JP2006033958A - Switching regulator - Google Patents

Switching regulator Download PDF

Info

Publication number
JP2006033958A
JP2006033958A JP2004207224A JP2004207224A JP2006033958A JP 2006033958 A JP2006033958 A JP 2006033958A JP 2004207224 A JP2004207224 A JP 2004207224A JP 2004207224 A JP2004207224 A JP 2004207224A JP 2006033958 A JP2006033958 A JP 2006033958A
Authority
JP
Japan
Prior art keywords
slope compensation
vout
switching regulator
slope
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004207224A
Other languages
Japanese (ja)
Other versions
JP2006033958A5 (en
Inventor
Ryoichi Anzai
亮一 安斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004207224A priority Critical patent/JP2006033958A/en
Publication of JP2006033958A publication Critical patent/JP2006033958A/en
Publication of JP2006033958A5 publication Critical patent/JP2006033958A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To overcome the problem that the quantity of a slope compensation is not correct since the quantity of the slope compensation outputted from a slope compensating circuit is fixed although an increase rate and a decrease rate of a coil current changes in accordance with changes in an input voltage and an output voltage in a conventional current mode switching regulator requiring the correct quantity of the slope compensation for preventing a subharmonic oscillation. <P>SOLUTION: The current mode switching regulator variably changes the quantity of the slope compensation outputted from the slope compensating circuit in response to the input/output voltages VIN/VOUT, calculates the correct slope compensation from the input/output voltage VIN/VOUT, and always maintains the correct quantity of the slope compensation by changing the quantity of the slope compensation outputted from the slope compensating circuit in proportion to a calculated result even if the input voltage VIN and the output voltage VOUT change. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、入力電圧および出力電圧に応じてスロープ補償の量を変化させる電流モードスイッチングレギュレータに関するものである。   The present invention relates to a current mode switching regulator that changes the amount of slope compensation in accordance with an input voltage and an output voltage.

従来の電流モード昇圧型スイッチングレギュレータとしては、図4のブロック図に示されるような回路が知られている。   As a conventional current mode step-up switching regulator, a circuit as shown in the block diagram of FIG. 4 is known.

スイッチ107がオンすることにより入力電圧VINがコイル108に蓄積され、スイッチ107がオフすることでコイル108に蓄積されたエネルギーがダイオード109を介して出力コンデンサ112に転送される。   When the switch 107 is turned on, the input voltage VIN is accumulated in the coil 108, and when the switch 107 is turned off, the energy accumulated in the coil 108 is transferred to the output capacitor 112 via the diode 109.

エラーアンプ101は、出力電圧VOUTを帰還抵抗である抵抗110と抵抗111で分圧した電圧と、基準電圧源100から供給される基準電圧VREFとの差を増幅する。スロープ補償回路102は発振器104の出力信号に同期したこぎり波状の補償ランプ波を発生し、加算器103の一方の入力端子に入力される。   The error amplifier 101 amplifies the difference between the voltage obtained by dividing the output voltage VOUT by the resistors 110 and 111 as feedback resistors and the reference voltage VREF supplied from the reference voltage source 100. The slope compensation circuit 102 generates a sawtooth compensation ramp wave that is synchronized with the output signal of the oscillator 104, and is input to one input terminal of the adder 103.

加算器103の他方の入力端子にはスイッチ107に流れる電流の情報、あるいはコイル108に流れる電流の情報を電圧に変換したものが入力される。通常はスイッチ107あるいはコイル108と直列に接続したセンス抵抗を用いて各素子に流れる電流を検出し、スイッチ107あるいはコイル108に流れる電流に比例した値が電圧情報として加算器103の入力端子に入力される。   Information on the current flowing through the switch 107 or information obtained by converting the information on the current flowing through the coil 108 into a voltage is input to the other input terminal of the adder 103. Normally, a current flowing through each element is detected using a sense resistor connected in series with the switch 107 or the coil 108, and a value proportional to the current flowing through the switch 107 or the coil 108 is input to the input terminal of the adder 103 as voltage information. Is done.

コンパレータ105の反転入力端子にはエラーアンプ101の出力信号が入力され、非反転入力端子には加算器103の出力信号が入力される。出力電圧VOUTが低いと、エラーアンプ101の出力は上昇するので、コンパレータ105の状態がLからHに遷移するには、より大きな値をコンパレータ105の非反転入力端子に印加する必要がある。すなわち出力電圧VOUTが低いと、スイッチ107あるいはコイル108により多くの電流を流すことでコンパレータ105の出力が反転する。コンパレータ105の出力はSR−ラッチ106のリセット端子Rに入力される。   The output signal of the error amplifier 101 is input to the inverting input terminal of the comparator 105, and the output signal of the adder 103 is input to the non-inverting input terminal. When the output voltage VOUT is low, the output of the error amplifier 101 rises. Therefore, in order for the state of the comparator 105 to transition from L to H, a larger value needs to be applied to the non-inverting input terminal of the comparator 105. That is, when the output voltage VOUT is low, the output of the comparator 105 is inverted by passing a large amount of current through the switch 107 or the coil 108. The output of the comparator 105 is input to the reset terminal R of the SR-latch 106.

SR−ラッチ106のセット端子Sには発振器104が接続されており、発振器104からは図中に示したように一定周期のパルスが出力されている。SR−ラッチ106の出力端子Qはスイッチ107に接続されており、SR−ラッチ106の出力端子QがHのとき、スイッチ107がONする(例えば、特許文献1参照)。
特開平11−41924号公報
An oscillator 104 is connected to the set terminal S of the SR-latch 106, and a pulse having a constant period is output from the oscillator 104 as shown in the figure. The output terminal Q of the SR-latch 106 is connected to the switch 107. When the output terminal Q of the SR-latch 106 is H, the switch 107 is turned on (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-41924

電流モードスイッチングレギュレータでは、“ピーク電流制御型DC−DCコンバータの特性”、電子通信学会論文誌‘86/4 Vol.J69−C No.4 pp487−494で原田耕介らが指摘しているようにクロックサイクルに対してインダクタ電流が上昇する期間の割合、すなわちデューティーが50%を越える場合、電流モードスイッチングレギュレータはデューティーが周期的に変化する不安定状態(サブハーモニック発振状態)になる。   In the current mode switching regulator, “Characteristics of DC-DC Converter with Peak Current Control”, IEICE Transactions '86 / 4 Vol. J69-C No. As indicated by Kosuke Harada et al. In 4 pp 487-494, the ratio of the period during which the inductor current rises with respect to the clock cycle, that is, when the duty exceeds 50%, the duty of the current mode switching regulator changes periodically. It becomes unstable (sub harmonic oscillation state).

さらに、サブハーモニック発振を防止するためにはコイル電流の上昇率および減少率に対して、適切な量のスロープ補償を行う必要があることを原田らは指摘している。図3の電流モード昇圧型スイッチングレギュレータにおいてサブハーモニック発振を防止するために必要なスロープ補償値を求める。   Furthermore, Harada et al. Point out that in order to prevent subharmonic oscillation, it is necessary to perform an appropriate amount of slope compensation for the rate of increase and decrease of the coil current. In the current mode step-up switching regulator of FIG. 3, a slope compensation value necessary for preventing subharmonic oscillation is obtained.

すなわち、スイッチ107がONしているときのコイル108の電流増加率m1はコイル108のインダクタンスをL、スイッチングレギュレータの入力電圧をVINとすると
m1=VIN/L ・・・(1)
となりスイッチ107がOFFしている時のコイル108の電流減少率m2はダイオード109による電圧降下を無視するとおよそ
m2=(VOUT−VIN)/L ・・・(2)
となる。
That is, when the switch 107 is ON, the current increase rate m1 of the coil 108 is as follows: m1 = VIN / L (1) where the inductance of the coil 108 is L and the input voltage of the switching regulator is VIN.
When the switch 107 is OFF, the current reduction rate m2 of the coil 108 is approximately m2 = (VOUT−VIN) / L (2) when the voltage drop due to the diode 109 is ignored.
It becomes.

(1)式(2)式より入力電圧VIN、出力電圧VOUTにおけるサブハーモニック発振を防止するために必要なスロープ補償値mは
m≧(m2−m1)/2=(VOUT−2VIN)/(2L) ・・・(3)
となる。
(1) From equation (2), the slope compensation value m required to prevent subharmonic oscillation at the input voltage VIN and output voltage VOUT is m ≧ (m2−m1) / 2 = (VOUT−2VIN) / (2L (3)
It becomes.

しかし、図3の従来の電流モード昇圧型スイッチングレギュレータでは、スロープ補償回路から出力されるスロープ補償の量である補償ランプ波の増加率は一定のため、通常、考えられる入力電圧VINおよび出力電圧VOUT範囲で最大のスロープ補償値に設定する必要がある。しかしこの場合、スロープ補償値は通常大きな値となり、大きなスロープ補償値により電流モードによるスイッチングレギュレータの特性が損なわれるという問題点があった。   However, in the conventional current mode step-up switching regulator shown in FIG. 3, since the rate of increase of the compensation ramp wave, which is the amount of slope compensation output from the slope compensation circuit, is constant, the input voltage VIN and the output voltage VOUT are generally considered. It is necessary to set the maximum slope compensation value in the range. However, in this case, the slope compensation value is usually a large value, and there is a problem that the characteristics of the switching regulator in the current mode are impaired by the large slope compensation value.

上記問題点を解決するために、本発明においては入力電圧および出力電圧に応じてスロープ補償回路から出力されるスロープ補償量を変化させる。   In order to solve the above problem, in the present invention, the slope compensation amount output from the slope compensation circuit is changed according to the input voltage and the output voltage.

スロープ補償回路から出力されるスロープ補償の量である補償ランプ波の増加率が入力電圧VINおよび出力電圧VOUTの関数に比例するように可変することで、入力電圧VINおよび出力電圧VOUTが変化しても常に適切なスロープ補償の量を保った電流モードスイッチングレギュレータを構成できる。 By changing the increasing rate of the compensation ramp wave, which is the amount of slope compensation output from the slope compensation circuit, to be proportional to the function of the input voltage VIN and the output voltage VOUT, the input voltage VIN and the output voltage VOUT change. However, it is possible to construct a current mode switching regulator that always maintains an appropriate amount of slope compensation.

以下本発明の実施の形態を実施例の図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings of the embodiments.

図1は本発明の第1の実施例の電流モード昇圧型スイッチングレギュレータのブロック図である。図3に示した従来の電流モード昇圧型スイッチングレギュレータに入力電圧VINおよび出力電圧VOUTから適切なスロープ補償値を出力する、スロープ補償値演算回路130を追加することで、スロープ補償回路102はスロープ補償値演算回路130の出力に応じた補償ランプ波の増加率に設定される。スロープ補償値演算回路130は抵抗120、121、123、124とアンプ122による加減算回路で構成される。
以下はスロープ補償値演算回路130が入力電圧VINおよび出力電圧VOUTに応じたスロープ補償値を出力する場合について詳細に説明する。
抵抗120、121、123、124の抵抗値をそれぞれR120、R121、R123、R124とするとアンプ122の出力電圧VCは
VC={(R123)/(R123+R124)}×{(R120+R121)/
(R120)}(VOUT)−{(R124/R120)}(VIN)
・・・(4)
となる。抵抗120、121、123、124の抵抗値について
R123+R124=R120+R121 ・・・(5)
R123=R121/2 ・・・(6)
(5)式(6)式を満たすように設定すると、(4)式は
VC={(R121)/(2×R120)}(VOUT)−2(VIN)
となり、スロープ補償値演算回路130の出力は(VOUT−2VIN)に比例する出力となる。
FIG. 1 is a block diagram of a current mode step-up switching regulator according to a first embodiment of the present invention. By adding a slope compensation value calculation circuit 130 that outputs an appropriate slope compensation value from the input voltage VIN and the output voltage VOUT to the conventional current mode step-up switching regulator shown in FIG. 3, the slope compensation circuit 102 is made slope compensation. The increase rate of the compensation ramp wave according to the output of the value calculation circuit 130 is set. The slope compensation value calculation circuit 130 includes an addition / subtraction circuit including resistors 120, 121, 123, and 124 and an amplifier 122.
Hereinafter, a case where the slope compensation value calculation circuit 130 outputs a slope compensation value corresponding to the input voltage VIN and the output voltage VOUT will be described in detail.
When the resistance values of the resistors 120, 121, 123, and 124 are R120, R121, R123, and R124, respectively, the output voltage VC of the amplifier 122 is VC = {(R123) / (R123 + R124)} × {(R120 + R121) /
(R120)} (VOUT)-{(R124 / R120)} (VIN)
... (4)
It becomes. Regarding the resistance values of the resistors 120, 121, 123, and 124, R123 + R124 = R120 + R121 (5)
R123 = R121 / 2 (6)
(5) If it sets so that Formula (6) may be satisfy | filled, Formula (4) will be VC = {(R121) / (2 * R120)} (VOUT) -2 (VIN).
Thus, the output of the slope compensation value calculation circuit 130 is an output proportional to (VOUT−2VIN).

一方、電流モード昇圧型スイッチングレギュレータのサブハーモニック発振を防止するために必要な最小のスロープ補償値mは(3)式より、
m=(VOUT−2VIN)/(2L) ・・・(7)
となり、(VOUT−2VIN)に比例する。従ってスロープ補償値演算回路130によってスロープ補償値mが(VOUT−2VIN)に比例する構成にすることで、いかなる入力電圧VINおよび出力電圧VOUTに対してもサブハーモニック発振しない最小のスロープ補償を保った、電流モード昇圧型スイッチングレギュレータを構成できる。
On the other hand, the minimum slope compensation value m required to prevent subharmonic oscillation of the current mode boost switching regulator is
m = (VOUT−2VIN) / (2L) (7)
And is proportional to (VOUT-2VIN). Therefore, the slope compensation value calculation circuit 130 is configured so that the slope compensation value m is proportional to (VOUT−2VIN), thereby maintaining the minimum slope compensation that does not cause subharmonic oscillation for any input voltage VIN and output voltage VOUT. A current mode step-up switching regulator can be configured.

図2は本発明の第2実施例の電流モード昇圧型スイッチングレギュレータのブロック図である。スロープ補償値演算回路130の分圧抵抗、抵抗123、124と帰還抵抗抵抗110、111を共用することで抵抗の素子数を削減していること以外は第1の実施例と同じである。   FIG. 2 is a block diagram of a current mode step-up switching regulator according to the second embodiment of the present invention. The present embodiment is the same as the first embodiment except that the number of resistance elements is reduced by sharing the voltage dividing resistors, resistors 123 and 124 and the feedback resistor resistors 110 and 111 of the slope compensation value calculation circuit 130.

以上では電流モード昇圧型スイッチングレギュレータに適応させた場合について述べたが電流モード降圧型スイッチングレギュレータに適応する場合、コイルの電流増加率m1および電流減少率m2はそれぞれ
m1=(VIN―VOUT)/L ・・・(8)
m2=VOUT/L ・・・(9)
で与えられるので適切なスロープ補償値mは
m=(m2−m1)/2=(2VOUT−VIN)/(2L) ・・・(10)
となる。
In the above, the case where the current mode step-up switching regulator is applied has been described. However, when the current mode step-down switching regulator is applied, the current increase rate m1 and the current decrease rate m2 of the coil are m1 = (VIN−VOUT) / L, respectively. ... (8)
m2 = VOUT / L (9)
Therefore, the appropriate slope compensation value m is m = (m2−m1) / 2 = (2VOUT−VIN) / (2L) (10)
It becomes.

同様に電流モード反転型スイッチングレギュレータに適応する場合、m1、m2およびmは
m1=VIN/L ・・・(11)
m2=VOUT/L ・・・(12)
m=(m2−m1)/2=(VOUT−VIN)/(2L) ・・・(13)
で与えられる。
Similarly, when applied to a current mode inversion switching regulator, m1, m2 and m are: m1 = VIN / L (11)
m2 = VOUT / L (12)
m = (m2-m1) / 2 = (VOUT-VIN) / (2L) (13)
Given in.

従って、スロープ補償値演算回路130の分圧抵抗、抵抗123、124と帰還抵抗抵抗110、111の抵抗値を適切に設定することで電流モード降圧型スイッチングレギュレータおよび電流モード反転型スイッチングレギュレータにも同様に適応できることは明白である。   Therefore, the same applies to the current mode step-down switching regulator and the current mode inversion switching regulator by appropriately setting the resistance values of the voltage dividing resistor, resistors 123 and 124 and the feedback resistor resistors 110 and 111 of the slope compensation value calculation circuit 130. It is clear that can be adapted to.

図1においてスロープ補償回路102と加算器103によって電圧信号に変換されたコイル電流信号またはスイッチ電流信号とスロープ補償回路の入力電圧VCに傾きが比例した電圧ランプ波を加算した信号をコンパレータ105の非反転電圧入力端子に入力する必要がある。   In FIG. 1, a signal obtained by adding a voltage ramp wave whose slope is proportional to the coil current signal or switch current signal converted into a voltage signal by the slope compensation circuit 102 and the adder 103 and the input voltage VC of the slope compensation circuit is not applied to the comparator 105. It is necessary to input to the inverted voltage input terminal.

図3に電圧信号に変換されたコイル電流信号またはスイッチ電流信号とスロープ補償回路の入力電圧VCに傾きが比例した電圧ランプ波を加算した信号を発生させる回路の1つの例を示す。   FIG. 3 shows an example of a circuit for generating a signal obtained by adding a coil ramp signal or a switch current signal converted into a voltage signal and a voltage ramp wave having a slope proportional to the input voltage VC of the slope compensation circuit.

pnp型バイポーラトランジスタ150、npn型バイポーラトランジスタ152、定電流源151および抵抗153で構成される電圧―電流変換回路によって入力信号VCに比例する電流を発生させ、この出力電流をPチャネル・エンハンスメント型MOSトランジスタ154、155で構成されるカレントミラーを介して容量157に注入することで容量157の両端に傾きが入力信号VCに比例する電圧ランプ波を発生させる。Nチャネル・エンハンスメント型MOSトランジスタ156は発振器の発振周期に従って前記電圧ランプ波をリセットする。また、前記電圧ランプ波はpnp型バイポーラトランジスタ158、npn型バイポーラトランジスタ160、定電流源159および抵抗161で構成される電圧―電流変換回路によって電流変換され、この電流はPチャネル・エンハンスメント型MOSトランジスタ162、163で構成されるカレントミラーを介して抵抗165に注入することで再度、電圧変換される。一方、電流センス抵抗等により電圧信号に変換されたコイル電流信号またはスイッチ電流信号は抵抗164を介して抵抗165に加算される。従って図2の回路で電圧信号に変換されたコイル電流信号またはスイッチ電流信号と傾きが入力信号VCに比例した電圧ランプ波を加算した信号が得られることは明白である。他の回路構成でも本発明の図3の回路構成と同等の結果を得ることは可能であり、本発明は図3の回路構成に言及したものではない。   A voltage-current conversion circuit comprising a pnp bipolar transistor 150, an npn bipolar transistor 152, a constant current source 151 and a resistor 153 generates a current proportional to the input signal VC, and this output current is converted into a P-channel enhancement type MOS. By injecting into the capacitor 157 through a current mirror composed of the transistors 154 and 155, voltage ramp waves whose slopes are proportional to the input signal VC are generated at both ends of the capacitor 157. The N channel enhancement type MOS transistor 156 resets the voltage ramp wave according to the oscillation period of the oscillator. The voltage ramp wave is converted into a current by a voltage-current conversion circuit including a pnp bipolar transistor 158, an npn bipolar transistor 160, a constant current source 159 and a resistor 161, and this current is converted into a P channel enhancement type MOS transistor. The voltage is converted again by injection into the resistor 165 through a current mirror composed of 162 and 163. On the other hand, the coil current signal or the switch current signal converted into a voltage signal by a current sense resistor or the like is added to the resistor 165 via the resistor 164. Therefore, it is apparent that a signal obtained by adding the coil current signal or the switch current signal converted into the voltage signal by the circuit of FIG. 2 and the voltage ramp wave whose slope is proportional to the input signal VC is obtained. It is possible to obtain results equivalent to the circuit configuration of FIG. 3 of the present invention with other circuit configurations, and the present invention does not refer to the circuit configuration of FIG.

本発明の電流モード昇圧型スイッチングレギュレータの第1の実施例のブロック図である。1 is a block diagram of a first embodiment of a current mode step-up switching regulator according to the present invention. FIG. 本発明の電流モード昇圧型スイッチングレギュレータの第2の実施例のブロック図である。It is a block diagram of 2nd Example of the current mode step-up type switching regulator of this invention. コイル電流信号またはスイッチ電流信号とスロープ補償回路の入力電圧に傾きが比例した電圧ランプ波を加算した信号を発生させる回路である。This is a circuit for generating a signal obtained by adding a coil ramp signal or a switch current signal and a voltage ramp wave whose slope is proportional to the input voltage of the slope compensation circuit. 従来の電流モード昇圧型スイッチングレギュレータのブロック図である。It is a block diagram of the conventional current mode step-up switching regulator.

符号の説明Explanation of symbols

100 基準電圧源
101 エラーアンプ
102 スロープ補償回路
103 加算器
104 発振器
105 コンパレータ
106 SR−ラッチ
107 スイッチ
108 コイル
109 ダイオード
110、111、120、121、123,124 抵抗
122 オペアンプ
130 スロープ補償値演算回路
150、158 pnp型バイポーラトランジスタ
152、160 npn型バイポーラトランジスタ
156 Nチャネル・エンハンスメント型MOSトランジスタ
154、155 Pチャネル・エンハンスメント型MOSトランジスタ
162,163 Pチャネル・エンハンスメント型MOSトランジスタ
151、159 定電流源
157 コンデンサ
153、161、164,165 抵抗
100 Reference voltage source 101 Error amplifier 102 Slope compensation circuit 103 Adder 104 Oscillator 105 Comparator 106 SR-latch 107 Switch 108 Coil 109 Diode 110, 111, 120, 121, 123, 124 Resistor 122 Operational amplifier 130 Slope compensation value calculation circuit 150, 158 pnp type bipolar transistor 152, 160 npn type bipolar transistor 156 N channel enhancement type MOS transistor 154, 155 P channel enhancement type MOS transistor 162, 163 P channel enhancement type MOS transistor 151, 159 constant current source 157 capacitor 153, 161, 164, 165 resistance

Claims (4)

入力電圧および出力電圧に応じてスロープ補償の量を可変することを特徴とする電流モードのスイッチングレギュレータ。   A current mode switching regulator characterized by varying the amount of slope compensation in accordance with an input voltage and an output voltage. 入力電圧VIN、出力電圧VOUTで動作する電流モード昇圧型スイッチングレギュレータにおいて、(VOUT−2VIN)に比例してスロープ補償の量を可変することを特徴とする電流モード昇圧型のスイッチングレギュレータ。   A current mode step-up switching regulator which operates with an input voltage VIN and an output voltage VOUT, wherein the amount of slope compensation is varied in proportion to (VOUT-2VIN). 入力電圧VIN、出力電圧VOUTで動作する電流モード降圧型スイッチングレギュレータにおいて、(2VOUT−VIN)に比例してスロープ補償の量を可変することを特徴とする電流モード降圧型のスイッチングレギュレータ。   A current mode step-down switching regulator that operates with an input voltage VIN and an output voltage VOUT, wherein the amount of slope compensation is varied in proportion to (2VOUT−VIN). 入力電圧VIN、出力電圧VOUTで動作する電流モード反転型スイッチングレギュレータにおいて、(VOUT−VIN)に比例してスロープ補償の量を可変することを特徴とする電流モード反転型のスイッチングレギュレータ。   A current mode inversion switching regulator that operates with an input voltage VIN and an output voltage VOUT, wherein the amount of slope compensation is varied in proportion to (VOUT−VIN).
JP2004207224A 2004-07-14 2004-07-14 Switching regulator Withdrawn JP2006033958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207224A JP2006033958A (en) 2004-07-14 2004-07-14 Switching regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207224A JP2006033958A (en) 2004-07-14 2004-07-14 Switching regulator

Publications (2)

Publication Number Publication Date
JP2006033958A true JP2006033958A (en) 2006-02-02
JP2006033958A5 JP2006033958A5 (en) 2007-07-26

Family

ID=35899625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207224A Withdrawn JP2006033958A (en) 2004-07-14 2004-07-14 Switching regulator

Country Status (1)

Country Link
JP (1) JP2006033958A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038936A1 (en) * 2006-08-18 2008-02-28 Atmel Germany Gmbh Switching regulator, transceiver circuit and keyless access control system
JP2008161001A (en) * 2006-12-26 2008-07-10 Ricoh Co Ltd Current-mode control type switching regulator and operation control method therefor
JP2009071978A (en) * 2007-09-13 2009-04-02 Fuji Electric Device Technology Co Ltd Switching power supply
US7548049B2 (en) 2006-12-21 2009-06-16 Rohm Co., Ltd. Switching regulator
JP2009153289A (en) * 2007-12-20 2009-07-09 Oki Semiconductor Co Ltd Dc-dc converter
JP2009268348A (en) * 2008-04-23 2009-11-12 Honeywell Internatl Inc Systems and methods for producing substantially constant output voltage in power source boost system
JP2009303303A (en) * 2008-06-10 2009-12-24 Ricoh Co Ltd Switching regulator
JP2010532152A (en) * 2007-06-26 2010-09-30 ビシャイ‐シリコニックス Current-mode boost converter with slope compensation
CN102025274A (en) * 2009-09-18 2011-04-20 Det国际控股有限公司 Digital slope compensation for current mode control
JP2012065430A (en) * 2010-09-15 2012-03-29 Asahi Kasei Electronics Co Ltd Control circuit for dc-dc converter and dc-dc converter
US8207721B2 (en) 2007-07-27 2012-06-26 Ricoh Company, Ltd. Switching regulator capable of stable operation and improved frequency characteristics in a broad input and output voltage range and method for controlling operation thereof
US8471543B2 (en) 2009-11-05 2013-06-25 Renesas Electronics Corporation DC-DC converter with slope compensation circuit and DC voltage conversion method thereof
US8624566B2 (en) 2008-05-13 2014-01-07 Ricoh Company, Ltd. Current-mode control switching regulator and operations control method thereof
JP2014050250A (en) * 2012-08-31 2014-03-17 Nippon Soken Inc Power conversion device
JP2014064417A (en) * 2012-09-21 2014-04-10 Toshiba Corp Step-up/down type power supply circuit
CN104184321A (en) * 2013-05-23 2014-12-03 美格纳半导体有限公司 Ramp circuit and direct current dc-dc converter thereof
US8994353B2 (en) 2011-09-27 2015-03-31 Denso Corporation Power converter with a pulse-width limiter that limits a drive signal pulse width according to the input voltage
JP2015149837A (en) * 2014-02-06 2015-08-20 セイコーインスツル株式会社 Switching regulator control circuit and switching regulator
JP2016092957A (en) * 2014-11-04 2016-05-23 ローム株式会社 Switching power unit
JP2017169340A (en) * 2016-03-15 2017-09-21 富士電機株式会社 Control circuit and slope generation circuit for switching power supply
CN110323956A (en) * 2018-03-30 2019-10-11 株式会社电装 Control equipment for electric power converter
CN113794372A (en) * 2021-08-11 2021-12-14 昂宝电子(上海)有限公司 Buck-boost converter and slope compensation circuit thereof
WO2023238241A1 (en) * 2022-06-07 2023-12-14 日清紡マイクロデバイス株式会社 Switching regulator

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006038936A1 (en) * 2006-08-18 2008-02-28 Atmel Germany Gmbh Switching regulator, transceiver circuit and keyless access control system
US7728717B2 (en) 2006-08-18 2010-06-01 Atmel Automotive Gmbh Switching regulator, transceiver circuit, and keyless access control system
US7548049B2 (en) 2006-12-21 2009-06-16 Rohm Co., Ltd. Switching regulator
KR100953362B1 (en) 2006-12-26 2010-04-20 가부시키가이샤 리코 Current-mode controlled switching regulator and control method therefor
JP2008161001A (en) * 2006-12-26 2008-07-10 Ricoh Co Ltd Current-mode control type switching regulator and operation control method therefor
US7876073B2 (en) 2006-12-26 2011-01-25 Ricoh Company, Ltd. Switching regulator with slope compensation and control method therefor
US9423812B2 (en) 2007-06-26 2016-08-23 Vishay-Siliconix Current mode boost converter using slope compensation
JP2010532152A (en) * 2007-06-26 2010-09-30 ビシャイ‐シリコニックス Current-mode boost converter with slope compensation
JP2012239381A (en) * 2007-06-26 2012-12-06 Vishay-Siliconix Current mode boost converter using slope compensation
US8207721B2 (en) 2007-07-27 2012-06-26 Ricoh Company, Ltd. Switching regulator capable of stable operation and improved frequency characteristics in a broad input and output voltage range and method for controlling operation thereof
JP2009071978A (en) * 2007-09-13 2009-04-02 Fuji Electric Device Technology Co Ltd Switching power supply
JP2009153289A (en) * 2007-12-20 2009-07-09 Oki Semiconductor Co Ltd Dc-dc converter
JP2009268348A (en) * 2008-04-23 2009-11-12 Honeywell Internatl Inc Systems and methods for producing substantially constant output voltage in power source boost system
US8624566B2 (en) 2008-05-13 2014-01-07 Ricoh Company, Ltd. Current-mode control switching regulator and operations control method thereof
JP2009303303A (en) * 2008-06-10 2009-12-24 Ricoh Co Ltd Switching regulator
CN102025274A (en) * 2009-09-18 2011-04-20 Det国际控股有限公司 Digital slope compensation for current mode control
US8471543B2 (en) 2009-11-05 2013-06-25 Renesas Electronics Corporation DC-DC converter with slope compensation circuit and DC voltage conversion method thereof
JP2012065430A (en) * 2010-09-15 2012-03-29 Asahi Kasei Electronics Co Ltd Control circuit for dc-dc converter and dc-dc converter
US8994353B2 (en) 2011-09-27 2015-03-31 Denso Corporation Power converter with a pulse-width limiter that limits a drive signal pulse width according to the input voltage
JP2014050250A (en) * 2012-08-31 2014-03-17 Nippon Soken Inc Power conversion device
US9184736B2 (en) 2012-08-31 2015-11-10 Denso Corporation Current mode controlled power converter
JP2014064417A (en) * 2012-09-21 2014-04-10 Toshiba Corp Step-up/down type power supply circuit
CN104184321A (en) * 2013-05-23 2014-12-03 美格纳半导体有限公司 Ramp circuit and direct current dc-dc converter thereof
KR101796811B1 (en) 2013-05-23 2017-11-13 매그나칩 반도체 유한회사 Ramp citcuit and dc-dc converter thereof
CN104184321B (en) * 2013-05-23 2018-06-01 美格纳半导体有限公司 Ramp circuit and its DC-DC converter
JP2015149837A (en) * 2014-02-06 2015-08-20 セイコーインスツル株式会社 Switching regulator control circuit and switching regulator
JP2016092957A (en) * 2014-11-04 2016-05-23 ローム株式会社 Switching power unit
JP2017169340A (en) * 2016-03-15 2017-09-21 富士電機株式会社 Control circuit and slope generation circuit for switching power supply
CN110323956A (en) * 2018-03-30 2019-10-11 株式会社电装 Control equipment for electric power converter
JP2019180178A (en) * 2018-03-30 2019-10-17 株式会社Soken Controller of power converter
JP7054358B2 (en) 2018-03-30 2022-04-13 株式会社Soken Power converter control device
CN110323956B (en) * 2018-03-30 2023-12-22 株式会社电装 Control apparatus for power converter
CN113794372A (en) * 2021-08-11 2021-12-14 昂宝电子(上海)有限公司 Buck-boost converter and slope compensation circuit thereof
CN113794372B (en) * 2021-08-11 2023-09-29 昂宝电子(上海)有限公司 Buck-boost converter and slope compensation circuit thereof
WO2023238241A1 (en) * 2022-06-07 2023-12-14 日清紡マイクロデバイス株式会社 Switching regulator

Similar Documents

Publication Publication Date Title
JP2006033958A (en) Switching regulator
KR100953362B1 (en) Current-mode controlled switching regulator and control method therefor
US8624566B2 (en) Current-mode control switching regulator and operations control method thereof
JP5211959B2 (en) DC-DC converter
JP5091027B2 (en) Switching regulator
JP5151830B2 (en) Current mode control type DC-DC converter
US7180274B2 (en) Switching voltage regulator operating without a discontinuous mode
JP5104145B2 (en) Switching power supply
US7327124B2 (en) Control apparatus and method for a boost-inverting converter
US20070085523A1 (en) Dc-dc converter
JP2009303317A (en) Reference voltage generating circuit and dc-dc converter with that reference voltage generating circuit
JP2008131746A (en) Step-up/down switching regulator
JP2009219179A (en) Current mode control type switching regulator
JP2013165537A (en) Switching regulator, control method thereof, and power supply device
KR20080025314A (en) Method and circuit for controlling dc-dc converter
JP2009153289A (en) Dc-dc converter
JP6015370B2 (en) Switching power supply
JP5470772B2 (en) Current mode control switching regulator
US11750078B2 (en) Adaptive off-time or on-time DC-DC converter
JP4791839B2 (en) Current mode control type DC-DC converter
JP2020065402A (en) Switching regulator
JP4487649B2 (en) Control device for step-up / step-down DC-DC converter
JP4548100B2 (en) DC-DC converter
CN109256948B (en) Switching regulator
JP4438507B2 (en) Current mode step-down switching regulator

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20070607

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Effective date: 20100114

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100312