JP2006017083A - Method of controlling exhaust emission control device - Google Patents

Method of controlling exhaust emission control device Download PDF

Info

Publication number
JP2006017083A
JP2006017083A JP2004198310A JP2004198310A JP2006017083A JP 2006017083 A JP2006017083 A JP 2006017083A JP 2004198310 A JP2004198310 A JP 2004198310A JP 2004198310 A JP2004198310 A JP 2004198310A JP 2006017083 A JP2006017083 A JP 2006017083A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
particulate filter
exhaust
nox storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004198310A
Other languages
Japanese (ja)
Other versions
JP4265497B2 (en
Inventor
Kohei Yoshida
耕平 吉田
Kotaro Hayashi
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004198310A priority Critical patent/JP4265497B2/en
Priority to CNB2005800224726A priority patent/CN100445524C/en
Priority to KR1020077000558A priority patent/KR100828986B1/en
Priority to EP05757102A priority patent/EP1781909A1/en
Priority to PCT/IB2005/001861 priority patent/WO2006006031A1/en
Priority to US11/630,323 priority patent/US20070294998A1/en
Publication of JP2006017083A publication Critical patent/JP2006017083A/en
Application granted granted Critical
Publication of JP4265497B2 publication Critical patent/JP4265497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology suitably eliminating drop of HC oxidation capacity of rhodium Rh in an exhaust emission control device provided with a catalyst containing rhodium Rh and a particulate filter. <P>SOLUTION: In the exhaust emission control device provided with the occlusion reduction type NOx catalyst containing rhodium Rh and the particulate filter, drop of HC oxidation capacity of rhodium Rh is eliminated by prohibiting rich spike control while temperature of the occlusion reduction type NOx catalyst is a predetermined temperature or higher and putting the occlusion reduction type NOx catalyst in a reduction atmosphere in a process that temperature of the occlusion reduction type NOx catalyst drops after PM forced regeneration process of the particulate filter is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ロジウム(Rh)を含有した触媒とパティキュレートフィルタとを備えた排気浄化装置の制御技術に関する。   The present invention relates to a control technology for an exhaust emission control device including a catalyst containing rhodium (Rh) and a particulate filter.

近年、車両などに搭載される内燃機関の排気浄化装置では、白金(Pt)を含有した触媒が劣化したときに、触媒を所定時間リッチ雰囲気にすることで触媒の劣化を解消する方法が知られている(たとえば、特許文献1を参照)。
実開昭63−128221号公報 特開平6−272541号公報 特開2003−13777号公報 特開2000−297633号公報
2. Description of the Related Art In recent years, an exhaust gas purification device for an internal combustion engine mounted on a vehicle or the like is known in which a catalyst containing platinum (Pt) is deteriorated by making the catalyst rich atmosphere for a predetermined time when the catalyst contains platinum (Pt). (For example, refer to Patent Document 1).
Japanese Utility Model Publication No. 63-128221 JP-A-6-272541 Japanese Patent Laid-Open No. 2003-13777 JP 2000-297633 A

また、圧縮着火式内燃機関(ディーゼルエンジン)では、ロジウム(Rh)を含有した触媒と、パティキュレート(以下、PMと記す)を捕集するためのパティキュレートフィルタとを排気系に一体又は別体で配置した排気浄化装置が知られている。   In a compression ignition type internal combustion engine (diesel engine), a catalyst containing rhodium (Rh) and a particulate filter for collecting particulates (hereinafter referred to as PM) are integrated or separated into an exhaust system. There is known an exhaust purification device arranged in the above.

このような排気浄化装置では、パティキュレートフィルタのPM捕集能力を再生させる際に触媒が高温且つリーンな雰囲気に曝される。ロジウム(Rh)を含有した触媒が高温且つリーンな雰囲気に曝されると、ロジウム(Rh)が触媒担体の内部へ移動して触媒の浄化能力が低下してしまう。   In such an exhaust purification device, the catalyst is exposed to a high temperature and lean atmosphere when regenerating the PM trapping ability of the particulate filter. When a catalyst containing rhodium (Rh) is exposed to a high temperature and lean atmosphere, rhodium (Rh) moves to the inside of the catalyst carrier and the purification ability of the catalyst is lowered.

上記したような触媒浄化能力の低下は、触媒が凡そ400℃以上の高温且つリッチな雰囲気に曝されたときに解消される。しかしながら、圧縮着火式内燃機関は排気温度が低いため触媒の温度を400℃以上の高温まで昇温させるには燃費の悪化を伴うという問題がある。   The decrease in the catalyst purification capability as described above is eliminated when the catalyst is exposed to a high temperature and rich atmosphere of approximately 400 ° C. or higher. However, since the compression ignition type internal combustion engine has a low exhaust temperature, raising the temperature of the catalyst to a high temperature of 400 ° C. or more has a problem that the fuel consumption is deteriorated.

本発明は上記の実情に鑑みてなされたものであり、その目的はロジウム(Rh)を含有した触媒とパティキュレートフィルタとが一体又は別体で設けられた内燃機関の排気浄化装置において、触媒浄化能力の低下を好適に解消することができる技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to purify catalyst in an exhaust gas purification apparatus for an internal combustion engine in which a catalyst containing rhodium (Rh) and a particulate filter are provided integrally or separately. An object of the present invention is to provide a technique that can suitably eliminate the decrease in capability.

本発明は上記課題を解決するために以下のような手段を採用した。この発明の要旨は、内燃機関の排気系にロジウム(Rh)を含有する触媒とパティキュレートフィルタとが一体又は別体で配置された排気浄化装置を制御する方法であって、パティキュレートフィルタのPM強制再生処理終了後の触媒温度が低下する過程において、前記触媒を還元雰囲気にして触媒浄化能力の低下を解消させる点にある。   The present invention employs the following means in order to solve the above problems. The gist of the present invention is a method of controlling an exhaust purification device in which a catalyst containing rhodium (Rh) and a particulate filter are integrally or separately arranged in an exhaust system of an internal combustion engine, and the PM of the particulate filter In the process of lowering the catalyst temperature after the forced regeneration process, the catalyst is placed in a reducing atmosphere to eliminate the decrease in the catalyst purification capacity.

パティキュレートフィルタのPM捕集能力を再生させる場合には、排気温度の強制的な昇温およびまたは触媒における反応熱量の強制的な増加によってパティキュレートフィルタを昇温させ、以てパティキュレートフィルタに捕集されているPMを酸化除去する、所謂PM強制再生処理が行われる。   When regenerating the PM collection capacity of the particulate filter, the particulate filter is heated by forcibly increasing the exhaust temperature and / or forcibly increasing the amount of reaction heat in the catalyst. A so-called PM forced regeneration process for removing the collected PM by oxidation is performed.

上記したようなPM強制再生処理が実行されると、パティキュレートフィルタとともに触媒も高温且つリーンな雰囲気に曝されるため、ロジウム(Rh)が触媒担体の内部へ埋没する。ロジウム(Rh)が触媒担体の内部に埋没すると、触媒の浄化能力が低下する。   When the PM forced regeneration process as described above is executed, the catalyst and the particulate filter are exposed to a high temperature and lean atmosphere, so rhodium (Rh) is buried inside the catalyst carrier. When rhodium (Rh) is buried inside the catalyst carrier, the purification capacity of the catalyst is lowered.

ロジウム(Rh)の触媒担体内への埋没は、触媒が高温な還元雰囲気に曝されたときに解消される。つまり、触媒が高温な還元雰囲気に曝されると、ロジウム(Rh)が触媒担体の表面に再び露出するようになる。   The embedding of rhodium (Rh) in the catalyst carrier is eliminated when the catalyst is exposed to a high temperature reducing atmosphere. That is, when the catalyst is exposed to a high-temperature reducing atmosphere, rhodium (Rh) is exposed again to the surface of the catalyst carrier.

ところで、上記したような触媒の浄化能力低下を解消するためだけに触媒を強制的に昇温させると、燃費の著しい悪化が誘発される場合がある。   By the way, if the temperature of the catalyst is forcibly raised only in order to eliminate the reduction in the purification capacity of the catalyst as described above, a marked deterioration in fuel consumption may be induced.

そこで、PM強制再生処理実行後の触媒温度が低下する過程において、触媒温度が十分に下がりきらないうちに触媒を還元雰囲気とすれば、PM強制再生処理実行時の熱を利用して触媒の浄化能力低下を解消することが可能となる。その結果、触媒の浄化能力低下を解消するために別段の昇温処理を行う必要がなくなり、燃費の悪化が抑制される。   Therefore, if the catalyst is brought into a reducing atmosphere before the catalyst temperature is sufficiently lowered in the process of the catalyst temperature decreasing after the execution of the forced PM regeneration process, the heat of the PM forced regeneration process is used to purify the catalyst. It becomes possible to eliminate the capacity drop. As a result, it is not necessary to perform a separate temperature raising process in order to eliminate the decrease in the purification capacity of the catalyst, and the deterioration of fuel consumption is suppressed.

尚、触媒の浄化能力低下は該触媒が凡そ400℃以上の高温な還元雰囲気に曝されたときに好適に解消されるため、PM強制再生処理が実行された後の触媒温度が低下する過程において触媒温度が400℃以上となる期間に触媒を還元雰囲気にするようにしてもよい。この場合、還元雰囲気を形成するために必要となる還元剤の量を必要最小限に抑えることが可能となる。   Note that the reduction in the purification capacity of the catalyst is preferably eliminated when the catalyst is exposed to a high-temperature reducing atmosphere of approximately 400 ° C. or higher. Therefore, in the process in which the catalyst temperature decreases after the PM forced regeneration process is performed. You may make it make a catalyst into a reducing atmosphere in the period when a catalyst temperature becomes 400 degreeC or more. In this case, the amount of reducing agent required to form a reducing atmosphere can be minimized.

本発明において、ロジウム(Rh)を含有した触媒としては、吸蔵還元型NOx触媒を例示することができる。吸蔵還元型NOx触媒のNOx吸蔵能力には限りがあるため、吸蔵還元型NOx触媒を備えた排気浄化装置ではNOx吸蔵能力を適宜再生させる必要がある。   In the present invention, as a catalyst containing rhodium (Rh), an NOx storage reduction catalyst can be exemplified. Since the NOx storage capacity of the NOx storage reduction catalyst is limited, it is necessary to appropriately regenerate the NOx storage capacity in an exhaust purification device equipped with the NOx storage reduction catalyst.

吸蔵還元型NOx触媒のNOx吸蔵能力を再生させる方法としては、触媒上流の排気中へ還元剤を添加することにより、触媒へ流入する排気をリッチ雰囲気とする、所謂リッチスパイク制御が有効である。   As a method for regenerating the NOx storage capacity of the NOx storage reduction catalyst, so-called rich spike control is effective in which the reducing agent is added to the exhaust gas upstream of the catalyst so that the exhaust gas flowing into the catalyst has a rich atmosphere.

ところで、パティキュレートフィルタと吸蔵還元型NOx触媒を備えた排気浄化装置では、パティキュレートフィルタのPM強制再生処理が行われた後に、リッチスパイク制御が実行される可能性がある。   By the way, in the exhaust emission control device provided with the particulate filter and the NOx storage reduction catalyst, there is a possibility that the rich spike control is executed after the PM forced regeneration process of the particulate filter is performed.

触媒浄化能力が低下した状態でリッチスパイク制御が行われると、吸蔵還元型NOx触媒が保持していたNOxを放出するものの放出されたNOxを十分に還元することができないため、未浄化のNOxが大気中へ放出される虞がある。更に、未浄化のNOxが増加すると、それに応じて未浄化の還元剤(すなわち、NOxと反応できなかった還元剤)も増加する虞もある。   When rich spike control is performed in a state where the catalyst purification capacity is reduced, the NOx stored in the NOx storage reduction catalyst is released, but the released NOx cannot be sufficiently reduced. There is a risk of being released into the atmosphere. Furthermore, when the unpurified NOx increases, there is a possibility that the unpurified reducing agent (that is, the reducing agent that could not react with NOx) also increases accordingly.

一方、PM強制再生処理実行後にリッチスパイク制御が行われると、触媒が高温なリッチ雰囲気に曝されるため、触媒浄化能力の低下が解消されることも考えられる。しかしながら、リッチスパイク制御は排気を断続的にリッチ雰囲気にする制御であり一回当たりのリッチ雰囲気時間が比較的短いため、触媒浄化能力の低下を十分に解消することは難しい。更に、従来のリッチスパイク制御はロジウム(Rh)の特性を考慮していないため、触媒温度が適当な温度域にある時に触媒がリッチ雰囲気になるとは限らない。   On the other hand, if rich spike control is performed after the execution of the forced PM regeneration process, the catalyst is exposed to a high-temperature rich atmosphere, and thus it is conceivable that the decrease in the catalyst purification capability is eliminated. However, the rich spike control is a control that makes the exhaust gas intermittently rich, and since the rich atmosphere time per time is relatively short, it is difficult to sufficiently eliminate the decrease in the catalyst purification capability. Furthermore, since the conventional rich spike control does not consider the rhodium (Rh) characteristics, the catalyst does not always have a rich atmosphere when the catalyst temperature is in an appropriate temperature range.

そこで、本発明では、ロジウム(Rh)を含有した触媒が吸蔵還元型NOx触媒である場合には、PM強制再生処理実行後のリッチスパイク制御を禁止して触媒を還元雰囲気と
するようにしてもよい。
Therefore, in the present invention, when the catalyst containing rhodium (Rh) is an NOx storage reduction catalyst, the rich spike control after the execution of the PM forced regeneration process is prohibited and the catalyst is placed in a reducing atmosphere. Good.

尚、触媒を還元雰囲気にする際のリッチ度合いは、リッチスパイク制御によってリッチ雰囲気とされる場合のリッチ度合いより低くすることが好ましい。   In addition, it is preferable to make the rich degree at the time of making a catalyst into a reducing atmosphere lower than the rich degree at the time of setting it as rich atmosphere by rich spike control.

これは、触媒の浄化能力が低下しているときに、リッチスパイク制御と同様のリッチ雰囲気が形成されると、吸蔵還元型NOx触媒から比較的多量のNOxが放出されてしまい、大気中へ放出される未浄化のNOx量が増加する可能性があるからである。   This is because, when the purification capacity of the catalyst is reduced, if a rich atmosphere similar to the rich spike control is formed, a relatively large amount of NOx is released from the NOx storage reduction catalyst and released into the atmosphere. This is because the amount of unpurified NOx to be increased may increase.

触媒を還元雰囲気にする方法としては、リッチスパイク制御より短い周期に少量の還元剤を排気中へ添加する方法や、内燃機関の空燃比をリッチ雰囲気にする方法などを例示することができる。   Examples of the method for bringing the catalyst into the reducing atmosphere include a method for adding a small amount of reducing agent into the exhaust in a shorter cycle than the rich spike control, and a method for making the air-fuel ratio of the internal combustion engine rich.

また、吸蔵還元型NOx触媒とパティキュレートフィルタを備えた排気浄化装置では、PM強制再生処理に続けて吸蔵還元型NOx触媒の硫黄被毒解消処理が実行される場合がある。   In addition, in an exhaust purification device that includes an NOx storage reduction catalyst and a particulate filter, a sulfur poisoning elimination process for the NOx storage reduction catalyst may be executed following the forced PM regeneration process.

本発明に係る制御と硫黄被毒解消処理とでは、本発明に係る制御が触媒温度の強制的な昇温や温度維持を行わずに触媒を還元雰囲気とするのに対し、硫黄被毒解消処理が触媒温度の強制的な昇温や温度維持を行いつつ触媒を還元雰囲気とする点で異なる。   In the control according to the present invention and the sulfur poisoning elimination process, the control according to the present invention sets the catalyst in a reducing atmosphere without forcibly raising the catalyst temperature or maintaining the temperature, whereas the sulfur poisoning elimination process. However, it is different in that the catalyst is brought into a reducing atmosphere while forcibly raising the temperature of the catalyst or maintaining the temperature.

但し、硫黄被毒解消処理が実行されると、触媒が高温なリッチ雰囲気に曝されるため、触媒の浄化能力低下を解消することが可能である。   However, when the sulfur poisoning elimination process is executed, the catalyst is exposed to a high-temperature rich atmosphere, so it is possible to eliminate the reduction in the purification capacity of the catalyst.

従って、PM強制再生処理に続いて硫黄被毒解消処理が実行される場合には本発明の制御を禁止し、PM強制再生処理に続いて硫黄被毒解消処理が実行されない場合には本発明の制御を実行するようにすればよい。この場合、触媒が不必要に還元雰囲気とされることがなくなるため、燃費の悪化が防止される。   Therefore, the control of the present invention is prohibited when the sulfur poisoning elimination process is executed following the PM forced regeneration process, and when the sulfur poisoning elimination process is not executed following the PM forced regeneration process, What is necessary is just to perform control. In this case, the catalyst is not unnecessarily brought into a reducing atmosphere, so that deterioration of fuel consumption is prevented.

本発明に依れば、ロジウム(Rh)を含有した触媒とパティキュレートフィルタが一体又は別体で設けられた排気浄化装置において、燃費の悪化等を抑制しつつ触媒の浄化能力低下を解消することができる。   According to the present invention, in an exhaust purification device in which a catalyst containing rhodium (Rh) and a particulate filter are provided integrally or separately, the deterioration of the purification capability of the catalyst is eliminated while suppressing deterioration of fuel consumption. Can do.

以下、本発明の具体的な実施形態について図面に基づいて説明する。図1は、本発明を適用する内燃機関の概略構成を示す図である。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied.

図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)である。内燃機関1は、吸気通路2と排気通路3を備えている。吸気通路2には吸気絞り弁4が設けられている。排気通路3にはパティキュレートフィルタ5が設けられている。このパティキュレートフィルタ5には、ロジウム(Rh)を含有した吸蔵還元型NOx触媒が担持されている。   An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine). The internal combustion engine 1 includes an intake passage 2 and an exhaust passage 3. An intake throttle valve 4 is provided in the intake passage 2. A particulate filter 5 is provided in the exhaust passage 3. The particulate filter 5 carries an NOx storage reduction catalyst containing rhodium (Rh).

パティキュレートフィルタ5より上流の排気通路3には、内燃機関1の燃料を還元剤として噴射する還元剤添加弁6が設けられている。パティキュレートフィルタ5より下流の排気通路3には、排気温度センサ7が設けられている。   The exhaust passage 3 upstream of the particulate filter 5 is provided with a reducing agent addition valve 6 that injects fuel of the internal combustion engine 1 as a reducing agent. An exhaust temperature sensor 7 is provided in the exhaust passage 3 downstream of the particulate filter 5.

また、吸気通路2と排気通路3はEGR通路8によって連通されている。EGR通路8にはEGR弁9が設けられている。   The intake passage 2 and the exhaust passage 3 are communicated with each other by an EGR passage 8. An EGR valve 9 is provided in the EGR passage 8.

前記した吸気絞り弁4、還元剤添加弁6、排気温度センサ7、及びEGR弁9はECU10と各々電気的に接続されている。   The intake throttle valve 4, the reducing agent addition valve 6, the exhaust temperature sensor 7, and the EGR valve 9 are each electrically connected to the ECU 10.

ECU10は、上記した排気温度センサ7や内燃機関1の運転状態に基づいて燃料噴射制御やEGR制御等の既知の制御を行うとともに、本発明の要旨となる触媒浄化能力再生制御を実行する。以下、触媒浄化能力再生制御について述べる。   The ECU 10 performs known controls such as fuel injection control and EGR control based on the exhaust temperature sensor 7 and the operating state of the internal combustion engine 1, and also executes catalyst purification capacity regeneration control that is the gist of the present invention. Hereinafter, the catalyst purification capacity regeneration control will be described.

パティキュレートフィルタ5のPM捕集能力には限界があるため、ECU10はPM捕集能力が飽和する前にPM強制再生処理を実行する。PM強制再生処理では、ECU10は、ポスト噴射およびまたは還元剤添加弁6から排気中への燃料添加などを利用して排気温度の上昇およびまたは吸蔵還元型NOx触媒における反応熱量の増加を図ることにより、パティキュレートフィルタ5を強制的に昇温させる。   Since the PM collection capability of the particulate filter 5 is limited, the ECU 10 executes the PM forced regeneration process before the PM collection capability is saturated. In the PM forced regeneration process, the ECU 10 uses post injection and / or fuel addition from the reducing agent addition valve 6 into the exhaust to increase the exhaust temperature and / or increase the reaction heat amount in the NOx storage reduction catalyst. The particulate filter 5 is forcibly raised in temperature.

パティキュレートフィルタ5のPM強制再生処理が実行されると、該パティキュレートフィルタ5に担持された吸蔵還元型NOx触媒も高温且つリーンな雰囲気に曝される。このとき、吸蔵還元型NOx触媒のロジウム(Rh)が触媒担体の内部に埋没するため、該吸蔵還元型NOx触媒の浄化能(特に、炭化水素(HC)の酸化能)が低下する。   When the PM forced regeneration process of the particulate filter 5 is executed, the NOx storage reduction catalyst supported on the particulate filter 5 is also exposed to a high temperature and lean atmosphere. At this time, the rhodium (Rh) of the NOx storage reduction catalyst is buried inside the catalyst carrier, so that the purification capacity of the NOx storage reduction catalyst (particularly, the ability to oxidize hydrocarbons (HC)) decreases.

吸蔵還元型NOx触媒のHC酸化能が低下すると、該吸蔵還元型NOx触媒のNOx浄化能が低下する。すなわち、吸蔵還元型NOx触媒のHC酸化能が低下すると、吸蔵還元型NOx触媒のNOx吸蔵能力を再生させる時、すなわち還元剤添加弁6から排気中へ断続的に燃料(炭化水素(HC))を添加するリッチスパイク制御が実行された時に、吸蔵還元型NOx触媒において炭化水素(HC)が活性種へ変態し難くなるため、吸蔵還元型NOx触媒から放出されたNOxや吸蔵還元型NOx触媒へ供給された炭化水素(HC)が未浄化のまま大気中へ放出される虞がある。   When the HC oxidation capacity of the NOx storage reduction catalyst decreases, the NOx purification capacity of the NOx storage reduction catalyst decreases. That is, when the HC oxidation capacity of the NOx storage reduction catalyst is reduced, the NOx storage capacity of the NOx storage reduction catalyst is regenerated, that is, the fuel (hydrocarbon (HC)) is intermittently discharged from the reducing agent addition valve 6 into the exhaust gas. When rich spike control for adding NO is performed, hydrocarbon (HC) is not easily transformed into an active species in the NOx storage reduction catalyst, so NOx released from the NOx storage reduction catalyst or NOx storage reduction catalyst There is a risk that the supplied hydrocarbon (HC) may be released into the atmosphere without being purified.

図2は、吸蔵還元型NOx触媒のNOx浄化能が活性する温度を示した図である。パティキュレートフィルタ5のPM強制再生処理が実行される前は吸蔵還元型NOx触媒のNOx浄化能は300℃前後で活性するが、PM強制再生処理が実行された後は凡そ350℃以上まで活性しなくなっている。   FIG. 2 is a diagram showing a temperature at which the NOx purification ability of the NOx storage reduction catalyst is activated. Before the forced PM regeneration process of the particulate filter 5 is executed, the NOx purification capacity of the NOx storage reduction catalyst is activated at around 300 ° C., but after the forced PM regeneration process is performed, it is activated up to about 350 ° C. or more. It is gone.

圧縮着火式内燃機関の排気温度は高負荷運転時を除いて300℃前後となるため、上記したようにNOx浄化能の活性温度が高くなると、リッチスパイク制御が実行された時に、大気中へ放出されるNOxやHCが増加する可能性が高くなる。   Since the exhaust temperature of the compression ignition internal combustion engine is around 300 ° C. except during high-load operation, if the activation temperature of the NOx purification capacity increases as described above, it is released into the atmosphere when rich spike control is executed. The possibility that NOx and HC to be increased increases.

従って、PM強制再生処理が実行された時には、吸蔵還元型NOx触媒のHC酸化能の低下を解消する必要がある。HC酸化能の低下を解消するためには、触媒担体に埋没したロジウム(Rh)を再び露出させる必要がある。   Therefore, when the PM forced regeneration process is executed, it is necessary to eliminate the decrease in the HC oxidation ability of the NOx storage reduction catalyst. In order to eliminate the decrease in the HC oxidizing ability, it is necessary to expose again the rhodium (Rh) embedded in the catalyst carrier.

触媒担体に埋没したロジウム(Rh)は400℃以上の高温な還元雰囲気に曝されることにより触媒担体の表面に露出するため、吸蔵還元型NOx触媒を400℃以上まで昇温させた上で該吸蔵還元型NOx触媒に流入する排気を還元雰囲気とすれば、HC酸化能の低下を解消することができる。   Since rhodium (Rh) embedded in the catalyst carrier is exposed to the surface of the catalyst carrier when exposed to a high temperature reducing atmosphere of 400 ° C. or higher, the temperature of the NOx storage reduction catalyst is raised to 400 ° C. or higher. If the exhaust gas flowing into the NOx storage reduction catalyst is used as a reducing atmosphere, the reduction in the HC oxidizing ability can be eliminated.

ところで、吸蔵還元型NOx触媒を400℃以上の高温域まで昇温させる方法としては、ポスト噴射により排気温度を上昇させる方法や排気中に燃料を添加して吸蔵還元型NOx触媒の反応熱を増加させる方法等が有効であるが、何れの方法も燃費の悪化を招くという欠点がある。   By the way, as a method of raising the temperature of the NOx storage reduction catalyst to a high temperature range of 400 ° C. or higher, a method of increasing the exhaust temperature by post injection or adding fuel to the exhaust to increase the reaction heat of the NOx storage reduction catalyst. However, each method has a drawback that it causes a deterioration in fuel consumption.

そこで、本実施形態に係る触媒浄化能力再生制御では、PM強制再生処理実行後の触媒温度が低下する過程において、吸蔵還元型NOx触媒の温度が400℃以上となる期間にパティキュレートフィルタ5内が還元雰囲気となるようにした。   Therefore, in the catalyst purification capacity regeneration control according to the present embodiment, the particulate filter 5 is in the period when the temperature of the NOx storage reduction catalyst is 400 ° C. or higher in the process in which the catalyst temperature decreases after the execution of the PM forced regeneration process. A reducing atmosphere was created.

以下、触媒浄化能力再生制御について図3に基づいて説明する。図3は、触媒浄化能力再生制御ルーチンを示すフローチャート図である。触媒浄化能力再生制御ルーチンは、予めECU10のROMに記憶されているルーチンであり、PM強制再生処理実行完了をトリガとしてECU10が実行する割り込みルーチンである。   Hereinafter, the catalyst purification capacity regeneration control will be described with reference to FIG. FIG. 3 is a flowchart showing a catalyst purification capacity regeneration control routine. The catalyst purification capacity regeneration control routine is a routine that is stored in advance in the ROM of the ECU 10 and is an interrupt routine that is executed by the ECU 10 with the completion of execution of the PM forced regeneration process as a trigger.

触媒浄化能力再生制御ルーチンでは、ECU10は、先ずS101においてPM強制再生完了フラグの値が“1”であるか否かを判別する。PM強制再生完了フラグは、予めRAM等に設定された記憶領域であり、PM強制再生処理の実行が完了したときに“1”が記憶され、当該触媒浄化能力再生制御の実行完了時に“0”が記憶される。   In the catalyst purification capacity regeneration control routine, the ECU 10 first determines in S101 whether or not the value of the PM forced regeneration completion flag is “1”. The PM forced regeneration completion flag is a storage area set in advance in the RAM or the like, and is stored as “1” when the execution of the PM forced regeneration process is completed, and “0” when the execution of the catalyst purification capacity regeneration control is completed. Is memorized.

前記S101においてPM強制再生完了フラグが“0”であると判定された場合は、ECU10は本ルーチンの実行を終了する。一方、前記S101においてPM強制再生完了フラグが“1”であると判定された場合は、ECU10はS102へ進む。   When it is determined in S101 that the PM forced regeneration completion flag is “0”, the ECU 10 ends the execution of this routine. On the other hand, if it is determined in S101 that the PM forced regeneration completion flag is “1”, the ECU 10 proceeds to S102.

S102では、ECU10は排気温度センサ7の出力信号(流出排気温度):Toutを入力する。   In S102, the ECU 10 inputs an output signal (outflow exhaust gas temperature): Tout of the exhaust gas temperature sensor 7.

S103では、前記S102で入力された流出排気温度:Toutが所定温度:Ts(例えば、400℃)以上であるか否かを判別する。   In S103, it is determined whether or not the outflow exhaust gas temperature Tout input in S102 is equal to or higher than a predetermined temperature Ts (for example, 400 ° C.).

前記S103において流出排気温度:Toutが所定温度:Ts以上ではない(Tout<Ts)場合には、ECU10は、吸蔵還元型NOx触媒の床温が所定温度:Ts未満であると推定し、S110へ進む。S110では、ECU10は、PM強制再生完了フラグの値を“0”に変更して本ルーチンの実行を終了する。   When the outflow exhaust gas temperature: Tout is not equal to or higher than the predetermined temperature: Ts in S103 (Tout <Ts), the ECU 10 estimates that the bed temperature of the NOx storage reduction catalyst is lower than the predetermined temperature: Ts, and proceeds to S110. move on. In S110, the ECU 10 changes the value of the PM forced regeneration completion flag to “0” and ends the execution of this routine.

前記S103において前記流出排気温度:Toutが前記所定温度:Ts以上(Tout≧Ts)であると判定された場合は、ECU10は、吸蔵還元型NOx触媒の床温が所定温度:Ts以上であると推定し、S104へ進む。   When it is determined in S103 that the outflow exhaust gas temperature: Tout is equal to or higher than the predetermined temperature: Ts (Tout ≧ Ts), the ECU 10 determines that the bed temperature of the NOx storage reduction catalyst is equal to or higher than the predetermined temperature: Ts. Estimate and proceed to S104.

S104では、ECU10は、リッチスパイク制御の実行を禁止する。   In S104, the ECU 10 prohibits execution of rich spike control.

S105では、ECU10は、パティキュレートフィルタ5へ流入する排気を還元雰囲気(リッチ雰囲気)とするための排気リッチ化処理を実行する。排気リッチ化処理では、ECU10は、排気中へ断続的に燃料を添加させるべく還元剤添加弁6を制御する。   In S105, the ECU 10 executes an exhaust enrichment process for making the exhaust gas flowing into the particulate filter 5 into a reducing atmosphere (rich atmosphere). In the exhaust enrichment process, the ECU 10 controls the reducing agent addition valve 6 to intermittently add fuel into the exhaust.

その際、ECU10は、図4に示すように、還元剤添加弁6から一回当たりに添加される燃料量がリッチスパイク制御時より少なくなり、且つ、燃料の添加間隔がリッチスパイク制御時より短くなるように、還元剤添加弁6を制御する。   At that time, as shown in FIG. 4, the ECU 10 reduces the amount of fuel added from the reducing agent addition valve 6 at one time as compared with the rich spike control, and the fuel addition interval is shorter than that during the rich spike control. Thus, the reducing agent addition valve 6 is controlled.

還元剤添加弁6が一回当たりに噴射する燃料量をリッチスパイク制御時より少なくする理由は、吸蔵還元型NOx触媒のHC酸化能が低下しているときにリッチスパイク制御時と同量の炭化水素(HC)が吸蔵還元型NOx触媒へ供給されると、吸蔵還元型NOx触媒から放出されるNOx量が増加し、それに応じて大気中へ放出される未浄化のNOx量も増加するからである。   The reason why the amount of fuel injected by the reducing agent addition valve 6 at one time is smaller than that during rich spike control is that the amount of carbonization is the same as that during rich spike control when the HC oxidation capacity of the NOx storage reduction catalyst is reduced. When hydrogen (HC) is supplied to the NOx storage reduction catalyst, the amount of NOx released from the NOx storage reduction catalyst increases, and the amount of unpurified NOx released into the atmosphere increases accordingly. is there.

更に、還元剤添加弁6が一回当たりに噴射する燃料量をリッチスパイク制御時より少な
くする他の理由は、吸蔵還元型NOx触媒のHC酸化能が低下しているときにリッチスパイク制御時と同量の燃料が排気中へ添加されると、NOxと反応できずに大気中へ放出される炭化水素(HC)の量が増加する可能性もあるからである。
Further, another reason for reducing the amount of fuel injected by the reducing agent addition valve 6 at one time than during the rich spike control is that during the rich spike control when the HC oxidation capacity of the NOx storage reduction catalyst is reduced. This is because if the same amount of fuel is added to the exhaust gas, the amount of hydrocarbons (HC) that cannot be reacted with NOx and released into the atmosphere may increase.

また、還元剤添加弁6の燃料添加間隔をリッチスパイク制御時より短くする理由は、PM強制再生処理の実行完了後はパティキュレートフィルタ5及び吸蔵還元型NOx触媒の温度が急速に低下するため、リッチスパイク制御時と同様の添加間隔で燃料が添加されると、HC酸化能が再生される前に吸蔵還元型NOx触媒の温度が所定温度:Ts未満へ低下する可能性があるからである。   The reason why the fuel addition interval of the reducing agent addition valve 6 is made shorter than that during the rich spike control is that the temperature of the particulate filter 5 and the NOx storage reduction catalyst rapidly decreases after the completion of the PM forced regeneration process. This is because if the fuel is added at the same addition interval as in the rich spike control, the temperature of the NOx storage reduction catalyst may be reduced to a temperature lower than the predetermined temperature: Ts before the HC oxidizing ability is regenerated.

S106では、ECU10は、排気温度センサ7の出力信号(流出排気温度):Toutを再度入力する。   In S106, the ECU 10 inputs the output signal (outflow exhaust gas temperature): Tout of the exhaust gas temperature sensor 7 again.

S107では、ECU10は、前記S106で入力された流出排気温度:Toutが所定温度:Ts未満に低下したか否かを判別する。   In S107, the ECU 10 determines whether or not the outflow exhaust gas temperature Tout input in S106 has decreased below a predetermined temperature Ts.

前記S107において流出排気温度:Toutが所定温度:Ts未満に低下していない(Tout≧Ts)と判定された場合は、ECU10は、吸蔵還元型NOx触媒の床温が未だ所定温度:Ts以上であるとみなし、前述したS105以降の処理を再度実行する。   If it is determined in S107 that the exhaust gas exhaust temperature: Tout has not fallen below the predetermined temperature: Ts (Tout ≧ Ts), the ECU 10 determines that the bed temperature of the NOx storage reduction catalyst is still equal to or higher than the predetermined temperature: Ts. It is assumed that there is, and the processes after S105 described above are executed again.

前記S107において流出排気温度:Toutが所定温度:Ts未満に低下した(Tout<Ts)と判定された場合は、ECU10は、吸蔵還元型NOx触媒の床温が所定温度:Ts未満に低下したとみなし、S108へ進む。   If it is determined in S107 that the exhaust gas exhaust temperature Tout has decreased below the predetermined temperature Ts (Tout <Ts), the ECU 10 determines that the bed temperature of the NOx storage reduction catalyst has decreased below the predetermined temperature Ts. Regardless, the process proceeds to S108.

S108では、ECU10は、排気リッチ化処理の実行を終了する。   In S108, the ECU 10 ends the execution of the exhaust enrichment process.

S109では、ECU10は、リッチスパイク制御の実行禁止を解除する。   In S109, the ECU 10 cancels the prohibition of execution of the rich spike control.

S110では、ECU10は、PM強制再生処理実行完了フラグの値を“0”に変更する。   In S110, the ECU 10 changes the value of the PM forced regeneration process execution completion flag to “0”.

このようにECU10が触媒浄化能力再生制御ルーチンを実行することにより、PM強制再生処理実行時の熱を利用して吸蔵還元型NOx触媒のHC酸化能を再生させることができる。このため、吸蔵還元型NOx触媒の昇温に伴う燃費悪化を抑制することができる。   As described above, when the ECU 10 executes the catalyst purification capacity regeneration control routine, the HC oxidation capacity of the NOx storage reduction catalyst can be regenerated using the heat at the time of performing the PM forced regeneration process. For this reason, the fuel consumption deterioration accompanying the temperature rise of the NOx storage reduction catalyst can be suppressed.

また、本実施形態では、リッチスパイク制御時より少量の燃料を短周期に排気中へ添加するようにしたため、吸蔵還元型NOx触媒の床温が所定温度:Ts以上となる期間内に該吸蔵還元型NOx触媒のHC酸化能を再生させることが可能になるとともに、大気中へ放出される未浄化のNOxや炭化水素(HC)を減少させることも可能となる。   Further, in the present embodiment, since a small amount of fuel is added to the exhaust gas in a shorter cycle than during the rich spike control, the occlusion reduction is performed within a period in which the bed temperature of the NOx storage reduction catalyst is equal to or higher than the predetermined temperature: Ts. It is possible to regenerate the HC oxidizing ability of the NOx catalyst, and to reduce unpurified NOx and hydrocarbons (HC) released into the atmosphere.

尚、PM強制再生処理の実行後に排気リッチ化処理が実行されると、ロジウム(Rh)と炭化水素(HC)の反応熱によって吸蔵還元型NOx触媒の床温が長期にわたって所定温度:Ts以上を維持する可能性もある。そのような場合には、(1)排気リッチ化処理の実行時間が所定時間以上となったことをトリガにして排気リッチ化処理の実行を終了する、(2)燃料添加量を添加回数の増加に応じて減少させることにより吸蔵還元型NOx触媒の温度を徐々に低下させる、(3)一定回数の燃料添加毎にインターバルを設けて吸蔵還元型NOx触媒の温度を段階的に低下させる等の方法を採用しても良い。   When the exhaust enrichment process is performed after the forced PM regeneration process, the bed temperature of the NOx storage reduction catalyst exceeds the predetermined temperature: Ts over a long period of time due to the reaction heat of rhodium (Rh) and hydrocarbon (HC). There is also the possibility of maintaining. In such a case, (1) the execution of the exhaust enrichment process is terminated when the execution time of the exhaust enrichment process reaches a predetermined time or more, and (2) the fuel addition amount is increased. The temperature of the NOx storage reduction catalyst is gradually reduced by reducing the amount of the NOx storage according to the above, and (3) the temperature of the NOx storage reduction catalyst is lowered stepwise by providing an interval for every predetermined number of times of fuel addition. May be adopted.

また、本実施形態では、排気リッチ化処理の具体的な実行方法として、還元剤添加弁6
から排気中へ燃料を添加する例について述べたが、EGRガス量を増加させることによって内燃機関1から排出される排気の空燃比を低下させるようにしてもよい。
In the present embodiment, as a specific execution method of the exhaust enrichment process, the reducing agent addition valve 6 is used.
Although an example in which fuel is added to the exhaust gas from the engine is described, the air-fuel ratio of the exhaust gas discharged from the internal combustion engine 1 may be decreased by increasing the amount of EGR gas.

また、本実施形態では、パティキュレートフィルタ5と吸蔵還元型NOx触媒が一体で排気通路3に設けられる例について述べたが、パティキュレートフィルタ5と吸蔵還元型NOx触媒が別体で排気通路3に設けられるようにしてもよい。   Further, in the present embodiment, the example in which the particulate filter 5 and the NOx storage reduction catalyst are integrally provided in the exhaust passage 3 has been described. However, the particulate filter 5 and the NOx storage reduction catalyst are separately provided in the exhaust passage 3. It may be provided.

例えば、パティキュレートフィルタ5と吸蔵還元型NOx触媒が排気通路3に直列に配置(好ましくは吸蔵還元型NOx触媒をパティキュレートフィルタ5より上流に配置)するようにすればよい。但し、還元剤添加弁6は吸蔵還元型NOx触媒より上流に配置されることが前提となる。
<他の実施例>
For example, the particulate filter 5 and the NOx storage reduction catalyst may be arranged in series in the exhaust passage 3 (preferably the NOx storage reduction catalyst is preferably arranged upstream of the particulate filter 5). However, it is assumed that the reducing agent addition valve 6 is disposed upstream of the NOx storage reduction catalyst.
<Other embodiments>

内燃機関1の使用燃料に含有される硫黄成分量が多い場合は、吸蔵還元型NOx触媒が硫黄被毒(S被毒)するため、PM強制再生処理に続けてS被毒解消処理が実行される可能性がある。   When the amount of sulfur component contained in the fuel used in the internal combustion engine 1 is large, the NOx storage reduction catalyst is sulfur poisoned (S poisoning), so the S poisoning elimination process is executed following the PM forced regeneration process. There is a possibility.

硫黄被毒解消処理は吸蔵還元型NOx触媒を高温に維持しつつ触媒をリッチ雰囲気にする処理であるため、吸蔵還元型NOx触媒のHC酸化能低下を解消することが可能である。   Since the sulfur poisoning elimination process is a process of making the catalyst rich atmosphere while maintaining the NOx storage reduction catalyst at a high temperature, it is possible to eliminate the reduction in the HC oxidation performance of the NOx storage reduction catalyst.

従って、ECU10は、PM強制再生処理に続いて硫黄被毒解消処理を実行する場合には触媒浄化能力再生制御の実行を禁止し、PM強制再生処理に続いて硫黄被毒解消処理を実行しない場合には触媒浄化能力再生制御を実行すればよい。   Therefore, the ECU 10 prohibits the execution of the catalyst purification ability regeneration control when executing the sulfur poisoning elimination process following the PM forced regeneration process, and does not execute the sulfur poisoning elimination process following the PM forced regeneration process. For this, the catalyst purification capacity regeneration control may be executed.

この場合、触媒浄化能力再生制御が不要に実行されることがなくなるため、触媒浄化能力再生制御に係る燃料消費を抑制することが可能となる。   In this case, since the catalyst purification capacity regeneration control is not executed unnecessarily, it is possible to suppress fuel consumption related to the catalyst purification capacity regeneration control.

本発明を適用する内燃機関の概略構成を示す図The figure which shows schematic structure of the internal combustion engine to which this invention is applied. 吸蔵還元型NOx触媒のNOx浄化能が活性する温度を測定した結果を示す図The figure which shows the result of having measured the temperature which NOx purification ability of a NOx storage reduction catalyst activates 触媒浄化能力再生制御ルーチンを示すフローチャート図Flowchart showing a catalyst purification capacity regeneration control routine 排気リッチ化処理の具体的な実行方法を示す図The figure which shows the concrete execution method of exhaust gas enrichment processing

符号の説明Explanation of symbols

1・・・・・内燃機関
3・・・・・排気通路
5・・・・・パティキュレートフィルタ
6・・・・・還元剤添加弁
7・・・・・排気温度センサ
10・・・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 3 ... Exhaust passage 5 ... Particulate filter 6 ... Reducing agent addition valve 7 ... Exhaust temperature sensor 10 ... ECU

Claims (6)

内燃機関の排気系にロジウムを含有した触媒とパティキュレートを捕集するパティキュレートフィルタとが一体又は別体で配置された排気浄化装置の制御方法であり、
前記パティキュレートフィルタ及び触媒を昇温させて前記パティキュレートフィルタの捕集能力を強制再生させ、その強制再生終了後の触媒温度が低下する過程において前記触媒を還元雰囲気にすることを特徴とする排気浄化装置の制御方法。
A control method for an exhaust gas purification device in which a catalyst containing rhodium and a particulate filter that collects particulates in an exhaust system of an internal combustion engine are arranged integrally or separately.
Exhaust gas characterized in that the particulate filter and the catalyst are heated to forcibly regenerate the trapping capacity of the particulate filter, and the catalyst is brought into a reducing atmosphere in the process of lowering the catalyst temperature after the forced regeneration is completed. Control method of purification device.
請求項1において、前記触媒温度が所定温度以上となる期間に前記触媒を還元雰囲気とすることを特徴とする排気浄化装置の制御方法。 2. The method of controlling an exhaust purification device according to claim 1, wherein the catalyst is placed in a reducing atmosphere during a period when the catalyst temperature is equal to or higher than a predetermined temperature. 請求項2において、前記所定温度は凡そ400℃であることを特徴とする排気浄化装置の制御方法。 3. The method of controlling an exhaust purification device according to claim 2, wherein the predetermined temperature is about 400.degree. 請求項1〜3の何れか一において、前記触媒が吸蔵還元型NOx触媒であり、
前記触媒を還元雰囲気にする場合には、該触媒のNOx吸蔵能力を再生させる処理の実行を禁止することを特徴とする排気浄化装置の制御方法。
The catalyst according to any one of claims 1 to 3, wherein the catalyst is an NOx storage reduction catalyst.
When the catalyst is in a reducing atmosphere, the exhaust purification device control method is characterized by prohibiting execution of a process for regenerating the NOx storage capacity of the catalyst.
請求項4において、前記触媒を還元雰囲気にする場合は、NOx吸蔵能力の再生処理時よりリッチ度合いを低くすることを特徴とする排気浄化装置の制御方法。 5. The method of controlling an exhaust purification device according to claim 4, wherein when the catalyst is in a reducing atmosphere, the degree of richness is made lower than that during the regeneration processing of the NOx storage capacity. 内燃機関の排気系に設けられたパティキュレートフィルタと、
前記パティキュレートフィルタと一体又は別体で前記排気系に設けられ、ロジウムを含有した触媒と、
前記パティキュレートフィルタ及び前記触媒を昇温させてパティキュレートフィルタの捕集能力を強制的に再生させる再生手段と、
前記パティキュレートフィルタの強制再生終了後の触媒温度が低下する過程において、前記触媒を還元雰囲気とする劣化解消手段と、
を備えることを特徴とする排気浄化装置の制御装置。
A particulate filter provided in the exhaust system of the internal combustion engine;
A catalyst containing rhodium provided in the exhaust system integrally or separately from the particulate filter;
Regenerating means for forcibly regenerating the particulate filter's collection ability by raising the temperature of the particulate filter and the catalyst;
In the process in which the catalyst temperature after the forced regeneration of the particulate filter ends, the deterioration eliminating means that makes the catalyst a reducing atmosphere;
A control device for an exhaust gas purification device.
JP2004198310A 2004-07-05 2004-07-05 Exhaust purification device control method Expired - Fee Related JP4265497B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004198310A JP4265497B2 (en) 2004-07-05 2004-07-05 Exhaust purification device control method
CNB2005800224726A CN100445524C (en) 2004-07-05 2005-06-30 Control method and control device for exhaust gas control apparatus
KR1020077000558A KR100828986B1 (en) 2004-07-05 2005-06-30 Control method and control device for exhaust gas control apparatus
EP05757102A EP1781909A1 (en) 2004-07-05 2005-06-30 Control method and control device for exhaust gas control apparatus
PCT/IB2005/001861 WO2006006031A1 (en) 2004-07-05 2005-06-30 Control method and control device for exhaust gas control apparatus
US11/630,323 US20070294998A1 (en) 2004-07-05 2005-06-30 Control Method and Control Device for Exhaust Gas Control Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198310A JP4265497B2 (en) 2004-07-05 2004-07-05 Exhaust purification device control method

Publications (2)

Publication Number Publication Date
JP2006017083A true JP2006017083A (en) 2006-01-19
JP4265497B2 JP4265497B2 (en) 2009-05-20

Family

ID=35005783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198310A Expired - Fee Related JP4265497B2 (en) 2004-07-05 2004-07-05 Exhaust purification device control method

Country Status (6)

Country Link
US (1) US20070294998A1 (en)
EP (1) EP1781909A1 (en)
JP (1) JP4265497B2 (en)
KR (1) KR100828986B1 (en)
CN (1) CN100445524C (en)
WO (1) WO2006006031A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281005A (en) * 2007-05-09 2008-11-20 Ford Global Technologies Llc Engine emission control system and its control method
WO2013190635A1 (en) * 2012-06-19 2013-12-27 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2015048767A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Control device for internal combustion engine
JP2019157667A (en) * 2018-03-08 2019-09-19 いすゞ自動車株式会社 Exhaust emission control device, vehicle and exhaust purification control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502038B2 (en) * 2008-04-14 2010-07-14 トヨタ自動車株式会社 Internal combustion engine control system
US10690079B2 (en) * 2017-12-12 2020-06-23 GM Global Technology Operations LLC Method for diagnosing and controlling ammonia oxidation in selective catalytic reduction devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083421B2 (en) 1986-11-18 1996-01-17 株式会社ソキア Inclination detector
JP2727906B2 (en) * 1993-03-19 1998-03-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3645704B2 (en) * 1997-03-04 2005-05-11 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN1311844A (en) * 1998-07-31 2001-09-05 大众汽车有限公司 Method and device for post-treamtent of exhaust gases of an internal combustion engine
DE19901760A1 (en) * 1999-01-18 2000-07-27 Emitec Emissionstechnologie Method and arrangement for cleaning an exhaust gas stream of a gasoline engine flowing in an exhaust line
DE10023439A1 (en) * 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Process for removing nitrogen oxides and soot particles from the lean exhaust gas of an internal combustion engine and exhaust gas purification system therefor
JP3812362B2 (en) * 2001-04-19 2006-08-23 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US6904752B2 (en) * 2001-11-30 2005-06-14 Delphi Technologies, Inc. Engine cylinder deactivation to improve the performance of exhaust emission control systems
WO2003048536A1 (en) * 2001-12-03 2003-06-12 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines
US20030113249A1 (en) * 2001-12-18 2003-06-19 Hepburn Jeffrey Scott System and method for removing SOx and particulate matter from an emission control device
DE10214343A1 (en) * 2002-03-28 2003-10-09 Omg Ag & Co Kg Filter for removing particulates from diesel engine exhaust gas has a catalytic coating comprising barium and magnesium compounds and a platinum-group metal
JP4175022B2 (en) * 2002-05-20 2008-11-05 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281005A (en) * 2007-05-09 2008-11-20 Ford Global Technologies Llc Engine emission control system and its control method
WO2013190635A1 (en) * 2012-06-19 2013-12-27 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JPWO2013190635A1 (en) * 2012-06-19 2016-02-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9440194B2 (en) 2012-06-19 2016-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
JP2015048767A (en) * 2013-08-30 2015-03-16 本田技研工業株式会社 Control device for internal combustion engine
JP2019157667A (en) * 2018-03-08 2019-09-19 いすゞ自動車株式会社 Exhaust emission control device, vehicle and exhaust purification control device
CN111819349A (en) * 2018-03-08 2020-10-23 五十铃自动车株式会社 Exhaust gas purification device, vehicle, and exhaust gas purification control device

Also Published As

Publication number Publication date
KR100828986B1 (en) 2008-05-14
CN1981117A (en) 2007-06-13
KR20070039918A (en) 2007-04-13
CN100445524C (en) 2008-12-24
EP1781909A1 (en) 2007-05-09
US20070294998A1 (en) 2007-12-27
JP4265497B2 (en) 2009-05-20
WO2006006031A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4385593B2 (en) Exhaust gas purification device for internal combustion engine
JP2009079523A (en) Exhaust emission control device for internal combustion engine
JP4168781B2 (en) NOx catalyst regeneration method for NOx purification system and NOx purification system
KR102654452B1 (en) Exhaust gas purification system for vehicle and method of controlling the same
JP2004116332A (en) Exhaust emission control device of internal combustion engine
JP4135757B2 (en) Exhaust gas purification system for internal combustion engine
KR100828986B1 (en) Control method and control device for exhaust gas control apparatus
JP6015753B2 (en) Exhaust gas purification device for internal combustion engine
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP4273797B2 (en) Exhaust gas purification device for internal combustion engine
JP2001193440A (en) Exhaust emission control device of diesel engine
JP4962740B2 (en) Exhaust gas purification device for internal combustion engine
JP6248974B2 (en) Control device for internal combustion engine
JP4341351B2 (en) How to recover the purification capacity of an exhaust purifier
JP2008063968A (en) Exhaust emission control device for internal combustion engine
JP2020041428A (en) Post-exhaust treatment device
JP4349096B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264311A (en) Exhaust emission control device for internal combustion engine
JP2009264312A (en) Exhaust emission control device for internal combustion engine
JP2008115712A (en) Exhaust emission control device of internal combustion engine
JP2008057368A (en) Exhaust emission control device of internal combustion engine
JP2004132247A (en) Exhaust emission control device of internal combustion engine
Gregory Improved Three-Way Catalyst Performance Using An Active Bias Control Regeneration System
JP2004132316A (en) Particulate filter regenerating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees