JP2006033493A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006033493A
JP2006033493A JP2004210326A JP2004210326A JP2006033493A JP 2006033493 A JP2006033493 A JP 2006033493A JP 2004210326 A JP2004210326 A JP 2004210326A JP 2004210326 A JP2004210326 A JP 2004210326A JP 2006033493 A JP2006033493 A JP 2006033493A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
color filter
plane
filter array
color
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210326A
Other languages
Japanese (ja)
Inventor
Kazutake Boku
Yoshimasa Fushimi
Kenichi Hayashi
Takayuki Hayashi
Shigeki Murata
Hiroaki Okayama
Yasuhiro Tanaka
Michihiro Yamagata
吉正 伏見
道弘 山形
裕昭 岡山
一武 朴
茂樹 村田
孝行 林
謙一 林
康弘 田中
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive imaging apparatus where crosstalk is suppressed and the number of components and mandays are reduced.
SOLUTION: Respective microlenses 21 in a microlens array 20 form subject images in a plurality of pixels 11 of an imaging device 10. A first color filter array 31 is arranged on a subject side compared with the imaging device 10, and a second color filter array 32 is arranged between the first color filter array 31 and the imaging device 10. The first and second color filter arrays 31 and 32 are provided with at least 2 kinds of color filters of the same arrangement. The color filters provided in the first and second color filter arrays 31 and 32 and the microlenses 10 correspond to each other by one to one.
COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は撮像装置に関する。 The present invention relates to an imaging apparatus. 特に、多数の画素を有する固体撮像素子の被写体側の平面内に複数の微小レンズを配列した微小レンズアレイを配置した撮像装置に関する。 In particular, an imaging apparatus which is arranged a microlens array in which a plurality of micro lenses in the plane of the object side of the solid-state imaging device having a large number of pixels.

近年市場規模が大きくなりつつあるデジタルスチルカメラの市場においては、より携帯性に優れた小型・薄型のカメラに対するニーズが高まってきている。 In recent years in the digital still camera market is becoming market scale is increased, there is a growing need for small and thin camera having more excellent portability. 信号処理を担うLSI等の回路部品は、配線パターンの微細化などにより高機能で小型化が進んでいる。 Circuit components such as an LSI responsible for signal processing, miniaturization has progressed highly functional due finer wiring pattern. また、記録メディアも小型・大容量のものが廉価にて入手できるようになってきている。 Also, the recording medium is small in size and large capacity have come to be available at low cost. しかしながら、レンズとCCDやCMOSなどの固体撮像素子とで構成される撮像系の小型化は未だ十分とは言えず、より携帯性に優れたカメラを実現するためにも小型の撮像系の開発が要望されている。 However, miniaturization of the composed image pickup system in a solid-state image pickup element such as a lens and a CCD or CMOS can not be said to be sufficient yet, the development of compact imaging system in order to realize a good camera more portability It has been demanded.

撮像系の小型化を実現するための構成として、平面上に複数の微小レンズを配列したレンズアレイ光学系を用いた撮像装置が知られている。 As a configuration for realizing the miniaturization of the imaging system, the imaging device is known which uses an imaging optical system in which a plurality of micro lenses on a plane. 従来の光軸上に複数のレンズを並べた光学系は、光軸方向に長くなるため体積が増大し、またレンズ径が大きいため収差が大きくなるという問題を有していた。 An optical system arranged a plurality of lenses on the conventional optical axis, the volume to become longer in the direction of the optical axis is increased, also has a problem that aberration for the lens diameter is large is increased. これに対して、レンズアレイ光学系は、光軸方向に薄くでき、かつ個々の微小レンズ径が小さいため収差を比較的小さく抑えることが可能である。 In contrast, the lens array optical system, can be thinned in the optical axis direction, and it is possible to suppress relatively small aberration for each micro lens diameter is small.

このようなレンズアレイを用いた撮像装置が特許文献1に開示されている。 Imaging device is disclosed in Patent Document 1 which uses such a lens array. この撮像装置は、図6に示すように、被写体側から順に、複数の微小レンズ111aが同一平面内に配列された微小レンズアレイ111と、各微小レンズ111aからの光信号が互いに混信しないように分離するための格子枠状の隔壁112aからなる隔壁層112と、多数の光電変換素子113aが同一平面内に配置された受光素子アレイ113とを備える。 The image pickup apparatus, as shown in FIG. 6, in order from the object side, a plurality of micro lens arrays 111 micro lenses 111a are arranged in the same plane, so that the optical signal from each micro lens 111a is not interference with each other comprises a partition layer 112 made of lattice frame-shaped partition wall 112a for isolating, a light receiving element array 113 a number of photoelectric conversion elements 113a are arranged in the same plane. 1つの微小レンズ111aと、これに対応する、隔壁112aによって分離された1つの空間と、複数の光電変換素子113aとが、1つの結像ユニット115を構成する。 And one micro lens 111a, corresponding thereto, and one space which is separated by the partition wall 112a, and a plurality of photoelectric conversion elements 113a constitute a single imaging unit 115. 個々の結像ユニット115において、微小レンズ111aが、対応する複数の光電変換素子113a上に被写体像を結像する。 In each imaging unit 115, the micro lens 111a is, forms a subject image on a corresponding plurality of photoelectric conversion elements 113a. これにより、結像ユニット115ごとに撮影画像が得られる。 Thus, the captured image is obtained for each imaging unit 115. この撮影画像の解像度は1つの結像ユニット115を構成する光電変換素子113aの数(画素数)に依存する。 The resolution of the captured image depends on the number of photoelectric conversion elements 113a constituting one of the imaging units 115 (number of pixels). 被写体に対する個々の微小レンズ111aの相対的位置が異なることにより、複数の光電変換素子113a上に形成される被写体像の結像位置が結像ユニット115ごとに異なる。 By the relative position of each micro lens 111a with respect to the subject it is different, the imaging position of the object image formed on the plurality of photoelectric conversion elements 113a is different for each imaging unit 115. その結果、得られる撮影画像は結像ユニット115ごとに異なる。 As a result, photographed images obtained varies from imaging unit 115. この互いに異なる複数の撮影画像を信号処理することにより、一つの画像を得ることができる。 By signal processing the plurality of captured images different from the each other, it is possible to obtain a single image.

この撮像装置では、個々の結像ユニット115を構成する画素数は少ないため、個々の結像ユニット115から得られる撮影画像の画質は低いが、複数の結像ユニット115においてそれぞれ得られる少しずつずれた撮影画像を用いて信号処理して画像を再構築することにより、多数の光電変換素子で撮影した場合と同様の画質の映像を得ることができる。 In this imaging device, since the number of pixels constituting the individual imaging units 115 is small, but the quality of the captured image obtained from the individual imaging units 115 low, slightly shifted respectively obtained in a plurality of imaging units 115 an image signal processing using the captured image by reconstructing, it is possible to obtain a large number of similar image quality to that shot by the photoelectric conversion element.

図6の撮像装置では、微小レンズ111aからの光がこの微小レンズ111aと対応しない隣の結像ユニット115の光電変換素子113aに入射する(この現象を「クロストーク」と呼ぶ)と、高画質の画像を再構築できなかったり、迷光が発生して画質が劣化したり、光損失を生じたりする。 In the imaging apparatus of FIG. 6, the light from the micro lens 111a is incident on the photoelectric conversion element 113a of the imaging unit 115 of the next that do not correspond to the small lenses 111a (This phenomenon is called "cross-talk"), high-quality or unable to reconstruct the image, or deteriorated image quality stray occurs, or cause optical loss. 従って、クロストークを防止するために、隔壁層112が用いられている。 Therefore, in order to prevent crosstalk, the partition wall layer 112 is used. 特許文献1では、これと同様の効果は、隔壁層112に代えて、結像ユニット115ごとに偏向方向が直交するように偏向透過フィルタを配置した偏向フィルタアレイを微小レンズアレイ111面及び受光素子アレイ113面にそれぞれ配置しても得られると記載されている。 In Patent Document 1, the same effect as this, instead of the partition wall layer 112, the micro lens array 111 surface deflection filter array deflection direction is arranged deflecting transmission filter so as to be perpendicular to each imaging unit 115 and the light receiving element and arranged in an array 113 surface are said to be obtained.
特開2001−61109号公報 JP 2001-61109 JP

しかしながら、上記の図6の撮像装置に使用される隔壁層112は、各結像ユニット115に対応する隔壁112aを形成するために、ステンレス鋼などを微細加工して高精度に組み立てられて作成される。 However, the partition wall layer 112 used in the imaging apparatus of the Figure 6, in order to form a partition wall 112a for each imaging unit 115, creates a stainless steel and the like are assembled to the fine processing to high-precision that. 従って、工程が煩雑で、コスト高となる。 Therefore, the process is complicated, and the cost becomes high. また、得られた隔壁層112と微小レンズアレイ111及び受光素子アレイ113とを相対的位置を厳密に管理しながら組み立てる必要があり、組立作業が煩雑となる。 Further, it is necessary to assemble with strictly controlled relative positions partition layer 112 obtained and the micro lens array 111 and the light receiving element array 113, the assembly work becomes complicated.

また、隔壁層112の代わりに使用される偏向フィルタアレイは、回折格子や屈折型光学素子を用いて作成されるため、部品点数や組み立て工数が増加する。 Further, deflection filter array used in place of the partition layer 112 is to be created using a diffraction grating or refractive optical elements, parts and assembling steps are increased.

本発明は、従来の上記の撮像装置が有する問題を解決し、クロストークが抑制でき、且つ部品点数や工数が低減された安価な撮像装置を提供することを目的とする。 The present invention solves the problems with the above-mentioned conventional imaging device, the crosstalk can be suppressed, and an object of the invention to provide an inexpensive image pickup apparatus parts and man-hours are reduced.

本発明の撮像装置は、第1平面内に配置された光電変換機能を有する多数の画素を備える固体撮像素子と、第2平面内に配置された複数の微小レンズを備える微小レンズアレイとを有する。 Imaging apparatus of the present invention includes a solid-state imaging device comprises a number of pixels having arranged photoelectric conversion function in a first plane, and a microlens array comprising a plurality of micro lenses arranged in a second plane . 1つの前記微小レンズに対して複数の前記画素が対応し、それぞれの前記微小レンズが対応する複数の前記画素に被写体像を結像する。 One of the micro lens plurality of said pixels corresponding respect, each of the micro lens forms a subject image into a plurality of said pixels corresponding.

本発明の撮像装置は、更に、前記第1平面に対して被写体側の第3平面内に配置された少なくとも2種以上のカラーフィルタを備える第1カラーフィルタアレイと、前記第1カラーフィルタアレイのカラーフィルタと同じ配置で前記第3平面と前記第1平面との間に位置する第4平面内に配置された少なくとも2種以上のカラーフィルタを備える第2カラーフィルタアレイとを有し、前記第1カラーフィルタアレイの前記カラーフィルタと前記微小レンズ、及び前記第2カラーフィルタアレイの前記カラーフィルタと前記微小レンズとは、いずれも一対一に対応している。 Imaging apparatus of the present invention, further, a first color filter array comprising at least two or more color filters disposed on the object side the third plane relative to the first plane, the first color filter array and a second color filter array comprising at least two or more color filters arranged in a fourth plane that is located between the same arrangement as the color filter and the third plane and the first plane, said first 1 the color filter and the micro lens of the color filter array, and said color filter and the micro lens of the second color filter array are all one-to-one correspondence.

本発明によれば、同じカラーフィルタ配置を有する第1カラーフィルタアレイと第2カラーフィルタアレイとを備えるので、従来の撮像装置において必須であった隔壁層や偏光フィルタアレイを用いることなく、クロストークの発生を抑制できる。 According to the present invention, since and a first color filter array and the second color filter array having the same color filter arrangement, without using the partition wall layer and polarization filter array was essential in the conventional imaging apparatus, crosstalk the occurrence can be suppressed.

クロストークを抑制できるので、画質劣化を少なくできること、また、迷光の発生を抑えることができることなどにより、高画質画像を撮影できる。 Since crosstalk can be suppressed, it is possible to reduce the loss of image quality, and, due to be able to suppress the generation of stray light can be captured high-quality images.

また、隔壁層や偏光フィルタアレイが不要であるので、組立作業を簡素化でき、また部品点数を削減できるので、安価な撮像装置を提供できる。 Further, since the partition wall layer and polarization filter array is not required, simplifying the assembly work, and since the number of parts can be reduced, can provide an inexpensive image pickup apparatus. 更に、部品精度や組立精度を向上できるので、高品質の撮像装置を提供できる。 Furthermore, it is possible to improve the accuracy of parts and assembly accuracy can provide an image pickup apparatus of high quality.

本発明の上記撮像装置において、前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤色光を透過するカラーフィルタと、緑色光を透過するカラーフィルタと、青色光を透過するカラーフィルタとを含むことが好ましい。 In the imaging apparatus of the present invention, the first color filter array and the second color filter array, a color filter for transmitting red light, a color filter that transmits green light, and a color filter that transmits blue light it is preferable to include. これにより、カラー撮影を行うことができる。 As a result, it is possible to perform color photography.

また、前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイにおいて、同種のカラーフィルタが相互に隣り合わないように、前記2種以上のカラーフィルタが市松模様状に配置されていることが好ましい。 Further, in the first color filter array and the second color filter array, as the same type color filters are not adjacent to each other, it is preferable that the two or more color filters are arranged in a checkered pattern. これにより、クロストークを低減できる。 Accordingly, it is possible to reduce the cross-talk.

また、前記第3平面は、前記第2平面に対して被写体側に位置することが好ましい。 The third plane is preferably located on the object side with respect to the second plane. これにより、撮像装置の全体の厚みを薄くしながら、第1カラーフィルタアレイと第2カラーフィルタアレイとの間の間隔を比較的大きく確保できるので、クロストークの低減効果が向上する。 Thus, while thin overall thickness of the image pickup apparatus, since the distance between the first color filter array and the second color filter array can be relatively large secured, reducing the effect of crosstalk is increased.

あるいは、前記第3平面は、前記第2平面と前記第4平面との間に位置し、前記第3平面と前記第4平面とが離間していることが好ましい。 Alternatively, the third plane is located between the second plane and the fourth plane, it is preferable that the third plane and the fourth plane are spaced apart. この構成でも、第1カラーフィルタアレイと第2カラーフィルタアレイとの間の間隔を確保することによりクロストークを低減することができる。 In this configuration, it is possible to reduce crosstalk by ensuring the distance between the first color filter array and the second color filter array.

また、前記第2カラーフィルタアレイは、固体撮像素子の入射面に近接して、又は前記入射面上に配置されていることが好ましい。 The second color filter array, close to the incident surface of the solid-state imaging device, or may preferably be disposed on the incident surface. これにより、第2カラーフィルタアレイと固体撮像素子との間でのクロストークを低減できる。 This reduces crosstalk between the second color filter array and a solid-state imaging device.

また、前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤外光を透過するカラーフィルタ及び/又は紫外光を透過するカラーフィルタを含んでいても良い。 The first color filter array and the second color filter array may include a color filter which transmits the color filters and / or ultraviolet light transmits infrared light. これにより、赤外線及び/又は紫外線による撮影が可能となる。 This enables photographing by infrared and / or ultraviolet light.

また、前記固体撮像素子の多数の前記画素からの信号のうち、同種の前記カラーフィルタに対応する前記画素からの信号のみを選択的に抽出する抽出回路を更に備えていても良い。 Also, the out of the signal from a number of the pixels of the solid-state imaging device may further comprise an extraction circuit for selectively extracting only a signal from the pixel corresponding to the color filter of the same type. これにより、所望する特定の波長帯の光のみを選択して撮影することが可能となる。 Thus, it is possible to photograph by selecting only light of a specific wavelength band desired.

前記固体撮像素子は、CCDであっても良い。 The solid-state imaging device may be a CCD. あるいは、CMOSであっても良い。 Alternatively, it may be a CMOS.

以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1) (Embodiment 1)
図1は、本発明の実施の形態1の撮像装置の概略構成を示した斜視図である。 Figure 1 is a perspective view showing a schematic configuration of an imaging apparatus of Embodiment 1 of the present invention. 図2は、本発明の実施の形態1の撮像装置の、微小レンズの光軸を含む面での部分断面図である。 2, the imaging apparatus of the first embodiment of the present invention, is a partial sectional view of a plane including the optical axis of the microlens. 図3(A)は、本発明の実施の形態1の撮像装置において、固体撮像素子からの信号の処理の概略を示した図である。 3 (A) is, in the image pickup apparatus of the first embodiment of the present invention and shows an outline of processing of the signals from the solid-state imaging device. 図3(B)は、本発明の実施の形態1の撮像装置において、1つの結像ユニットを構成する受光部を示した斜視図である。 FIG. 3 (B), in the image pickup apparatus of the first embodiment of the present invention, is a perspective view showing a light receiving portion constituting a single imaging unit.

図1から図3において、10は第1平面内に縦横方向に配列された多数の画素11を備える固体撮像素子(例えば、CCDやCMOS)、20は、第1平面と平行で且つ離間した第2平面内に縦横方向に配列された複数の微小レンズ21を備える微小レンズアレイである。 In Figures 1-3, the solid-state imaging device having a plurality of pixels 11 arranged in vertical and horizontal direction in the first plane 10 (eg, CCD or CMOS), 20 is first to and spaced parallel to the first plane a micro lens array comprising a plurality of micro lenses 21 arranged in vertical and horizontal directions in two planes.

31は、第1平面と平行で、且つ第1平面よりも被写体側の第3平面内に縦横方向に配列された複数のカラーフィルタを備える第1カラーフィルタアレイである。 31, parallel to the first plane, a and first color filter array comprising a plurality of color filters arranged in vertical and horizontal direction to a third plane on the object side than the first plane. 32は、第1平面と平行で、且つ第3平面と第1平面との間に位置する第4平面内に縦横方向に配列された複数のカラーフィルタを備える第2カラーフィルタアレイである。 32, parallel to the first plane, and a second color filter array comprising a plurality of color filters arranged in vertical and horizontal direction to a fourth plane that is located between the third plane and the first plane. 本実施の形態では、第1及び第2カラーフィルタアレイ31,32は、赤色光を選択的に透過するカラーフィルタRと、緑色光を選択的に透過するカラーフィルタGと、青色光を選択的に透過するカラーフィルタBとを備え、これらが格子枠状に区分された各領域内に市松模様状に配置されている。 In this embodiment, the first and second color filter array 31, 32 selectively and color filters R that selectively transmits red light, a color filter G which selectively transmits green light, blue light and a color filter B which passes through, which are arranged in a checkered pattern in each region which is divided into a lattice frame shape. 第1カラーフィルタアレイ31と第2カラーフィルタアレイ32とは、カラーフィルタR,G,Bの配置に関して同一である。 A first color filter array 31 and the second color filter array 32, is the same for the arrangement of the color filters R, G, B.

1つの微小レンズ21に対して、第1カラーフィルタアレイ31を構成する赤・緑・青のうちの何れか一色のカラーフィルタ、第2カラーフィルタアレイ32を構成する赤・緑・青のうちの何れか一色のカラーフィルタ、及び複数の画素11が対応し、これらによって1つの結像ユニット40が構成される。 For one microlens 21, any color of the color filter of the red, green, and blue constituting a first color filter array 31, among the red, green, and blue constituting a second color filter array 32 any color of the color filters, and a plurality of pixels 11 correspond, one imaging unit 40 is constituted by these. 同じ結像ユニット40を構成する第1カラーフィルタアレイ31のカラーフィルタの色と第2カラーフィルタアレイ32のカラーフィルタの色とは一致する。 The first color of the color filters of the color filter array 31 and the color filter of the second color filter array 32 colors constituting the same imaging unit 40 matches.

被写体からの光束は、第1カラーフィルタアレイ31にて赤緑青の何れかの色光のみが選択されてこれを透過し、複数の微小レンズ21に入射する。 Light flux from the object, only one color light of red, green and blue by the first color filter array 31 is selected transmitted therethrough is incident on the plurality of micro lenses 21. 各微小レンズ21は、対応する複数の画素11上に被写体像を形成する。 Each micro lens 21 forms an object image on the corresponding plurality of pixels 11. 微小レンズ21を出射した赤緑青の何れかの色光は、画素11に達する前に、第2カラーフィルタアレイ32に入射する。 Any color light of red, green and blue emitted from the micro lens 21 before reaching the pixel 11, and enters the second color filter array 32. 第2カラーフィルタアレイ32の各カラーフィルタは、入射光のうち、自身のカラーフィルタの色と同じ色光のみを透過させる。 Each color filter of the second color filter array 32, the incident light and transmits only the same color light as the own color of the color filter.

本実施の形態の撮像装置は、上記の構成によりクロストークを防止できる。 Imaging device of the present embodiment can prevent crosstalk by the above configuration. これを図2を用いて説明する。 This will be described with reference to FIG.

例えば、被写体からの光線R1は、第1カラーフィルタアレイ31の赤色のカラーフィルタRに入射して、赤色の波長帯の光のみがこれを通過し、微小レンズ21を通過後、第2カラーフィルタアレイ32の赤色のカラーフィルタRに入射する。 For example, ray R1 from the subject is incident on the color filters R red first color filter array 31, only the light of red wavelength band passing through it, after passing through the micro lens 21, the second color filter incident on the color filter R of red array 32. この入射光は赤色の波長帯の光であるから、このカラーフィルタRを通過することができ、画素11上に赤色の被写体像を形成する。 Since the incident light is light in the red wavelength band, it is possible to pass through the color filter R, to form a red object image on the pixel 11.

一方、光線R1よりも大きな入射角で撮像装置に入射する被写体からの光線R2は、第1カラーフィルタアレイ31の赤色のカラーフィルタRに入射して、赤色の波長帯の光のみがこれを通過し、微小レンズ21を通過後、第2カラーフィルタアレイ32の隣の結像ユニットを構成する緑色のカラーフィルタGに入射する。 On the other hand, light rays R2 from the object enters the imaging device at a large incident angle than light ray R1 is incident on the color filter R red first color filter array 31, passes through this only light in the red wavelength band and, after passing through the micro lens 21, is incident on the green color filter G that constitutes the imaging unit next to the second color filter array 32. 緑色のカラーフィルタGはこの赤色の波長帯の入射光を通過させない。 Green color filter G does not pass the incident light in the wavelength band of the red. 従って、光線R2を構成する如何なる波長帯の光も画素11に達しない。 Therefore, it does not reach the light even pixels 11 of any wavelength band constituting the light R2.

このように、本発明の撮像装置は、各結像ユニット40が同一色のカラーフィルタを光軸方向に2層備えている。 Thus, the imaging apparatus of the present invention, the imaging unit 40 is provided with two layers of the same color color filter in the optical axis direction. 更に、第1及び第2カラーフィルタアレイ31,32では色の異なるカラーフィルタR,G,Bが市松模様を構成するように配置されている。 Furthermore, the first and second color filter array 31, 32 in the color of different color filters R, G, B are arranged to form a checkered pattern. 即ち、任意の1つのカラーフィルタの色と、このカラーフィルタの4つの辺を挟んで縦横方向に隣り合う4つのカラーフィルタの色とが異なるように、カラーフィルタR,G,Bが配置されている。 That is, the color of any one of color filters, as the color of the four color filters adjacent in vertical and horizontal direction across four sides of the color filter is different, the color filters R, G, B is arranged there. この結果、上記光線R2のように、第1カラーフィルタアレイ31を通過後、第2カラーフィルタアレイ32に入射するまでの間に縦横方向に隣り合う結像ユニット40間の境界を越える光線は第2カラーフィルタアレイ32を通過することができない。 As a result, as the light beam R2, after passing through the first color filter array 31, light rays cross the boundaries between the imaging unit 40 adjacent in the vertical and horizontal directions until enters the second color filter array 32 is first You can not pass through the second color filter array 32. 従って、クロストークの発生を防止することができる。 Therefore, it is possible to prevent the occurrence of crosstalk. これにより、画質劣化を少なくでき、また、迷光の発生を抑えることができる。 As a result, it is possible to reduce the image quality deterioration, also, it is possible to suppress the occurrence of stray light. この結果、高画質画像を撮影することができる。 As a result, it is possible to take a high-quality image.

更に、CCDや液晶表示素子に使用されるカラーフィルタにおいて汎用されているカラーフィルタアレイと同様にして、例えば第1カラーフィルタアレイ31を微小レンズアレイ20上に、第2カラーフィルタアレイ32を固体撮像素子10上に、それぞれ形成すれば良く、上述した従来の撮像装置の隔壁や偏向フィルタアレイに比べて製造を格段に簡単化でき、また、部品点数も削減できる。 Further, as in the color filter array which is commonly used in color filters used in CCD or a liquid crystal display device, for example a first color filter array 31 on microlens array 20, a second color filter array 32 a solid-state imaging on the element 10 may be formed respectively, can significantly simplify the production, compared to the partition wall and deflection filter array of a conventional image pickup apparatus described above, also the number of parts can be reduced. 更に、第1及び第2カラーフィルタアレイ31,32自身の精度や微小レンズアレイ20及び固体撮像素子10に対する精度も従来に比べて向上できるので、品質が向上し且つ安定する。 Furthermore, since the accuracy can be improved as compared with the conventional for the first and second color filter array 31 and 32 own accuracy and micro lens array 20 and a solid-state imaging device 10, and a stable quality improvements.

上記の実施の形態では、第1カラーフィルタアレイ31は微小レンズアレイ20よりも被写体側に、第2カラーフィルタアレイ32は微小レンズアレイ20と固体撮像素子10との間に配置されているが、第1及び第2カラーフィルタアレイ31,32の配置は、クロストークの発生が抑制できればこれに限定されない。 In the above embodiment, the first color filter array 31 on the object side than the micro lens array 20, the second color filter array 32 is disposed between the micro lens array 20 and the solid-state image sensor 10, arrangement of the first and second color filter array 31 and 32, occurrence of crosstalk is not limited to this as long suppressed. 例えば、第1カラーフィルタアレイ31及び第2カラーフィルタアレイ32を微小レンズアレイ20と固体撮像素子10との間に配置しても良い。 For example, it may be a first color filter array 31 and the second color filter array 32 is disposed between the micro lens array 20 and the solid-state image sensor 10. この場合、第1カラーフィルタアレイ31と第2カラーフィルタアレイ32とは光軸方向に所定の距離だけ離間させることが好ましい。 In this case, it is preferable that the first color filter array 31 and the second color filter array 32 is separated in the optical axis direction by a predetermined distance. 両者が近接していると、入射角が大きな光線は隣り合う結像ユニット40間の境界を越えてしまうので、2枚のカラーフィルタアレイ31,32を用いたことが実質的に無意味となる。 If they are close, the incident angle is large beam exceeds the boundary between the imaging unit 40 adjacent, it is substantially meaningless with two color filter array 31, 32 .

但し、第1カラーフィルタアレイ31、第2カラーフィルタアレイ32、及び微小レンズアレイ20の配置順序にかかわらず、第1カラーフィルタアレイ31よりも固体撮像素子10寄りに配置される第2カラーフィルタアレイ32は、固体撮像素子10の入射面に近接して、又は固体撮像素子10の入射面上に配置されていることが好ましい。 However, the first color filter array 31, a second color filter array 32, and regardless of the arrangement order of the micro lens array 20, a second color filter array is disposed on the solid-state imaging device 10 closer than the first color filter array 31 32, close to the incident surface of the solid-state imaging device 10, or may preferably be disposed on the entrance surface of the solid-state imaging device 10. これにより、第2カラーフィルタアレイ32を通過した光線が、隣り合う結像ユニット40間の境界を越えた後、固体撮像素子10に入射するのを低減することができる。 Thus, light passing through the second color filter array 32, after crossing the boundary between the imaging neighboring units 40, it can be reduced from entering the solid-state imaging device 10. 即ち、第2カラーフィルタアレイ32と固体撮像素子10との間でのクロストークの発生を低減できる。 That is, it is possible to reduce the occurrence of crosstalk between the second color filter array 32 and the solid-state image sensor 10.

次に、固体撮像素子10の各受光部11に入射した光束から画像を得る方法を図3(A)及び図3(B)を用いて説明する。 Next, description is made with reference to FIG 3 (A) and 3 (B) a method for obtaining an image from the light incident on the light receiving portions 11 of the solid-state imaging device 10.

図3(A)に示すように、結像ユニット40ごとに、微小レンズアレイ20の微小レンズ21は、被写体90の像91を固体撮像素子10上に結像する。 As shown in FIG. 3 (A), each imaging unit 40, the micro lenses 21 of the micro lens array 20 forms an image 91 of an object 90 on the solid-state imaging device 10. 固体撮像素子10の各受光部(画素)11は入射した光束を光電変換する。 Each light receiving portion of the solid-state imaging device 10 (pixel) 11 photoelectrically converts an incident beam of light. ここで、固体撮像素子10の水平軸をx軸、垂直軸をy軸とし、位置(x,y)にある受光部11からの信号をI(x,y)とすると、固体撮像素子10に含まれる全ての受光部11についての信号I(x,y)が読み出される(ステップ101)。 Here, x-axis horizontal axis of the solid-state imaging device 10, the vertical axis is the y axis, the position (x, y) of the signal from the light receiving portion 11 which is in when the I (x, y), the solid-state imaging device 10 signal I (x, y) of all the light-receiving portion 11 that includes the read (step 101).

次に、この各受光部11からの信号I(x,y)を結像ユニット40ごとに分割する。 Then, the signal is divided into I (x, y) of this respective light receiving portions 11 for each imaging unit 40. 即ち、図3(B)に示すように、受光部11がm列×n行に配置された結像ユニット40内の第i列、第k行の位置にある受光部11の位置を(i,k) (m,n)とし、この受光部11からの信号をI(i,k) (m,n)とすると、上記各信号I(x,y)を結像ユニット40内における信号I(i,k) (m,n)として取り扱う。 That is, as shown in FIG. 3 (B), the i-th column in the imaging unit 40 receiving unit 11 are arranged in m rows × n rows, the position of the light receiving portion 11 at the position of the k-th row (i , k) (m, and n), the signal from the light receiving unit 11 I (i, k) ( m, When n), signals each signal I (x, y) and in the imaging unit 40 I (i, k) (m, n) treated as. この結果、結像ユニット40ごとにm列×n行の画素からなる画像が再構成される(ステップ103)。 As a result, an image is reconstructed comprising pixels of m columns × n rows for each imaging unit 40 (step 103).

その後、異なる結像ユニット40間において、信号I(i,k) (m,n)を処理して1枚の画像を再構築する(ステップ105)。 Then, between different imaging unit 40, the signal I (i, k) (m, n) to reconstruct a single image by processing (step 105). この信号処理としては、上記特許文献1に記載された方法を用いることができ、その詳細説明を省略する。 As the signal processing, it is possible to use a method described in Patent Document 1, a detailed description thereof will be omitted. 結像ユニット40内における被写体像91の形成位置が結像ユニット40ごとに異なるために、位置(i,k)が同じ受光部11からの信号I(i,k) (m,n)は結像ユニット40ごとに異なる。 For forming position of the object image 91 in the image forming unit 40 is different for each imaging unit 40, the position (i, k) is a signal I from the same light receiving section 11 (i, k) (m , n) is binding vary the image unit 40. 従って、1つの結像ユニット40に含まれる受光部11の数(m×n個)を遙かに超えた高解像度の画像が得られる。 Thus, high resolution images far beyond the number of light receiving portions 11 included in one imaging unit 40 (m × n pieces) are obtained.

(実施の形態2) (Embodiment 2)
図4は、本発明の実施の形態2に係る撮像装置に搭載される第1,第2カラーフィルタアレイ71,72のカラーフィルタの配置を示した正面図である。 4, first, a front view showing an arrangement of a color filter of the second color filter array 71, 72 to be mounted on an imaging apparatus according to a second embodiment of the present invention. 図5は、本発明の実施の形態2に係る撮像装置において固体撮像素子からの信号の処理の流れを示したブロック図である 本実施の形態の撮像装置は、実施の形態1で示した3種のカラーフィルタR,G,Bを備える第1,第2カラーフィルタアレイ31,32に代えて、図4に示す第1,第2カラーフィルタアレイ71,72が使用される。 5, the imaging device processes a block diagram showing the flow of the present embodiment of the signal from the solid-state imaging device in the imaging apparatus according to the second embodiment of the present invention, shown in the first embodiment 3 first, in place of the second color filter array 31 comprising seed of a color filter R, G, and B, first shown in FIG. 4, a second color filter array 71 and 72 are used. この第1,第2カラーフィルタアレイ71,72は、実施の形態1で示した第1,第2カラーフィルタアレイ31,32と同様に、赤色光を選択的に透過するカラーフィルタR、緑色光を選択的に透過するカラーフィルタG、及び青色光を選択的に透過するカラーフィルタBに加えて、更に赤外光を選択的に透過するカラーフィルタIRを備える。 The first, second color filter array 71 and 72, first, similarly to the second color filter array 31, color filters R, green light that selectively transmits red light in Embodiment 1 the selectively transmitting color filter G, and in addition to the color filter B which selectively transmits blue light, further comprising a color filter IR which selectively transmits infrared light. この4種のカラーフィルタR,G,B,IRが、結像ユニット40に対応して格子枠状に区分された各領域内に市松模様状に配置されている。 The four color filters R, G, B, IR are arranged in a checkered pattern in each region which is divided in correspondence with the lattice frame shape on the imaging unit 40. 実施の形態1と同様に、隣り合うカラーフィルタの色は同一ではない。 As in the first embodiment, the color of the adjacent color filters are not the same. これにより、実施の形態1で説明したのと同様に、第1カラーフィルタアレイ71を通過後、第2カラーフィルタアレイ72に入射するまでの間に隣り合う結像ユニット40間の境界を越える光線は第2カラーフィルタアレイ72を通過することができない。 Accordingly, similarly as described in the first embodiment, after passing through the first color filter array 71, light rays cross the boundaries between the adjacent imaging units 40 until entering the second color filter array 72 You can not pass through the second color filter array 72. 従って、クロストークの発生を防止することができる。 Therefore, it is possible to prevent the occurrence of crosstalk.

更に、本実施の形態2では、このような撮像装置からの出力信号は図5に示す映像回路50により以下のように処理される。 Further, in the second embodiment, the output signal from such an imaging device is processed as follows by the video circuit 50 shown in FIG. 即ち、固体撮像素子10の各受光部11は被写体90の光信号を光電変換し、出力する。 That is, the light receiving portions 11 of the solid-state imaging device 10 photoelectrically converts an optical signal of an object 90, and outputs. 映像回路50内の抽出回路51は、固体撮像素子10からの信号のうち、カラーフィルタの色が同一である結像ユニット40に含まれる受光部11からの信号を選択的に抽出する。 Extraction circuit 51 in the video circuit 50, among the signals from the solid-state imaging device 10, to selectively extract a signal from the light receiving portion 11 in which the color of the color filter is included in the imaging unit 40 is the same. 加算回路52は、抽出回路51で抽出された単色の信号に対して図3(A)及び図3(B)で説明した処理を行い単色の高解像度の画像を再構築する。 Summing circuit 52, to the monochromatic signal extracted by the extraction circuit 51 performs the processing described in FIGS. 3 (A) and 3 (B) to reconstruct high resolution images of a single color.

例えば、抽出回路51が、固体撮像素子10からの信号のうち、赤、緑、青の3色のカラーフィルタR,G,Bに対応する結像ユニット40からの信号を抽出すると、加算回路52は、赤、緑、青の3色の画像を再構築する。 For example, the extraction circuit 51, among the signals from the solid-state imaging device 10, red, green, three color filters R of blue, G, when extracting a signal from the imaging unit 40 corresponding to B, the adder circuit 52 reconstructs red, green, and a three-color image of the blue. この3色の画像を合成すれば、表示装置60にカラー画像を表示することができる。 If combining the images of the three colors, it is possible to display a color image on the display device 60.

また、抽出回路51が、固体撮像素子10からの信号のうち、赤外光のカラーフィルタIRに対応する結像ユニット40からの信号のみを抽出すると、加算回路52は、赤外光の画像を再構築する。 The extraction circuit 51, among the signals from the solid-state imaging device 10, extracting only a signal from the imaging unit 40 corresponding to the color filter IR infrared light, the addition circuit 52, an image of the infrared light to rebuild. 従って、表示装置60に赤外線撮影画像を表示することができる。 Therefore, it is possible to display the infrared captured image on the display device 60.

このように、本実施の形態によれば、第1,第2カラーフィルタアレイ71,72がカラーフィルタR,G,Bに加えてカラーフィルタIRを備えているために、実施の形態1と同様にカラー撮影を行うことができるのはもちろん、夜間などの肉眼では視認できない暗闇での赤外線撮影も行うことができる。 Thus, according to this embodiment, since the first, second color filter array 71, 72 is provided with a color filter IR in addition to the color filters R, G, B, as in the first embodiment may be able to perform color photography of course, to the naked eye, such as at night can also be carried out infrared shooting in the dark that can not be visually recognized.

もちろん、抽出回路51が、赤、緑、青の3色のうちの任意の1色又は2色に対応する結像ユニット40からの信号のみを抽出して、所望する色の画像を得ることも可能である。 Of course, the extraction circuit 51, the red, green, and extracts only a signal from the imaging unit 40 corresponding to an arbitrary one or two colors of the three colors of blue, also possible to obtain an image of the desired color possible it is.

本実施の形態2では、第1,第2カラーフィルタアレイ71,72が赤外光を選択的に透過するカラーフィルタIRを備えていたが、カラーフィルタIRに代えて、又はこれに加えて紫外光を選択的に透過するカラーフィルタを備えていても良い。 In the second embodiment, first, the second color filter array 71, 72 is provided with a color filter IR which selectively transmits infrared light, instead of the color filter IR, or UV in addition to it may be provided with a color filter that selectively transmits light. また、赤外光や紫外光以外の特定の波長帯の光のみを透過させるカラーフィルタを備えていても良い。 It may also include a color filter that transmits only light of a specific wavelength band other than the infrared light or ultraviolet light.

本発明の撮像装置の利用分野は特に制限はないが、小型・薄型でありながら高解像度画像を得ることができるので、例えばデジタルスチルカメラ、携帯電話、ノート型パソコン、PDAなどの各種携帯型情報端末などに利用することができる。 FIELD imaging apparatus of the present invention is not particularly limited, it is possible to obtain a high resolution image with a small and thin, for example, a digital still camera, a cellular phone, a notebook computer, various kinds of portable information such as a PDA it can be used, such as to the terminal.

図1は、本発明の実施の形態1の撮像装置の概略構成を示した分解斜視図である。 Figure 1 is an exploded perspective view showing a schematic configuration of an imaging apparatus of Embodiment 1 of the present invention. 図2は、本発明の実施の形態1の撮像装置の、微小レンズの光軸を含む面での断面図である。 2, the imaging apparatus of Embodiment 1 of the present invention, is a cross-sectional view of a plane including the optical axis of the microlens. 図3(A)は、本発明の実施の形態1の撮像装置において、固体撮像素子からの信号の処理の概略を示した図である。 3 (A) is, in the image pickup apparatus of the first embodiment of the present invention and shows an outline of processing of the signals from the solid-state imaging device. 図3(B)は、本発明の実施の形態1の撮像装置において、1つの結像ユニットを構成する受光部を示した斜視図である。 FIG. 3 (B), in the image pickup apparatus of the first embodiment of the present invention, is a perspective view showing a light receiving portion constituting a single imaging unit. 図4は、本発明の実施の形態2の撮像装置におけるカラーフィルタアレイを示した正面図である。 Figure 4 is a front view showing a color filter array in the image pickup apparatus of the second embodiment of the present invention. 図5は、本発明の実施の形態2の撮像装置において固体撮像素子からの信号の処理の概略を示したブロック図である。 Figure 5 is a block diagram showing an outline of processing of the signals from the solid-state imaging device in the imaging apparatus of the second embodiment of the present invention. 図6は、従来の撮像装置の概略構成を示した分解斜視図である。 Figure 6 is an exploded perspective view showing a schematic configuration of a conventional imaging apparatus.

符号の説明 DESCRIPTION OF SYMBOLS

10 固体撮像素子 11 画素 20 微小レンズアレイ 21 微小レンズ 31,71 第1カラーフィルタアレイ 32,72 第2カラーフィルタアレイ 40 結像ユニット 50 映像回路 51 抽出回路 52 加算回路 60 表示装置 90 被写体 10 solid-state imaging device 11 pixel 20 micro lens array 21 micro lens 31, 71 the first color filter array 32, 72 second color filter array 40 imaging unit 50 images circuit 51 extracting circuit 52 the adding circuit 60 the display device 90 the subject

Claims (10)

  1. 第1平面内に配置された光電変換機能を有する多数の画素を備える固体撮像素子と、第2平面内に配置された複数の微小レンズを備える微小レンズアレイとを有し、1つの前記微小レンズに対して複数の前記画素が対応し、それぞれの前記微小レンズが対応する複数の前記画素に被写体像を結像する撮像装置であって、 And the solid-state image sensor comprising a plurality of pixels having arranged photoelectric conversion function in a first plane, and a microlens array comprising a plurality of micro lenses arranged in a second plane, one of said micro lenses the imaging apparatus for forming an object image into a plurality of the pixels in which a plurality of said pixel correspond, each of said micro lenses corresponding relative,
    更に、前記第1平面に対して被写体側の第3平面内に配置された少なくとも2種以上のカラーフィルタを備える第1カラーフィルタアレイと、前記第1カラーフィルタアレイのカラーフィルタと同じ配置で前記第3平面と前記第1平面との間に位置する第4平面内に配置された少なくとも2種以上のカラーフィルタを備える第2カラーフィルタアレイとを有し、 Moreover, a first color filter array comprising at least two or more color filters disposed on the object side the third plane relative to the first plane, the same arrangement as the color filter of the first color filter array and a second color filter array comprising at least two or more color filters arranged in a fourth plane that is located between the third plane and the first plane,
    前記第1カラーフィルタアレイの前記カラーフィルタと前記微小レンズ、及び前記第2カラーフィルタアレイの前記カラーフィルタと前記微小レンズとは、いずれも一対一に対応していることを特徴とする撮像装置。 Wherein the color filter and the micro lens of the first color filter array, and said the second the color filter and the micro lens of the color filter array, an imaging apparatus characterized by both correspond one-to-one.
  2. 前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤色光を透過するカラーフィルタと、緑色光を透過するカラーフィルタと、青色光を透過するカラーフィルタとを含む請求項1に記載の撮像装置。 The first color filter array and the second color filter array, an imaging according to claim 1 comprising a color filter which transmits red light, a color filter that transmits green light, and a color filter that transmits blue light apparatus.
  3. 前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイにおいて、同種のカラーフィルタが相互に隣り合わないように、前記2種以上のカラーフィルタが市松模様状に配置されている請求項1に記載の撮像装置。 In the first color filter array and the second color filter array, as the same type color filters are not adjacent to each other, according to claim 1, wherein the two or more color filters are arranged in a checkered pattern imaging device.
  4. 前記第3平面は、前記第2平面に対して被写体側に位置する請求項1に記載の撮像装置。 The third plane, the imaging apparatus according to claim 1 positioned on the subject side with respect to the second plane.
  5. 前記第3平面は、前記第2平面と前記第4平面との間に位置し、前記第3平面と前記第4平面とが離間している請求項1に記載の撮像装置。 The third plane, the second located between the plane and said fourth plane, the imaging apparatus according to claim 1, wherein the third plane and the fourth plane are spaced apart.
  6. 前記第2カラーフィルタアレイは、固体撮像素子の入射面に近接して、又は前記入射面上に配置されている請求項1に記載の撮像装置。 The second color filter array, close to the incident surface of the solid-state imaging device, or the imaging apparatus according to claim 1, which is arranged on the incident surface.
  7. 前記第1カラーフィルタアレイ及び前記第2カラーフィルタアレイは、赤外光を透過するカラーフィルタ及び/又は紫外光を透過するカラーフィルタを含む請求項1に記載の撮像装置。 The first color filter array and the second color filter array, an imaging apparatus according to claim 1 comprising a color filter which transmits the color filters and / or ultraviolet light transmits infrared light.
  8. 前記固体撮像素子の多数の前記画素からの信号のうち、同種の前記カラーフィルタに対応する前記画素からの信号のみを選択的に抽出する抽出回路を更に備える請求項1に記載の撮像装置。 Many of the signals from the pixels, the image pickup apparatus according to claim 1, further comprising an extraction circuit for selectively extracting only a signal from the pixel corresponding to the color filter of the same type of the solid-state imaging device.
  9. 前記固体撮像素子がCCDである請求項1に記載の撮像装置。 The imaging apparatus according to claim 1 wherein the solid-state imaging device is CCD.
  10. 前記固体撮像素子がCMOSである請求項1に記載の撮像装置。 The imaging apparatus according to claim 1 wherein the solid-state imaging device is CMOS.
JP2004210326A 2004-07-16 2004-07-16 Imaging apparatus Pending JP2006033493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210326A JP2006033493A (en) 2004-07-16 2004-07-16 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210326A JP2006033493A (en) 2004-07-16 2004-07-16 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006033493A true true JP2006033493A (en) 2006-02-02

Family

ID=35899295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210326A Pending JP2006033493A (en) 2004-07-16 2004-07-16 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006033493A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181220A (en) * 2007-01-23 2008-08-07 Ricoh Co Ltd Personal authentication apparatus and personal authentication method
KR20110010784A (en) * 2008-05-20 2011-02-07 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US20120050589A1 (en) * 2010-08-25 2012-03-01 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2013018559A1 (en) * 2011-07-29 2013-02-07 ソニー株式会社 Imaging element and method for manufacturing same
CN102944305A (en) * 2012-11-12 2013-02-27 北京航空航天大学 Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput
JP2013157606A (en) * 2013-02-08 2013-08-15 Toshiba Corp Solid state imaging device
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
WO2015016382A1 (en) * 2013-07-31 2015-02-05 Ricoh Company, Limited Imaging apparatus
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
JP2015524202A (en) * 2012-06-01 2015-08-20 オステンド・テクノロジーズ・インコーポレーテッド Spatio-temporal light field camera
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
WO2016162983A1 (en) * 2015-04-08 2016-10-13 日立マクセル株式会社 Vehicle-mounted camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
JP2016197733A (en) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー Photosensitive imaging element and related method
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10091405B2 (en) 2017-02-21 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181220A (en) * 2007-01-23 2008-08-07 Ricoh Co Ltd Personal authentication apparatus and personal authentication method
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
JP2011523538A (en) * 2008-05-20 2011-08-11 ペリカン イメージング コーポレイション Imaging and processing of images using a monolithic camera array with different types of imaging devices
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
KR101733443B1 (en) 2008-05-20 2017-05-10 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US9235898B2 (en) 2008-05-20 2016-01-12 Pelican Imaging Corporation Systems and methods for generating depth maps using light focused on an image sensor by a lens element array
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
KR101588877B1 (en) 2008-05-20 2016-01-26 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9094661B2 (en) 2008-05-20 2015-07-28 Pelican Imaging Corporation Systems and methods for generating depth maps using a set of images containing a baseline image
KR20110010784A (en) * 2008-05-20 2011-02-07 펠리칸 이매징 코포레이션 Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8896719B1 (en) 2008-05-20 2014-11-25 Pelican Imaging Corporation Systems and methods for parallax measurement using camera arrays incorporating 3 x 3 camera configurations
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9060142B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including heterogeneous optics
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9060124B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images using non-monolithic camera arrays
US9060120B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Systems and methods for generating depth maps using images captured by camera arrays
JP2015109667A (en) * 2008-05-20 2015-06-11 ペリカン イメージング コーポレイション Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9049391B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources
US9049381B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for normalizing image data captured by camera arrays
US9049367B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using images captured by camera arrays
US9041823B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Systems and methods for performing post capture refocus using images captured by camera arrays
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
JP2016197733A (en) * 2009-09-17 2016-11-24 サイオニクス、エルエルシー Photosensitive imaging element and related method
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US20120050589A1 (en) * 2010-08-25 2012-03-01 Kabushiki Kaisha Toshiba Solid-state imaging device
US8711267B2 (en) 2010-08-25 2014-04-29 Kabushiki Kaisha Toshiba Solid-state imaging device
JP2012049257A (en) * 2010-08-25 2012-03-08 Toshiba Corp Solid state imaging device
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US9361662B2 (en) 2010-12-14 2016-06-07 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9047684B2 (en) 2010-12-14 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using a set of geometrically registered images
US9041824B2 (en) 2010-12-14 2015-05-26 Pelican Imaging Corporation Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9380277B2 (en) 2011-07-29 2016-06-28 Sony Corporation Imaging device with reduced color mixing and method of manufacturing the same
EP2738811A4 (en) * 2011-07-29 2015-04-01 Sony Corp Imaging element and method for manufacturing same
CN103650143A (en) * 2011-07-29 2014-03-19 索尼公司 Imaging element and method for manufacturing same
WO2013018559A1 (en) * 2011-07-29 2013-02-07 ソニー株式会社 Imaging element and method for manufacturing same
EP2738811A1 (en) * 2011-07-29 2014-06-04 Sony Corporation Imaging element and method for manufacturing same
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9025895B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding refocusable light field image files
US9036928B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for encoding structured light field image files
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US9036931B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for decoding structured light field image files
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9042667B2 (en) 2011-09-28 2015-05-26 Pelican Imaging Corporation Systems and methods for decoding light field image files using a depth map
US9031343B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having a depth map
US9031342B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding refocusable light field image files
US9031335B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having depth and confidence maps
US9025894B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding light field image files having depth and confidence maps
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9681069B2 (en) 2012-06-01 2017-06-13 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9712764B2 (en) 2012-06-01 2017-07-18 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9774800B2 (en) 2012-06-01 2017-09-26 Ostendo Technologies, Inc. Spatio-temporal light field cameras
JP2015524202A (en) * 2012-06-01 2015-08-20 オステンド・テクノロジーズ・インコーポレーテッド Spatio-temporal light field camera
US9930272B2 (en) 2012-06-01 2018-03-27 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9779515B2 (en) 2012-06-01 2017-10-03 Ostendo Technologies, Inc. Spatio-temporal light field cameras
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9147254B2 (en) 2012-08-21 2015-09-29 Pelican Imaging Corporation Systems and methods for measuring depth in the presence of occlusions using a subset of images
US9240049B2 (en) 2012-08-21 2016-01-19 Pelican Imaging Corporation Systems and methods for measuring depth using an array of independently controllable cameras
US9123118B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation System and methods for measuring depth using an array camera employing a bayer filter
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9123117B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability
US9129377B2 (en) 2012-08-21 2015-09-08 Pelican Imaging Corporation Systems and methods for measuring depth based upon occlusion patterns in images
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
CN102944305A (en) * 2012-11-12 2013-02-27 北京航空航天大学 Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput
CN102944305B (en) 2012-11-12 2014-08-13 北京航空航天大学 Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
JP2013157606A (en) * 2013-02-08 2013-08-15 Toshiba Corp Solid state imaging device
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9124864B2 (en) 2013-03-10 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9602805B2 (en) 2013-03-15 2017-03-21 Fotonation Cayman Limited Systems and methods for estimating depth using ad hoc stereo array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
WO2015016382A1 (en) * 2013-07-31 2015-02-05 Ricoh Company, Limited Imaging apparatus
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10089740B2 (en) 2015-03-09 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
WO2016162983A1 (en) * 2015-04-08 2016-10-13 日立マクセル株式会社 Vehicle-mounted camera
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10091405B2 (en) 2017-02-21 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras

Similar Documents

Publication Publication Date Title
US20140354773A1 (en) Systems and Methods for Normalizing Image Data Captured by Camera Arrays
US20140043507A1 (en) Lens array for partitioned image sensor having color filters
US20070091197A1 (en) Imaging device
US20120268574A1 (en) Imager integrated circuit and stereoscopic image capture device
US9253380B2 (en) Thin form factor computational array cameras and modular array cameras
US20100091161A1 (en) Solid-state image sensor and imaging apparatus equipped with solid-state image sensor
US7433042B1 (en) Spatially corrected full-cubed hyperspectral imager
US20100060746A9 (en) Simultaneous multiple field of view digital cameras
US7242478B1 (en) Spatially corrected full-cubed hyperspectral imager
US20150373261A1 (en) Array Cameras and Array Camera Modules including Spectral Filters Disposed Outside of a Constituent Image Sensor
US7199348B2 (en) Apparatus for multiple camera devices and method of operating same
US20150312455A1 (en) Array Camera Architecture Implementing Quantum Dot Color Filters
US20110058072A1 (en) Camera sensor correction
US20080239088A1 (en) Extended depth of field forming device
US20120189293A1 (en) Imaging devices having arrays of image sensors and lenses with multiple aperture sizes
US20060125936A1 (en) Multi-lens imaging systems and methods
US20070102622A1 (en) Apparatus for multiple camera devices and method of operating same
WO2014164909A1 (en) Array camera architecture implementing quantum film sensors
JP2004228662A (en) Image pickup apparatus
JP2003163938A (en) Image-input apparatus
US20080068475A1 (en) Image photographing apparatus, method and medium
JP2007279512A (en) Stereoscopic camera and stereoscopic imaging apparatus
US20090302205A9 (en) Lens frame and optical focus assembly for imager module
US20070263114A1 (en) Ultra-thin digital imaging device of high resolution for mobile electronic devices and method of imaging
US20130222546A1 (en) Solid-state image pickup element and image pickup apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309