JP2006036711A - METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR - Google Patents

METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR Download PDF

Info

Publication number
JP2006036711A
JP2006036711A JP2004220800A JP2004220800A JP2006036711A JP 2006036711 A JP2006036711 A JP 2006036711A JP 2004220800 A JP2004220800 A JP 2004220800A JP 2004220800 A JP2004220800 A JP 2004220800A JP 2006036711 A JP2006036711 A JP 2006036711A
Authority
JP
Japan
Prior art keywords
dnaseγ
dnase
substance
activity
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004220800A
Other languages
Japanese (ja)
Inventor
Yasukazu Tanuma
靖一 田沼
Atsushi Yoshimori
篤史 吉森
Masaru Sunaga
賢 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2004220800A priority Critical patent/JP2006036711A/en
Publication of JP2006036711A publication Critical patent/JP2006036711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pyrane Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inhibiting DNase activity of DNase γ, a method of screening inhibitors inhibiting the DNase activity of DNase γ, and an inhibitor inhibiting the DNase activity of the DNase γ. <P>SOLUTION: The DNase activity of the DNase γ can be inhibited by bonding a substance to a domain corresponding to a DNA bonding pocket where one chain DNA bonding to the enzyme activity center of DNase I and one chain DNA on the different side, when the DNase I cuts DNA while dissociating two chain DNA. By utilizing the inhibiting method like this, such a screening that selecting the compound bonding to the DNase γ from a compound library and confirming whether it is possible or not to inhibit the DNase activity of the DNase γ. A substance obtained by this can inhibit the DNase activity of the DNase γ. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、DNaseγのDNase活性を阻害する阻害方法、DNaseγのDNase活性を阻害する阻害物質のスクリーニング方法、及びそのスクリーニング方法により得られたDNaseγ阻害剤に関する。   The present invention relates to an inhibition method for inhibiting DNase γ DNase activity, a screening method for an inhibitor that inhibits DNase γ DNase activity, and a DNase γ inhibitor obtained by the screening method.

アポトーシスは、現象論的に、細胞の縮小、クロマチンの凝縮、DNAの断片化などによって特徴付けられる細胞死のことで、ネクローシス(壊死)に対応する概念である。アポトーシスは、発生過程における形態形成や神経系ネットワークの構築ばかりでなく、成体における異常細胞の除去、内分泌系による恒常性の維持、免疫系の成立などに重要な役割を果たしている。アポトーシスの異常は、癌、自己免疫疾患、神経変性疾患肝炎、エイズなどの疾患の原因となる。このように、アポトーシスは極めて重要な細胞の基本機能の一つであるため、様々な疾患の病態解明から適正な治療法の開発までに及ぶ広範な医療領域において、常に考慮に入れられるべき重要な現象である。   Apoptosis is a concept corresponding to necrosis, which is phenomenologically characterized by cell death characterized by cell shrinkage, chromatin condensation, DNA fragmentation, and the like. Apoptosis plays an important role not only in the morphogenesis and development of the nervous system network during development, but also in the removal of abnormal cells in the adult, maintenance of homeostasis by the endocrine system, and establishment of the immune system. Abnormal apoptosis causes diseases such as cancer, autoimmune disease, neurodegenerative disease hepatitis, AIDS and the like. In this way, apoptosis is one of the most important basic functions of cells, so it is important to be always taken into consideration in a wide range of medical fields ranging from the elucidation of various diseases to the development of appropriate treatments. It is a phenomenon.

アポトーシスの検出方法の一つともなっているDNAの断片化に関わる酵素としては、DNase I、DNase X、DNaseγ、CAD/DFF40、Endonuclease G、DNase IIなどが報告されている。しかしながら、これらのDNaseが実際に生体において働いているのか、またどのように使い分けられているのかに関して、即ち、各DNaseが特異的に関与する細胞の種類、分化状態、アポトーシス誘導刺激などに関して、全容は未だ解明されていない。   DNase I, DNase X, DNaseγ, CAD / DFF40, Endonuclease G, DNase II and the like have been reported as enzymes involved in DNA fragmentation, which is one of the methods for detecting apoptosis. However, as to whether these DNases actually work in the living body and how they are used properly, that is, regarding the types of cells, differentiation states, apoptosis-inducing stimuli, etc., where each DNase is specifically involved, Has not been clarified yet.

DNase Iの立体構造は、DNAと共結晶化されたタンパク質を用いて行われたX線結晶解析から明らかになった(非特許文献1参照)。この立体構造において、解離したDNAの二重鎖のうち、一方のDNA鎖が結合する活性中心と、もう一方のDNA鎖が結合するドメイン(以下、このドメインをDNA結合ポケットと呼ぶ)が同定された(非特許文献1参照)。活性中心に関しては、それを構成するアミノ酸配列に変異を導入することで、DNase γの活性が消失することが明らかになった(非特許文献2参照)が、DNA結合ポケットに関しては、DNase γ活性との関連は必ずしも明らかではなかった。
J. Mol. Biol. 222, 645-67, 1991 アポトーシスがわかる わかる実験医学シリーズ−基本&トピックス(編集:田沼靖一,出版社:羊土社,ISBN:4897069882)69頁
The three-dimensional structure of DNase I was revealed by X-ray crystallography performed using a protein co-crystallized with DNA (see Non-Patent Document 1). In this three-dimensional structure, of the dissociated DNA double strands, the active center to which one DNA strand binds and the domain to which the other DNA strand binds (hereinafter this domain is called DNA binding pocket) are identified. (See Non-Patent Document 1). With regard to the active center, it has been clarified that the activity of DNase γ disappears by introducing a mutation into the amino acid sequence that constitutes the active center (see Non-Patent Document 2). The relationship with was not always clear.
J. Mol. Biol. 222, 645-67, 1991 Understanding Apoptosis Understanding Experimental Medicine Series-Basics & Topics (Editor: Junichi Tanuma, Publisher: Yodosha, ISBN: 4897069882) p. 69

アポトーシスにおけるDNaseγの役割の解明やDNaseγ依存性アポトーシスの特異性の解明に対し、DNaseγのDNase活性を特異的に阻害することは一つの戦略となる。しかし、現在、そのための有効な活性阻害物質や阻害方法はなく、その開発が求められている。   To elucidate the role of DNaseγ in apoptosis and the specificity of DNaseγ-dependent apoptosis, specifically inhibiting DNaseγ's DNase activity is one strategy. However, at present, there is no effective activity inhibiting substance or inhibition method for that purpose, and development thereof is required.

そこで、本発明は、DNaseγのDNase活性を阻害する阻害方法、DNaseγのDNase活性を阻害する阻害物質のスクリーニング方法、及びDNaseγのDNase活性を阻害する物質を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for inhibiting the DNase activity of DNaseγ, a screening method for an inhibitory substance that inhibits the DNase activity of DNaseγ, and a substance that inhibits the DNase activity of DNaseγ.

本発明者らは、上記課題を解決すべく、まずDNase I共結晶構造に基づいてDNaseγの立体構造を予測した。DNase Iの立体構造においては、DNase Iが2本鎖DNA を解離しながらDNAを切断する際に切断する側のDNA鎖が結合するDNase Iの酵素活性中心と、もう一方のDNA鎖が結合するDNA結合ポケットが存在するが、本発明者らは、DNaseγの立体構造において、このDNase IのDNA結合ポケットに対応するドメインを同定した。なお、本明細書では、実際にDNAに結合するかどうかに関わらず、DNase IのDNA結合ポケットに対応するDNaseγのドメインを、DNaseγのDNA結合ポケットと呼ぶこととする。   In order to solve the above problems, the present inventors first predicted the three-dimensional structure of DNaseγ based on the DNase I co-crystal structure. In the three-dimensional structure of DNase I, when DNase I dissociates double-stranded DNA and cleaves the DNA, the other DNA strand binds to the enzyme active center of DNase I that binds to the DNA strand that is to be cleaved. Although a DNA binding pocket exists, the present inventors have identified a domain corresponding to the DNA binding pocket of DNase I in the three-dimensional structure of DNaseγ. In the present specification, the domain of DNaseγ corresponding to the DNA binding pocket of DNase I is referred to as the DNA binding pocket of DNaseγ regardless of whether it actually binds to DNA.

続いて、DNaseγのDNA結合ポケットと結合親和性の高い物質を化合物ライブラリーから選択し、その後、選択した化合物がDNaseγのDNase活性を阻害することができるか否かを実験的に調べることにより、DNaseγのDNase活性を阻害する物質(以下、DNaseγ阻害剤と呼ぶ)を見出し、本発明を完成するに至った。   Subsequently, a substance having a high binding affinity with the DNA binding pocket of DNaseγ is selected from the compound library, and then, by experimentally examining whether the selected compound can inhibit the DNase activity of DNaseγ, A substance that inhibits the DNase activity of DNaseγ (hereinafter referred to as a DNaseγ inhibitor) has been found and the present invention has been completed.

すなわち、本発明に係るDNaseγのDNase活性を阻害する阻害方法は、立体的な結合障害を生じさせるためにDNaseγのDNA結合ポケットに物質を結合させることを含む。この物質としては、ヒトDNaseγ(配列番号1参照)のGlu13、Ser14、Asp42、Ser43、及びAsn44からなるS1ドメイン(配列番号2参照)の1又は2以上のアミノ酸残基と、DNaseγのSer10、Phe11、Gly12、Glu39、Ile40、及びLys41からなるS2ドメイン(配列番号3参照)の1又は2以上のアミノ酸残基とに結合するものであってもよいが、さらにDNaseγのArg72、Thr77、Tyr78、Lys79、Glu80、及びGln81からなるS3ドメイン(配列番号4参照)の1又は2以上のアミノ酸残基にも結合するものであってもよい。   That is, the inhibition method for inhibiting the DNase activity of DNaseγ according to the present invention includes binding a substance to the DNA binding pocket of DNaseγ in order to cause a steric binding disorder. This substance includes one or more amino acid residues in the S1 domain (see SEQ ID NO: 2) consisting of Glu13, Ser14, Asp42, Ser43, and Asn44 of human DNaseγ (see SEQ ID NO: 1), and Ser10 and Phe11 of DNaseγ. , Gly12, Glu39, Ile40, and Lys41 may bind to one or more amino acid residues of the S2 domain (see SEQ ID NO: 3), but DNaseγ Arg72, Thr77, Tyr78, Lys79 , Glu80, and Gln81 may bind to one or more amino acid residues of the S3 domain (see SEQ ID NO: 4).

具体的な物質として、例えば、下式(1)〜(4)からなるグループから選ばれるいずれかの化合物またはその薬理学的に許容される塩を有効成分として含有するものを用いることができる。
As a specific substance, for example, a substance containing any compound selected from the group consisting of the following formulas (1) to (4) or a pharmacologically acceptable salt thereof as an active ingredient can be used.

また、本発明に係るDNaseγのDNase活性を阻害する阻害物質のスクリーニング方法は、DNaseγのDNA結合ポケットに結合する物質を化合物ライブラリーから選択する1次スクリーニングと、選択した前記物質がDNaseγのDNase活性を阻害することができるかどうかを確認する2次スクリーニングと、を含む。   The method for screening an inhibitor that inhibits the DNase activity of DNaseγ according to the present invention includes a primary screening for selecting a substance that binds to the DNA binding pocket of DNaseγ from a compound library, and the selected substance is the DNase activity of DNaseγ. Secondary screening to confirm whether it can be inhibited.

さらに、本発明に係るDNaseγ阻害剤は、下式(1)〜(4)からなるグループから選ばれるいずれかの化合物またはその薬理学的に許容される塩を有効成分として含有する。
Furthermore, the DNaseγ inhibitor according to the present invention contains any compound selected from the group consisting of the following formulas (1) to (4) or a pharmaceutically acceptable salt thereof as an active ingredient.

本発明によれば、DNaseγのDNase活性を阻害する阻害方法、DNaseγのDNase活性を阻害する阻害物質のスクリーニング方法、及びDNaseγのDNase活性を阻害する物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the inhibition method which inhibits the DNase activity of DNaseγ, the screening method of the inhibitor which inhibits the DNase activity of DNaseγ, and the substance which inhibits the DNase activity of DNaseγ can be provided.

以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いている場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。   Hereinafter, embodiments of the present invention completed based on the above knowledge will be described in detail with reference to examples. Unless otherwise stated in the embodiments and examples, J. Sambrook, EF Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); FM Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, K. Struhl (Ed.), Standard Protocols in Molecular Biology, John Wiley & Sons Ltd. The method described in the protocol collection, or a modified or modified method thereof is used. In addition, when using commercially available reagent kits and measuring devices, unless otherwise explained, protocols attached to them are used.

なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。   The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention, and are shown for illustration or explanation. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

==DNaseγのDNase活性を阻害する阻害方法==
DNaseγのDNA結合ポケットは、X線解析やNMR(Nuclear Magnetic Resonance)法によっては未だに解明されていないが、DNaseIと同様、DNA切断の際のDNA結合部位であることが予想される。従って、DNA結合ポケットに結合する物質は、DNaseγに対するDNAの安定な結合に対し、立体的な結合障害を生じさせることにより、DNaseγのDNase活性に対する阻害効果を有すると考えられる。
== Inhibition method of inhibiting DNase activity of DNaseγ ==
Although the DNA binding pocket of DNaseγ has not yet been elucidated by X-ray analysis or NMR (Nuclear Magnetic Resonance) method, it is expected to be a DNA binding site at the time of DNA cleavage like DNaseI. Therefore, it is considered that a substance that binds to the DNA binding pocket has an inhibitory effect on the DNase activity of DNaseγ by causing steric binding damage to the stable binding of DNA to DNaseγ.

そこで、立体的な結合障害を生じさせるためにDNaseγのDNA結合ポケットに物質を結合させれば、DNaseγのDNase活性を阻害することができる。結合させる物質はDNaseγのDNase活性を阻害することができるものであれば何でもよく、水素結合でDNA結合ポケットに結合する化合物、DNA結合ポケット周辺をエピトープとする抗体、DNA結合ポケットに強固に結合する修飾1本鎖DNAなどが挙げられる。   Therefore, DNase activity of DNaseγ can be inhibited by binding a substance to the DNA binding pocket of DNaseγ in order to cause a steric binding disorder. Any substance can be used as long as it can inhibit the DNase activity of DNaseγ, a compound that binds to the DNA binding pocket by hydrogen bonding, an antibody that has an epitope around the DNA binding pocket, and binds firmly to the DNA binding pocket. Examples include modified single-stranded DNA.

==DNaseγのDNase活性を阻害する阻害物質のスクリーニング方法==
このDNaseγのDNase活性を阻害する阻害方法を利用して、DNaseγのDNase活性を阻害する阻害物質をスクリーニングすることができる。
== Screening method for inhibitors inhibiting DNase activity of DNaseγ ==
By using this inhibition method for inhibiting the DNase activity of DNaseγ, an inhibitory substance that inhibits the DNase activity of DNaseγ can be screened.

まず、1次スクリーニングとして、化合物ライブラリーから、DNaseγのDNA結合ポケットと結合する物質を選択する。その物質のDNaseγに対する結合親和性(例えば、水素結合、疎水性相互作用など)の高い物質を選択することが好ましい。2次スクリーニングとして、1次スクリーニングで選択した物質がDNaseγのDNase活性を阻害することができるかどうかを実験的に確認することにより、実際にDNase活性を阻害する阻害物質を同定することができる。   First, as a primary screening, a substance that binds to a DNA binding pocket of DNaseγ is selected from a compound library. It is preferable to select a substance having a high binding affinity (for example, hydrogen bond, hydrophobic interaction, etc.) to the DNaseγ of the substance. As a secondary screening, an inhibitor that actually inhibits DNase activity can be identified by experimentally confirming whether the substance selected in the primary screening can inhibit the DNase activity of DNaseγ.

1次スクリーニングは、例えば、コンピュータ上でDockingプログラムを用いて行うことができる。なお、化合物ライブラリーとしては、例えば、ChemACX、Maybridge Catalog and the Asinex database、Rare Chemical Library、World Drug Index、Cambridge Crystallographic Databaseなどのデータベースを用いることができる。   The primary screening can be performed using a Docking program on a computer, for example. In addition, as a compound library, databases, such as ChemACX, Maybridge Catalog and the Asinex database, Rare Chemical Library, World Drug Index, Cambridge Crystallographic Database, can be used, for example.

別法として、実験的に、DNaseγのDNA結合ポケットと結合する物質を選択することもできる。例えば、大腸菌などで発現させたDNaseγのDNA結合ポケット部分を担持させたアフィニティカラムを用い、化合物ライブラリーに属する化合物から、そのカラムに結合する化合物を選択してもよい。   Alternatively, a substance that binds to the DNA binding pocket of DNaseγ can be selected experimentally. For example, an affinity column carrying a DNA binding pocket portion of DNaseγ expressed in E. coli or the like may be used, and a compound that binds to the column may be selected from the compounds belonging to the compound library.

2次スクリーニングでは、その物質が実際に、DNaseγのDNase活性に対する阻害効果を有するかどうかを実験的に確認する。確認方法は、in vitro、in vivoを問わず、DNaseγのDNase活性に対する阻害効果を確認できるものであれば何でもよい。   In the secondary screening, it is experimentally confirmed whether the substance actually has an inhibitory effect on DNase activity of DNaseγ. Any confirmation method can be used as long as it can confirm the inhibitory effect of DNaseγ on the DNase activity, whether in vitro or in vivo.

例えば、in vitroで、DNaseγと適当な長さのDNAとを含む溶液に1次スクリーニングで選択した物質を添加して酵素反応させることにより、この物質がDNase活性を阻害できるかどうか確認できる。   For example, it is possible to confirm whether or not this substance can inhibit DNase activity in vitro by adding the substance selected in the primary screening to a solution containing DNaseγ and an appropriate length of DNA and causing an enzyme reaction.

また、培養細胞にDNaseγ依存性アポトーシスを誘導し、1次スクリーニングで選択した物質を培地に添加して、この物質がDNAの断片化を阻害できるかどうか確認してもよい。この場合、この物質がアポトーシスの他の過程に対して有害な効果を示さないことを確認するのが望ましい。   Alternatively, DNaseγ-dependent apoptosis may be induced in cultured cells, and the substance selected in the primary screening may be added to the medium to confirm whether this substance can inhibit DNA fragmentation. In this case, it is desirable to confirm that this substance does not have a detrimental effect on other processes of apoptosis.

==DNaseγのDNase活性を阻害する阻害物質==
実施例に記載するように、上記スクリーニング法によって、DNaseγのDNase活性を阻害する阻害物質として下式化合物(1)が得られた。また、化合物(1)とDNaseγのDNA結合ポケットとの結合様式を調べたところ、図1に示すように、化合物(1)は、DNaseγのS1(Glu13、Ser14、Asp42、Ser43、及びAsn44からなる。)、S2(Ser10、Phe11、Gly12、Glu39、Ile40、及びLys41からなる。)、S3(Arg72、Thr77、Tyr78、Lys79、Glu80、及びGln81からなる。)などのドメインにおけるアミノ酸残基と水素結合することが明らかになった。
== Inhibitor that inhibits DNaseγ DNase activity ==
As described in the Examples, the following compound (1) was obtained as an inhibitor that inhibits the DNase activity of DNaseγ by the above screening method. Further, when the binding mode between the compound (1) and the DNA binding pocket of DNaseγ was examined, as shown in FIG. 1, the compound (1) was composed of S1 of DNaseγ (Glu13, Ser14, Asp42, Ser43, and Asn44). ), S2 (consisting of Ser10, Phe11, Gly12, Glu39, Ile40, and Lys41), S3 (consisting of Arg72, Thr77, Tyr78, Lys79, Glu80, and Gln81) and hydrogen bonds It became clear to do.

また、同様に上記スクリーニング法によって、化合物ライブラリーから下式化合物(2)が得られた。化合物(2)とDNaseγのDNA結合ポケットとの結合様式を調べたところ、図2に示すように、化合物(2)は、DNaseγのS1、S2などのドメインにおけるアミノ酸残基と結合することが明らかになった。
Similarly, the following compound (2) was obtained from the compound library by the above screening method. Examination of the binding mode between the compound (2) and the DNA binding pocket of DNaseγ revealed that compound (2) binds to amino acid residues in domains such as S1 and S2 of DNaseγ, as shown in FIG. Became.

これらの化合物のように、DNaseγのDNA結合ポケットのS1(Glu13、Ser14、Asp42、Ser43、及びAsn44からなる。)、S2(Ser10、Phe11、Gly12、Glu39、Ile40、及びLys41からなる。)、S3(Arg72、Thr77、Tyr78、Lys79、Glu80、及びGln81からなる。)などのドメインにおけるアミノ酸残基と水素結合する化合物は、安定にDNA結合ポケットに結合して、立体的な結合障害を生じさせることができる。   Like these compounds, S1 (consisting of Glu13, Ser14, Asp42, Ser43, and Asn44), S2 (consisting of Ser10, Phe11, Gly12, Glu39, Ile40, and Lys41), S3 in the DNA binding pocket of DNaseγ. Compounds that hydrogen bond with amino acid residues in domains such as Arg72, Thr77, Tyr78, Lys79, Glu80, and Gln81 can stably bind to the DNA binding pocket and cause steric binding damage. Can do.

さらに、同様に上記スクリーニング法によって、化合物ライブラリーから、DNaseγのDNase活性を阻害する下式化合物(3)及び(4)が得られた。
Further, similarly, the following compounds (3) and (4) that inhibit the DNase activity of DNaseγ were obtained from the compound library by the above screening method.

以下、本発明の実施例について詳細に述べる。   Examples of the present invention will be described in detail below.

[実施例1]DNaseγの立体構造の予測
(1)DNase I結晶構造(PDB code:2DNJ)を基に、ホモロジーモデリング法により、DNaseγの初期構造を構築した(図3参照)。なお、ホモロジーモデリング法のソフトウェアとしてModeller(http://salilab.org/modeller/modeller.html)を用いた。
(2)鋳型として用いたDNase Iの立体構造はDNAとの共結晶であることから、その複合体構造を基にDNaseγ/DNA複合体構造を構築した。
(3)分子動力学ソフトウェアであるAmberを用いてDNaseγ/DNA複合体構造の構造を最適化し、最終的な立体構造とした。
(4)予測したDNaseγ/DNA複合体の立体構造の妥当性を、Verify3Dを用いて評価した。
[Example 1] Prediction of steric structure of DNaseγ (1) Based on the DNase I crystal structure (PDB code: 2DNJ), an initial structure of DNaseγ was constructed by homology modeling (see FIG. 3). Note that Modeller (http://salilab.org/modeller/modeller.html) was used as software for the homology modeling method.
(2) Since the three-dimensional structure of DNase I used as a template is a co-crystal with DNA, a DNaseγ / DNA complex structure was constructed based on the complex structure.
(3) The structure of the DNaseγ / DNA complex structure was optimized using Amber, a molecular dynamics software, to obtain a final three-dimensional structure.
(4) The validity of the three-dimensional structure of the predicted DNaseγ / DNA complex was evaluated using Verify3D.

Verify3Dを用いた評価の結果、スコアが121.41であり、立体構造の妥当性目安値(S=exp(-0.83+1.008ln(L));Lは残基数で(L=256))が116.7以上であったことから、予測したDNaseγ/DNA複合体の立体構造は妥当であると判断した。また、予測したDNaseγ/DNA複合体の立体構造から、DNase IのDNA結合ポケットに対応するDNaseγのドメイン(S1, S2, S3)を予測した(図2参照)。これらのドメインに含まれるアミノ酸は、S1(Glu13、Ser14、Asp42、Ser43、Asn44)、S2(Ser10、Phe11、Gly12、Glu39、Ile40、Lys41)、S3(Arg72、Thr77、Tyr78、Lys79、Glu80、Gln81)であった。   As a result of the evaluation using Verify3D, the score is 121.41, and the validity standard value of the three-dimensional structure (S = exp (−0.83 + 1.008ln (L)); L is the number of residues (L = 256)) is 116.7 From the above, it was judged that the predicted three-dimensional structure of the DNaseγ / DNA complex was appropriate. Moreover, the domain (S1, S2, S3) of DNaseγ corresponding to the DNA binding pocket of DNase I was predicted from the three-dimensional structure of the predicted DNaseγ / DNA complex (see FIG. 2). The amino acids contained in these domains are S1 (Glu13, Ser14, Asp42, Ser43, Asn44), S2 (Ser10, Phe11, Gly12, Glu39, Ile40, Lys41), S3 (Arg72, Thr77, Tyr78, Lys79, Glu80, Gln81 )Met.

[実施例2]Docking ProgramによるDNaseγ阻害剤の1次スクリーニング
次に、実施例1で予測したDNaseγの構造を用いて、Dockingプログラム(Autodock 3.0)により、化合物ライブラリーに含まれる化合物とDNaseγのDNA結合ポケットとをドッキングさせ、その結合親和性スコアを計算することでDNaseγの阻害剤となりうる物質(下式化合物(1)〜(4))を選択した。なお、化合物ライブラリーとしてはChemACXを用い、パラメータとしては全てデフォルトで行った。
[Example 2] Primary screening of DNaseγ inhibitor by Docking Program Next, using the structure of DNaseγ predicted in Example 1, using the Docking program (Autodock 3.0), the compounds contained in the compound library and DNA of DNaseγ By docking the binding pocket and calculating the binding affinity score, a substance that can be an inhibitor of DNaseγ (compounds (1) to (4) below) was selected. In addition, ChemACX was used as the compound library, and all parameters were set as defaults.

[実施例3]DNaseγのDNase活性に対する阻害効果(2次スクリーニング)
実施例2により選択された化合物(1)〜(4)がDNaseγのDNase活性を阻害することができるかどうかを確認するため、化合物(1)及び(2)をSigma社から、化合物(3)をFluka社から、化合物(4)をMolecular Probes社からそれぞれ購入し、in vitroで、DNaseγによるDNA切断活性の阻害効果を調べた。
[Example 3] Inhibitory effect of DNaseγ on DNase activity (secondary screening)
In order to confirm whether the compounds (1) to (4) selected according to Example 2 can inhibit the DNase activity of DNaseγ, the compounds (1) and (2) were obtained from Sigma Corporation as a compound (3). Was purchased from Fluka and Compound (4) was purchased from Molecular Probes, and the inhibitory effect on DNA cleavage activity by DNaseγ was examined in vitro.

(1)各濃度の化合物(化合物(1)〜(4)のいずれか)とDNaseγ(final 8×10-4 Kunitz units/μl)とを反応液(50 mM Mops-NaOH (pH 7.2)、3 mM MgCl2、3 mM CaCl2、0.1 mg/ml BSA(bovine serum albumin)) 45μl中に懸濁し、37℃にて30分間インキュベートした。
(2)サケ精子DNA(0.5mg/ml) 5μlを加え、37℃にて20分間反応した(total 50μl)。
(3)10% PCAを50μl加えることにより反応を停止した。
(4)氷上20分間放置した。
(5)3000 rpm、4℃で15分間遠心した。
(6)上清を蒸留水で希釈し、DNaseγにより分解された酸可溶性DNA産物を吸光度A260を測定し、DNaseγの活性を算出し、IC50を求めた。
(1) A compound of each concentration (any of compounds (1) to (4)) and DNaseγ (final 8 × 10 −4 Kunitz units / μl) are mixed with a reaction solution (50 mM Mops-NaOH (pH 7.2), 3 It was suspended in 45 μl of mM MgCl 2 , 3 mM CaCl 2 , 0.1 mg / ml BSA (bovine serum albumin)) and incubated at 37 ° C. for 30 minutes.
(2) Salmon sperm DNA (0.5 mg / ml) 5 μl was added and reacted at 37 ° C. for 20 minutes (total 50 μl).
(3) The reaction was stopped by adding 50 μl of 10% PCA.
(4) Left on ice for 20 minutes.
(5) Centrifugation was performed at 3000 rpm and 4 ° C. for 15 minutes.
(6) The supernatant was diluted with distilled water, and the acid-soluble DNA product decomposed by DNaseγ was measured for absorbance A 260 , the activity of DNaseγ was calculated, and IC 50 was determined.

結果を表1に示す。
The results are shown in Table 1.

表1に示すように、化合物(1)〜(4)はいずれもDNaseγのDNase活性を阻害することが明らかとなった。特に化合物(1)及び化合物(2)は優れた阻害効果を示した。   As shown in Table 1, it was revealed that all of the compounds (1) to (4) inhibit DNase activity of DNaseγ. In particular, Compound (1) and Compound (2) showed an excellent inhibitory effect.

[実施例4]アポトーシスにおけるDNA断片化阻害効果の確認(2次スクリーニング)
次に、実施例2により選出された化合物が、培養細胞のアポトーシスにおいてゲノムDNA断片化を抑制することができるかどうかを調べた。
[Example 4] Confirmation of DNA fragmentation inhibitory effect on apoptosis (secondary screening)
Next, it was examined whether the compound selected by Example 2 can suppress genomic DNA fragmentation in apoptosis of cultured cells.

(1)内因性のDNaseγの発現がほとんど検出されず、様々なアポトーシス刺激に対してDNAの断片化が生じないHeLa S3細胞を培地(10% FCSを含むダルベッコ改変イーグル培地)の入った3.5 cm dish に1×105個播種した。
(2)一晩培養し、培地を交換した後、DNaseγ依存性アポトーシス活性を細胞に与えるため、Human DNaseγのcDNAをベクターpcDNA3.1/Myc-His (Invitrogen社)のNot I SiteへサブクローニングしたhDNaseγの発現ベクターをHeLa S3細胞に導入した(サンプル3〜6)。なお、遺伝子導入はFuGene6(Roche社製)を用いて行った。
(3)さらに一晩培養し、培地を交換した後、0.5μM スタウロスポリン(STS;アポトーシス誘導剤)(サンプル2〜6)及び各濃度で化合物(1)(サンプル3〜6)を添加して24時間インキュベートした。
(4)細胞を回収し、プロティナーゼK(タンパク質分解酵素)及びRNase A(RNA分解酵素)で処理して、細胞から抽出物を得た後、その抽出物を1.8% アガロースゲルを用いて電気泳動した。結果を図4に示す。
(1) HeLa S3 cells in which endogenous DNaseγ expression is hardly detected and DNA fragmentation does not occur in response to various apoptotic stimuli in medium (Dulbecco's modified Eagle medium containing 10% FCS) in 3.5 cm 1 × 10 5 seeds were sown in a dish.
(2) hDNaseγ obtained by subcloning Human DNaseγ cDNA into Not I Site of vector pcDNA3.1 / Myc-His (Invitrogen) to give cells DNaseγ-dependent apoptotic activity after overnight culture and medium change Were introduced into HeLa S3 cells (samples 3 to 6). The gene transfer was performed using FuGene6 (Roche).
(3) After further overnight culture and changing the medium, 0.5 μM staurosporine (STS; apoptosis inducer) (samples 2 to 6) and compound (1) (samples 3 to 6) at each concentration were added. And incubated for 24 hours.
(4) Cells are collected, treated with proteinase K (proteolytic enzyme) and RNase A (RNA degrading enzyme) to obtain an extract from the cells, and then the extract is electrophoresed on a 1.8% agarose gel. did. The results are shown in FIG.

以下、各サンプルに対する処理のまとめである。
(サンプル1)DNAのみ
(サンプル2)ネガティブ・コントロール(STS(+) DNaseγ(−))
(サンプル3)ポジティブ・コントロール(STS(+) DNaseγ(+))
(サンプル4)(STS(+) DNaseγ(+) 化合物(1)(10 μM))
(サンプル5)(STS(+) DNaseγ(+) 化合物(1)(30 μM))
(サンプル6)(STS(+) DNaseγ(+) 化合物(1)(100 μM))
図4に示すように、化合物(1)が、DNaseγによるゲノムDNA断片化を濃度依存的に抑制し、100μMではほぼ完全に抑制することが明らかになった。
The following is a summary of the processing for each sample.
(Sample 1) DNA only (Sample 2) Negative control (STS (+) DNaseγ (-))
(Sample 3) Positive control (STS (+) DNaseγ (+))
(Sample 4) (STS (+) DNaseγ (+) Compound (1) (10 μM))
(Sample 5) (STS (+) DNaseγ (+) Compound (1) (30 μM))
(Sample 6) (STS (+) DNaseγ (+) Compound (1) (100 μM))
As shown in FIG. 4, it was revealed that Compound (1) inhibited genomic DNA fragmentation by DNaseγ in a concentration-dependent manner, and almost completely at 100 μM.

さらに、化合物(1)がアポトーシスの他の過程、即ちゲノムDNA断片化以外の過程に影響を及ぼさないことを確認するため、アポトーシスの指標であるPARP(poly(ADP-ribose) polymerase-1)の切断に対する化合物(1)の効果を調べた。上述のようにhDNaseγの発現ベクターを導入したHeLa S3細胞を0.5μM スタウロスポリン(STS;アポトーシス誘導剤)及び100μMの化合物(1)で処理した後(サンプル4)、細胞をホモゲナイズして得られた抽出物を用いて、ウエスタンブロッティングを行った。コントロールとして、処理をしない細胞(サンプル1)、化合物(1)のみで処理した細胞(サンプル2)、STSのみで処理した細胞(サンプル3)、についても同様に実験を行った。1次抗体は、抗PARPモノクローナル抗体(和光No. 016-16831、1:500で使用)、2次抗体は、抗マウスIgG抗体(Promega社、1:1000で使用)を用い、Western-Blue(Promega社)を用いてシグナルを検出した。   Furthermore, in order to confirm that compound (1) does not affect other processes of apoptosis, that is, processes other than genomic DNA fragmentation, PARP (poly (ADP-ribose) polymerase-1), which is an index of apoptosis, is used. The effect of compound (1) on cleavage was investigated. As described above, HeLa S3 cells into which hDNaseγ expression vector was introduced were treated with 0.5 μM staurosporine (STS; apoptosis inducer) and 100 μM compound (1) (sample 4), and then obtained by homogenizing the cells. Western blotting was performed using the extracted extracts. As a control, the same experiment was carried out on untreated cells (sample 1), cells treated only with compound (1) (sample 2), and cells treated only with STS (sample 3). The primary antibody is an anti-PARP monoclonal antibody (used in Wako No. 016-16831, 1: 500), and the secondary antibody is an anti-mouse IgG antibody (used by Promega, 1: 1000), Western-Blue ( Promega) was used to detect the signal.

図5(サンプル4)に示すように、化合物(1)の存在下においてもPARPの切断が検出されたことから、化合物(1)はアポトーシスの開始や進行にはほとんど影響を及ぼさず、DNaseγによるゲノムDNA断片化を特異的に阻害することが明らかになった。   As shown in FIG. 5 (Sample 4), since PARP cleavage was detected even in the presence of Compound (1), Compound (1) had little effect on the initiation and progression of apoptosis, and was caused by DNaseγ. It was found to specifically inhibit genomic DNA fragmentation.

化合物(1)とDNaseγとの結合様式を示す図である。FIG. 3 is a view showing a binding mode between compound (1) and DNaseγ. 化合物(2)とDNaseγとの結合様式を示す図である。FIG. 3 is a view showing a binding mode between compound (2) and DNaseγ. DNaseγの立体構造を示す図である。It is a figure which shows the three-dimensional structure of DNaseγ. 化合物(1)が、DNaseγによるDNA断片化を阻害する効果を示す図である。FIG. 2 is a graph showing an effect of compound (1) inhibiting DNA fragmentation by DNaseγ. アポトーシスの指標であるPARP(poly(ADP-ribose) polymerase-1)の切断に対する化合物(1)の影響を調べた結果を示す図である。It is a figure which shows the result of having investigated the influence of the compound (1) with respect to the cutting | disconnection of PARP (poly (ADP-ribose) polymerase-1) which is a parameter | index of apoptosis.

Claims (7)

DNaseγのDNase活性を阻害する阻害方法であって、
立体的な結合障害を生じさせるためにDNaseγのDNA結合ポケットに物質を結合させることを特徴とする阻害方法。
An inhibition method for inhibiting DNase activity of DNaseγ,
An inhibitory method comprising binding a substance to a DNA binding pocket of DNaseγ to cause a steric binding disorder.
前記物質が、下式(1)で表される化合物またはその薬理学的に許容される塩を有効成分として含有することを特徴とする請求項1に記載の阻害方法。
The inhibition method according to claim 1, wherein the substance contains a compound represented by the following formula (1) or a pharmacologically acceptable salt thereof as an active ingredient.
前記物質が、下式(2)〜(4)からなるグループから選ばれるいずれかの化合物またはその薬理学的に許容される塩を有効成分として含有することを特徴とする請求項1に記載の阻害方法。
2. The substance according to claim 1, wherein the substance contains any compound selected from the group consisting of the following formulas (2) to (4) or a pharmacologically acceptable salt thereof as an active ingredient. Inhibition method.
前記物質が、DNaseγのGlu13、Ser14、Asp42、Ser43、及びAsn44からなるS1ドメインの1又は2以上のアミノ酸残基と、DNaseγのSer10、Phe11、Gly12、Glu39、Ile40、及びLys41からなるS2ドメインの1又は2以上のアミノ酸残基とに結合することを特徴とする請求項1に記載の阻害方法。   The substance comprises one or more amino acid residues of S1 domain consisting of Glu13, Ser14, Asp42, Ser43 and Asn44 of DNaseγ, and S2 domain consisting of Ser10, Phe11, Gly12, Glu39, Ile40 and Lys41 of DNaseγ. The method according to claim 1, wherein the method binds to one or more amino acid residues. 前記物質が、さらにDNaseγのArg72、Thr77、Tyr78、Lys79、Glu80、及びGln81からなるS3ドメインの1又は2以上のアミノ酸残基に結合することを特徴とする請求項4に記載の阻害方法。   The inhibition method according to claim 4, wherein the substance further binds to one or more amino acid residues of the S3 domain consisting of Arg72, Thr77, Tyr78, Lys79, Glu80, and Gln81 of DNaseγ. DNaseγのDNase活性を阻害する阻害物質のスクリーニング方法であって、
DNaseγのDNA結合ポケットに結合する物質を化合物ライブラリーから選択する1次スクリーニングと、
選択した前記物質がDNaseγのDNase活性を阻害することができるかどうかを確認する2次スクリーニングと、
を含むことを特徴とするスクリーニング方法。
A screening method for an inhibitor that inhibits DNase activity of DNaseγ,
A primary screening for selecting a substance that binds to the DNA binding pocket of DNaseγ from a compound library;
A secondary screening to confirm whether the selected substance can inhibit the DNase activity of DNaseγ;
A screening method comprising the steps of:
下式(1)〜(4)からなるグループから選ばれるいずれかの化合物またはその薬理学的に許容される塩を有効成分として含有するDNaseγ阻害剤。

A DNaseγ inhibitor comprising as an active ingredient any compound selected from the group consisting of the following formulas (1) to (4) or a pharmacologically acceptable salt thereof:

JP2004220800A 2004-07-28 2004-07-28 METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR Pending JP2006036711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220800A JP2006036711A (en) 2004-07-28 2004-07-28 METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220800A JP2006036711A (en) 2004-07-28 2004-07-28 METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR

Publications (1)

Publication Number Publication Date
JP2006036711A true JP2006036711A (en) 2006-02-09

Family

ID=35902091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220800A Pending JP2006036711A (en) 2004-07-28 2004-07-28 METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR

Country Status (1)

Country Link
JP (1) JP2006036711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122018A (en) * 2004-11-01 2006-05-18 Tokyo Univ Of Science USE AND ACTION OF DNasegamma
WO2022067032A1 (en) * 2020-09-25 2022-03-31 Providence Health & Services - Oregon Cancer therapeutic compositions and methods targeting dnase1l3

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782173A (en) * 1993-09-09 1995-03-28 Dai Ichi Pure Chem Co Ltd Peptide antibody with calpain active center, determination of active-type calpain using the same and reagent therefor
JPH11127861A (en) * 1997-10-29 1999-05-18 Japan Energy Corp Neutralized partial peptide of antibody against serine protease originated from hepatitis c virus
US6143875A (en) * 1994-09-06 2000-11-07 Tanuma; Sei-Ichi Antibody to DNase involved in apoptosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782173A (en) * 1993-09-09 1995-03-28 Dai Ichi Pure Chem Co Ltd Peptide antibody with calpain active center, determination of active-type calpain using the same and reagent therefor
US6143875A (en) * 1994-09-06 2000-11-07 Tanuma; Sei-Ichi Antibody to DNase involved in apoptosis
JPH11127861A (en) * 1997-10-29 1999-05-18 Japan Energy Corp Neutralized partial peptide of antibody against serine protease originated from hepatitis c virus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122018A (en) * 2004-11-01 2006-05-18 Tokyo Univ Of Science USE AND ACTION OF DNasegamma
WO2022067032A1 (en) * 2020-09-25 2022-03-31 Providence Health & Services - Oregon Cancer therapeutic compositions and methods targeting dnase1l3

Similar Documents

Publication Publication Date Title
Zheng et al. The lysosomal Rag-Ragulator complex licenses RIPK1–and caspase-8–mediated pyroptosis by Yersinia
Cornec-Le Gall et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease
Chen et al. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses
Xu et al. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation
Kessl et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis
Alsohime et al. JAK inhibitor therapy in a child with inherited USP18 deficiency
Alazami et al. TLE6 mutation causes the earliest known human embryonic lethality
Moshous et al. Artemis, a novel DNA double-strand break repair/V (D) J recombination protein, is mutated in human severe combined immune deficiency
VanDemark et al. The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition
JP7231326B2 (en) Therapeutic and diagnostic methods for IL-33-mediated disorders
Zankl et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB
Furgason et al. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma
Schnappauf et al. Deficiency of adenosine deaminase 2 (DADA2): hidden variants, reduced penetrance, and unusual inheritance
Kucknoor et al. Adherence to human vaginal epithelial cells signals for increased expression of Trichomonas vaginalis genes
McKeever et al. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease
US11946053B2 (en) Methods for overcoming glucocorticoid resistance and for determining glucocorticoid resistance potential in cancer
Sandoval-Cabrera et al. MR (Mre11-Rad50) complex in Giardia duodenalis: In vitro characterization and its response upon DNA damage
Al Qahtani et al. Whole-genome sequencing reveals exonic variation of ASIC5 gene results in recurrent pregnancy loss
Shah et al. Optimization of parasite DNA enrichment approaches to generate whole genome sequencing data for Plasmodium falciparum from low parasitaemia samples
Li et al. Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics
JP2006036711A (en) METHOD OF INHIBITING DNase ACTIVITY OF DNase gamma, METHOD OF SCREENING INHIBITOR INHIBITING DNase ACTIVITY OF DNase gamma, AND DNase gamma INHIBITOR
Wichers-Misterek et al. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections
Natarajan et al. Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia
Oosthuizen Molecular screening of Coloured South African breast cancer patients for the presence of BRCA mutations using high resolution melting analysis
Wang et al. Identification and validation of an endoplasmic-reticulum-stress-related gene signature as an effective diagnostic marker of endometriosis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628