstream storage chamber 6. ただし前記流路4は直線状以外の形状であってもよい。 However the flow path 4 may have a shape other than a linear shape.

また、図1,図2に示すように、前記上流側収納室5及び下流側収納室6の平面形状はいずれも略円形状で形成されているが、円形状以外の形状であってもよい。 Further, as shown in FIGS. 1 and 2, the planar shape of the upstream storage chamber 5 and the downstream storage chamber 6 is formed either by a substantially circular shape, but may have a shape other than circular .

前記流路4,上流側収納室5及び下流側収納室6は、それぞれ底面4a,5a,6aと、前記底面から表面1aに向けて延びる側面4b,5b,6bとを有し、前記底面と側面とで前記溝が構成される。 The flow path 4, the upstream storage chamber 5 and the downstream storage chamber 6 have each bottom 4a, 5a, and 6a, the side surface 4b extending towards the surface 1a from the bottom surface, 5b, and 6b, and the bottom surface the groove formed in the side surface.

図3に示すように、前記上流側収納室5の底面5aは、下流側収納室6の底面6aよりも上方(図示Z1方向)に位置し、前記上流側収納室5の底面5aと流路4の底面4aとが前記下流側収納室6へ向けて下方向(図示Z2方向)へ傾く傾斜面となっている。 As shown in FIG. 3, the bottom surface 5a of the upstream storage chamber 5 is located above (the Z1 direction) from the bottom surface 6a of the downstream storage chamber 6, the bottom surface 5a and the flow passage of the upstream storage chamber 5 is an inclined surface inclined downward (Z2 direction in the drawing) and four bottom 4a is toward the downstream storage chamber 6. 図3に示す実施形態では、前記上流側収納室5の底面5aには撥水性に優れたコーティング層10が形成されている。 In the embodiment shown in FIG. 3, the coating layer 10 with excellent water repellency is formed on the bottom surface 5a of the upstream storage chamber 5.

図1に示すように、前記流路4,上流側収納室5及び下流側収納室6上には、シール部材12が対向し、前記シール部材12によって前記流路4,上5及び下流側収納室6上が覆われる。 As shown in FIG. 1, the flow path 4, on the upstream storage chamber 5 and the downstream storage chamber 6, the seal member 12 is opposed, the flow path 4, the upper 5 and the downstream storage by the sealing member 12 rooms above 6 is covered. 図1に示す実施形態では、前記シール部材12は、前記流路4,上流側収納室5及び下流側収納室6の平面形状よりも拡大した相似形状で形成されているが、前記シール部材12の形状は図1の形態に限られない。 In the embodiment shown in FIG. 1, the seal member 12, the flow path 4, are formed in the enlarged similar shape than the planar shape of the upstream storage chamber 5 and the downstream storage chamber 6, the seal member 12 the shape is not limited to the embodiment FIG. 少なくとも前記シール部材12は、前記流路4,上流側収納室5及び下流側収納室6上を完全に覆うことが可能な形状であればよい。 At least the sealing member 12, the flow path 4, the upstream storage chamber 5 and the downstream storage chamber above 6 may have a shape capable of completely covering.

前記シール部材12は、樹脂シートなどで形成される。 The sealing member 12 is formed like a resin sheet. 前記シール部材12は前記検査用プレート1と同じ材質で形成されることが好ましいが異なる材質で形成されてもよい。 The sealing member 12 may be, but is preferably formed of the same material as the testing plate 1 is formed of a different material. ただし前記検査用プレート1に例えば、所定の蛍光強度が求められている場合は、同様の蛍光強度を有する材質で前記シール部材12を形成することが好ましい。 However, for example, in the testing plate 1, if the predetermined fluorescence strength are required, it is preferable to form the sealing member 12 of a material having a similar fluorescence intensity. なお前記シール部材12は紙などで形成されてもよい。 Note the seal member 12 may be formed like a paper.

前記シール部材12を、前記検査用プレート1と同じ材質で形成すると接着剤が無くても前記シール部材12と検査用プレート1とが接合しやすいなどの利点があるが、前記シール部材12と検査用プレート1とが異なる材質で形成されるとき、あるいは同じ材質で形成されるときであっても前記シール部材12と検査用プレート1間の密着性を高めるため接着剤等を使用してもよい。 Wherein the sealing member 12, wherein at the testing plate 1 and formed of the same material as the even without adhesive sealing member 12 and the testing plate 1 has an advantage such as easily bonded, inspection and the seal member 12 when the use plate 1 is formed of a different material, or an adhesive may be used or the like for enhancing adhesion between the testing plate 1 even with the sealing member 12 when formed of the same material .

前記シール部材12は、前記上流側収納室5内に収納された上流側物質13が特に、揮発性の液体による試薬などである場合、前記上流側物質13が揮発するのを抑制するために、上流側収納室5、流路4及び下流側収納室6内を密閉する役割を有している。 The seal member 12, the upstream storage chamber upstream material 13 housed in 5 particular, if there like reagent according volatile liquid, in order to suppress the upstream material 13 is to volatilize, upstream storage chamber 5 has a role to seal the flow path 4 and the downstream storage chamber 6. さらに、後で説明するように、前記シール部材12は少なくとも一部を開放でき、このように密閉状態から開放することで、前記上流側物質13の大きさを縮小させる機能(物質縮小手段)が発揮される。 Further, as described later, the seal member 12 may open at least a portion, by opening from such sealed state, functions to reduce the size of the upstream material 13 (material reduction means) It is exhibited.

図1に示す符号14は、ヒータやカイロ等の加熱部材であり、前記加熱部材14は図1に示すように、前記検査用プレート1の内部に埋め込まれたり、あるいは前記検査用プレート1の下面側などに貼着されている。 Numeral 14 shown in FIG. 1 is a heating member such as a heater and Cairo, the heating member 14 as shown in FIG. 1, or embedded inside the testing plate 1, or the lower surface of the testing plate 1 It is stuck, such as on the side. または前記上流側収納室5と対向する位置に設けられた前記シール部材12の対向部12aに前記加熱部材14が設けられていてもよい。 Or the heating member 14 to the opposing portion 12a of the sealing member 12 provided at a position facing the upstream storage chamber 5 may be provided.

以下に本発明の特徴的部分について説明する。 Explained characteristic portion of the present invention are described below.
本発明における検査用プレート1は、図1ないし図3に示すように、流路4と、前記流路4の上流側に連結するとともに、上流側物質13を収納するための上流側収納室5と、前記流路4の下流側に連結するとともに、下流側物質20を収納するための下流側収納室6とを有する。 Testing plate 1 of the present invention, as shown in FIGS. 1 to 3, the channel 4, while connected to the upstream side of the flow path 4, the upstream storage chamber 5 for accommodating the upstream material 13 If, while connected to a downstream side of the flow path 4, and a downstream storage chamber 6 for accommodating the downstream material 20. ここで図1,図2に示す実施形態では、1つの下流側収納室6に連結する上流側収納室5は4つあるが、少なくとも前記上流側収納室5は1つ以上設けられていればよい。 Here Figure 1, in the embodiment shown in FIG. 2, although the upstream storage chamber 5 for connecting to a single downstream storage chamber 6 are four, at least the upstream storage chamber 5 is long provided one or more good.

なお以下では、検査用プレート1の構造的な特徴的部分を、検査方法と合わせて説明していく。 In the following, the structural characteristic portion of the testing plate 1, will be described in conjunction with the inspection method.

図4に示すように、まず前記上流側物質13を前記上流側収納室5内に収納する。 As shown in FIG. 4, for accommodating the upstream material 13 in the upstream storage chamber 5. 前記上流側物質13は試薬であり溶剤として例えばアルコールなどを使用した揮発性の液体である。 The upstream material 13 is a volatile liquid using, for example, an alcohol as a solvent were reagent. 前記検査用プレート1をDNAチップ等として用いるときは、前記上流側物質13にはプローブ(DNA断片)が含まれている。 When using the testing plate 1 as a DNA chip or the like is included probes (DNA fragments) is in the upstream material 13.

図4に示すように、前記上流側収納室5と流路4との両側面4b,5bが交わる連結部11,11と平行な方向(図示X1−X2方向)における前記上流側収納室5の最大幅寸法T7は、前記連結部間の間隔T2よりも大きい。 As shown in FIG. 4, both side surfaces 4b of the upstream storage chamber 5 and the flow path 4, 5b is connected portions 11, 11 parallel to the direction intersecting the upstream storage chamber 5 at (X1-X2 direction in the drawing) the maximum width T7 is greater than the distance T2 between the connection portion. このため、前記上流側収納室5内に前記連結部11,11の間隔T2よりも大きい径を有する上流側物質13を前記上流側収納室5内に収納することが出来る。 Therefore, it is possible to house the upstream material 13 having a diameter larger than the distance T2 of the connecting portion 11, 11 to the upstream storage chamber 5 to the upstream storage chamber 5.

図4に示すように、前記上流側物質13の最大径T1は前記連結部11間の間隔T2よりも大きい寸法を有している。 As shown in FIG. 4, the maximum diameter T1 of the upstream material 13 has a larger dimension than the interval T2 between the connecting portion 11. 前記上流側物質13は自らの表面張力などにより、前記上流側収納室5内に留まり、前記連結部11間の間隔T2を通過して、前記流路4へ流れ出ないようになっている。 The upstream material 13 due to its own surface tension, remain in the upstream storage chamber 5, passes through the interval T2 between the connecting portion 11 so as not to escape via the passage 4.

ただし図3に示す前記上流側収納室5の底面5aの傾斜角が所定以上に大きくなると、前記上流側物質13が前記上流側収納室5から前記流路4へ流れやすくなる。 However the inclination angle of the bottom surface 5a of the upstream storage chamber 5 shown in FIG. 3 becomes larger than the predetermined, the upstream material 13 is likely to flow from the upstream storage chamber 5 to the passage 4. しかも前記上流側収納室5の底面5a等が親水性であると、毛細管作用により、前記上流側物質13が前記上流側収納室5から前記流路4へ流れ出しやすくなるため、適切に前記上流側物質13を前記上流側収納室5内に留めておくべく、例えば前記上流側収納室5の底面5aを撥水面にすることが好ましい。 Moreover the bottom wall 5a or the like of the upstream storage chamber 5 is a hydrophilic, by capillary action, wherein for upstream material 13 is easily flows out from the upstream storage chamber 5 to the passage 4, suitably the upstream to keep the material 13 to the upstream storage chamber 5, for example, the bottom surface 5a of the upstream storage chamber 5 is preferably set to a water-repellent surface.

また図4のように、前記連結部11間の間隔T2よりも大きい径T1を有する上流側物質13を前記上流側収納室5内に収納したとき、前記上流側物質13が当接する前記上流側収納室5の側面5bも撥水面とすることが好ましい。 Also as shown in Figure 4, when the upstream material 13 having a larger diameter T1 than the distance T2 between the connecting portion 11 is accommodated in the upstream storage chamber 5, the upstream of the upstream material 13 is in contact side 5b of the storage chamber 5 also it is preferable that the water-repellent surface.

さらに好ましくは、前記流路4の底面4a及び側面4bも撥水面とすることが好ましい。 More preferably, it is preferable that a water-repellent surface bottom 4a and side 4b of the channel 4.

前記上流側物質13は撥水面によって弾かれるため、前記上流側物質13が前記流路4から前記下流側収納室6まで流れることを適切に防止でき、前記上流側物質13を前記上流側収納室5内に適切に留めておくことが出来る。 Since the upstream material 13 to be repelled by the water-repellent surface, that the upstream material 13 flows from the flow passage 4 to the downstream storage chamber 6 can be prevented properly, the upstream storage chamber the upstream material 13 it is possible to be properly fastened to the 5.

撥水処理は、図3の実施形態に示すように、撥水性に優れたコーティング層10を所定部位に形成する手法が考えられる。 Water-repellent treatment, as shown in the embodiment of FIG. 3, a technique for forming an excellent coating layer 10 to water repellency to the predetermined site can be considered.

前記コーティング層10は、フッ素を含有したり、あるいは、炭化水素系化合物、シリコーンなどで形成された樹脂やゴムなど撥水性に優れた材質である。 The coating layer 10 can contain fluorine, or a hydrocarbon compound, which is the material having excellent water-repellent resin or rubber which is formed by a silicone. 前記コーティング層10の表面10aが「撥水面」となるが、撥水面であるか否かは接触角を測定することで判断される。 The surface 10a of the coating layer 10 is "water repellent surface", whether water-repellent surface is determined by measuring the contact angle. 接触角が大きいと撥水性に優れ、接触角が小さいと撥水性が弱まる。 The contact angle is large and good water repellency, the contact angle is small and the water repellency is weakened. 前記コーティング層10が形成された表面10aと、前記コーティング層10が施されていない前記検査用プレート1の下面等との接触角を測定することで、前記コーティング層10の表面10aが「撥水面」であることを確認できる。 And a surface 10a of the coating layer 10 is formed, by measuring the contact angle between the lower surface or the like of the testing plate 1, wherein the coating layer 10 is not subjected to the surface 10a of the coating layer 10 is "water-repellent surface it can be confirmed that it is ".

前記検査用プレート1がガラスであったとし、前記検査用プレート1の所定部位に前記コーティング層10を形成するには、前記検査用プレート1と前記コーティング層10間の接着力を強めるために、前記コーティング層10を構成する撥水剤にはカップリング剤を添加することが好ましく、前記カップリング剤には、トリアジンチオールやシラン系カップリング剤が選択される。 And the testing plate 1 is a glass, to form the coating layer 10 to the predetermined portion of the testing plate 1, in order to enhance the adhesive force between the coating layer 10 and the testing plate 1, it is preferable to add a coupling agent to the water-repellent agent constituting the coating layer 10, the said coupling agent, a triazine thiol and silane coupling agent is selected.

前記コーティング層10(撥水剤)は、所定の部位に印刷やスピンコート、スプレイなどで塗布することで形成できるが、例えば、前記上流側収納室5の底面5aのみに前記コーティング層10を形成するには、前記コーティング層10を形成しない部位にマスクをかけておく必要があるなど煩雑な作業となるので、前記検査用プレート1の表面1aも含め全体的に(すなわち流路4,下流側収納室6及び上流側収納室5を構成する溝面全体に)、前記コーティング層10を形成することが作業性を向上させることができて好ましい。 The coating layer 10 (water repellent), the printing or spin coating a predetermined portion, can be formed by coating such as by spraying forms, for example, the coating layer 10 only on the bottom surface 5a of the upstream storage chamber 5 to, since a complicated operation such as is required to be masked at a site that does not form the coating layer 10, the surface 1a of the testing plate 1 including overall (i.e. the flow path 4, the downstream side the entire groove surface forming a housing chamber 6 and the upstream storage chamber 5), wherein forming the coating layer 10 is preferably to be able to improve the workability.

また本発明では前記検査用プレート1自体に例えばフッ素系等の撥水剤を含有させ前記検査用プレート1全体を撥水処理することで、前記流路4,下流側収納室6及び上流側収納室5を構成する溝面全てを撥水面として機能させることも出来る。 Also the entire testing plate 1 is incorporated a water repellent agent such as a fluorine-based or the like to the testing plate 1 itself in the present invention by water repellent treatment, the flow path 4, the downstream storage chamber 6 and the upstream storage all groove surface forming a chamber 5 can also function as a water-repellent surface. 係る場合、前記検査用プレート1に対する撥水処理が非常に簡単になり作業性を向上させることができて好ましい。 A case, the preferred water-repellent process on the testing plate 1 is able to improve the workability becomes very easy. 係る場合も前記撥水剤にはトリアジンチオールやシラン系カップリング剤等が含有されている。 Such triazine thiol and silane coupling agent is contained also in the water repellent if according.

上記したように、前記上流側物質13は例えば揮発性の液体による試薬であるため、図4のように、前記上流側物質13を上流側収納室5内に収納しても、そのまま、ほっておくと、前記上流側物質13が揮発して前記上流側物質13の最大径がT1よりも小さくなっていく。 As described above, because the upstream material 13 is a reagent according to example volatile liquid, as in FIG. 4, even when storing the upstream material 13 on the upstream storage chamber 5, it is, digging and placing the maximum diameter of the upstream material 13 volatilizes the upstream material 13 becomes smaller than T1.

このため前記上流側物質13の揮発を抑制するために、前記上流側収納室5上、流路4上及び下流側収納室6上を図1に示すシール部材12で覆い、前記上流側収納室5内、流路4内及び下流側収納室6内を密閉する。 In order to suppress volatilization of the for the upstream material 13, the upper upstream storage chamber 5 covers the upper and the downstream storage chamber above 6 the flow path 4 with the sealing member 12 shown in FIG. 1, the upstream storage chamber within 5 to seal the flow channel 4 and the downstream storage chamber 6. これにより前記上流側物質13が揮発するのを抑制できる。 Thereby suppress the the upstream material 13 is volatilized.

次に図5に示すように、前記シール部材12の前記下流側収納室6上を覆う対向部(物質投入部)12bを破るなどし、図6のように、露出した前記下流側収納室6内に、人体から採取した血液や尿等の検体である下流側物質20を収納する。 Next, as shown in FIG. 5, and the like break the said facing portion covering the downstream storage chamber above 6 the seal member 12 (material input unit) 12b, as shown in FIG. 6, the exposed the downstream storage chamber 6 within houses the downstream material 20 is a specimen such as blood and urine collected from a human body. DNA検査の場合、前記血液は所定の処理が施され、所定の処理が施された検体(下流側物質20)を前記下流側収納室5内に収納する。 For DNA testing, the blood predetermined processing is performed, for accommodating the predetermined processing has been performed specimen (downstream material 20) to the downstream storage chamber 5.

前記シール部材12は、例えば指やペン先などで簡単に破ることが出来る材質で形成されていることが好ましいが、前記シール部材12を破らなくても前記シール部材12を前記検査用プレート1上から剥がすなどして、前記下流側収納室6内に下流側物質20を投入してもよい。 The sealing member 12 is, for example finger or it is preferred that the pen point be break easily, etc. is formed of a material that can, the seal member 12 to break not the sealing member 12 be the testing plate 1 on and the like peeled from, the downstream material 20 may be charged to the downstream storage chamber 6.

上記のようにシール部材12の少なくとも一部を破る等すると、流路4,上流側収納室5及び下流側収納室6内を密閉した状態が開放される結果、前記上流側収納室5内に収納された上流側物質13が一部揮発して、前記上流側物質13の大きさが徐々に小さくなっていく。 With such break at least a portion of the sealing member 12 as described above, the flow path 4, as a result of a closed state of the upstream storage chamber 5 and the downstream storage chamber 6 is opened, the upstream storage chamber 5 housed the upstream material 13 is partially volatilized, the size of the upstream material 13 is gradually reduced.

図7に示すように、前記上流側物質13が徐々に小さくなって前記上流側物質13の最大径がT4になり、前記最大径T4が前記上流側収納室5と流路4との連結部11,11の間隔T2よりも小さくなると、図7,図8に示すように、前記上流側物質13は、前記上流側収納室5の下方向への傾斜面である底面5a上から、同じく下方向への傾斜面である流路4の底面4a上に送られ、さらに前記上流側物質13は前記流路4の底面4a上を滑り落ちて、前記下流側収納室6内にまで運ばれる。 As shown in FIG. 7, the upstream material 13 is gradually reduced the maximum diameter T4 of the upstream material 13, the connecting portion of the maximum diameter T4 is said upstream storage chamber 5 and the flow path 4 When 11, 11 becomes smaller than the interval T2 of FIG. 7, as shown in FIG. 8, the upstream material 13 from the bottom surface 5a the on the upstream-side inclined surface in the downward direction of the housing chamber 5, also under sent on the bottom surface 4a of the flow path 4 is an inclined surface in the direction, further the upstream material 13 slides down on the bottom surface 4a of the flow path 4, it is conveyed to the downstream storage chamber 6.

図8のように前記上流側物質13が前記下流側収納室6内にまで運ばれると、前記下流側収納室6内で前記上流側物質13と下流側物質20とが混合する。 When the upstream material 13 as shown in FIG. 8 is conveyed to the downstream storage chamber 6, and the upstream material 13 and the downstream material 20 is mixed in the downstream storage chamber 6.

そして前記上流側物質13と下流側物質20との混合物が所定の反応をしたか否か等を測定する。 The mixture of the upstream material 13 and the downstream material 20 measures the like whether the predetermined reaction.

上記した本発明によれば、上流側物質13を上流側収納室5内に、所定の間、適切に留めておくことが出来るとともに、前記シール部材12の少なくとも一部を破るなどして上流側収納室5,流路4及び下流側収納室6内を密閉した状態から開放させることで、揮発性の試薬である前記上流側物質13を所定以下の大きさまで揮発させて小さくでき、前記開放状態のときに、下流側物質20を下流側収納室6内に収納すれば、その後、自動的に、所定の大きさまで小さくなった前記上流側物質13が前記下流側収納室6内まで導かれて、前記下流側収納室6内で前記上流側物質13と下流側物質20とを混合させることが出来る。 According to the present invention described above, the upstream material 13 on the upstream storage chamber 5, a predetermined between, it is possible to keep properly fastened, upstream and the like break at least a portion of the seal member 12 accommodating chamber 5, by releasing the sealed state of the flow channel 4 and the downstream storage chamber 6, the upstream material 13 is a volatile reagent to a predetermined magnitude less than can be reduced is evaporated, the open state when, if receiving a downstream material 20 in the downstream storage chamber 6, then, automatically, the upstream material 13 becomes smaller to a predetermined size are guided to the downstream storage chamber 6 , the upstream material 13 and the downstream material 20 and can be mixed with the downstream storage chamber 6.

よって例えば従来のように、試験管などに、上流側物質(試薬)13と下流側物質(検体)20とを入れ、手で振るなどして前記上流側物質13と下流側物質20とを混合させていた手法に比べて、非常に簡単な手法で、前記上流側物質13と下流側物質20とを混合させることができ、従来より早くて簡単に検査を行なうことが可能になる。 Thus, for example, as conventional, mixed like a test tube, put the upstream material (reagent) 13 and the downstream material (specimen) 20, and the upstream material 13 and the downstream material 20 by, for example manual shaking in comparison with a method that has been allowed to, in a very simple manner, the upstream material 13 and the downstream material 20 and can be mixed, it is possible to perform easily inspected earlier than conventionally.

上記の検査方法に用いた上流側物質13は、揮発性の液体による試薬であったが、例えば揮発性でない液体による試薬の場合にも本発明は適用できる。 Upstream material 13 used in the above testing method, was the reagent by volatile liquids, for example, even the present invention in the case of the reagent by not volatile liquid can be applied. 係る場合、図1で示した加熱部材14を用いる。 A case, using a heating member 14 shown in FIG.

まず前記上流側物質13を前記上流側収納室5内に収納する。 First housing the upstream material 13 in the upstream storage chamber 5. その状態は図4と同じであり、前記上流側物質13の最大径T1は前記連結部11,11の間隔T2よりも大きい状態にあり、前記上流側物質13の表面張力と、前記上流側収納室5の底面5a、流路4の底面4a,前記上流側収納室5の側面5b等が撥水面であることから、前記上流側物質13は前記上流側収納室5内に適切に留まる。 The condition is the same as FIG. 4, the maximum diameter T1 of the upstream material 13 is in a higher state than the interval T2 of the connecting portion 11, 11, and the surface tension of the upstream material 13, the upstream storage bottom 5a of the chamber 5, the bottom surface 4a of the flow path 4, since a side 5b Hitoshigabachi water surface of the upstream storage chamber 5, the upstream material 13 remains in the right to the upstream storage chamber 5.

次に、前記シール部材12によって前記上流側収納室5上、流路4上及び下流側収納室6上を覆う。 Next, the seal member 12 the upper upstream storage chamber 5 by covering the upper and the downstream storage chamber above 6 the passage 4. 今、検査試薬として用いている前記上流側物質13は、揮発性の液体でないので、前記シール部材12によって前記上流側収納室5内、流路4内及び下流側収納室6内を密閉しなくても急激に前記上流側物質13の大きさが小さくなることはないが、前記上流側物質13を前記上流側収納室5に収納してから、実際に検査するまでに長時間を要するのであれば、前記上流側物質13の蒸発を抑制するために、前記シール部材12によって、流路4内、上流側収納室5内及び下流側収納室6内を密閉しておくことが好ましい。 Now, the upstream material 13 is used as a test reagent, because it is not volatile liquid, the upstream storage chamber 5 by the sealing member 12 is not sealed in the flow path 4 and the downstream storage chamber 6 Although never decreases the magnitude of the rapidly the upstream material 13 also, after storing the upstream material 13 in the upstream storage chamber 5, it prolonged than the required until actual testing if, in order to suppress evaporation of the upstream material 13, by the sealing member 12, within the flow path 4, it is preferable to seal the upstream side in the storage chamber 5 and the downstream storage chamber 6.

前記シール部材12を用いた場合には、図5,図6で説明したように、前記シール部材12の下流側収納室6と対向する位置にある対向部(物質投入部)12bを破るなどして、露出した前記下流側収納室6内に下流側物質(検体)20を投入する。 In the case of using the sealing member 12, FIG. 5, as described in FIG. 6, and the like break the facing portion in the downstream storage chamber 6 facing the position of the seal member 12 (material input unit) 12b Te, turning on the downstream material (sample) 20 on the exposed the downstream storage chamber 6.

上流側物質13として揮発性の試薬を用いた場合には、図5のようにシール部材12を少なくとも一部破るなどして、前記流路4,上流側収納室5及び下流側収納室6内が密閉した状態から開放されるため、前記上流側物質13が揮発して徐々に大きさが小さくなっていき、自動的に、前記上流側物質13が流路4を通って前記下流側収納室6まで運ばれたが、上流側物質13として揮発性でない試薬を用いた場合には、図5のようにシール部材12を破り密閉状態から開放しても、なかなか前記上流側物質13の大きさが小さくならないため、検査時間が長くなってしまう。 If the upstream material 13 with a reagent of volatility and the like break at least a portion of the seal member 12 as shown in FIG. 5, the flow path 4, the upstream storage chamber 5 and the downstream storage chamber 6 since There are opened from the closed state, the upstream material 13 is gradually reduced gradually magnitude volatilize, automatically, the downstream storage chamber the upstream material 13 through the channels 4 was carried to 6, in the case of using the reagent not volatile as upstream material 13 is also open from the closed state to break the seal member 12 as shown in FIG. 5, quite the magnitude of the upstream material 13 because is not reduced, it becomes a long inspection time.

したがって使用者が検査したい任意のタイミングで、図1に示す加熱部材14を始動させ、前記上流側物質13に熱を与えて前記上流側物質13を一部、蒸発させ、前記上流側物質13の大きさを徐々に小さくしていく。 Thus at any time the user wishes to inspect, to start the heating member 14 shown in FIG. 1, a portion of the upstream material 13 by applying heat to the upstream material 13 is evaporated, the upstream material 13 gradually reduce the size.

その後は、図7,図8で説明した通り、前記上流側物質13は一部蒸発することで、その最大径T4が前記連結部11,11間の間隔T2よりも小さくなり、その時点で前記上流側物質13は前記上流側収納室5内から流路4を通って前記下流側収納室6内にまで運ばれ、前記下流側収納室6内で前記上流側物質13と下流側物質20とが混合される。 Thereafter, 7, as described with reference to FIG. 8, the upstream material 13 by evaporating part becomes smaller than the interval T2 between the maximum diameter T4 is the connecting portion 11, 11 thereof, the at that time upstream material 13 is conveyed to the upstream storage chamber the downstream storage chamber 6 through the flow path 4 from the inside 5, and the upstream material 13 and the downstream material 20 in the downstream storage chamber 6 There are mixed.

なお前記加熱部材14は、前記上流側物質13に揮発性の液体による試薬を用いた場合にでも使用できることは言うまでもない。 Note the heating member 14, it can of course be used even when using the reagent according volatile liquid to the upstream material 13.

また本発明では、図9に示すように、前記上流側収納室5と流路4との間には、前記流路4の幅T5よりも小さい間隔T6が空いたゲート部材21が設けられ、前記上流側収納室5内に収納された上流側物質13は、前記ゲート部材21により前記上流側収納室5内に留まり、前記上流側物質13aの大きさが前記間隔T6よりも小さくなると、前記上流側物質13aが前記ゲート部材21を通過して、前記流路4に送られる形態のものであってもよい。 In the present invention, as shown in FIG. 9, between the upstream storage chamber 5 and the flow path 4, a gate member 21 is provided a small distance T6 than the width T5 of the flow path 4 is empty, upstream material 13 housed in the upstream storage chamber 5 remains in the upstream storage chamber 5 by the gate member 21, the magnitude of the upstream material 13a is smaller than the interval T6, the upstream material 13a passes through the gate member 21 may be of a form to be sent to the channel 4. 図9では、ゲート部材21の形状をわかりやくするため、前記ゲート部材21等を斜線で示している。 9, since promises understand the shape of the gate member 21 indicates the gate member 21 and the like by hatching.

係る場合、少なくとも、前記上流側収納室5内に収納された上流側物質13と接する前記ゲート部材21の側面21aは撥水面であることが好ましい。 A case, at least, it is a preferred aspect 21a of the gate member 21 in contact with upstream material 13 housed in the upstream storage chamber 5 is water-repellent surface. 撥水処理については上記で説明した通りである。 The water repellent treatment is as described above. また前記上流側収納室5の底面5a、側面5b及び流路4の底面4aなども撥水面として形成されていることが好ましい。 The bottom surface 5a of the upstream storage chamber 5, it is preferable that such a bottom 4a of the side surface 5b and the flow path 4 is also formed as a water repellent surface. これにより前記上流側物質13を前記上流側収納室5内に収納したとき、検査を開始するまで、前記上流側収納室5内に適切に留めておく事が可能である。 Thus when the housing the upstream material 13 in the upstream storage chamber 5, until the start of the inspection, it is possible to keep properly fastened to the upstream storage chamber 5.

図9に示すように前記ゲート部材21,21は、前記上流側収納室5及び流路4の側面4b,5bから、前記上流側収納室5及び流路4の中央方向に向けて延びており、前期ゲート部材21,21は、前記上流側物質13の流れ方向(Y1→Y2方向)に対して直交する方向に形成される。 The gate member 21 as shown in FIG. 9, the side 4b of the upstream storage chamber 5 and the flow path 4, from 5b, extends toward the center direction of the upstream storage chamber 5 and the channel 4 , year gate member 21 is formed in a direction perpendicular to a flow direction of the upstream material 13 (Y1 → Y2 direction).

また前記ゲート部材21の上面21bは、前記検査用プレート1の表面1aと同じ高さであってもよいし、あるいは前記上面21bが前記表面1aに比べて低く形成されてもよいが、あまり低く形成されると検査前に(下流側物質20を投入する前に)、前記上流側物質13が前記ゲート部材21の上面21bを超えて、前記流路4へ流れる可能性があるので、前記上面21bは前記表面1aと同一面で形成されることが好ましい。 The upper surface 21b of the gate member 21 may be the same height as the surface 1a of the testing plate 1, or wherein at the upper surface 21b may be formed lower than the surface 1a, too low before the test to be formed (prior to introducing downstream material 20), the upstream material 13 beyond the upper surface 21b of the gate member 21, there is a possibility to flow into the flow path 4, the upper surface 21b are preferably formed in the same plane as the surface 1a.

前記ゲート部材21の形状は、図9のような形状に限らないが、前記上流側物質13の流れ方向(Y1→Y2方向)に対して直交する方向に前記ゲート部材21,21が形成されると前記上流側収納室5内に収納したときの前記上流側物質13を前記ゲート部材21,21によって適切に前記上流側収納室5内に留まらせておくことができ、また前記上流側物質13が所定の大きさ以下(間隔T6以下)になったときに、前記上流側物質13を前記ゲート部材21,21間から前記流路4へ送り込みやすい。 Shape of the gate member 21 is not limited to the shape as shown in FIG. 9, the gate member 21 is formed in a direction perpendicular to a flow direction of the upstream material 13 (Y1 → Y2 direction) and can let remain in properly the upstream storage chamber 5 by the gate member 21 and 21 of the upstream material 13 when housed in the upstream storage chamber 5, also the upstream material 13 There when it is given below size (interval T6 hereinafter) easily fed into the flow path 4 to the upstream material 13 from between the gate member 21.

図9の実施形態では前記ゲート部材21,21を検査用プレート1に一体で形成しているが前記ゲート部材21,21を別個に形成してもよい。 It may be formed separately and has formed integrally said gate member 21 in the testing plate 1 of the gate member 21 in the embodiment of FIG.

なお図1のように、複数の上流側収納室5が設けられているとき、任意のタイミングで、各上流側収納室5内に熱を与える加熱部材5のそれぞれを始動させることが可能である。 Incidentally, as in FIG. 1, when the plurality of upstream storage chamber 5 is provided, at an arbitrary timing, it is possible to start the respective heating element 5 to provide heat to the upstream storage chamber 5 . 例えば図1に示す下流側収納室6から見て図示X1方向及び図示Y1方向に設けられた上流側収納室5内に収納された上流側物質A,B(説明しやすくするために上流側物質A,B,C,Dと命名する)をまず加熱部材14を用いて一部蒸発させて前記上流側物質A,Bの大きさを小さくして前記下流側収納室6まで流し、前記下流側収納室6内で前記上流側物質A,Bと下流側物質20とを混合させ、次に図1に示す下流側収納室6から見て図示X2方向及び図示Y2方向に設けられた上流側収納室5内に収納された上流側物質C,Dを加熱部材14を用いて一部蒸発させて前記上流側物質C,Dの大きさを小さくして前記下流側収納室6まで流し、前記下流側収納室6内で前記上流側物質A,Bと下流側物質20とが混合した混合物と、 Upstream material to the downstream storage chamber as viewed from 6 accommodated in the upstream storage chamber 5 provided in the X1 direction and the Y1 direction the upstream material A, B (easily described example shown in FIG. 1 a, B, C, named as D) is first passed partially evaporated using a heating member 14 the upstream material a, to reduce the size of B to the downstream storage chamber 6, the downstream the upstream material a in a retracted chamber 6, B and the downstream material 20 is mixed, then upstream storage provided in the X2 direction and the Y2 direction as viewed from the downstream storage chamber 6 shown in FIG. 1 chamber 5 upstream material housed in the C, D flushed said partially evaporated using a heating member 14 upstream material C, and to reduce the size of the D to the downstream storage chamber 6, the downstream wherein the side receiving chamber 6 upstream material A, the mixture and the downstream material 20 are mixed and B, 記上流側物質C,Dとを混合させる。 Serial upstream material C, is mixed with D.

あるいは、前記上流側物質A,B,C,Dのうち、一部の上流側物質が揮発性の液体からなる試薬で、残りの上流側物質が揮発性ではない液体から成る試薬など、組み合わせは自由である。 Alternatively, the upstream material A, B, C, among and D, a reagent portion of the upstream material is a volatile liquid, such as a reagent consisting of liquid remaining upstream material not volatile, the combination it is free.

また各上流側収納室5に連結される流路4の底面4aの傾斜角を変える等することで、前記流路4を流れる上流側物質13の流速を、各流路4ごとに変えてもよい。 Also by such tiltable bottom 4a of the flow path 4 connected to the upstream storage chamber 5, the flow rate of the upstream material 13 flowing through the flow path 4, changing every each flow path 4 good.

本発明の検査用プレート1は、血液検査や尿検査、あるいは、DNAチップやプロテインチップの簡便な診断用として使用でき、また反応、分離、分析等を一つのプレート上で行なうことが出来るμ−TAS(micro-total analysis system)や、Lab−on−chip、あるいはマイクロファクトリー用のプレートの一部として用いることが可能である。 Testing plate 1 of the present invention, blood test or urine test, or can be used for simple diagnosis of DNA chips or protein chips, and the reaction, separation, analysis and the like can be performed in a single plate the μ- and TAS (micro-total analysis system), can be used as part of a Lab-on-chip or plate for micro factory.

本発明における検査用プレートの外観部分斜視図、 Appearance partial perspective view of the testing plate of the present invention, 図1に示す検査用プレートを真上から見たときの部分平面図、 Partial plan view when viewed from directly above the testing plate shown in FIG. 1, 図2に示すIII−III線から前記検査用プレートを膜厚方向へ切断し、前記切断面を矢印方向から見た部分断面図、 The test plate from the line III-III shown in FIG. 2 is cut into the thickness direction, partial cross-sectional view of the the cutting plane direction of the arrows, 上流側物質が上流側収納室内に留まっている状態を示す部分拡大平面図、 Partially enlarged plan view showing a state where the upstream material remains in the upstream storage chamber, 図1に示す検査用プレートの使用状態を示す部分平面図、 Partial plan view showing a state of use of the testing plate shown in FIG. 1, 図5の次に行なわれる検査用プレートの使用状態を示す部分平面図、 Partial plan view showing a state of use of the testing plate performed in the following figure 5, 上流側物質が上流側収納室から流路へ流れる状態を示す部分拡大平面図、 Partially enlarged plan view showing a state where the upstream material flows from the upstream storage chamber to the flow path, 図7の状態を別の方向から見て説明するための説明図であり、図2に示すIII−III線から前記検査用プレートを膜厚方向へ切断し、前記切断面を矢印方向から見た状態での部分拡大断面図、 The state of FIG. 7 is an explanatory diagram for explaining viewed from another direction, cutting the test plate to a film thickness direction from the line III-III shown in FIG. 2, viewed the cutting plane direction of the arrows enlarged partial sectional view of a state, ゲート部材を設けた構成の部分拡大平面図、 Partially enlarged plan view of a structure in which a gate member,

符号の説明 DESCRIPTION OF SYMBOLS

1 検査用プレート4 流路5 上流側収納室6 下流側収納室10 コーティング層11 連結部12 シール部材13 上流側物質14 加熱部材20 下流側物質21 ゲート部材 1 testing plate 4 passage 5 upstream storage chamber 6 downstream storage chamber 10 coating layer 11 connecting portion 12 the seal member 13 upstream material 14 heating member 20 downstream material 21 gate member

Claims (10)

  1. 流路と、前記流路の上流側に連結するとともに、上流側物質を収納するための上流側収納室と、前記流路の下流側に連結するとともに、下流側物質を収納するための下流側収納室と、前記上流側物質の大きさを前記上流側収納室内に収納したときの大きさよりも小さくすることが可能な物質縮小手段と、を有し、 And the flow path, as well as connected to the upstream side of the flow path, the upstream storage chamber for accommodating the upstream material, as well as connected to the downstream side of the flow path, downstream for accommodating the downstream material has a housing chamber, and a material reduction unit which can be smaller than the size when the size of the upstream material and housed in the upstream storage chamber,
    前記上流側物質は上流側収納室内に所定の間、収納されているとともに、前記上流側物質が前記物質縮小手段により所定の大きさまで小さくなったときに、前記上流側物質が前記流路を通って前記下流側収納室内まで送られることを特徴とする検査用プレート。 The upstream material during the predetermined upstream storage chamber, together are housed, when the upstream material is reduced to a predetermined size by the material reduction unit, the upstream material is through said flow path testing plate, characterized in that it is fed to the downstream storage chamber Te.
  2. 前記物質縮小手段は、前記流路内、上流側収納室内、及び下流側収納室内を密閉した後、前記密閉状態から開放することが可能なシール部材である請求項1記載の検査用プレート。 The material reduction means, said flow path, upstream storage chamber, and after sealing the downstream storage chamber, testing plate according to claim 1, wherein the sealing member that can be opened from the closed state.
  3. 前記物質縮小手段は、前記上流側物質に熱を与えるための加熱部材である請求項1記載の検査用プレート。 The material reduction means, testing plate according to claim 1, wherein the upstream material is a heating member for providing heat.
  4. 前記上流側収納室の底面は、前記下流側収納室の底面よりも上方に位置し、前記上流側収納室の底面と流路の底面とが前記下流側収納室へ向けて下方向へ傾く傾斜面で形成される請求項1ないし3のいずれかに記載の検査用プレート。 A bottom surface of the upstream storage chamber is located above the bottom surface of the downstream storage chamber, the inclination of the bottom surface of the bottom surface and the flow path of the upstream storage chamber is inclined downward toward the downstream storage chamber testing plate according to any one of claims 1 to 3 is formed in the surface.
  5. 前記上流側収納室及び/又は流路を構成する少なくとも一部の面は、撥水面である請求項4記載の検査用プレート。 At least a portion of the surface is testing plate according to claim 4, wherein a water-repellent surface constituting the upstream storage chamber and / or channels.
  6. 前記上流側収納室と流路との両側面が交わる連結部と平行な方向における前記上流側収納室の最大幅寸法は、前記連結部間の間隔よりも大きく、 Maximum width of the upstream storage chamber in the connecting portion in a direction parallel to both side surfaces intersecting with the upstream storage chamber and the flow path is greater than the spacing between the connecting portions,
    前記上流側物質が上流側収納室内に収納されたとき、前記上流側物質の最大径は、前記連結部間の間隔よりも大きく、前記上流側物質の大きさが物質縮小手段によって、前記間隔よりも小さくなることで、前記上流側物質は前記連結部間を通過して、前記流路に送られる請求項1ないし5のいずれかに記載の検査用プレート。 When the upstream material is stored in the upstream storage chamber, the maximum diameter of the upstream material is greater than the spacing between the connecting portion, the size of material reduction means of the upstream material, than the distance also be smaller, the upstream material is passed between the coupling portion, testing plate according to any one of claims 1 to 5 are sent to the channel.
  7. 前記上流側収納室と流路との間には、前記流路の幅よりも小さい間隔が空いたゲート部材が設けられ、前記上流側物質が上流側収納室内に収納されたとき、前記上流側物質の最大径は、前記間隔よりも大きく、前記上流側物質の大きさが物質縮小手段によって、前記ゲート部材に設けられた前記間隔よりも小さくなることで、前記上流側物質は前記ゲート部材を通過して、前記流路に送られる請求項1ないし5のいずれかに記載の検査用プレート。 Between the upstream storage chamber and the flow path, the flow path width gate member is provided with empty space smaller than the, when the upstream material is stored in the upstream storage chamber, the upstream the maximum diameter of the material, the greater than the distance, the size of material reduction means of the upstream material, that is smaller than the gap provided in the gate member, the upstream material is the gate member through, testing plate according to any one of claims 1 to 5 are sent to the channel.
  8. 前記ゲート部材の前記上流側物質との当接面は、撥水面である請求項7記載の検査用プレート。 Contact surface between the upstream material of said gate member, testing plate according to claim 7, wherein the water-repellent surface.
  9. 請求項2に記載された検査用プレートを用いた検査方法において、 In the testing method using the testing plate according to claim 2,
    前記上流側物質に、揮発性の液体を用い、 Wherein the upstream material, using a volatile liquid,
    前記上流側物質を前記上流側収納室内へ収納した後、前記流路上、上流側収納室上、及び下流側収納室上をシール部材によって覆って、前記流路内、上流側収納室内、及び下流側収納室内を密閉状態にし、 After storing the upstream material to the upstream storage chamber, said flow path, upstream storage chamber on, and the upper downstream storage chamber covered by the sealing member, the flow channel, upstream storage chamber, and the downstream the side accommodating chamber in a sealed state,
    次に、前記シール部材の少なくとも下流側収納室上を開放して、前記下流側収納室内に下流側物質を収納し、 Next, the open upper least downstream storage chamber of the sealing member, and houses the downstream material in the downstream storage chamber,
    前記密閉状態から開放したことで、前記上流側物質を一部揮発させ、これにより前記上流側収納室内に留まっていた前記上流側物質が所定の大きさまで小さくなることで、前記上流側物質が前記上流側収納室内から前記流路へ送られ、さらに前記流路から前記下流側収納室へ送られて、前記下流側収納室内で前記上流側物質と下流側物質とが混合されることを特徴とする検査方法。 Wherein it was opened from the closed state, the upstream material is partially volatilized, thereby by the upstream material which stayed on the upstream storage chamber is reduced to a predetermined size, the upstream material is the sent from the upstream storage chamber to the flow path, and characterized by further sent to the downstream storage chamber through the flow path, in the downstream storage chamber and the upstream material and the downstream material are mixed inspection how to.
  10. 請求項3に記載された検査用プレートを用いた検査方法において、 In the testing method using the testing plate according to claim 3,
    前記上流側物質を前記上流側収納室内へ収納した後、前記下流側物質を下流側収納室へ収納し、 After storing the upstream material to the upstream storage chamber to accommodate the downstream material to downstream storage chamber,
    その後、前記加熱部材により、前記上流側物質に熱を加えて、前記上流側物質を一部蒸発させ、 Then, by the heating member, by applying heat, partially evaporated the upstream material in the upstream material,
    これにより前記上流側収納室内に留まっていた前記上流側物質が所定の大きさまで小さくなることで、前記上流側物質が前記上流側収納室内から前記流路へ送られ、さらに前記流路から前記下流側収納室へ送られて、前記下流側収納室内で前記上流側物質と下流側物質とが混合されることを特徴とする検査方法。 By the upstream material which thereby has remained in the upstream storage chamber is reduced to a predetermined size, the upstream material is fed into the flow path from the upstream storage chamber, further the downstream from said flow passage It is sent to the side accommodating chamber, inspection method, characterized in that in the downstream storage chamber and the upstream material and the downstream material are mixed.
JP2004221198A 2004-07-29 2004-07-29 A testing plate, testing method using the testing plate Active JP4370214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221198A JP4370214B2 (en) 2004-07-29 2004-07-29 A testing plate, testing method using the testing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221198A JP4370214B2 (en) 2004-07-29 2004-07-29 A testing plate, testing method using the testing plate

Publications (2)

Publication Number Publication Date
JP2006038726A true JP2006038726A (en) 2006-02-09
JP4370214B2 JP4370214B2 (en) 2009-11-25

Family

ID=35903870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221198A Active JP4370214B2 (en) 2004-07-29 2004-07-29 A testing plate, testing method using the testing plate

Country Status (1)

Country Link
JP (1) JP4370214B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064373A (en) * 2007-05-04 2015-04-09 オプコ・ダイアグノスティクス・リミテッド・ライアビリティ・カンパニーOpko Diagnostics,Llc Fluidic connectors and microfluidic systems
JP5932077B1 (en) * 2015-02-24 2016-06-08 シャープ株式会社 Container for component analysis
US9643182B2 (en) 2010-04-16 2017-05-09 Opko Diagnostics, Llc Systems and devices for analysis of samples
US9827564B2 (en) 2009-02-02 2017-11-28 Opko Diagnostics, Llc Fluidic systems and methods for analyses

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064373A (en) * 2007-05-04 2015-04-09 オプコ・ダイアグノスティクス・リミテッド・ライアビリティ・カンパニーOpko Diagnostics,Llc Fluidic connectors and microfluidic systems
US9827564B2 (en) 2009-02-02 2017-11-28 Opko Diagnostics, Llc Fluidic systems and methods for analyses
US9827563B2 (en) 2009-02-02 2017-11-28 Opko Diagnostics, Llc Fluidic systems and methods for analyses
US9981266B2 (en) 2010-04-16 2018-05-29 Opko Diagnostics, Llc Feedback control in microfluidic systems
US9643182B2 (en) 2010-04-16 2017-05-09 Opko Diagnostics, Llc Systems and devices for analysis of samples
US9682376B2 (en) 2010-04-16 2017-06-20 Opko Diagnostics, Llc Systems and devices for analysis of samples
WO2016136003A1 (en) * 2015-02-24 2016-09-01 シャープ株式会社 Container for component analysis
JP5932077B1 (en) * 2015-02-24 2016-06-08 シャープ株式会社 Container for component analysis

Also Published As

Publication number Publication date
JP4370214B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
AU2010200482B2 (en) Sample collection cup with integrated sample analysis system
CA2737892C (en) Apparatus and methods for analyte measurement and immunoassay
US8337775B2 (en) Apparatus for precise transfer and manipulation of fluids by centrifugal and or capillary forces
ES2357637T3 (en) Sensors.
CN100498335C (en) In-line test device and methods of use
US5744366A (en) Mesoscale devices and methods for analysis of motile cells
EP1240945B1 (en) Device and method for analyzing a sample
JP3947536B2 (en) Sample measurement method and apparatus in a liquid
JP4869602B2 (en) Method and apparatus for dividing a specimen into multiple channels of a microfluidic device
US9061280B2 (en) Chemical reaction cartridge, its fabrication method, and a chemical reaction cartridge drive system
Gong et al. Turning the page: advancing paper-based microfluidics for broad diagnostic application
US9555408B2 (en) Fluid mixing and delivery in microfluidic systems
US4308028A (en) Device and method for the chemical testing and microscopic examination of liquid specimens
US5503985A (en) Disposable device for diagnostic assays
EP0057110A2 (en) Reaction vessel and method for combining liquids and reagents
US20040265171A1 (en) Method for uniform application of fluid into a reactive reagent area
DK2376226T3 (en) Improved reagensoplagring in microfluidics and related articles and methods
US20090220948A1 (en) Methods and Device for Transmitting, Enclosing and Analysing Fluid Samples
CA2310762C (en) Capillary active test element having an intermediate layer situated between the support and the covering
JP4546534B2 (en) Comprehensive and automatic analyzer dna or protein in the disposable cartridge, a method of manufacturing such a cartridge, and method of operation for dna or protein analysis using such cartridge
US20060141469A1 (en) Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
CN1188702C (en) Testing instrument for analyzing liquid sample
US5399486A (en) Disposable unit in diagnostic assays
EP1658130B1 (en) Mixing in microfluidic devices
ES2687620T3 (en) Device and method for analysis in microfluidic systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350