JP2006022499A - Energy absorbing mechanism for beam-column connection section - Google Patents
Energy absorbing mechanism for beam-column connection section Download PDFInfo
- Publication number
- JP2006022499A JP2006022499A JP2004199532A JP2004199532A JP2006022499A JP 2006022499 A JP2006022499 A JP 2006022499A JP 2004199532 A JP2004199532 A JP 2004199532A JP 2004199532 A JP2004199532 A JP 2004199532A JP 2006022499 A JP2006022499 A JP 2006022499A
- Authority
- JP
- Japan
- Prior art keywords
- column
- steel
- connection section
- steel rod
- energy absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 64
- 239000010959 steel Substances 0.000 claims abstract description 64
- 230000001070 adhesive Effects 0.000 claims abstract description 9
- 239000000853 adhesive Substances 0.000 claims abstract description 9
- 239000011150 reinforced concrete Substances 0.000 claims abstract description 9
- 238000005452 bending Methods 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 230000001264 neutralization Effects 0.000 claims description 8
- 230000003014 reinforcing Effects 0.000 claims description 4
- 239000004567 concrete Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 2
- 239000011210 fiber-reinforced concrete Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 210000001503 Joints Anatomy 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001186 cumulative Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Abstract
Description
この発明は、木質または鉄筋コンクリート系ラーメン構造物において、柱梁接合部のエネルギー吸収機構に関するものである。 The present invention relates to an energy absorption mechanism of a beam-column joint in a woody or reinforced concrete ramen structure.
従来、木質構造物および鉄筋コンクリートラーメン構造物において、地震等により構造物躯体が繰り返し荷重を受けるとき、地震時に構造物に入力した地震エネルギーは柱梁接合部において、該柱梁接合部を支点として梁端部を回転させるモーメントとして作用する。このときの最も大きな応力は、柱表面に近い梁端部に集中し、特に、靭性が乏しい木質梁(製材または集成材)にあっては、設計値以上の荷重が梁端部に作用したとき木質繊維が切断してぜい性破壊を起こしやすく建物全体の崩壊につながる。このため木質系ラーメン構造物では、地震時に梁端部に集中する荷重で柱梁接合部が損傷し、ぜい性破壊するのを防止する工夫が必要性である。 Conventionally, when wooden structures and reinforced concrete frame structures are subjected to repeated loads due to earthquakes, etc., the seismic energy input to the structure during an earthquake is beamed at the beam-column joint at the beam-column joint. Acts as a moment to rotate the end. The greatest stress at this time is concentrated at the beam end near the column surface. Especially in the case of wooden beams with low toughness (sawmill or glulam), a load exceeding the design value is applied to the beam end. The wood fiber is cut and easily brittle, leading to collapse of the entire building. For this reason, it is necessary to devise measures to prevent brittle fracture in a wood-based rigid frame structure that damages the column beam joint due to the load concentrated on the beam end during an earthquake.
前記の問題はコンクリート系構造物でも同様である。すなわち、コンクリート系構造物に地震エネルギーが入力したときは、柱梁接合部を支点としてコンクリートの梁端部を回転させるモーメントとして作用し、このときの最も大きな応力は、柱表面に近い梁端部に引張と圧縮の繰り返し応力となって集中し、特に、引張に弱い鉄筋コンクリートにあっては、設計値以上の引張応力が梁端部に作用したときコンクリートが破壊して建物全体の崩壊につながる。このため繊維補強コンクリートを柱梁接合部に使用するなどの改良が試みられているが必ずしも実効性が期待できない。
従来、木質構造物において、地震により繰り返し荷重を受けるラーメン架構に対して、その柱梁接合部にエネルギー吸収能力を積極的に持たせた制振構造は見当たらない。また、特開平10−8551号公報に開示の制震構造では、柱梁仕口部を繊維補強コンクリートで補強して地震時に梁端部に作用する塑性回転変形を制御するものであるが、コンクリートの破壊を防止する点に関する改善策としては実効に乏しい。 Conventionally, in a wooden structure, there is no vibration control structure in which the beam-column joint has positive energy absorption capacity for a rigid frame structure that is repeatedly subjected to an earthquake. Further, in the seismic control structure disclosed in Japanese Patent Laid-Open No. 10-8551, a column beam joint is reinforced with fiber reinforced concrete to control plastic rotational deformation acting on the beam end during an earthquake. It is not effective as an improvement measure for preventing the destruction of
前記のように柱梁接合部が地震等により繰り返し荷重を受ける場合に、従来構造では梁端部において荷重が集中する部位の塑性変形回転能力は小さく、大きなエネルギー吸収能力を期待できず、この架構に設計想定を上回る巨大地震が入力した場合、素材の特性により梁端部が設計値以上の曲げ応力により急激に耐力が低下するので、脆性的な破壊モードを呈するものとなり、ついには建物の崩壊に至る危険性がある。 As described above, when the beam-column joint is repeatedly subjected to a load due to an earthquake or the like, the conventional structure has a small plastic deformation rotation capability at a portion where the load is concentrated at the beam end, and a large energy absorption capability cannot be expected. If a large earthquake exceeding the design assumption is input to the beam, the strength of the beam ends sharply decreases due to the bending stress exceeding the design value due to the characteristics of the material, so that it exhibits a brittle failure mode, and finally the building collapses There is a risk of reaching.
本発明は、木質梁またはRC梁の梁端内に埋設して設置された鋼棒の塑性時の性質を利用して、梁端部の地震荷重による繰り返しエネルギー吸収能力を高め、架構の脆性的な破壊・倒壊を防止することを目的とする。 The present invention uses the properties of steel bars embedded in the beam ends of wooden beams or RC beams at the time of plasticity to increase the ability to repeatedly absorb energy due to the seismic load at the beam ends, thereby making the frame brittle. The purpose is to prevent damage and collapse.
前記の目的を達成するため、本発明は次のように構成する。 In order to achieve the above object, the present invention is configured as follows.
第1の発明は、木質または鉄筋コンクリート構造物の柱梁接合部において、梁端内部に梁長手方向に伸長する鋼棒を埋設し、該鋼棒には、梁曲げ荷重の集中が想定される範囲にエネルギー吸収用の塑性化部が設けられていることを特徴とする。 1st invention embeds the steel bar which extends in the beam longitudinal direction inside the beam end in the beam-column joint part of a wooden or reinforced concrete structure, and the range where concentration of beam bending load is assumed in the steel bar Is provided with a plasticizing portion for energy absorption.
第2の発明は、第1の発明において、前記鋼棒は梁端内部に形成した穴部に配置されると共に、前記塑性化部は鋼棒に設けたくびれ部によって形成され、該くびれ部の周囲にアンボンド材が配置され他の部位は梁に定着されていることを特徴とする。 According to a second invention, in the first invention, the steel rod is disposed in a hole formed in the beam end, and the plasticizing portion is formed by a constricted portion provided in the steel rod. An unbond material is disposed around the other part, and other parts are fixed to the beam.
第3の発明は、第2の発明において、 前記鋼棒はくびれ部を除いて表面に突起部を有する鉄筋で構成され、該突起部を有する鋼棒表面と穴の間隙に接着材が充填されていることを特徴とする。 According to a third invention, in the second invention, the steel rod is composed of a reinforcing bar having a protrusion on the surface except for the constricted portion, and a gap between the surface of the steel rod having the protrusion and the hole is filled with an adhesive. It is characterized by.
第4の発明は、第1〜第3の発明において、前記鋼棒は梁せいの中立軸の上下に設けられていることを特徴とする。 According to a fourth invention, in the first to third inventions, the steel bar is provided above and below a neutral shaft of the beam.
第5の発明は、第1〜第4の発明において、前記梁は、梁通しタイプであって、前記鋼棒は柱の軸線に対し左右対称に梁端内部に設けられていることを特徴とする。 A fifth invention is characterized in that, in the first to fourth inventions, the beam is a beam-through type, and the steel rod is provided in the beam end symmetrically with respect to the axis of the column. To do.
本発明によると、木質構造及びRC(鉄筋コンクリート)構造のラーメン架構において、地震水平力により柱梁接合部に曲げ応力が作用したとき、梁端内部に埋設設置された鋼棒の定着部の働きにより該鋼棒に軸力が作用し、軸力がある大きさを越えると、鋼棒はその断面積が最小である塑性化部において軸降伏を起こして塑性伸びを開始し、この時点から梁端部はその曲げ耐荷力を急激に低減することなく回転変形を生じるので、架構の水平変形性能が確保され、該鋼棒の塑性化の性質によって、柱梁接合部の地震エネルギー吸収能力を高め、地震入力に対してじん性に富んだ架構を実現できた。
According to the present invention, when a bending stress is applied to a column-beam joint by an earthquake horizontal force in a wooden structure and RC (steel reinforced concrete) structure, the work of the fixing part of the steel rod embedded in the beam end When an axial force acts on the steel bar and the axial force exceeds a certain magnitude, the steel bar starts axial elongation at the plasticized part where the cross-sectional area is the smallest and starts plastic elongation. Since the part undergoes rotational deformation without abruptly reducing its bending load bearing capacity, the horizontal deformation performance of the frame is ensured, and the seismic energy absorption capacity of the beam-column joint is enhanced by the plasticizing nature of the steel rod, The frame was rich in toughness against earthquake input.
本発明の実施形態を、木質構造のラーメン架構における柱梁接合構造を例にとって説明する。本発明において、木質構造とは製材または集成材の両方の意味で使用する。 The embodiment of the present invention will be described with an example of a column beam connection structure in a wooden frame frame. In the present invention, the term “woody structure” is used to mean both lumber and laminated lumber.
本発明の柱梁接合部は、柱貫通タイプ・梁貫通タイプどちらにも適用でき、図には上下階が通し梁によって切離されている梁貫通タイプを示し、この通し梁に鋼棒を主要素とするエネルギー吸収機構を設置した例を示す。各図において、集成材などの木質の梁1は上下に分断された柱2をよこ方向に貫通しており、両側の梁端面3が柱2の軸心部または軸心部を外れた部位で突き合わされ接着材で一体化されている。本発明において、梁端面3から左右両側の所定範囲を梁端部4という。梁1の長手方向と直交する断面は図3(b)に示すように垂直両側面が長辺の矩形であり、この矩形断面の梁端内部に梁長手方向に伸びる穴5が開設されていて、この穴5にエネルギー吸収部材として複数本の鋼棒6が配設されている。梁1の長手方向と直交する断面は矩形でなくても構わない。各鋼棒6は図3(b)に示すように、梁せいの中立軸に対して上下対称的にそれぞれ2本ずつ、合計4本配置されている。穴5は、梁端面3から穿孔するなどの方法で設けることができる。鋼棒6の配置は、中立軸の上下に非対称に設ける場合もある。この場合も、梁1の上下方向の曲げにより中立軸の上下に交互に作用する引張力に対し、中立軸の上下に設けた鋼棒6が引張力に抵抗するよう有効に作用する。 The column beam joint of the present invention can be applied to both the column penetration type and the beam penetration type, and the figure shows the beam penetration type in which the upper and lower floors are separated by a through beam. An example of installing a simple energy absorption mechanism is shown. In each figure, a wooden beam 1 such as a laminated timber penetrates a pillar 2 divided in the vertical direction in the transverse direction, and the beam end surfaces 3 on both sides are off the axial center part or the axial center part of the pillar 2. Butted together and integrated with adhesive. In the present invention, a predetermined range from the beam end surface 3 to the left and right sides is referred to as a beam end portion 4. The cross section perpendicular to the longitudinal direction of the beam 1 is a rectangle having long sides on both vertical sides as shown in FIG. 3B, and a hole 5 extending in the beam longitudinal direction is opened inside the beam end of this rectangular section. In this hole 5, a plurality of steel bars 6 are disposed as energy absorbing members. The cross section orthogonal to the longitudinal direction of the beam 1 may not be rectangular. As shown in FIG. 3 (b), a total of four steel rods 6 are arranged, each two in a vertical symmetry with respect to the neutral axis of the beam. The hole 5 can be provided by a method such as drilling from the beam end surface 3. The arrangement of the steel bars 6 may be provided asymmetrically above and below the neutral shaft. Also in this case, the steel rods 6 provided above and below the neutral shaft effectively act against the tensile force acting alternately on the neutral shaft by bending the beam 1 in the vertical direction.
鋼棒6は異形鉄筋など表面に突起部を有する鉄筋で構成されており、その長さ方向の一部にくびれ部7を形成し、このくびれ部7を鋼棒の塑性化部8としている。鋼棒6を収納する穴5において、くびれ部7の周囲の空間には梁1との摩擦接合を絶縁するアンボンド材10が巻かれていると共に、くびれ部7を除く鋼棒の周囲の間隙には樹脂系の接着材11が充填されており、この接着材11が硬化することで鋼棒6の表面の突起部(図示せず)と接着材11の相互作用によって、該鋼棒6は木質の梁1にしっかりと定着されている。 The steel bar 6 is composed of a reinforcing bar having a projection on its surface, such as a deformed reinforcing bar, and a constricted part 7 is formed in a part of its length direction, and this constricted part 7 is used as a plasticizing part 8 of the steel bar. In the hole 5 for accommodating the steel bar 6, an unbond material 10 that insulates the frictional connection with the beam 1 is wound in the space around the constricted part 7, and in the gap around the steel bar excluding the constricted part 7. Is filled with a resin-based adhesive 11, and the steel 11 is hardened by the interaction between the protrusion 11 (not shown) on the surface of the steel bar 6 and the adhesive 11 when the adhesive 11 is cured. It is firmly fixed on the beam 1.
図1において、地震により構造物に水平力が作用したとき、柱梁接合部を支点として、梁端部4は矢印(ホ)で示すように上下に回転する。また梁端部4が上方に回転するときは、梁せいの中立軸の上側では圧縮力が作用し下側では引張力が作用する。反対に梁端部4が下方に回転するときは、梁せいの中立軸の上側では引張力が作用し下側では圧縮力が作用する。このとき梁端内部に埋設した複数本の各鋼棒6において、梁端部4の圧縮力が作用する部位の鋼棒6には圧縮軸力が入力し、梁端部4の引張力が作用する部位の鋼棒6には引張軸力が入力する。 In FIG. 1, when a horizontal force is applied to a structure due to an earthquake, the beam end 4 rotates up and down as indicated by an arrow (e) with the column beam joint as a fulcrum. When the beam end 4 rotates upward, a compressive force acts on the upper side of the neutral axis of the beam, and a tensile force acts on the lower side. On the other hand, when the beam end 4 rotates downward, a tensile force acts on the upper side of the neutral shaft of the beam and a compressive force acts on the lower side. At this time, in each of the plurality of steel bars 6 embedded in the beam end, a compression axial force is input to the steel bar 6 where the compression force of the beam end 4 acts, and a tensile force of the beam end 4 acts. The tensile axial force is input to the steel rod 6 at the site to be operated.
鋼棒6に引張力が作用するとき、特定部位に設けたくびれ部7だけが他の部位より先に降伏する。特に、くびれ部7は鋼棒6の塑性化の性質によって梁端部4は曲げ耐荷力を急速に低減することなく徐々に回転変形を生じ、結果として、柱梁接合部における梁端部4は靭性に富む架構となる。 When a tensile force acts on the steel bar 6, only the constricted part 7 provided at the specific part yields before the other part. In particular, the constricted portion 7 is gradually rotated and deformed without rapidly reducing the bending load resistance due to the plasticizing property of the steel bar 6, and as a result, the beam end 4 at the beam-column joint is The frame is rich in toughness.
図2(b)によってさらに説明すると、鋼棒6は、梁1に対して接着材11により形成される定着部12とアンボンド材10により形成されるアンボンド部13を有している。また塑性化部8では、くびれ部7によって鋼棒断面積が他よりも減少されており、アンボンド部13はこの部位に形成されている。このアンボンド部13においては、鋼棒6と梁1とは摩擦抵抗なく自由に滑動できる。この結果、地震水平力により接合部に曲げ応力が作用したとき、定着部12の働きにより鋼棒6に引張軸力が作用する。この引張軸力がある大きさを越えると、鋼棒6は断面積が最小である塑性化部8(くびれ部7)において軸降伏を起こし塑性伸びを開始する。この時点から梁端部4はその曲げ耐荷力を急激に低減することなく回転変形を生じるので、架構の水平変形性能が確保され、じん性に富んだ架構となる。 2B, the steel bar 6 has a fixing portion 12 formed of an adhesive 11 and an unbonded portion 13 formed of an unbonded material 10 with respect to the beam 1. Further, in the plasticized portion 8, the cross-sectional area of the steel rod is reduced by the constricted portion 7 as compared with others, and the unbonded portion 13 is formed at this portion. In this unbonded portion 13, the steel rod 6 and the beam 1 can slide freely without frictional resistance. As a result, when a bending stress acts on the joint due to the seismic horizontal force, a tensile axial force acts on the steel rod 6 by the action of the fixing portion 12. When the tensile axial force exceeds a certain magnitude, the steel rod 6 causes axial yielding in the plasticized portion 8 (necked portion 7) having the smallest cross-sectional area and starts plastic elongation. From this point of time, the beam end 4 undergoes rotational deformation without abruptly reducing its bending load bearing capacity, so that the horizontal deformation performance of the frame is ensured and the frame is rich in toughness.
図2(a)のグラフは、梁せいの低減とレベル2の大地震時の梁端の塑性回転性能の付与(つまり、破壊に伴う急激な耐力低下の防止)を示している。よこ軸に梁端部4の回転角をとり、たて軸に梁端部4の曲げモーメント応力を示している。図の太線(イ)は、塑性化部を有する鋼棒を内蔵した梁端部の曲げ挙動を示し、点線(ロ)は、鋼棒を内蔵しない木質梁の曲げ挙動を示す。この図2(a)から分るように、木質梁端部の曲げ応力の挙動としては、あるところまでは耐力が上がってから、急激に木質繊維が破断し、点線矢印(ハ)のように直下に向かって落ちる、つまり急激に曲げ耐力が0となる。また、図の細い直線(ニ)は、くびれ部のある鋼棒の曲げ挙動を示し、グラフから分るように耐力が上がったところで鋼棒が降伏することで耐力が0にならないで一定の耐力を保つ。 The graph of FIG. 2 (a) shows the reduction of the beam and the provision of the plastic rotation performance at the end of the beam at the time of a large level 2 earthquake (that is, prevention of a sudden decrease in the proof stress due to failure). The rotation angle of the beam end 4 is taken on the horizontal axis, and the bending moment stress of the beam end 4 is shown on the vertical axis. The thick line (A) in the figure shows the bending behavior of the beam end portion incorporating the steel rod having the plasticized portion, and the dotted line (B) shows the bending behavior of the wooden beam not incorporating the steel rod. As can be seen from FIG. 2 (a), the bending stress behavior at the end of the wooden beam is that the yield strength increases up to a certain point, and then the wooden fiber breaks suddenly, as indicated by the dotted arrow (c) It falls directly below, that is, the bending strength suddenly becomes zero. The thin straight line (d) in the figure shows the bending behavior of a steel bar with a constricted part. As can be seen from the graph, the yield strength of the steel bar yields when the yield strength is increased, so that the yield strength does not become zero, but the yield strength is constant. Keep.
したがって、細い直線(ニ)と点線(ロ)を足すと太線(イ)のようになって、鋼棒6が降伏の後、鉄筋の伸びがあるのですぐには耐力が低下しないで、梁端部4はずっと回転変形を続け、急激に破壊するのではなく回転性能が上がることが分かる。 Therefore, when a thin straight line (d) and a dotted line (b) are added, a thick line (b) is obtained. It can be seen that the part 4 continues to undergo rotational deformation for a long time, and the rotational performance is improved rather than suddenly breaking.
図3に鋼棒6の長さ方向に寸法L1〜L4を付し、塑性化部8のくびれ部の断面積を決定する条件を以下の計算式によって説明する。図3のL1、L3は定着部長さであり、これはダボ接合の必要長より決める。L4は塑性化部長さであり、この長さL4は梁端部の回転による鋼棒の累積塑性歪による素材疲労特性から決定する。また、L2はアンボンド部長さであり、この範囲にアンボンド材11を巻く。図において、N:鋼棒1本の軸力を示す。 The conditions for determining the cross-sectional area of the constricted portion of the plasticized portion 8 by attaching dimensions L1 to L4 in the length direction of the steel rod 6 in FIG. L1 and L3 in FIG. 3 are fixing unit lengths, which are determined from the required length of dowel bonding. L4 is the length of the plasticized portion, and this length L4 is determined from the material fatigue characteristics due to the cumulative plastic strain of the steel rod due to the rotation of the beam end. L2 is the length of the unbonded portion, and the unbonded material 11 is wound in this range. In the figure, N represents the axial force of one steel bar.
L1、L3は、ダボ接合の必要定着長より求める。
L1 and L3 are obtained from the necessary fixing length for dowel bonding.
前記から、柱曲げモーメントMC >鋼棒入り梁端降伏モーメントMの条件を満たし、かつ木質部と鋼棒の回転剛性寄与が同程度となるように鋼棒の塑性化部断面積APを決定することができる。したがって、設計上入力される曲げモーメントに対して、その曲げモーメントが(10)式を上回らないように設計しておけば、その荷重に対して鋼棒は未だ降伏していない状態となる。もしも、その設計荷重よりも大きなモーメントが入ってきたら鋼棒は降伏を始めるが、鋼素材の性質上耐力が急激に降下することはなく、複合部材(梁)の効果として、曲げ性能、回転性能が向上する。 From the decision pillars bending moment M C> satisfies the condition of the steel rod containing beam end yield moment M, and plasticized cross-sectional area A P of steel bar such that the rotational stiffness contribution of wood and steel rod is approximately equal can do. Therefore, if the design is made so that the bending moment does not exceed the expression (10) with respect to the bending moment inputted in the design, the steel bar is not yet yielded with respect to the load. If a moment greater than the design load is entered, the steel rod will start to yield, but the strength of the steel material will not drop suddenly, and as a composite member (beam) effect, bending performance, rotation performance Will improve.
本発明の塑性化部を有する鋼棒からなる柱梁接合部エネルギー吸収機構は、鉄筋コンクリート構造物における柱梁接合部にも同様に適用できる。 The column beam joint energy absorption mechanism made of a steel rod having a plasticized portion of the present invention can be similarly applied to a column beam joint in a reinforced concrete structure.
1 梁
2 柱
3 梁端面
4 梁端部
5 穴
6 鋼棒
7 くびれ部
8 塑性化部
10 アンボンド材
11 接着材
12 定着部
13 アンボンド部
1 Beam
2 pillar 3 beam end face 4 beam end 5 hole 6 steel bar 7 constricted part 8 plasticizing part 10 unbonded material 11 adhesive material 12 fixing part 13 unbonded part
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004199532A JP2006022499A (en) | 2004-07-06 | 2004-07-06 | Energy absorbing mechanism for beam-column connection section |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004199532A JP2006022499A (en) | 2004-07-06 | 2004-07-06 | Energy absorbing mechanism for beam-column connection section |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006022499A true JP2006022499A (en) | 2006-01-26 |
Family
ID=35795969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004199532A Withdrawn JP2006022499A (en) | 2004-07-06 | 2004-07-06 | Energy absorbing mechanism for beam-column connection section |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006022499A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111249A (en) * | 2006-10-30 | 2008-05-15 | Takenaka Komuten Co Ltd | Method and structure for climping connection of precast concrete beam-column joint |
JP2011226175A (en) * | 2010-04-21 | 2011-11-10 | Ogura Kenho | Joint hardware |
JP2013113000A (en) * | 2011-11-29 | 2013-06-10 | Okabe Co Ltd | Structure for joining wooden members together |
-
2004
- 2004-07-06 JP JP2004199532A patent/JP2006022499A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111249A (en) * | 2006-10-30 | 2008-05-15 | Takenaka Komuten Co Ltd | Method and structure for climping connection of precast concrete beam-column joint |
JP2011226175A (en) * | 2010-04-21 | 2011-11-10 | Ogura Kenho | Joint hardware |
JP2013113000A (en) * | 2011-11-29 | 2013-06-10 | Okabe Co Ltd | Structure for joining wooden members together |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5995466B2 (en) | Wooden building structure | |
JP5440945B2 (en) | Joining structure and method of shaft member and RC member | |
JP5398419B2 (en) | Structural damper | |
JP5071915B2 (en) | Joining bracket and joining method for wooden column beam members | |
JP2020183701A (en) | Buckling restraint brace | |
JP2006022499A (en) | Energy absorbing mechanism for beam-column connection section | |
JP2009079397A (en) | Building with semi-rigidly joined column base | |
JP2000110399A (en) | Earthquake resistant construction of building for detached house | |
JP2005155049A (en) | Anti-seismic reinforcing structure for building construction | |
JP4189292B2 (en) | Shear resistance type fixing device | |
JP5429812B2 (en) | Joining structure and method of shaft member and RC member | |
JP2018162602A (en) | Joint metal and joint structure of wall | |
JP2020007798A (en) | Joining structure of wooden column and wooden beam | |
JP6352845B2 (en) | V brace fulcrum structure | |
JP2006083545A (en) | PCaPC FRAMING | |
JP7059788B2 (en) | Wood structure | |
JP2006104834A (en) | Seismic response control remodeling method of existing building and seismic response control remodeling structure | |
JP2011064012A (en) | Brace, aseismatic structure and building | |
JP5271164B2 (en) | Floor slab structure | |
JP2010024656A (en) | Joint damper and structure of joint portion | |
Aslankaya et al. | Influence of joints on the seismic response of traditional timber frames in Turkey | |
JP2005083136A (en) | Composite structure support | |
JP4546620B2 (en) | Self-isolated construction method and self-isolated structure of RC structure | |
JP6557900B2 (en) | Non-structural wall and non-structural wall construction method | |
JP2008038559A (en) | Vibration control wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060804 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060822 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071002 |