JP2005351450A - Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation - Google Patents

Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation Download PDF

Info

Publication number
JP2005351450A
JP2005351450A JP2004175426A JP2004175426A JP2005351450A JP 2005351450 A JP2005351450 A JP 2005351450A JP 2004175426 A JP2004175426 A JP 2004175426A JP 2004175426 A JP2004175426 A JP 2004175426A JP 2005351450 A JP2005351450 A JP 2005351450A
Authority
JP
Japan
Prior art keywords
rolling
diameter
ball
plate
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004175426A
Other languages
Japanese (ja)
Inventor
Atsuyoshi Mantani
淳致 萬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004175426A priority Critical patent/JP2005351450A/en
Publication of JP2005351450A publication Critical patent/JP2005351450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To forcedly roll a small diameter rolling steel ball 2 by its own force and let it roll and enter between a bowl-like load receiving rolling passage panel 1 and a large diameter rolling steel ball 3 without letting it remain on the halfway irrespective of direction to roll for base isolation by providing the small diameter rolling steel ball 2 between them securely when earthquake vibration occurs. <P>SOLUTION: A forced circulation covering lid 5 constituted by providing many small diameter rolling steel balls 2 in the middle to cover almost all the parts of an outer surface of the large diameter rolling steel ball 3 and providing an elastic body 8 between two layers of the bowl-like load receiving rolling passage panel 1, an outer shell plate 6, and a movable pressing type rolling plate 7 is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、地盤と被免震物との間に用いる、小径転がり鋼球と大径転がり鋼球とを組合せてなる転がり球免震支承に関し、詳細には、大径転がり鋼球の外表面の過半に小径転がり鋼球を介在させ、介在させた小径転がり鋼球を大径転がり鋼球に、弾性体の弾力を利用する可動押圧式転動板を用いて押付け、地震動時の大径転がり鋼球の転動力を受け、方向を問わず、小径転がり鋼球が強制自力転動して椀状荷受転動路盤と、大径転がり鋼球との両者間に確実に転入して転動免震することができる小径球強制循環転動路構造と、上開放の凹半球面状の転動免震兼登坂路盤上に、大径転がり鋼球を、大径転がり鋼球との両者間に多数個の小径転がり鋼球を介在させて載置し、載置した大径転がり鋼球の下半球外表全面に小径転がり鋼球が接触して、大径転がり鋼球の転動力を効果的に受けて転動免震循環する小径球循環路構造とに関する。 The present invention relates to a rolling ball seismic isolation bearing formed by combining a small-diameter rolling steel ball and a large-diameter rolling steel ball used between the ground and the seismic isolation object, and more specifically, the outer surface of the large-diameter rolling steel ball A small-diameter rolling steel ball is interposed in the majority, and the intervening small-diameter rolling steel ball is pressed against the large-diameter rolling steel ball using a movable press-type rolling plate that uses the elasticity of the elastic body. Regardless of the direction of the rolling force of the steel ball, the small-diameter rolling steel ball is forced to roll by itself and reliably enters between the saddle-shaped load-bearing rolling base and the large-diameter rolling steel ball. A large-diameter rolling steel ball is placed between a large-diameter rolling steel ball and a large-diameter rolling steel ball on a small-diameter forced-circulation rolling path structure capable of shaking A large number of small-diameter rolling steel balls are placed, and the small-diameter rolling steel balls contact the entire outer surface of the lower hemisphere. Relates to a small-diameter ball circulation passage structure for rolling seismic isolation circulate undergoing rolling force of the large diameter rolling rising steel ball effectively.

小径転がり鋼球と大径転がり鋼球とを組合せた免震装置は既に広く知られている。例えば、特開2000-291727号又は特許登録第2885681号が知られており、これ等の小径転がり鋼球の循環システムは、小径転がり鋼球が自力転動せずに他力による押上げ滑動循環のシステムである。特開2000-291727号で説明すれば、支承球Bと下向きほぼ漏斗状のボールシート41間の凹状隙間A1内に多数のボールベアリングb群が介在して地震動時に支承球Bの転動力を受けて転動免震を行い、転動免震を済ませたボールベアリングbが凹状隙間A1から順次に環状湾曲隙間A2に転入し、環状湾曲隙間A2に入つたボールベアリングbは、次々に凹状隙間A1から転入してくるボールベアリングbにより、後押され、順次にボールベアリングbの循環路である環状湾曲隙間A3内に、自力転動でなく凹状隙間A1内のボールベアリングbの転動力により、押上げられて滑動入し、ボールシート41の頂点である上端軸部41b辺から順次に転落して反対側の環状湾曲隙間A2に入り、後続の転落してくる多数のボールベアリングbの荷重により、後押しされて再び凹状隙間A1内に入り再転動免震を行うとされている。この時、環状湾曲隙間A2、A3内の隙間幅はボールベアリングb直径よりも大きく設定されている。   A seismic isolation device combining a small-diameter rolling steel ball and a large-diameter rolling steel ball is already widely known. For example, Japanese Patent Laid-Open No. 2000-291727 or Japanese Patent Registration No. 2885681 is known, and these small-diameter rolling steel ball circulation systems do not allow the small-diameter rolling steel ball to roll by itself, but push-up sliding circulation by other force. System. As described in Japanese Patent Laid-Open No. 2000-291727, a large number of ball bearings b are interposed in the concave gap A1 between the bearing ball B and the downwardly approximately funnel-shaped ball sheet 41 to receive the rolling force of the bearing ball B during earthquake motion. The ball bearings b that have undergone rolling isolation and have been subjected to rolling isolation are transferred sequentially from the concave gap A1 to the annular curved gap A2, and the ball bearings b that have entered the annular curved gap A2 are successively recessed concave A1. Is pushed by the ball bearing b which is transferred from the ball bearing b, and is sequentially pushed into the annular curved gap A3 which is the circulation path of the ball bearing b by the rolling force of the ball bearing b in the concave gap A1 instead of rolling by itself. The ball seat 41 is slid into the upper end shaft 41b, which is the apex of the ball seat 41, and falls into the annular curved gap A2 on the opposite side. rear It is said that it is pushed again to enter the concave gap A1 and performs the rolling isolation again. At this time, the gap width in the annular curved gaps A2 and A3 is set larger than the diameter of the ball bearing b.

特許登録第2885681号においても、小径ボール22が大径ボール12と台座19間で転動免震を行い、転動免震を済ませた小径ボール22が空隙21内に、転動免震中の小径ボール22の転動力により、押上げられて滑動入し、反対側の空隙21内から再び入り大径ボール12と台座19間で転動免震を行うとされている。この時、空隙21内の隙間幅は小径ボール22直径よりも大きく設定されている。 Also in Patent Registration No. 2885681, the small-diameter ball 22 performs rolling isolation between the large-diameter ball 12 and the pedestal 19, and the small-diameter ball 22 that has undergone rolling isolation is placed in the gap 21, while the small-diameter ball during rolling isolation is being used. It is said that the ball 22 is pushed up by the rolling force of the ball 22 and slides in, enters again from the gap 21 on the opposite side, and performs rolling isolation between the large-diameter ball 12 and the base 19. At this time, the gap width in the gap 21 is set larger than the diameter of the small-diameter ball 22.

また特開2000-291727号では基盤1上にベースプレート2を上面aを上にして設置するとされており、特許登録第2885681号においても、基礎1上に受台10を凹部11を上にして設置するとされている。
特開2000-291727号公報 特許登録第2885681号公報
Japanese Patent Laid-Open No. 2000-291727 states that the base plate 2 is installed on the base 1 with the upper surface “a” facing upward. In Japanese Patent Registration No. 2885681, the cradle 10 is installed on the base 1 with the concave portion 11 facing upward. It is said that.
JP 2000-291727 A Patent Registration No. 2885681

特開2000-291727号では、基盤1上に設置したべースプレート2の上面で転動する支承球Bと下向きほぼ漏斗状のボールシート41間の凹状隙間A1内で多数のボールベアリングb群が介在させて転動免震させ、ボールベアリングbの循環路である環状湾曲隙間A3を凹状隙間A1より上部に位置させてある。よつて、ボールベアリングbは自力転動循環する術がなく、その循環力は凹状隙間A1内を転動するボールベアリングbの転動力に頼らざるを得ない。上部位置でしかも登り坂となるボールシート41の上には、すでに多数のボールベアリングbが存在し、存在する多くのボールベアリングbの後から新たなボールベアリングbを、環状湾曲隙間A2を経由して環状湾曲隙間A3の頂点まで滑動押上げするには強い押上力を必要とする。   In Japanese Patent Application Laid-Open No. 2000-291727, a large number of ball bearings b are interposed in a concave gap A1 between a bearing ball B that rolls on the upper surface of a base plate 2 installed on a base 1 and a downward substantially funnel-shaped ball sheet 41. The ring-shaped curved gap A3, which is the circulation path of the ball bearing b, is positioned above the concave gap A1. Therefore, there is no way for the ball bearing b to roll and circulate by itself, and the circulating force has to rely on the rolling force of the ball bearing b that rolls in the concave gap A1. A large number of ball bearings b already exist on the ball seat 41 that is at the upper position and becomes an uphill, and a new ball bearing b is passed through the annular curved gap A2 after many existing ball bearings b. Thus, a strong push-up force is required to slide up to the top of the annular curved gap A3.

地震動時に凹状隙間A1内に介在する多数のボールベアリングbの内で、環状湾曲隙間A2を経由して環状湾曲隙間A3の頂点まで滑動押上げする最大の転動力が期待できるボールベアリングbは、支承球Bの頂部と接するボールベアリングbから支承球Bの転動方向の中心線上に位置するボールベアリングbと該中心線の左右近辺の平行線上に位置する少数個のボールベアリングbである。転動方向に位置しても該中心線から離れる他の多くのボールベアリングbの押上げ転動力はあまり期待できない。   Among the many ball bearings b intervening in the concave gap A1 during earthquake motion, the ball bearing b that can expect the maximum rolling force to slide up to the top of the annular curved gap A3 via the annular curved gap A2 The ball bearing b is located on the center line in the rolling direction of the bearing ball B from the ball bearing b in contact with the top of the ball B, and a small number of ball bearings b are located on the parallel lines near the left and right of the center line. Even if it is located in the rolling direction, the pushing-up rolling force of many other ball bearings b away from the center line cannot be expected so much.

従つて、上述の転動力が期待できる少数個のボールベアリングbの転動力では環状湾曲隙間A3内に充満されるように収装された多くのボールベアリングbの後ろから、滑動押上げして先頭のボールベアリングbを上端軸部41b辺から転落させる滑動押上力が得られないことも想定され、多くのボールベアリングbは環状湾曲隙間A3内に停滞するのではないかと想定される。この時、反対側の環状湾曲隙間A2から凹状隙間A1内に流入するボールベアリングbの押上力は後続のボールベアリングbの荷重を利用するとされるが、上端軸部41b辺から転落して来る多くのボーベアリングbは期待できないと押上力が不足し、凹状隙間A1内に進入することなく環状湾曲隙間A2内に留まることも予想され、先頭側で停滞すると後続のボールベアリングbは前進できず、凹状隙間A1内のボールベアリングbと支承球Bとの間が一時的に滑り支承化するのではないかと想定される。   Therefore, with the rolling power of a small number of ball bearings b where the above-mentioned rolling power can be expected, the top is slid up from the back of many ball bearings b that are accommodated so as to fill the annular curved gap A3. It is also assumed that a sliding push-up force that causes the ball bearing b to fall from the side of the upper end shaft portion 41b cannot be obtained, and it is assumed that many ball bearings b are stagnating in the annular curved gap A3. At this time, the push-up force of the ball bearing b flowing into the concave gap A1 from the annular curved gap A2 on the opposite side is said to use the load of the subsequent ball bearing b, but it often falls from the side of the upper end shaft portion 41b. If the ball bearing b cannot be expected, the push-up force will be insufficient, and it is expected that it will remain in the annular curved gap A2 without entering the concave gap A1, and if it stops at the front side, the subsequent ball bearing b cannot advance, It is assumed that the space between the ball bearing b and the support ball B in the concave gap A1 may temporarily slide.

特許登録第2885681号においても、同様で、上部位置でしかも登り坂となる空隙21内に多数のボール22が装填されており、大径ボール12と台座19の下面間で転動免震中の小径ボール22の転動力により、装填された多数の小径ボール22の後から押上げて円滑に滑動入させるには強い押上力を必要とする。同様に空隙21内にボール22が停滞するのではないかと想定される。   Similarly, in Patent Registration No. 2885681, a large number of balls 22 are loaded in the gap 21 that is an upper position and is an uphill, and the small diameter during rolling isolation between the large diameter ball 12 and the lower surface of the pedestal 19 is used. Due to the rolling force of the balls 22, a strong push-up force is required to push them up from behind a large number of loaded small-diameter balls 22 and smoothly slide them in. Similarly, it is assumed that the ball 22 is stagnating in the gap 21.

また、特開2000-291727号において、べースプレート2を被免震体に設置した場合では、凹状隙間A1内にボールベアリングbを進入させるには更に強い滑動押上力が必要であり、よつて、基盤1上にべースプレート2を設置するとされるが、上面2aと転動する支承球Bとの間に異物が進入する確率が高く、異物が存在すると確実な転動免震を続行することは出来ない。長年月にわたり使用するベースプレート2を基盤1上に設置すると、その保守管理は容易でない。   Further, in Japanese Patent Laid-Open No. 2000-291727, when the base plate 2 is installed on the seismic isolation body, a stronger sliding push-up force is required to allow the ball bearing b to enter the concave gap A1, It is said that the base plate 2 is installed on the base 1, but there is a high probability that a foreign object will enter between the upper surface 2a and the rolling bearing ball B. I can't. When the base plate 2 used for many years is installed on the base 1, its maintenance management is not easy.

特許登録第2885681号においても、上述と同様に更に強い滑動押上力が必要であり、よつて、基礎1上に凹部11を上向きとした受台10を設置するとされるが、同様に相互間に異物が進入する確率が高く、異物が存在すると確実な転動免震を続行することは出来ない。長年月にわたり使用する受台10を基礎1上に設置すると、その保守管理は容易でない。 Patent registration No. 2885681 also requires a stronger sliding push-up force as described above, and therefore, it is said that the cradle 10 with the concave portion 11 facing upward is installed on the foundation 1. There is a high probability that a foreign object will enter, and if there is a foreign object, reliable rolling isolation cannot be continued. If the cradle 10 used for many years is installed on the foundation 1, its maintenance management is not easy.

上述の双方において、ボールベアリングb及び小径ボール22を、自力による転動でなく、他力に頼つて押上げ滑動循環路構造が、トラブルの引き金となる確率が高いのではないかと想定される。   In both of the above cases, it is assumed that the ball bearing b and the small-diameter ball 22 are not likely to roll by their own force, but rely on other forces to increase the probability that the sliding sliding circuit structure will trigger trouble.

この発明は、上記従来技術の、転動免震中のボールベアリングb又は小径ボール22の転動力を用いて、転動免震中のボールベアリングb又は小径ボール22を、より高い位置の環状湾曲隙間A3叉は空隙21内にボールベアリングb又は小径ボール22を押上げ滑動させ、更に凹状隙間A1叉は大径ボール12と台座19の下面間に押込む滑動循環路構造以外の、他の循環路構造として、大径転がり鋼球の外表面の過半に小径転がり鋼球を、弾性体の弾力を利用する可動押圧式転動板を用いて押付け、地震動時の大径転がり鋼球の転動力を受け、方向を問わず、小径転がり鋼球を強制自力転動させて椀状荷受転動路盤と、大径転がり鋼球との両者間に確実に転入し、転動免震することができ、更に小径転がり鋼球が上下何れの方向にも確実に自力転動循環可能となることにより、皿状転動盤を基礎側又は被免震物の基台側の、何れの側にも設置することが可能となる、転がり球免震支承の小径球強制循環転動路構造と、上開放の凹半球面状の転動免震兼登坂路盤上に、大径転がり鋼球を、大径転がり鋼球の下半球との両者間に、多数個の小径転がり鋼球を介在させて載置し、大径転がり鋼球の頂点上に載置した皿状転動盤を介して被免震物の荷重量が、地震動時に大径転がり鋼球の転動方向に有効作用して、大径転がり鋼球の上昇転動方向に位置する多数の小径転がり鋼球を転動免震兼登坂路盤に押付ける作用が働くことで蜜接し、上昇転動方向の小径転がり鋼球が大径転がり鋼球の転動力を効果的に受け、転動免震兼登坂路盤上を強制自力転動して、また強制自力転動しない場合は後続の転動免震中の小径転がり鋼球の強力な転動力の後押力を受けて、残余の凹半球面状の転動免震兼登坂路盤を容易に滑動押上げられ小径球循環路に入り、小径球循環路から確実に転動免震兼登坂路盤と大径転がり鋼球との間に落転入し、転動免震することができる、転がり球免震支承の小径球循環路構造とを提供することを課題とする。   The present invention uses the rolling force of the ball bearing b or small-diameter ball 22 during rolling isolation of the above-described prior art to cause the ball bearing b or small-diameter ball 22 during rolling isolation to move to the annular curved gap A3 at a higher position. Alternatively, the ball bearing b or the small-diameter ball 22 is pushed up and slid into the gap 21, and another circulation path structure other than the sliding circulation path structure for pushing the concave gap A1 or between the large-diameter ball 12 and the lower surface of the base 19 is used. As a result, a small-diameter rolling steel ball is pressed onto the majority of the outer surface of the large-diameter rolling steel ball using a movable pressing-type rolling plate that uses the elasticity of the elastic body, and receives the rolling force of the large-diameter rolling steel ball during earthquake motion. Regardless of the direction, the small-diameter rolling steel ball can be forced to roll forcibly, so that it can be reliably transferred between the saddle-shaped load receiving roadbed and the large-diameter rolling steel ball, and can be isolated from rolling. Small diameter rolling steel ball is surely self-supporting in any direction By enabling dynamic circulation, it is possible to install a plate-shaped rolling disk on either the base side or the base side of the seismic isolation object. A large number of small-diameter rolling balls between a rolling-path structure and a large-diameter rolling steel ball and a lower-hemisphere of a large-diameter rolling ball on a rolling-isolated and climbing slope base with a concave open hemispherical shape. The load of the seismic isolation object is placed in the rolling direction of the large-diameter rolling steel ball through the plate-shaped rolling plate placed on the top of the large-diameter rolling steel ball. Effectively acting on the rolling motion of the large-diameter rolling steel balls in the upward rolling direction and pressing the large-diameter rolling steel balls against the rolling seismic isolation and uphill roadbed. Rolling steel balls effectively receive the rolling force of large diameter rolling steel balls, follow the rolling seismic isolation and forcibly roll on the uphill roadbed, and if they do not roll forcibly In response to the strong pushing force of the small-diameter rolling steel balls during rolling isolation, the remaining concave hemispherical rolling isolation and climbing base is easily slid up and enters the small-diameter circuit. A small-diameter ball circulation path structure with a rolling-ball-isolation bearing that can reliably roll-in from a small-diameter ball circulation path between a rolling-isolation and climbing roadbed and a large-diameter rolling steel ball. It is an issue to provide.

請求項1の発明は、小径転がり鋼球の椀状荷受転動路盤と、大径転がり鋼球との両者間に、多数個の小径転がり鋼球を介在させて設け、椀状荷受転動路盤の路盤端全円周縁に、複数枚に縦分割した円弧状の強制循環覆蓋を、外殻板と可動押圧式転動板との二層間に、必要とする弾性押圧力を持たせた弾性体を介在させて形成させ、外殻板の一方端縁に鋼球保持兼循環縁盤を付設螺着して設け、鋼球保持兼循環縁盤から大径転がり鋼球の一部を突出させた形状で強制循環覆蓋を大径転がり鋼球の過半を覆うように設けて、該両者間と連続した小径球強制循環転動路を形成させ、外殻板の他方端縁に連結縁板を、椀状荷受転動路盤の路盤端円周縁にも連結縁板を設けて双方を螺着し、覆つて形成させた小径球強制循環転動路内に多数個の小径転がり鋼球を挿入し、更に鋼球保持兼循環縁盤を付設した外殻板の端縁側に相互連結板を設け、それぞれの相互連結板を相互に螺着して一体的の強制循環覆蓋に形成させてなる、転がり球免震支承の小径球強制循環転動路構造の構成である。   The invention of claim 1 is provided with a saddle-shaped load receiving roadbed provided with a large number of small-diameter rolling steel balls interposed between a saddle-shaped load receiving roadbed of small-diameter rolling steel balls and a large-diameter rolling steel ball. An elastic body in which a circular circular forced circulation cover that is vertically divided into a plurality of pieces is provided on the entire circumference of the roadbed end of the roadbed, and the necessary elastic pressing force is provided between the two layers of the outer shell plate and the movable pressing type rolling plate A steel ball holding / circulating edge board is attached to one end edge of the outer shell plate by screwing, and a part of a large diameter rolling steel ball protrudes from the steel ball holding / circulating edge board. In the shape, a forced circulation cover is provided so as to cover the majority of the large-diameter rolling steel balls, and a small-diameter spherical forced circulation rolling path is formed between the two, and a connecting edge plate is formed on the other edge of the outer shell plate. A large number of small-diameter rolling rings are formed in a small-diameter forced circulation rolling path formed by covering and forming both connecting edge plates on the circumferential edge of the base of the saddle-shaped load receiving rolling base. A steel ball is inserted and an interconnection plate is provided on the edge side of the outer shell plate with a steel ball holding and circulation edge, and each interconnection plate is screwed together to form an integral forced circulation cover. This is a configuration of a small-sphere forced circulation rolling path structure of a rolling ball seismic isolation bearing.

大径転がり鋼球の外表面の過半に多数個の小径転がり鋼球を蜜接させ転動させる小径球強制循環転動路を、椀状荷受転動路盤と連続して同幅となる様に、複数枚に分解脱着容易な円弧状の強制循環覆蓋で形成させ、更に強制循環覆蓋を外殻板と可動押圧式転動板との間に、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有する弾性体を介在させて形成させたことにより、地震動時に大径転がり鋼球が転動する時、中間に介在する小径転がり鋼球は大径転がり鋼球と可動押圧式転動板との双方に蜜接し、大径転がり鋼球の転動力を直接に効果的に確実に受け、何れの方向にも強制自力転動し、確実に強制自力転動循環して椀状荷受転動路盤と大径転がり鋼球との間内に転動入し、転動免震を行う。 A small-circular ball forced circulation rolling path that rolls by rolling a large number of small-diameter rolling steel balls in contact with the majority of the outer surface of the large-diameter rolling steel balls, so that it has the same width as the saddle load receiving roadbed. The movable pressing type is formed as an arc-shaped forced circulation cover that can be easily disassembled and attached to a plurality of sheets, and the forced circulation cover is an elastic pressing force required between the outer shell plate and the movable pressing type rolling plate. A large-diameter rolling steel is formed during earthquake motion by forming an elastic body with an elastic pressing force that presses the small-diameter rolling steel ball in the small-diameter forced circulation rolling path through the rolling plate against the large-diameter rolling steel ball. When the ball rolls, the small-diameter rolling steel ball intervening in the middle is in contact with both the large-diameter rolling steel ball and the movable press-type rolling plate to directly and effectively secure the rolling force of the large-diameter rolling steel ball. Force self-rolling in any direction, surely forced self-rolling circulation and large-diameter rolling Ri and UtatedoIri in between the steel balls, performing rolling seismic isolation.

また、弾性体の弾性押圧力を用いた可動押圧式転動板を用いて小径転がり鋼球を大径転がり鋼球に蜜接させることで、小径転がり鋼球が上下何れの方向にも確実に強制自力転動循環可能となることにより、皿状転動盤を基礎側又は被免震物の基台側の何れ側にも設置して用いることが可能となる。   In addition, the small diameter rolling steel ball can be reliably contacted with the large diameter rolling steel ball in any direction by using a movable pressing type rolling plate using the elastic pressing force of the elastic body. By being capable of forced self-rolling circulation, it is possible to install and use a dish-shaped rolling board on either the foundation side or the base side of the seismic isolation object.

請求項2の発明は、円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有するゴム弾性体を介在させ、両面に常温用接着剤を用いて外殻板と可動押圧式転動板とに接着されてなる請求項1記載の転がり球免震支承の小径球強制循環転動路構造の構成である。   The invention of claim 2 is a movable pressing type as an elastic pressing force required by an elastic body that forms an arc-shaped forced circulation cover and is interposed between two layers of an outer shell plate and a movable pressing rolling plate. A rubber elastic body with elastic pressing force that presses the small-diameter rolling steel ball in the small-diameter ball forced circulation rolling path through the rolling plate against the large-diameter rolling steel ball is interposed, and the outer shell is used with normal temperature adhesive on both sides 2. The structure of a small-sphere forced circulation rolling path structure of a rolling ball seismic isolation bearing according to claim 1, which is bonded to a plate and a movable pressing type rolling plate.

請求項3の発明は、円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有するゴム弾性体を介在させ、両面に接着剤を塗布し加圧・加熱接着されてなる請求項1記載の転がり球免震支承の小径球強制循環転動路構造の構成である。   The invention according to claim 3 is a movable pressing type as an elastic pressing force required by an elastic body that forms an arc-shaped forced circulation cover and is interposed between two layers of an outer shell plate and a movable pressing rolling plate. A rubber elastic body with elastic pressing force that presses the small-diameter rolling steel ball in the small-circular ball forced circulation rolling path against the large-diameter rolling steel ball via a rolling plate is interposed, and an adhesive is applied to both sides to apply pressure and heat. 2. A structure of a small-diameter forced circulation rolling path structure of a rolling ball seismic isolation bearing according to claim 1, which is bonded.

請求項4の発明は、円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、適宜な弾性体でなり、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有し、弾性体を介在させた可動押圧式転動板の裏面側に、複数の押棒の一端側を固着させ、他端側を外殻板を自在に貫通させて外部に突出させ、押棒端を螺子構造付とした弾性押圧調節具を備え、弾性押圧調節具で弾性押圧力を外殻板の外部から調節可能とした請求項1記載の転がり球免震支承の小径球強制循環転動路構造の構成である。   According to a fourth aspect of the present invention, an elastic body that forms an arc-shaped forced circulation cover and is interposed between two layers of an outer shell plate and a movable pressing type rolling plate is an appropriate elastic body, and the required elastic pressing member. Movable pressing type that has elastic pressing force that presses the small diameter rolling steel ball in the small diameter ball forced circulation rolling path against the large diameter rolling steel ball via the movable pressing type rolling plate as pressure Provided with an elastic pressure adjuster with one end side of a plurality of push rods fixed to the back side of the rolling plate, the other end side freely penetrating the outer shell plate and projecting outside, and the push rod end with a screw structure 2. The structure of a small-diameter ball forced circulation rolling path structure of a rolling ball seismic isolation bearing according to claim 1, wherein the elastic pressing force can be adjusted from the outside of the outer shell plate by an elastic pressing adjuster.

請求項5の発明は、小径転がり鋼球の、上開放の凹半球面状の転動免震兼登坂路盤上に、大径転がり鋼球を、大径転がり鋼球の下半球との両者間に、多数個の小径転がり鋼球を介在させて載置し、載置した大径転がり鋼球の水平中心線高に転動免震兼登坂路盤の路盤端円周縁高をほぼ揃え、該路盤端全円周縁に、複数枚に縦分割した円弧状の循環路蓋板を、循環路蓋板の一方端縁に鋼球保持兼循環縁盤を付設螺着して設け、鋼球保持兼循環縁盤から大径転がり鋼球の一部を突出させた形状で大径転がり鋼球の過半を覆うように設けて、該両者間と連続した、小径転がり鋼球の直径より適宜に広い路幅の小径球循環路を形成させ、循環路蓋板の他方端縁に連結縁板を、転動免震兼登坂路盤の路盤端円周縁にも連結縁板を設けて双方を螺着し、覆つて形成させた小径球循環路内に多数個の小径転がり鋼球を挿入し、更に鋼球保持兼循環縁盤を付設した循環路蓋板の端縁側に相互連結板を設け、それぞれの相互連結板を相互に螺着して一体的の循環路蓋板に形成させてなる、転がり球免震支承の小径球循環路構造の構成である。   According to the invention of claim 5, a small-diameter rolling steel ball is placed between a large-diameter rolling steel ball and a lower-hemisphere of a large-diameter rolling steel ball on a rolling-isolation and climbing roadbed of an upwardly open concave hemispherical surface. In addition, a large number of small-diameter rolling steel balls are placed, and the horizontal center line height of the large-diameter rolling steel balls placed is substantially aligned with the height of the rolling base-isolated and uphill roadbed edge. An arc-shaped circulation path cover plate that is vertically divided into a plurality of sheets is provided on the entire circumference of the end, and a steel ball holding and circulation edge plate is attached to one end edge of the circulation path cover plate and screwed to provide a holding and circulation of the steel ball. A road width that is wider than the diameter of the small-diameter rolling steel ball, which is provided so as to cover the majority of the large-diameter rolling steel ball in a shape in which a part of the large-diameter rolling steel ball protrudes from the edge board. A small-diameter circular circulation path is formed, and a connection edge plate is provided on the other end edge of the circulation road cover plate, and a connection edge plate is also provided on the peripheral edge of the road base end of the rolling seismic isolation and climbing road base. A large number of small diameter rolling steel balls are inserted into the small-diameter ball circulation path formed in this way, and an interconnection plate is provided on the edge of the circulation path lid plate with a steel ball holding and circulation edge board. This is a configuration of a small-diameter ball circulation path structure of a rolling ball seismic isolation bearing, in which the plates are screwed together to form an integral circulation path lid plate.

転動免震兼登坂路盤と一体的に設けた取付台を基礎に設置し、大径転がり鋼球の頂点上に載置し被免震物の基台に設置した皿状転動盤を介して被免震物の荷重は大径転がり鋼球が受け、地震動時には被免震物の荷重は大径転がり鋼球の転動方向に有効作用となり、大径転がり鋼球の上昇転動方向に位置する多数の小径転がり鋼球を大径転がり鋼球が転動免震兼登坂路盤に押付ける作用が働いて蜜接し、よつて、上昇転動方向の小径転がり鋼球が大径転がり鋼球の転動力を効果的に受け、転動免震兼登坂路盤上を強制自力転動して、また強制自力転動しない場合に際しては、後続の転動免震中の小径転がり鋼球の強力な転動力の後押力を受けて、残余の凹半球面状の転動免震兼登坂路盤を容易に滑動押上げられ、何れの場合においても小径球循環路内に確実に転入する。 Installed on a base that is integrated with the rolling seismic isolation and uphill roadbed, placed on the top of a large-diameter rolling steel ball and placed on the base of the base isolation object The load of the seismic isolation object is received by the large-diameter rolling steel ball, and during earthquake motion, the load of the seismic isolation object is effective in the rolling direction of the large-diameter rolling steel ball, and in the upward rolling direction of the large-diameter rolling steel ball. The large-diameter rolling steel balls are pressed against the rolling base isolation and climbing roadbed by the large-diameter rolling steel balls located in contact with each other, so that the small-diameter rolling steel balls in the upward rolling direction are large-diameter rolling steel balls. In the case where the rolling force is forced to self-roll on the base of the hill and the climbing slope is not forcedly rolled, the rolling of the small-diameter rolling steel ball during the subsequent rolling seismic isolation Receiving the driving force of the power, the remaining concave hemispherical rolling isolation and climbing roadbed can be easily slid and pushed up. Surely move in to the road.

小径転がり鋼球の直径より適宜に広い路幅の小径球循環路内を小径転がり鋼球は、大径転がり鋼球の回転作用と後続の小径転がり鋼球に後押しされて転動と滑動の混同で移動し、容易に転動免震兼登坂路盤と大径転がり鋼球との間内に確実に落転入し、転動免震する。 A small-diameter rolling steel ball in a small-diameter ball circulation path with a width that is appropriately wider than the diameter of the small-diameter rolling steel ball is confused between rolling and sliding due to the rotation of the large-diameter rolling steel ball and the subsequent small-diameter rolling steel ball. It is easy to move in, and easily falls into the space between the rolling seismic isolation and climbing roadbed and the large-diameter rolling steel ball, and the base is isolated.

請求項1の発明では、大径転がり鋼球の外表面の過半に多数個の小径転がり鋼球を蜜接させ転動させる小径球強制循環転動路を、椀状荷受転動路盤と連続して同幅となる様に、複数枚に分解脱着容易な円弧状の強制循環覆蓋で形成させ、更に強制循環覆蓋を、外殻板と可動押圧式転動板との間に、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有する弾性体を介在させて形成させたことにより、地震動時に大径転がり鋼球が転動する時、中間に介在する小径転がり鋼球は弾性押圧力により、大径転がり鋼球と可動押圧式転動板との双方に蜜接し、大径転がり鋼球の転動力を直接に効果的に確実に受け、停滞することなく何れの方向にも強制自力転動できる。よつて、どの様な地震動時の状況下でも小径転がり鋼球は小径球強制循環転動路を循環して、椀状荷受転動路盤と大径転がり鋼球との両者間に自力転動入して確実に転動免震を行う。   In the invention of claim 1, a small-diameter ball forced circulation rolling path for rolling a large-diameter rolling steel ball with a large number of small-diameter rolling steel balls in close contact with the majority of the outer surface of the large-diameter rolling steel ball is continuous with the bowl-shaped load receiving rolling base. In order to have the same width, a plurality of sheets are formed with an arc-shaped forced circulation cover that can be easily disassembled and detached, and the forced circulation cover is further required between the outer shell plate and the movable pressing type rolling plate. As a pressing force, an elastic body having an elastic pressing force that presses a small-diameter rolling steel ball in a small-diameter ball forced circulation rolling path against a large-diameter rolling steel ball via a movable pressing-type rolling plate is interposed. Therefore, when a large-diameter rolling steel ball rolls during an earthquake motion, the small-diameter rolling steel ball interposed in the middle is in close contact with both the large-diameter rolling steel ball and the movable pressing rolling plate due to the elastic pressing force. Receiving the rolling force of rolling steel balls directly and reliably, forced self-rolling in any direction without stagnation it can. Therefore, under any seismic motion situation, the small diameter rolling steel ball circulates in the small diameter ball forced circulation rolling path, and self-rolling between both the bowl-shaped load receiving rolling base and the large diameter rolling steel ball. And make sure the rolling seismic isolation.

弾性体の弾性力で押圧可動する可動押圧式転動板を用いたことにより小径転がり鋼球は、上下の転動方向に関係なく強制自力転動循環を行うため、皿状転動盤を、基礎または被免震物の基台の何れ側に設置した場合でも、小径転がり鋼球の転動循環は正常に行なわれる。よつて、皿状転動盤を被免震物の基台側に設けることが可能であり、設けた場合では長年月にわたる皿状転動盤の保守管理は甚だ容易となる。   By using a movable pressing type rolling plate that can be pressed and moved by the elastic force of the elastic body, the small-diameter rolling steel ball performs forced self-powered rolling circulation regardless of the vertical rolling direction. Even if it is installed on either side of the foundation or the base of the seismic isolation object, the rolling circulation of the small diameter rolling steel ball is performed normally. Therefore, it is possible to provide a dish-shaped rolling board on the base side of the seismic isolation object, and when it is provided, maintenance management of the dish-shaped rolling board over many years is much easier.

複数枚に縦分割し脱着を容易に可能とした円弧状の強制循環覆蓋としたため、小径転がり鋼球の挿入や保守管理が容易に行なえる。特別に精密な製作上の精度を必要とする箇所がなく、経済的に製作することが可能である。   The arc-shaped forced circulation cover that is vertically divided into a plurality of pieces and can be easily attached and detached enables easy insertion and maintenance of small-diameter rolling steel balls. There is no part that requires special precision in manufacturing, and it can be manufactured economically.

椀状荷受転動路盤は被免震物の荷重を支持転動させる単機能のため単純形状となり、椀状荷受転動路盤の重心位置は低くなり、地震動時において被免震物の荷重を安定支持する。   The saddle load bearing roadbed has a simple shape due to its single function that supports and rolls the load of the seismic isolation object, and the center of gravity of the saddle load bearing roadway path becomes lower, which stabilizes the load of the seismic isolation object during earthquake motion. To support.

椀状荷受転動路盤と一体的に設けた取付台を基礎に、皿状転動盤を被免震物の基台側に設けて用いた場合に限り、万一に、弾性体の弾性押圧力が喪失し可動押圧式転動板の押圧力が不足した状態が出現した場合でも、大径転がり鋼球の頂点上に載置した皿状転動盤を介して被免震物の荷重が、地震動時に大径転がり鋼球の上昇転動方向に有効作用し、大径転がり鋼球が上昇転動方向の小径球強制循環転動路内の小径転がり鋼球を可動押圧式転動板に押付ける作用が働き、小径転がり鋼球が大径転がり鋼球の転動力を受け、可動押圧式転動板上を強制自力転動する。また強制自力転動しない場合に際しては、後続の転動免震中の小径転がり鋼球の強力な転動力の後押力を受け小径球強制循環転動路内を小径転がり鋼球が滑動押上げられ、何れの場合に際しても確実に循環が行なわれ、確実に転動免震を行う。   In the unlikely event that a plate-shaped rolling board is provided on the base side of the seismic isolation object, using the mounting base provided integrally with the bowl-shaped load receiving rolling base, the elastic body should be elastically pressed. Even when the pressure is lost and the pressing force of the movable pressing type rolling plate is insufficient, the load of the seismic isolation object is received through the plate-shaped rolling plate mounted on the top of the large diameter rolling steel ball. The large-diameter rolling steel ball works effectively in the upward rolling direction of the large-diameter rolling steel ball during an earthquake motion, and the large-diameter rolling steel ball turns the small-diameter rolling steel ball in the upward rolling rolling path into a movable pressing rolling plate. The pressing action works, and the small diameter rolling steel ball receives the rolling force of the large diameter rolling steel ball and forcibly rolls on the movable pressing type rolling plate. In addition, when there is no forced self-rolling, the small-diameter rolling steel ball is slid up in the small-circular forced circulation rolling path due to the strong pushing force of the small-diameter rolling steel ball during the subsequent rolling isolation. In any case, the circulation is ensured and the rolling isolation is ensured.

請求項2の発明では、円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有するゴム弾性体を介在させ、両面を常温用接着剤を用いて外殻板と可動押圧式転動板とに接着されてなり、最も経済的な可動押圧式転動板を用いた小径球強制循環転動路が得られる。 In the invention of claim 2, the movable pressing type as an elastic pressing force required by the elastic body that forms the arc-shaped forced circulation cover and is interposed between the two layers of the outer shell plate and the movable pressing type rolling plate. A rubber elastic body with elastic pressing force that presses the small-diameter rolling steel ball in the small-diameter forced circulation rolling path through the rolling plate against the large-diameter rolling steel ball is interposed. A small-diameter ball forced circulation rolling path using the most economical movable pressing type rolling plate is obtained by being bonded to the plate and the movable pressing type rolling plate.

請求項3の発明では、円弧状の強制循環覆蓋を形成する外殻板と可動押圧式転動板との二層間に介在させる弾性体が、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有するゴム弾性体を介在させ、両面に接着剤を塗布し加圧・加熱接着されてなり、強力な接着が得られ、地震動時において、小径転がり鋼球が激しい変化のある転動を行なつても、外殻板と可動押圧式転動板との間が剥離して、強制自力転動循環を行う機能が喪失する恐れが少ない、可動押圧式転動板を用いた小径球強制循環転動路が得られる。   In the invention of claim 3, the elastic body interposed between the two layers of the outer shell plate forming the arc-shaped forced circulation cover and the movable pressing type rolling plate has a movable pressing type rolling force as the required elastic pressing force. A rubber elastic body with elastic pressing force that presses the small-diameter rolling steel ball in the small-diameter ball forced circulation rolling path through the moving plate against the large-diameter rolling steel ball is interposed, and adhesive is applied to both sides to apply pressure and heat. As a result, strong adhesion can be obtained, and even when a small diameter rolling steel ball performs rolling with a severe change during earthquake motion, the outer shell plate and the movable pressing type rolling plate are separated, A small-diameter spherical forced circulation rolling path using a movable pressing type rolling plate is obtained, which is less likely to lose the function of performing forced self-rolling circulation.

請求項4の発明では、円弧状の強制循環覆蓋を形成する外殻板と可動押圧式転動板との二層間に介在させる弾性体が、適宜な弾性体でなり、必要とする弾性押圧力としての、可動押圧式転動板を介し小径球強制循環転動路内の小径転がり鋼球を大径転がり鋼球に押付ける弾性押圧力を有した、弾性体を介在させた可動押圧式転動板の裏面側に、複数の押棒の一端側を固着させ、他端側を外殻板を自在に貫通させて外部に突出させ、押棒端を螺子構造付とした簡単構成で経済的な弾性押圧調節具を備えたことにより、円弧状の強制循環覆蓋の外部から弾性押圧調節具の螺子を調節することで、可動押圧式転動板の押圧力を調節可能となる。小径転がり鋼球への押圧力が強弱調整可能となり、弾性押圧力の強弱によるトラブルが発生することを未然に防止することが可能な可動押圧式転動板を用いた小径球強制循環転動路が得られる。複数枚に縦分割し、脱着を容易に可能とした円弧状の強制循環覆蓋により、一部の円弧状の強制循環覆蓋を離脱させて、目視しながらの押圧力の調節が可能である。   In the invention of claim 4, the elastic body interposed between the two layers of the outer shell plate forming the arc-shaped forced circulation cover and the movable pressing type rolling plate is an appropriate elastic body, and the required elastic pressing force. The movable push type rolling plate with an elastic body having an elastic pressing force that presses the small diameter rolling steel ball in the small diameter ball forced circulation rolling path against the large diameter rolling steel ball via the movable pressing type rolling plate. Economical elasticity with a simple structure in which one end side of a plurality of push rods is fixed to the back side of the moving plate, the other end side is freely penetrated by the outer shell plate and protrudes to the outside, and the push rod end is provided with a screw structure. By providing the pressing adjuster, the pressing force of the movable pressing type rolling plate can be adjusted by adjusting the screw of the elastic pressing adjuster from the outside of the arc-shaped forced circulation cover. Small-diameter ball forced circulation rolling path using a movable pressing-type rolling plate that can adjust the pressing force to the small-diameter rolling steel ball and prevent problems caused by the strength of the elastic pressing force. Is obtained. With the arc-shaped forced circulation cover that is vertically divided into a plurality of sheets and can be easily attached and detached, it is possible to remove a part of the arc-shaped forced circulation cover and adjust the pressing force while visually observing.

請求項5の発明では、小径転がり鋼球の、上開放の凹半球面状の転動免震兼登坂路盤上に多数個の小径転がり鋼球を介在させ、大径転がり鋼球の水平中心線高に凹半球面状の転動免震兼登坂路盤の路盤端円周縁高をほぼ揃えて設け、転動免震盤と登坂路盤とを一体化した動免震兼登坂路盤として連続的に設けたことにより、地震動時には被免震物の荷重を分散して受けると共に、大径転がり鋼球の転動方向に有効作用となり、大径転がり鋼球の上昇転動方向に位置する多数の小径転がり鋼球を大径転がり鋼球が転動免震兼登坂路盤に押付ける作用が働いて蜜接し、よつて、上昇転動方向の小径転がり鋼球が大径転がり鋼球の転動力を効果的に受け、転動免震兼登坂路盤上を強制自力転動して、また強制自力転動しない場合に際しては、後続の転動免震中の小径転がり鋼球の強力な転動力の後押力を受けて、残余の凹半球面状の転動免震兼登坂路盤を容易に滑動押上げられ、何れの場合においても小径球循環路内に確実に転入する。   In the invention of claim 5, the horizontal center line of the large-diameter rolling steel ball is obtained by interposing a large number of small-diameter rolling steel balls on the upward-opening concave hemispherical rolling isolation and climbing roadbed of the small-diameter rolling steel balls. Highly concave hemispherical rolling base isolation and climbing slope basement edge circumferential edge height is almost aligned, and rolling base isolation and climbing road base are integrated as a continuous base isolation and climbing base. As a result, during the earthquake motion, the load of the seismic isolation object is distributed and is effective in the rolling direction of the large-diameter rolling steel ball, and a large number of small-diameter rolling balls positioned in the upward rolling direction of the large-diameter rolling steel ball. Large diameter rolling steel balls are pressed against rolling base isolation and climbing slope base, and they are in close contact with each other, so that small diameter rolling steel balls in the ascending rolling direction effectively increase the rolling force of large diameter rolling steel balls. In the case of forced self-rolling on the base of rolling isolation and climbing slope, The remaining concave hemispherical rolling isolation and climbing roadbed can be easily slid up by receiving the strong rolling force of the small-diameter rolling steel ball during motion isolation. Move securely into the circuit.

小径球循環路に転動入した、小径転がり鋼球は大径転がり鋼球の上半球面の回転方向作用と後続の小径転がり鋼球の後押力により転動と滑動の混同で、大径転がり鋼球の転動方向と反対側の、転動免震兼登坂路盤内に確実に落転入して転動免震することが出来る。 A small-diameter rolling steel ball rolling into the small-diameter ball circulation path is a mixture of rolling and sliding due to the rotational action of the upper hemisphere of the large-diameter rolling steel ball and the subsequent pushing force of the small-diameter rolling steel ball. It is possible to make sure to fall into the rolling seismic isolation and climbing roadbed on the side opposite to the rolling direction of the rolling steel balls and to make the rolling seismic isolation.

皿状転動盤を被免震物の基台側に設けるため、長年月にわたる皿状転動盤の保守管理は甚だ容易となる。最も単純構成で安定形状の転動免震兼登坂路盤を用いた小径球循環路が得られる。 Since the plate-shaped rolling table is provided on the base side of the seismic isolation object, maintenance management of the plate-shaped rolling plate over many years is much easier. A small-diameter circular circuit using the simplest and stable shape of rolling isolation and climbing roadbed is obtained.

図1はこの発明を実施する転がり球免震支承の小径球強制循環転動路構造Aを示す転がり球免震支承の縦断面図、図2は図1のC−C部の切断面図、図3は一部の円弧状の強制循環覆蓋5を外した転がり球免震支承の一部切欠き正面図。図中の直線矢印は移動方向を、円弧矢印は回転方向を示す。以下の図面においては、皿状転動盤20を被免震物の基台21側に設けた場合を用いて説明するが、皿状転動盤20を基礎19側に設けた場合も同様に小径転がり鋼球2が強制自力転動して椀状荷受転動路盤1と大径転がり鋼球3との間に確実に転入し、転動免震を行なうため、図面を用いて説明することを省略する。   FIG. 1 is a longitudinal sectional view of a rolling ball base isolation bearing showing a small-sphere forced circulation rolling path structure A of a rolling ball base isolation bearing embodying the present invention, and FIG. 2 is a cross-sectional view of a CC section of FIG. FIG. 3 is a partially cutaway front view of a rolling ball seismic isolation bearing with some arc-shaped forced circulation cover 5 removed. In the figure, a straight arrow indicates a moving direction, and an arc arrow indicates a rotating direction. In the following drawings, the case where the dish-shaped rolling board 20 is provided on the base 21 side of the seismic isolation object will be described, but the same applies to the case where the dish-shaped rolling board 20 is provided on the base 19 side. The small-diameter rolling steel ball 2 is forced to roll forcibly and securely moves between the saddle-shaped load receiving roadbed 1 and the large-diameter rolling steel ball 3 to perform rolling isolation, so use the drawings to explain. Is omitted.

図1、2、3において、被免震物を支持可能な強度等を有する鉄材等でなる椀状荷受転動路盤1上に小径転がり鋼球2を多数個介在させて大径転がり鋼球3を設ける。椀状荷受転動路盤1の椀状の円弧の長さは、設けた大径転がり鋼球3の円周長の四等分の一程度以上の長さを用いることで、被免震物の荷重を小径転がり鋼球2を介して効果的に分散支持し、地震動時に小径転がり鋼球2が免震転動できる。短くすると安定度が低下する。   1, 2, and 3, a large-diameter rolling steel ball 3 is formed by interposing a number of small-diameter rolling steel balls 2 on a saddle-shaped load receiving roadbed 1 made of iron or the like having a strength that can support a seismic isolation object. Is provided. The length of the bowl-shaped arc of the bowl-shaped load receiving roadbed 1 is equal to or more than one quarter of the circumference of the large-diameter rolling steel ball 3 provided. The load is effectively distributed and supported through the small diameter rolling steel balls 2, and the small diameter rolling steel balls 2 can be seismically isolated during earthquake motion. Shortening reduces stability.

椀状荷受転動路盤1の路盤端全円周縁4に、複数枚に縦分割した円弧状の強制循環覆蓋5を、外殻板6と可動押圧式転動板7との二層間に、必要とする弾性押圧力を持たせた適宜な弾性体8を介在させ、更に外殻板6の一方端縁に鋼球保持兼循環縁盤9を付設螺着(図示せず)して設け、鋼球保持兼循環縁盤9から大径転がり鋼球3の一部を突出させた形状で大径転がり鋼球3の過半を覆うよう強制循環覆蓋5を設けて、椀状荷受転動路盤1と大径転がり鋼球3該両者間と連続した小径転がり鋼球2の小径球強制循環転動路10を形成させる。強制循環覆蓋5の分割数は、多い程取り扱いも容易であるが、製作の難易度や経済性を勘案して適宜に分割して設けてよい。 Necessary circular arc-shaped forced circulation cover 5 vertically divided into a plurality of sheets is provided between the outer shell plate 6 and the movable pressing type rolling plate 7 on the circumferential edge 4 of the roadbed end of the saddle-shaped load receiving rolling roadbed 1. An appropriate elastic body 8 having an elastic pressing force is interposed, and a steel ball holding / circulating edge board 9 is additionally attached to one end edge of the outer shell plate 6 by screwing (not shown). A forced circulation cover 5 is provided so as to cover the majority of the large-diameter rolling steel ball 3 in a shape in which a part of the large-diameter rolling steel ball 3 protrudes from the ball holding and circulation edge board 9, and the bowl-shaped load receiving rolling roadbed 1 and Large-diameter rolling steel ball 3 A small-diameter ball forced circulation rolling path 10 of the small-diameter rolling steel ball 2 continuous between the two is formed. The larger the number of divisions of the forced circulation cover 5 is, the easier the handling is. However, the forced circulation cover 5 may be appropriately divided in consideration of the difficulty of production and the economy.

外殻板6と可動押圧式転動板7とは、アルミ等の軽金属、鉄材等から選択して形成させ、外殻板6は地震動時の不測なせん断力から小径転がり鋼球2と大径転がり鋼球3とを現位置に保持する強度と、付設した鋼球保持兼循環縁盤9で常時に小径転がり鋼球2と大径転がり鋼球3とを保持させるのに必要な強度が必要である。可動押圧式転動板7の転動面は、小径転がり鋼球2が地震動時に変化の多い苛酷な転動を行なうのに耐えられる耐摩擦性、耐熱性等が必要である。転動面は研磨された表面よりも、粗荒面のままの状態の方が小径転がり鋼球2が滑らずに転動しやすい。特別な粗荒面加工程は必要ない。 The outer shell plate 6 and the movable pressing type rolling plate 7 are formed by selecting from light metals such as aluminum, iron materials, etc., and the outer shell plate 6 has a small diameter rolling steel ball 2 and a large diameter due to an unexpected shear force during earthquake motion. The strength required to hold the rolling steel ball 3 at the current position and the strength necessary to hold the small diameter rolling steel ball 2 and the large diameter rolling steel ball 3 at all times with the attached steel ball holding and circulation edge board 9 are required. It is. The rolling surface of the movable press-type rolling plate 7 needs to have friction resistance, heat resistance, etc. that can withstand the small diameter rolling steel ball 2 performing severe rolling with many changes during earthquake motion. The rolling surface is more likely to roll without the slipping of the small-diameter rolling steel ball 2 when the surface is a rough surface than the polished surface. No special roughening process is required.

弾性体8としては、鋼板ばね、鋼コイルばね、ゴム弾性体等で、地震動時に可動押圧式転動板7を介して小径転がり鋼球2を、転動中の大径転がり鋼球3に押付けて大径転がり鋼球3の転動力を受けて小径転がり鋼球2が、可動押圧式転動板7上を転動可能な弾性押圧力を持つ弾性体8であれば何れも用いられる。弾性押圧力が強過ぎると摩擦熱が強く発生する。弱いと転動力を効果的に得られない。事前に保守管理性、耐久性等から最適の弾性体8を選択して用いる。 The elastic body 8 is a steel plate spring, steel coil spring, rubber elastic body or the like, and presses the small-diameter rolling steel ball 2 against the rolling large-diameter rolling steel ball 3 via the movable pressing-type rolling plate 7 during an earthquake motion. As long as the small-diameter rolling steel ball 2 receives the rolling force of the large-diameter rolling steel ball 3 and the small-diameter rolling steel ball 2 has an elastic pressing force capable of rolling on the movable pressing type rolling plate 7, any of them can be used. If the elastic pressing force is too strong, frictional heat is generated strongly. If it is weak, the rolling power cannot be obtained effectively. The optimal elastic body 8 is selected and used in advance from the viewpoint of maintenance and durability.

鋼製の弾性体8を用いる場合は防錆対策が必要である。ゴム弾性体の弾性体8を用いる場合は耐熱、耐久、弾性力の低下等を考慮に入れる。可動押圧式転動板7を均等に押圧するように配設する。ゴム弾性体を用いるときは、圧縮時の横伸び用の逃げ代空間を必要とする。また取付け方法は適宜な方法を用いてよい。 When the steel elastic body 8 is used, rust prevention measures are necessary. When the rubber elastic body 8 is used, heat resistance, durability, reduction in elastic force, and the like are taken into consideration. It arrange | positions so that the movable press-type rolling plate 7 may be pressed uniformly. When a rubber elastic body is used, a clearance allowance for lateral elongation during compression is required. Further, an appropriate method may be used as the attachment method.

小径転がり鋼球2を可動押圧式転動板7と大径転がり鋼球3との間に介在させた時の小径球強制循環転動路10の路幅は、つまり弾性体8が圧縮状態のときの路幅は、小径転がり鋼球2の直径と同幅が必要であり、その小径転がり鋼球2に弾性体8の弾性押圧力が加えられることになる。小径転がり鋼球2の直径以上に弾性体8が圧縮され、路幅が広がると小径転がり鋼球2は転動出来ない。小径球強制循環転動路10の路幅が小径転がり鋼球2の直径以上に広がることを阻止する適宜な路幅保持機構25を、可動押圧式転動板7又は外殻板6或いは双方間に設ける必要がある。 The width of the small-diameter ball forced circulation rolling path 10 when the small-diameter rolling steel ball 2 is interposed between the movable pressing type rolling plate 7 and the large-diameter rolling steel ball 3, that is, the elastic body 8 is in a compressed state. The width of the road needs to be the same width as the diameter of the small diameter rolling steel ball 2, and the elastic pressing force of the elastic body 8 is applied to the small diameter rolling steel ball 2. If the elastic body 8 is compressed beyond the diameter of the small-diameter rolling steel ball 2 and the road width is widened, the small-diameter rolling steel ball 2 cannot roll. An appropriate road width holding mechanism 25 that prevents the road width of the small-diameter ball forced circulation rolling path 10 from expanding beyond the diameter of the small-diameter rolling steel ball 2 is provided between the movable pressing type rolling plate 7 or the outer shell plate 6 or both. It is necessary to provide in.

鋼球保持兼循環縁盤9は、大径転がり鋼球3と小径転がり鋼球2とを保持して現位置より離脱することを防止し、転動中の小径転がり鋼球2を誘導する循環縁を兼用する。 The steel ball holding / circulating edge board 9 holds the large-diameter rolling steel ball 3 and the small-diameter rolling steel ball 2 to prevent separation from the current position, and circulates to induce the small-diameter rolling steel ball 2 during rolling. Also used as an edge.

複数枚に縦分割した強制循環覆蓋5の外殻板6の他方端縁にそれぞれ連結縁板11を、椀状荷受転動路盤1の路盤端円周縁4にも連結縁板11を設け、双方を裸子12で螺着して、覆つて形成させる小径球強制循環転動路10内に多数個の小径転がり鋼球2を挿入し、挿入する際に、小径球強制循環転動路10が水平状になるよう横にして挿入するすると容易に挿入することが出来る。 A connection edge plate 11 is provided on the other end edge of the outer shell plate 6 of the forced circulation cover 5 divided into a plurality of sheets, and a connection edge plate 11 is also provided on the road base end circumferential edge 4 of the bowl-shaped load receiving rolling road base 1. Are inserted into a small diameter ball forced circulation rolling path 10 to be formed by covering with a naked child 12, and a large number of small diameter rolling steel balls 2 are inserted. It can be easily inserted by inserting it sideways so as to form a shape.

小径球強制循環転動路10内と椀状荷受転動路盤1上とに存在する、小径転がり鋼球2の総数量は、小径球強制循環転動路10内と椀状荷受転動路盤1上との全部に満たしてもよく、僅かに少なく挿入してもよい。要は地震動時に小径転がり鋼球2が、双方間を途切れることなく連続して循環転動して免震転動が可能な数量が必要なのである。小径転がり鋼球2は強制自力転動するため、小径球強制循環転動路10内に停滞する恐れはない。 The total amount of small-diameter rolling steel balls 2 existing in the small-diameter forced circulation rolling path 10 and on the bowl-shaped load receiving rolling base 1 is the same as that in the small-diameter forced circulation rolling path 10 and the saddle-shaped load receiving rolling base 1. It may be filled up with all of the above, or it may be inserted slightly less. The point is that a small diameter rolling steel ball 2 is required to have a quantity that can be circulated and rolled continuously without interruption between the two sides during earthquake motion. Since the small-diameter rolling steel ball 2 is forced to roll by itself, there is no fear of stagnation in the small-diameter ball forced circulation rolling path 10.

更に外殻板6の鋼球保持兼循縁盤9を付設した端縁側に相互連結板13を設け、それぞれの相互連結板13を相互に螺着(図示せず)して一体的の強制循環覆蓋5に形成させて、転がり球免震支承の小径球強制循環転動路構造を構成させる。 Further, an interconnecting plate 13 is provided on the edge side of the outer shell plate 6 to which the steel ball holding / circulating board 9 is attached, and the interconnecting plates 13 are screwed together (not shown) to perform integral forced circulation. It is formed on the cover 5 to form a small-sphere forced circulation rolling path structure of a rolling ball seismic isolation bearing.

図4は弾性体8として、ゴム弾性体14(以下、常温用接着剤を用いたゴム弾性体及び加圧・加熱接着したゴム弾性体を総称する。)を用い、小径球強制循環転動路10内に小径転がり鋼球2が未転入の場合時の可動押圧式転動板7の突出状態を説明する小径球強制循環転動路構造Aを示す転がり球免震支承の縦半分断面図、図5は小径球強制循環転動路内に小径転がり鋼球2が転入状態時の可動押圧式転動板7の縮状態を示す小径球強制循環転動路構造Aを示す転がり球免震支承の縦半分断面図である。 FIG. 4 shows a rubber elastic body 14 (hereinafter referred to as a rubber elastic body using a normal temperature adhesive and a rubber elastic body that has been pressurized and heat bonded) as an elastic body 8, and a small-sphere forced circulation rolling path. 10 is a longitudinal half cross-sectional view of a rolling ball seismic isolation bearing showing a small-diameter forced circulation rolling path structure A for explaining the protruding state of the movable pressing type rolling plate 7 when the small-diameter rolling steel ball 2 is not yet transferred into FIG. 5 shows a rolling ball seismic isolation bearing showing a small diameter ball forced circulation rolling path structure A showing a contraction state of the movable pressing type rolling plate 7 when the small diameter rolling steel ball 2 is moved into the small diameter ball forced circulation rolling path. FIG.

図4、5において、弾性体8としてのゴム弾性体14は、可動押圧式転動板7を介し小径球強制循環転動路10内の小径転がり鋼球2を大径転がり鋼球3に押付ける弾性押圧力を持つ汎用のゴム弾性体14又は加圧・加熱接着してなるゴム弾性体14の何れを用いてもよい。経済性や強力接着性を勘案して適宜に選定して用いる。板状又は適宜の形状として可動押圧式転動板7を均等に押圧するように、外殻板6の凹内面側と可動押圧式転動板7の凸外面側との双方間に配置して接着する。ゴム弾性体14の圧縮時の横伸び用の逃げ代空間を相互間に必要とする。 4 and 5, the rubber elastic body 14 as the elastic body 8 pushes the small-diameter rolling steel ball 2 in the small-diameter ball forced circulation rolling path 10 against the large-diameter rolling steel ball 3 via the movable pressing rolling plate 7. Either a general-purpose rubber elastic body 14 having an elastic pressing force to be applied or a rubber elastic body 14 formed by pressure and heat bonding may be used. It is selected and used appropriately in consideration of economy and strong adhesiveness. It is arranged between both the concave inner surface side of the outer shell plate 6 and the convex outer surface side of the movable pressing type rolling plate 7 so as to press the movable pressing type rolling plate 7 evenly as a plate or an appropriate shape. Glue. A clearance allowance space for lateral expansion when the rubber elastic body 14 is compressed is required between them.

小径球強制循環転動路10内の小径転がり鋼球2を大径転がり鋼球3に押付ける弾性押圧力は、強過ぎると摩擦抵抗が大きくなり摩擦熱が発生し、弱いと小径転がり鋼球2が大径転がり鋼球3と可動押圧式転動板7とに蜜接せず、小径転がり鋼球2の転動登坂時に影響がある。必要とする弾性押圧力を得るようにゴム弾性体14の弾力、厚み、形状等を事前に検討し、最適のゴム弾性体14を選択して用いる。 If the elastic pressing force that presses the small-diameter rolling steel ball 2 in the small-circular ball forced circulation rolling path 10 against the large-diameter rolling steel ball 3 is too strong, frictional resistance increases and frictional heat is generated, and if it is weak, small-diameter rolling steel ball. 2 is not in contact with the large-diameter rolling steel ball 3 and the movable press-type rolling plate 7, and has an influence when the small-diameter rolling steel ball 2 is rolling uphill. In consideration of the elasticity, thickness, shape, etc. of the rubber elastic body 14 in advance so as to obtain the required elastic pressing force, the optimum rubber elastic body 14 is selected and used.

可動押圧式転動板7面を小径転がり鋼球2がゴム弾性体14の弾性押圧力の作用により
、蜜接して転動するとき、可動押圧式転動板7面が研磨された面状であると小径転がり鋼球2が滑り易い。可動押圧式転動板7面を、粗荒面の状態に仕上げると滑り難くなる。
When the small diameter rolling steel ball 2 rolls in close contact with the elastic pressing force of the rubber elastic body 14 on the surface of the movable pressing type rolling plate 7, the surface of the movable pressing type rolling plate 7 is polished. If it exists, the small diameter rolling steel ball 2 is easy to slide. When the surface of the movable pressing type rolling plate 7 is finished in a rough and rough state, it becomes difficult to slip.

図6は弾性体8として、ゴム弾性体14用い、小径球強制循環転動路10内に小径転がり鋼球2が未転入の場合時で、突出状態の可動押圧式転動板7の裏面側に、弾性押圧調節具15を備えた小径球強制循環転動路構造Aを示す転がり球免震支承の縦半分断面図である。   FIG. 6 shows a case where a rubber elastic body 14 is used as the elastic body 8 and the small-diameter rolling steel ball 2 is not yet transferred into the small-diameter forced circulation rolling path 10. FIG. 3 is a longitudinal half sectional view of a rolling ball seismic isolation bearing showing a small-diameter ball forced circulation rolling path structure A provided with an elastic pressing adjuster 15.

図6において、ゴム弾性体14を介在させた可動押圧式転動板7の裏面側に、複数の押棒16を配設して一端側を固着させ、他端側を、外殻板6を自在に貫通させて外部に突出させ、押棒16端を螺子構造17とした弾性押圧調節具15とし、螺子構造17を外殻板6の外部から調節して弾性押圧力を調節可能とする。   In FIG. 6, a plurality of push rods 16 are arranged on the back side of the movable pressing type rolling plate 7 with the rubber elastic body 14 interposed, and one end side is fixed, and the outer shell plate 6 is freely connected to the other end side. It is made to penetrate to the outside and protrudes to the outside, and the push rod 16 end is used as an elastic pressing adjuster 15 having a screw structure 17, and the screw structure 17 is adjusted from the outside of the outer shell plate 6 so that the elastic pressing force can be adjusted.

この時、ゴム弾性体14の弾性押圧力は、必要とする弾性押圧力より少し強い弾性押圧力を持たせる。強い弾性押圧力を弾性押圧調節具15の螺子構造17で調節して必要とする弾性押圧力を得る。更に、螺子構造17側に、鋼コイルばね等の弾性体8を付設して弾性押圧力の強弱を調節出来るようにすれば、より一層弾性押圧力の微調節が可能となり弾性押圧力の強弱によるトラブルの発生を防止できる。複数枚に縦分割し、脱着を容易に可能とした円弧状の強制循環覆蓋5としたため、一部の円弧状の強制循環覆蓋5を離脱させて、目視しながらの弾性押圧力の調節が可能である。 At this time, the elastic pressing force of the rubber elastic body 14 has an elastic pressing force slightly stronger than the required elastic pressing force. A strong elastic pressing force is adjusted by the screw structure 17 of the elastic pressing adjuster 15 to obtain a required elastic pressing force. Furthermore, if an elastic body 8 such as a steel coil spring is provided on the screw structure 17 side so that the strength of the elastic pressing force can be adjusted, the elastic pressing force can be further finely adjusted. Trouble can be prevented. Since the arc-shaped forced circulation cover 5 is vertically divided into a plurality of sheets and can be easily attached and detached, some of the arc-shaped forced circulation cover 5 can be detached and the elastic pressing force can be adjusted while visually observing. It is.

椀状荷受転動路盤1と一体的に設けた取付台18を基礎19側に螺着し、皿状転動盤20を被免震物の基台21側に螺着して設けると、皿状転動盤20内に異物が進入することを防止出来る効果が得られるために、皿状転動盤20を被免震物の基台21側に螺着して設けることを推奨する。この場合、地震動時に弾性体8の弾性押圧力で可動押圧式転動板7を介し小径球強制循環転動路内の小径転がり鋼球2を大径転がり鋼球3に押付け、小径転がり鋼球2は大径転がり鋼球3の転動力を受け可動押圧式転動板7上を、何れの方向にも強制自力転動するため、皿状転動盤20を被免震物の基台21側に螺着して設けても何ら支障がない。勿論、皿状転動盤20を基礎19側に螺着して用いることが出来る。   When the mounting base 18 provided integrally with the bowl-shaped load receiving rolling base 1 is screwed to the base 19 side and the dish-like rolling board 20 is screwed to the base 21 side of the seismic isolation object, In order to obtain the effect of preventing foreign matter from entering the cylindrical rolling board 20, it is recommended that the dish-like rolling board 20 is screwed to the base 21 side of the seismic isolation object. In this case, the small-diameter rolling steel ball 2 is pressed against the large-diameter rolling steel ball 3 by pressing the small-diameter ball forced circulation rolling path through the movable pressing-type rolling plate 7 with the elastic pressing force of the elastic body 8 during earthquake motion. 2 is forcibly self-rolling in any direction on the movable pressing type rolling plate 7 in response to the rolling force of the large-diameter rolling steel ball 3, so that the dish-shaped rolling table 20 is a base 21 of the seismic isolation object. There is no problem even if it is screwed to the side. Of course, the dish-shaped rolling board 20 can be screwed to the base 19 side and used.

図7はこの発明を実施した転がり球免震支承の小径球循環路構造Bの構成を示す転がり球免震支承の縦断面図である。図中の直線矢印は移動方向を、円弧矢印は回転方向を示す。 FIG. 7 is a longitudinal sectional view of the rolling ball base isolation bearing showing the configuration of the small-diameter circular circuit structure B of the rolling ball base isolation bearing embodying the present invention. In the figure, a straight arrow indicates a moving direction, and an arc arrow indicates a rotating direction.

図7において、被免震物を支持可能な強度等を有する鉄材等でなる、小径転がり鋼球2の上開放の凹半球面状の転動免震兼登坂路盤22上に、大径転がり鋼球3を、大径転がり鋼球3の下半球との両者間に、多数個の小径転がり鋼球2を介在させて載置し、載置した大径転がり鋼球3の水平中心線高に転動免震兼登坂路盤22の路盤端全円周縁4高をほぼ揃えて設ける。   In FIG. 7, a large-diameter rolling steel is formed on a rolling semi-isolated and uphill roadbed 22 of a concave hemispherical shape having an open top and a small diameter rolling steel ball 2, which is made of an iron material having a strength capable of supporting the seismic isolation object. The ball 3 is placed between the large-diameter rolling steel ball 3 and the lower hemisphere of the large-diameter rolling steel ball 3 with a number of small-diameter rolling steel balls 2 interposed therebetween, and the horizontal center line height of the placed large-diameter rolling steel ball 3 is set. The rolling base isolation and climbing slope roadbed 22 is provided with a substantially equal height of the entire circumference 4 of the roadbed edge.

路盤端全円周縁4に、複数枚に縦分割した円弧状の循環路蓋板23を、循環路蓋板23の一方端縁に鋼球保持兼循縁盤9を付設螺着(図示せず)して設け、鋼球保持兼循環縁盤9から大径転がり鋼球3の一部を突出させた形状で大径転がり鋼球3の過半を覆うように設けて、該両者間と連続した、小径転がり鋼球2の直径より適宜に広い路幅の小径球循環路24を形成させる。循環路蓋板23の分割数は、多い程取り扱いも容易であるが、製作の難易度や経済性を勘案して適宜に分割して設けてよい。 An arcuate circulation path cover plate 23 that is vertically divided into a plurality of pieces is attached to the circumferential edge 4 of the road base end, and a steel ball holding and circulation board 9 is attached to one end edge of the circulation path cover plate 23 and screwed (not shown). And provided to cover the majority of the large-diameter rolling steel ball 3 in a shape in which a part of the large-diameter rolling steel ball 3 protrudes from the steel ball holding / circulating edge board 9 and is continuous between the two. Then, a small-diameter ball circulation path 24 having a road width appropriately wider than the diameter of the small-diameter rolling steel ball 2 is formed. The greater the number of divisions of the circulation path cover plate 23, the easier the handling is. However, the circulation passage lid plate 23 may be appropriately divided in consideration of the difficulty of production and economy.

鋼球保持兼循環縁盤9は、大径転がり鋼球3と小径転がり鋼球2とを保持して現位置より離脱することを防止し、転動中の小径転がり鋼球2を誘導する循環縁を兼用する。   The steel ball holding / circulating edge board 9 holds the large-diameter rolling steel ball 3 and the small-diameter rolling steel ball 2 to prevent separation from the current position, and circulates to induce the small-diameter rolling steel ball 2 during rolling. Also used as an edge.

循環路蓋板23は、アルミ等の軽金属、鉄材等から選択して形成させ、地震動時の不測なせん断力から小径転がり鋼球2と大径転がり鋼球3とを現位置に保持する強度と、付設した鋼球保持兼循環縁盤9で常時に小径転がり鋼球2と大径転がり鋼球3とを保持させるのに必要な強度が必要である。 The circulation path cover plate 23 is formed by selecting from light metals such as aluminum, iron materials, etc., and has strength to hold the small-diameter rolling steel ball 2 and the large-diameter rolling steel ball 3 at the current position due to an unexpected shear force during earthquake motion. The attached steel ball holding / circulating edge board 9 must have a strength required to hold the small diameter rolling steel ball 2 and the large diameter rolling steel ball 3 at all times.

循環路蓋板23の他方端縁に連結縁板11を、転動免震兼登坂路盤22の路盤端円周縁4にも連結縁板11を設けて双方を螺子12で螺着し、覆つて形成させた小径球循環路24内に多数個の小径転がり鋼球2を挿入し、更に鋼球保持兼循環縁盤9を付設した循環路蓋板23の端縁側に相互連結板13を設け、それぞれの相互連結板13を相互に螺着(図示せず)して一体的の循環路蓋板23に形成させて、転がり球免震支承の小径球循環路構造Bを構成させる。 The connecting edge plate 11 is provided on the other end edge of the circulation road cover plate 23, and the connecting edge plate 11 is also provided on the road base end circumferential edge 4 of the rolling seismic isolation and ascending slope road base 22. A plurality of small-diameter rolling steel balls 2 are inserted into the formed small-diameter ball circulation path 24, and an interconnecting plate 13 is provided on the edge side of the circulation path lid plate 23 provided with a steel ball holding and circulation edge board 9, The respective interconnecting plates 13 are screwed together (not shown) to form an integral circulation path cover plate 23 to form a small-diameter spherical circulation path structure B of a rolling ball seismic isolation bearing.

凹半球面状の転動免震兼登坂路盤22と大径転がり鋼球3との両者間に介在させる多数個の小径転がり鋼球2と小径球循環路24内に挿入する小径転がり鋼球2の総数量は、
凹半球面状の転動免震兼登坂路盤22と大径転がり鋼球3との両者間を満たし、小径球循環路24内には地震動時に小径転がり鋼球2が、転動免震兼登坂路盤22と小径球循環路24双方間を途切れることなく連続して循環して小径転がり鋼球2が確実に転動免震兼登坂路盤22と大径転がり鋼球3との両者間落転入して免震転動が可能な数量を挿入する。
A large number of small-diameter rolling steel balls 2 interposed between the concave hemispherical rolling isolation and climbing roadbed 22 and the large-diameter rolling steel balls 3 and small-diameter rolling steel balls 2 inserted into the small-diameter circulation circuit 24. The total amount of
The concave hemispherical rolling isolation and climbing roadway base 22 and the large diameter rolling steel ball 3 are filled with each other, and the small diameter rolling steel ball 2 is placed in the small diameter spherical circuit 24 during the earthquake motion. The small-diameter rolling steel ball 2 circulates continuously between both the roadbed 22 and the small-diameter ball circulation path 24 without fail, and the small-diameter rolling steel ball 2 reliably falls between the rolling-isolated and uphill roadbed 22 and the large-diameter rolling steel ball 3. Insert the quantity that allows seismic isolation rolling.

小径転がり鋼球2の直径より適宜に広い路幅の小径球循環路24内の小径転がり鋼球2は、大径転がり鋼球3の上半球面の回転方向作用と後続の小径転がり鋼球2の後押力により転動と滑動の混同で移動し、大径転がり鋼球3の転動方向と反対側の、転動免震兼登坂路盤22内に落転入して免震転動する。 The small-diameter rolling steel ball 2 in the small-diameter ball circulation path 24 having a road width that is appropriately wider than the diameter of the small-diameter rolling steel ball 2 is the rotational direction action of the upper hemisphere of the large-diameter rolling steel ball 3 and the subsequent small-diameter rolling steel ball 2. It moves by confusion between rolling and sliding due to the rear pushing force, and falls into the rolling seismic isolation and uphill road bed 22 on the side opposite to the rolling direction of the large-diameter rolling steel ball 3 to perform seismic isolation rolling.

従つて、転動免震兼登坂路盤22内と小径球循環路24内との双方間を途切れることなく連続して循環転動して免震転動が可能な最少数量を挿入すればよく、小径球循環路24内に存在する小径転がり鋼球2数は、少数量ほど後続の小径転がり鋼球2の後押力の負担が少ない。   Therefore, it suffices to insert the minimum amount that can be continuously circulated and can be segregated without rolling between the rolling seismic isolation and ascending slope roadbed 22 and the small-diameter circuit 24, The smaller the number of small-diameter rolling steel balls 2 existing in the small-diameter ball circulation path 24, the less the burden of the rear pressing force of the succeeding small-diameter rolling steel balls 2 is.

転動免震兼登坂路盤22の路盤端全円周縁4高線より、角度にして45度程度下つた位置から上の転動免震兼登坂路盤22の路盤面と循環路蓋板23の内面を粗荒面に仕上げると、転動登坂する小径転がり鋼球2は滑り難くなり、転動し易くなる。   The base surface of the rolling base isolation and climbing slope base plate 22 and the inner surface of the circulating road cover plate 23 from a position about 45 degrees lower than the circumferential edge 4 height of the road base edge of the rolling base isolation and climbing slope base plate 22. When the surface is finished to a rough surface, the small-diameter rolling steel ball 2 that rolls up and down becomes difficult to slip and is easy to roll.

転動免震兼登坂路盤22と一体的に設けた取付台18を基礎19側に設置する。大径転がり鋼球3の頂点上に載置した皿状転動盤20を被免震物の基台21側に設置して転がり球免震支承の小径球循環路構造Bを用いる。 A mounting base 18 provided integrally with the rolling seismic isolation and uphill roadbed 22 is installed on the foundation 19 side. A small rolling circuit structure B of a rolling ball seismic isolation bearing is used by installing a plate-shaped rolling table 20 placed on the top of the large diameter rolling steel ball 3 on the base 21 side of the seismic isolation object.

小径球強制循環転動路構造Aを示す転がり球免震支承の縦断面図である。It is a longitudinal cross-sectional view of a rolling ball seismic isolation bearing showing a small-diameter forced circulation rolling path structure A. 図1のC−C部の切断面図である。It is a cutaway view of the CC section of FIG. 一部の円弧状の強制循環覆蓋5を外した転がり球免震支承の一部切欠き正面図である。It is a partially cutaway front view of a rolling ball seismic isolation bearing with some arc-shaped forced circulation cover 5 removed. 可動押圧式転動板7の突出状態を説明する小径球強制循環転動路構造Aを示す転がり球免震支承の縦半分断面図である。It is a vertical half sectional view of a rolling ball seismic isolation bearing showing a small-diameter forced circulation rolling path structure A for explaining the protruding state of the movable pressing type rolling plate 7. 可動押圧式転動板7の縮状態を示す小径球強制循環転動路構造Aを示す転がり球免震支承の縦半分断面図である。It is a longitudinal half sectional view of a rolling ball seismic isolation bearing showing a small-diameter ball forced circulation rolling path structure A showing a contracted state of the movable pressing type rolling plate 7. 弾性押圧調節具15を備えた小径球強制循環転動路構造Aを示す転がり球免震支承の縦半分断面図である。It is a longitudinal half sectional view of a rolling ball seismic isolation bearing showing a small-diameter ball forced circulation rolling path structure A provided with an elastic pressing adjuster 15. 小径球循環路構造Bを示す転がり球免震支承の縦断面図である。It is a longitudinal cross-sectional view of a rolling ball seismic isolation bearing showing a small-diameter ball circulation path structure B.

符号の説明Explanation of symbols

A小径球強制循環転動路構造
B小径球循環路構造
1椀状荷受転動路盤
2小径転がり鋼球
3大径転がり鋼球
4路盤端全円周縁
5強制循環覆蓋
6外殻板
7可動押圧式転動板
8弾性体
9鋼球保持兼循環縁盤
10小径球強制循環転動路
11連結縁板
12裸子
13相互連結板
14ゴム弾性体
15弾性押圧調節具
16押棒
17螺子構造
18取付台
19基礎
20皿状転動盤
21被免震物の基台
22転動免震兼登坂路盤
23循環路蓋板
24小径球循環路
25路幅保持機構
A Small ball forced circulation rolling path structure
B small-diameter ball circulation path structure 1 bowl-shaped load receiving roadbed 2 small-diameter rolling steel ball 3 large-diameter rolling steel ball 4 full circle edge of roadbed end 5 forced circulation cover 6 outer shell plate 7 movable press-type rolling plate 8 elastic body 9 steel Ball holding and circulation edge board 10 Small-diameter ball forced circulation rolling path 11 Connection edge plate 12 Naked child 13 Interconnection plate 14 Rubber elastic body 15 Elastic pressure adjusting tool 16 Push rod 17 Screw structure 18 Mounting base 19 Base 20 Dish-shaped rolling board 21 Base of seismic isolation object 22 Rolling isolation and climbing roadbed 23 Circulation path cover plate 24 Small-diameter spherical circulation path 25 Road width retention mechanism

Claims (5)

小径転がり鋼球の椀状荷受転動路盤と、大径転がり鋼球との両者間に、多数個の小径転がり鋼球を介在させて設け、椀状荷受転動路盤の路盤端全円周縁に、複数枚に縦分割した円弧状の強制循環覆蓋を、外殻板と可動押圧式転動板との二層間に、必要とする弾性押圧力を持たせた弾性体を介在させて形成させ、外殻板の一方端縁に鋼球保持兼循環縁盤を付設螺着して設け、鋼球保持兼循環縁盤から大径転がり鋼球の一部を突出させた形状で強制循環覆蓋を大径転がり鋼球の過半を覆うように設けて、該両者間と連続した小径球強制循環転動路を形成させ、外殻板の他方端縁に連結縁板を、椀状荷受転動路盤の路盤端円周縁にも連結縁板を設けて双方を螺着し、覆つて形成させた小径球強制循環転動路内に多数個の小径転がり鋼球を挿入し、更に鋼球保持兼循環縁盤を付設した外殻板の端縁側に相互連結板を設け、それぞれの相互連結板を相互に螺着して一体的の強制循環覆蓋に形成させてなる、転がり球免震支承の小径球強制循環転動路構造。   A large number of small diameter rolling steel balls are interposed between the small diameter rolling steel ball saddle load bearing roadbed and the large diameter rolling steel ball. In addition, an arc-shaped forced circulation cover that is vertically divided into a plurality of sheets is formed between the two layers of the outer shell plate and the movable pressing type rolling plate with an elastic body having the necessary elastic pressing force interposed therebetween, A steel ball holding and circulation edge is attached and screwed to one end of the outer shell plate, and the forced circulation cover is large in a shape in which a part of a large diameter rolling steel ball protrudes from the steel ball holding and circulation edge. It is provided so as to cover the majority of the rolling steel balls, and a continuous small-diameter ball circulation circulation path is formed between the two, and a connecting edge plate is formed on the other end edge of the outer shell plate, A large number of small-diameter rolling steel balls are inserted into the small-circular ball forced circulation rolling path formed by covering and forming the connecting edge plates on the periphery of the roadbed end circle. A rolling ball is provided by providing an interconnecting plate on the edge side of the outer shell plate with a steel ball holding / circulating edge board, and screwing the interconnecting plates together to form an integral forced circulation cover. Small ball forced circulation rolling path structure of seismic support. 円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、ゴム弾性体でなり、常温用接着剤を用いて外殻板と可動押圧式転動板とに両面を接着されてなる請求項1記載の転がり球免震支承の小径球強制循環転動路構造。   The elastic body that forms an arc-shaped forced circulation cover and is interposed between the two layers of the outer shell plate and the movable pressing type rolling plate is a rubber elastic body, and the outer shell plate and the movable pressing member using a room temperature adhesive. 2. The small-diameter ball forced circulation rolling path structure of a rolling ball seismic isolation bearing according to claim 1, wherein both sides are bonded to a type rolling plate. 円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、外殻板と可動押圧式転動板との二層間にゴム弾性体を介在させ、両面に接着剤を塗布し加圧・加熱接着されてなる請求項1記載の転がり球免震支承の小径球強制循環転動路構造。   An elastic body interposed between the two layers of the outer shell plate and the movable pressing type rolling plate, which forms an arc-shaped forced circulation cover, has a rubber elastic body between the two layers of the outer shell plate and the movable pressing type rolling plate. 2. The small-sphere forced circulation rolling path structure of a rolling ball seismic isolation bearing according to claim 1, wherein the rolling ball is isolated and applied by applying an adhesive on both sides and applying pressure and heat. 円弧状の強制循環覆蓋を形成する、外殻板と可動押圧式転動板との二層間に介在させる弾性体が、弾性体を介在させた可動押圧式転動板の裏面側に、複数の押棒の一端側を固着させ、他端側を外殻板を自在に貫通させて外部に突出させ、押棒端を螺子構造付とした弾性押圧調節具を備えた請求項1記載の転がり球免震支承の小径球強制循環転動路構造。   An elastic body interposed between the two layers of the outer shell plate and the movable pressing type rolling plate, which forms an arc-shaped forced circulation cover, is provided on the back side of the movable pressing type rolling plate with the elastic body interposed therebetween. The rolling ball seismic isolation device according to claim 1, further comprising an elastic pressing adjuster having one end side of the push rod fixed, the other end side freely penetrating the outer shell plate and protruding to the outside, and the push rod end having a screw structure. Bearing small-diameter forced circulation rolling path structure. 小径転がり鋼球の、上開放の凹半球面状の転動免震兼登坂路盤上に、大径転がり鋼球を、大径転がり鋼球の下半球との両者間に、多数個の小径転がり鋼球を介在させて載置し、載置した大径転がり鋼球の水平中心線高に転動免震兼登坂路盤の路盤端円周縁高をほぼ揃え、該路盤端全円周縁に、複数枚に縦分割した円弧状の循環路蓋板を、循環路蓋板の一方端縁に鋼球保持兼循環縁盤を付設螺着して設け、鋼球保持兼循環縁盤から大径転がり鋼球の一部を突出させた形状で大径転がり鋼球の過半を覆うように設けて、該両者間と連続した、小径転がり鋼球の直径より適宜に広い路幅の小径球循環路を形成させ、循環路蓋板の他方端縁に連結縁板を、転動免震兼登坂路盤の路盤端円周縁にも連結縁板を設けて双方を螺着し、覆つて形成させた小径球循環路内に多数個の小径転がり鋼球を挿入し、更に鋼球保持兼循環縁盤を付設した循環路蓋板の端縁側に相互連結板を設け、それぞれの相互連結板を相互に螺着して一体的の循環路蓋板に形成させてなる、転がり球免震支承の小径球循環路構造。
A large number of small diameter rolling steel balls are placed on the upper open concave hemispherical rolling isolation and climbing roadbed, between the large diameter rolling steel balls and the lower hemisphere of the large diameter rolling steel balls. Mounted with steel balls interposed, the horizontal center line height of the mounted large-diameter rolling steel balls is almost aligned with the height of the road base edge circle circumference of the rolling base isolation and climbing roadbed, An arc-shaped circulation path cover plate that is vertically divided into a sheet is installed by screwing a steel ball holding / circulation edge plate to one end edge of the circulation path cover plate, and a large-diameter rolling steel from the steel ball holding / circulation edge plate. Provided to cover the majority of large diameter rolling steel balls with a shape that protrudes a part of the sphere, forming a small diameter spherical circulation path with a width wider than the diameter of the small diameter rolling steel balls, continuous between the two A small diameter that is formed by connecting a connecting edge plate to the other edge of the circulation road cover plate, and also providing a connecting edge plate on the periphery of the road base end of the rolling base isolation and climbing road base, screwing both sides, and covering A large number of rolling steel balls with small diameters are inserted into the circulation path, and an interconnection plate is provided on the edge of the circulation path cover plate with a steel ball holding and circulation edge plate, and the interconnection plates are screwed together. A small-diameter ball circulation path structure with a rolling ball seismic isolation bearing, which is formed on an integrated circulation path lid plate.
JP2004175426A 2004-06-14 2004-06-14 Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation Pending JP2005351450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175426A JP2005351450A (en) 2004-06-14 2004-06-14 Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175426A JP2005351450A (en) 2004-06-14 2004-06-14 Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation

Publications (1)

Publication Number Publication Date
JP2005351450A true JP2005351450A (en) 2005-12-22

Family

ID=35586085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175426A Pending JP2005351450A (en) 2004-06-14 2004-06-14 Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation

Country Status (1)

Country Link
JP (1) JP2005351450A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399056B2 (en) 2006-06-02 2013-03-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
US8853075B2 (en) 2008-02-27 2014-10-07 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ALD) process
CN111502030A (en) * 2020-04-28 2020-08-07 王小雨 Assembled steel construction building coupling assembling
CN113309230A (en) * 2021-06-18 2021-08-27 科宁工程科技(南京)有限公司 Shock-absorbing engineering is with can two-way roll pendulum isolation bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399056B2 (en) 2006-06-02 2013-03-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
US9583335B2 (en) 2006-06-02 2017-02-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming dielectric films, new precursors and their use in semiconductor manufacturing
US9911590B2 (en) 2006-06-02 2018-03-06 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Methods of forming dielectric films, new precursors and their use in semiconductor manufacturing
US10217629B2 (en) 2006-06-02 2019-02-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming dielectric films, new precursors and their use in semiconductor manufacturing
US8853075B2 (en) 2008-02-27 2014-10-07 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ALD) process
CN111502030A (en) * 2020-04-28 2020-08-07 王小雨 Assembled steel construction building coupling assembling
CN113309230A (en) * 2021-06-18 2021-08-27 科宁工程科技(南京)有限公司 Shock-absorbing engineering is with can two-way roll pendulum isolation bearing

Similar Documents

Publication Publication Date Title
US9080624B2 (en) Disk brake with stabilized brake pads, and related methods for assembling and replacing a pad
US7547142B2 (en) Self-centering sliding bearing
JP5535075B2 (en) Rolling bearing with brake device
EA029606B1 (en) Floating brake pad for a train
EP2789871A2 (en) Bicycle disc brake apparatus
US10690181B2 (en) Angular contact roller bearing and method and device for the assembly thereof
US10865829B2 (en) Method and device for producing an angular contact roller bearing
WO2009037134A3 (en) Thrust bearing and suspension for vehicle
JP2017508113A (en) Swivel seat bearing with self-locking bearing
JP2005351450A (en) Small diameter ball forced circulation rolling passage structure and small diameter ball circulation passage structure for supporting rolling ball base isolation
US11402003B2 (en) Self-erecting threaded spindle module for a motor vehicle brake
US20090304320A1 (en) Radial cylinder roller bearing
JP2014015965A (en) Sliding and steel ball composite base isolation support device
KR101943527B1 (en) Ball joint being capable of applying pre-load
JP4489097B2 (en) Seismic isolation device
CN106402583A (en) Supporting seat for adjusting mechanical equipment
JP5107775B2 (en) Seismic isolation bearing structure
JP5042942B2 (en) Thrust bearing assembly method
US9771972B2 (en) Self-leveling thrust bearing retainer
WO2013062904A1 (en) Roller separator for spherical roller bearings
CN216867732U (en) Long-life pendulum support
JP5004374B1 (en) Sliding, steel ball compound seismic isolation device.
JPH11350784A (en) Base isolation support
US20160017915A1 (en) Rolling bearing and method for manufacturing such a rolling bearing
JP2000017890A (en) Vibration isolation device