JP2005342856A - Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition - Google Patents

Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition Download PDF

Info

Publication number
JP2005342856A
JP2005342856A JP2004166791A JP2004166791A JP2005342856A JP 2005342856 A JP2005342856 A JP 2005342856A JP 2004166791 A JP2004166791 A JP 2004166791A JP 2004166791 A JP2004166791 A JP 2004166791A JP 2005342856 A JP2005342856 A JP 2005342856A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
cemented carbide
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004166791A
Other languages
Japanese (ja)
Inventor
Akihiro Kondou
暁裕 近藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004166791A priority Critical patent/JP2005342856A/en
Publication of JP2005342856A publication Critical patent/JP2005342856A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer exerting excellent chipping resistance on an intermittent double cutting condition. <P>SOLUTION: This cutting tool is constituted by forming the hard coating layer constituted of (a) a lower part layer having average layer thickness of 1 to 10 μm and made of a composite nitride layer of Ti, Al and Si satisfying a composition formula: (Ti<SB>1-(X+Z)</SB>Al<SB>X</SB>Si<SB>Z</SB>)N (X shows 0.45 to 0.70 and Z shows 0.01 to 0.15 in an atomic ratio) and (b) an upper part layer made of a zirconium oxide layer having average layer thickness of 0.5 to 5 μm, on the surface of a cemented carbide base body made of tungsten carbide based cemented carbide or titanium carbonitride based cermet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工に際して、特にスローアウエイチップを高切り込みや高送りなどの重切削条件での断続切削に用いた場合や、断続切削形態をとるエンドミルやドリルなどによる切削加工を重切削条件で行った場合にも、切削時に発生する高い機械的熱的衝撃にもかかわらず、硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示す表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention is an end mill for cutting various workpieces such as steel and cast iron, especially when the throwaway tip is used for intermittent cutting under heavy cutting conditions such as high cutting and high feed, Even when cutting with heavy duty or drilling is performed under heavy cutting conditions, the hard coating layer exhibits excellent chipping resistance despite the high mechanical thermal shock that occurs during cutting, and it is excellent over a long period of time. The present invention relates to a surface-coated cemented carbide cutting tool that exhibits high wear resistance (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)、
を満足するTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層からなる硬質被覆層を1〜10μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Siによる一段の耐熱性向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1- (X + Z) Al X Si Z ) N (wherein, X is 0.45 to 0.70, Z is 0.01 to 0.15 in atomic ratio),
Coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and Si (hereinafter referred to as (Ti, Al, Si) N) satisfying The (Ti, Al, Si) N layer has high-temperature hardness and heat resistance due to Al as a constituent component, high-temperature strength due to Ti, and further improved heat resistance due to Si. Together, it is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast iron.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装着し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、まず、装置内を真空雰囲気とし、前記超硬基体には、例えば−1000Vのバイアス電圧を印加し、一方カソード電極として装着されたボンバード洗浄用金属Crとアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させて、前記超硬基体表面をCrボンバード洗浄し、ついで硬質被覆層である(Ti,Al,Si)N層形成用カソード電極(蒸発源)として装着された所定組成を有するTi−Al−Si合金とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793773号明細書
Furthermore, the above-mentioned coated carbide tool is equipped with, for example, the above-mentioned carbide substrate in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. In a state heated to a temperature of 500 ° C., the inside of the apparatus is first set in a vacuum atmosphere, and a bias voltage of, for example, −1000 V is applied to the cemented carbide substrate, while a bombard cleaning metal Cr and an anode mounted as a cathode electrode For example, an arc discharge is generated between the electrode and the electrode, for example, at a current of 90 A, and the surface of the cemented carbide substrate is subjected to Cr bombard cleaning, and then a cathode electrode for forming a (Ti, Al, Si) N layer that is a hard coating layer For example, an arc discharge is generated between a Ti—Al—Si alloy having a predetermined composition mounted as an (evaporation source) and an anode electrode under the condition of current: 90 A, and at the same time, an apparatus Nitrogen gas is introduced as a reaction gas to form a reaction atmosphere of 2 Pa, for example. On the other hand, the above carbide substrate is subjected to (Ti, It is also known to be produced by vapor-depositing a hard coating layer consisting of an Al, Si) N layer.
Japanese Patent No. 2793773

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する効率化の要求も強く、これに伴い、切削加工を切削条件である切り込みや送りなどを大きくした重切削条件で行う傾向にあるが、上記の従来被覆超硬工具においては、これを鋼や鋳鉄などの切削加工を通常の切削加工条件で行うのに用いた場合には問題はないが、特にスローアウエイチップを高切り込みや高送りなどの重切削条件での断続切削に用いた場合や、断続切削形態をとるエンドミルやドリルなどによる切削加工を重切削条件で行った場合には、切削時に発生する高い機械的熱的衝撃によって相対的に高硬度を有する上記(Ti,Al,Si)N層にチッピング(微少欠け)が発生するようになり、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while there is also a strong demand for efficiency in cutting, and along with this, cutting tends to be performed under heavy cutting conditions with large cutting conditions such as cutting and feeding. However, in the conventional coated carbide tool described above, there is no problem when it is used for cutting steel or cast iron under normal cutting conditions. When it is used for interrupted cutting under heavy cutting conditions such as feed, or when cutting with an end mill or drill that takes the form of intermittent cutting is performed under heavy cutting conditions, the high mechanical thermal shock generated during cutting Chipping (slight chipping) is generated in the (Ti, Al, Si) N layer having a relatively high hardness, and this is the current situation in which the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に断続重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al,Si)N層を下部層とし、これの上に上部層として酸化ジルコニウム(以下、ZrOで示す)層を形成すると、前記ZrO層は、切削時の発生熱で著しく靭性化して、断続重切削時に発生する高い機械的熱的衝撃を十分に吸収し、下部層である前記(Ti,Al,Si)N層に前記衝撃が及ばないように作用することから、前記(Ti,Al,Si)N層におけるチッピング発生がなくなり、前記(Ti,Al,Si)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the inventors of the present invention have developed the above-mentioned conventional coated carbide tool to develop a coated carbide tool that exhibits excellent chipping resistance with an excellent hard coating layer under intermittent heavy cutting conditions. As a result of paying attention and conducting research,
(A) When a (Ti, Al, Si) N layer, which is a hard coating layer of the conventional coated carbide tool, is used as a lower layer, and a zirconium oxide (hereinafter referred to as ZrO 2 ) layer is formed thereon as an upper layer. The ZrO 2 layer is remarkably toughened by the heat generated during cutting, sufficiently absorbs the high mechanical thermal shock generated during intermittent heavy cutting, and the (Ti, Al, Si) N layer as the lower layer. Therefore, the occurrence of chipping in the (Ti, Al, Si) N layer is eliminated, and the excellent characteristics of the (Ti, Al, Si) N layer are sufficient for a long period of time. To be demonstrated in.

(b)上記(a)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存する蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)としてTi−Al−Si合金、他方側に前記SP装置のカソード電極(蒸発源)として金属Zrを対向配置し、さらに前記AIP装置のカソード電極としてボンバード洗浄用金属Crを配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を真空雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、まず、前記金属Crとアノード電極との間にアーク放電を発生させて、前記超硬基体表面をCrボンバード洗浄した後、前記蒸着装置内の雰囲気を窒素雰囲気として、前記Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に下部層として(Ti,Al,Si)N層を1〜10μmの平均層厚で蒸着し、ついで、前記SP装置のカソード電極(蒸発源)として配置した金属Zrのスパッタリングを開始し、同時に前記蒸着装置内の雰囲気を、窒素雰囲気に代って、酸素雰囲気とする条件で、前記(Ti,Al,Si)N層に重ねて上部層として0.5〜5μmの平均層厚でZrO層を蒸着することにより形成することができること。
以上(a)および(b)に示される研究結果を得たのである。
(B) The hard coating layer of (a) is, for example, an arc ion plating apparatus (hereinafter, abbreviated as AIP apparatus) having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in (b). And a sputtering apparatus (hereinafter abbreviated as SP apparatus), that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and the cathode of the AIP apparatus is placed on one side of the rotary table. Ti—Al—Si alloy as an electrode (evaporation source), metal Zr as a cathode electrode (evaporation source) of the SP apparatus on the other side, and a bombard cleaning metal Cr as a cathode electrode of the AIP apparatus. Using a vapor deposition device, a plurality of cemented carbide substrates are mounted in a ring shape along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table of the device. First, the metal Cr and the anode electrode are rotated while rotating the rotary table with the atmosphere inside the apparatus as a vacuum atmosphere and rotating the carbide substrate itself for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. Between the cathode and the anode of the Ti—Al—Si alloy and the anode, the surface of the carbide substrate is cleaned with Cr bombardment, and the atmosphere in the deposition apparatus is a nitrogen atmosphere. An arc discharge is generated between the electrodes and a (Ti, Al, Si) N layer is deposited as a lower layer on the surface of the cemented carbide substrate with an average layer thickness of 1 to 10 μm, and then the cathode of the SP apparatus. Sputtering of metal Zr arranged as an electrode (evaporation source) is started, and at the same time, the atmosphere in the vapor deposition apparatus is changed to an oxygen atmosphere instead of a nitrogen atmosphere (Ti, Al , Si) N layer can be formed by vapor-depositing a ZrO 2 layer with an average layer thickness of 0.5 to 5 μm as an upper layer.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)1〜10μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)を満足する(Ti,Al,Si)N層からなる下部層、
(b)0.5〜5μmの平均層厚を有するZrO層からなる上部層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、断続重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) having an average layer thickness of 1 to 10 μm and a composition formula: (Ti 1− (X + Z) Al X Si Z ) N (wherein, in terms of atomic ratio, X is 0.45 to 0.70, Z Is a lower layer composed of a (Ti, Al, Si) N layer satisfying 0.01 to 0.15),
(B) an upper layer composed of a ZrO 2 layer having an average layer thickness of 0.5 to 5 μm,
The present invention is characterized by a coated carbide tool that forms a hard coating layer constituted by (a) and (b) and exhibits excellent chipping resistance under intermittent heavy cutting conditions.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および平均層厚
硬質被覆層の下部層を構成する(Ti,Al,Si)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には高温強度を向上させ、さらに同Si成分にはAlとの共存において一段と耐熱性を向上させる作用があるが、Alの割合を示すX値がTiとSiとの合量に占める割合(原子比、以下同じ)で0.45未満になると、相対的にTiの割合が多くなり過ぎて、すぐれた高温硬さと耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、チッピングが発生し易くなることから、X値を0.45〜0.70と定めた。
また、Siの割合を示すZ値がTiとAlの合量に占める割合で、0.01未満では、所望の耐熱性向上効果が得られず、一方同Z値が0.15を超えると、高温強度が低下するようになることから、Z値を0.01〜0.15と定めた。
さらに、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が10μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer composition formula and average layer thickness The Al component in the (Ti, Al, Si) N layer constituting the lower layer of the hard coating layer improves high temperature hardness and heat resistance, while the Ti component Although the high-temperature strength is improved and the Si component has the effect of further improving the heat resistance in the coexistence with Al, the ratio of the Al value to the total amount of Ti and Si (atomic ratio, If the ratio is less than 0.45, the proportion of Ti is relatively increased, and excellent high-temperature hardness and heat resistance cannot be ensured, and wear progresses rapidly. When the X value indicating the Al ratio exceeds 0.70, the Ti ratio is relatively decreased, the high-temperature strength rapidly decreases, and chipping is likely to occur. It was determined as 45 to 0.70.
Moreover, if the Z value indicating the proportion of Si is a proportion of the total amount of Ti and Al, and less than 0.01, the desired heat resistance improvement effect cannot be obtained, while if the Z value exceeds 0.15, Since the high-temperature strength is lowered, the Z value is determined to be 0.01 to 0.15.
Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 10 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 1 to 10 μm.

(b)上部層の平均層厚
上部層を構成するZrO層は、上記の通り切削時の発生熱で著しく靭性化して、断続重切削時に発生する高い機械的熱的衝撃を十分に吸収し、下部層である前記(Ti,Al,Si)N層に前記衝撃が及ばないようにする作用を有するが、その平均層厚が0.5μm未満では、前記作用を十分に発揮することができず、一方その平均層厚が5μmを越えて厚くなり過ぎると、偏摩耗の原因となる熱塑性変形を起こし易くなり、摩耗が促進されるようになることから、その平均層厚を0.5〜5μmと定めた。
(B) Average layer thickness of the upper layer The ZrO 2 layer constituting the upper layer is significantly toughened by the heat generated during cutting as described above, and sufficiently absorbs the high mechanical and thermal shock generated during intermittent heavy cutting. The lower layer (Ti, Al, Si) N layer has the effect of preventing the impact from being exerted. However, when the average layer thickness is less than 0.5 μm, the effect can be sufficiently exerted. On the other hand, if the average layer thickness exceeds 5 μm and becomes too thick, it tends to cause thermoplastic deformation that causes uneven wear and promotes wear. It was set to 5 μm.

この発明の被覆超硬工具は、硬質被覆層を構成する上部層のZrO層の作用で断続重切削時に発生する高い機械的熱的衝撃が吸収され、前記高衝撃が下部層の(Ti,Al,Si)N層に及ばないことから、断続重切削条件での切削加工でも、前記(Ti,Al,Si)N層にチッピングの発生なく、これの具備するすぐれた高温硬さと耐熱性、およびすぐれた高温強度によってすぐれた耐摩耗性を長期に亘って発揮するものである。 The coated carbide tool of the present invention absorbs the high mechanical thermal shock generated during intermittent heavy cutting by the action of the ZrO 2 layer of the upper layer constituting the hard coating layer, and the high impact is absorbed by (Ti, Since it does not reach the Al, Si) N layer, even in cutting under intermittent heavy cutting conditions, the (Ti, Al, Si) N layer does not generate chipping, and has excellent high-temperature hardness and heat resistance, In addition, excellent wear resistance is exhibited over a long period of time due to excellent high-temperature strength.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al−Si合金を配置し、他方側のSP装置のカソード電極(蒸発源)として上部層形成用金属Zrを対向配置し、さらにAIP装置のカソード電極としてボンバード洗浄用金属Crも配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄し、
(c)上記のボンバード洗浄用金属Crのカソード電極とアノード電極との間のアーク放電を停止し、装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、上記の下部層形成用Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、超硬基体への直流バイアス電圧(−100V)は同じくしたままで、前記SP装置のカソード電極(蒸発源)として配置した金属Zrに、スパッタ出力:3kWの条件でスパッタリングを開始し、同時に前記蒸着装置内の雰囲気を、窒素雰囲気に代って、3Paの酸素雰囲気とし、もって同じく表3に示される目標層厚のZrO層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Ti-Al for forming a lower layer having a predetermined composition as a cathode electrode (evaporation source) of an AIP device on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table -Si alloy is disposed, the upper layer forming metal Zr is disposed opposite to the cathode electrode (evaporation source) of the other SP device, and the bombard cleaning metal Cr is also disposed as the cathode electrode of the AIP device,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the metal Cr of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the surface of the carbide substrate with Cr bombardment,
(C) The arc discharge between the cathode electrode and the anode electrode of the bombard cleaning metal Cr described above is stopped, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa, and on the rotary table A DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating at the same time, and a current of 100 A is passed between the Ti—Al—Si alloy of the cathode electrode and the anode electrode to generate arc discharge, Thus, a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 3 is deposited on the surface of the cemented carbide substrate as a lower layer of the hard coating layer.
(D) Next, the arc discharge between the cathode electrode and the anode electrode of the Ti-Al-Si alloy for forming the lower layer is stopped, and the DC bias voltage (-100 V) to the carbide substrate remains the same. Then, sputtering was started on the metal Zr arranged as the cathode electrode (evaporation source) of the SP apparatus under the condition of sputtering output: 3 kW, and at the same time, the atmosphere in the vapor deposition apparatus was changed to a 3 Pa oxygen atmosphere instead of a nitrogen atmosphere. Thus, by subjecting the ZrO 2 layer having the target layer thickness shown in Table 3 to vapor deposition as the upper layer of the hard coating layer, the present invention surface-coated carbide throwaway tip (hereinafter referred to as the present invention coated carbide tool) 1 to 16) were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置、すなわち、カソード電極(蒸発源)として種々の成分組成をもった硬質被覆層である(Ti,Al,Si)N層形成用Ti−Al−Si合金を装着し、さらにカソード電極としてボンバード洗浄用金属Crも配置したアークイオンプレーティング装置に装入し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Ti—Al—Si alloy for forming a (Ti, Al, Si) N layer, which is a hard coating layer having various component compositions, as a cathode electrode (evaporation source), and a bombard as a cathode electrode An arc ion plating apparatus in which cleaning metal Cr is also placed is charged. First, the interior of the apparatus is heated to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.1 Pa or less. Applying a DC bias voltage of −1000 V to the hard substrate and causing a current of 100 A to flow between the metal Cr and the anode electrode of the cathode electrode to generate an arc discharge, thereby making the carbide substrate The surface was cleaned with Cr bombardment, and then nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa, and the bias voltage applied to the cemented carbide substrate was lowered to -100 V, and the Ti-Al-Si Arc discharge is generated between the cathode electrode and the anode electrode of the alloy, so that the target compositions shown in Table 4 are formed on the surfaces of the carbide substrates A-1 to A-10 and B-1 to B-6, respectively. Further, a conventional surface-coated carbide throwaway tip (hereinafter referred to as a conventional coated tip) as a conventional coated carbide tool is formed by vapor-depositing a (Ti, Al, Si) N layer having a target layer thickness as a hard coating layer. 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:170m/min.、
切り込み:4mm、
送り:0.15mm/rev.、
切削時間:10分、
の条件(切削条件A)での合金鋼の乾式断続高切り込み切削加工試験(通常の切り込みは2mm)、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:210m/min.、
切り込み:1.8mm、
送り:0.6mm/rev.、
切削時間:10分、
の条件(切削条件B)での鋳鉄の乾式断続高送り切削加工試験(通常の送りは0.3mm/rev.)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:3.5mm、
送り:0.5mm/rev.、
切削時間:10分、
の条件(切削条件C)での炭素鋼の乾式断続高切り込み・高送り切削加工試験(通常の切り込みおよび送りは2mmおよび0.3mm/rev.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 170 m / min. ,
Incision: 4mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Dry-intermittent high-cut cutting test of alloy steel under the above conditions (cutting condition A) (normal cutting is 2 mm)
Work material: JIS / FC250 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 210 m / min. ,
Cutting depth: 1.8mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
A dry interrupted high feed cutting test of cast iron under the conditions (cutting condition B) (normal feed is 0.3 mm / rev.),
Work material: JIS / S50C lengthwise equal 4 round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 3.5mm,
Feed: 0.5 mm / rev. ,
Cutting time: 10 minutes,
Of carbon steel under the above conditions (cutting condition C), a dry intermittent high cutting and high feed cutting test (normal cutting and feed are 2 mm and 0.3 mm / rev.). The flank wear width was measured. The measurement results are shown in Table 5.

Figure 2005342856
Figure 2005342856

Figure 2005342856
Figure 2005342856

Figure 2005342856
Figure 2005342856

Figure 2005342856
Figure 2005342856

Figure 2005342856
Figure 2005342856

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる下部層と、同じく表7に示される目標層厚のZrO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. And a lower layer composed of a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 7, and an upper layer composed of a ZrO 2 layer having the target layer thickness also shown in Table 7 The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention coated carbide tools were produced by vapor-depositing the hard coating layer composed of

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. By depositing a hard coating layer composed of a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 7 under the same conditions as in Example 1 above, as a conventional coated carbide tool Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・FC300の板材、
切削速度:80m/min.、
溝深さ(切り込み):4mm、
テーブル送り:450mm/分、
の条件での鋳鉄の乾式高切り込み溝切削加工試験(通常の溝深さは2mm)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・S45Cの板材、
切削速度:80m/min.、
溝深さ(切り込み):3.5mm、
テーブル送り:700mm/分、
の条件での炭素鋼の乾式高送り溝切削加工試験(通常のテーブル送りは450 mm/分)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCM440の板材、
切削速度:60m/min.、
溝深さ(切り込み):12mm、
テーブル送り:400mm/分、
の条件での合金鋼の乾式高切り込み・高送り溝切削加工試験(通常の溝深さおよびテーブル送りは8mmおよび240mm/分)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm plate material of JIS / FC300,
Cutting speed: 80 m / min. ,
Groove depth (cut): 4 mm
Table feed: 450mm / min,
For the cast iron dry type high-grooving groove cutting test (normal groove depth is 2 mm), the present invention coated end mills 4 to 6 and the conventional coated end mills 4 to 6
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS / S45C plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 700mm / min,
With respect to the carbon steel dry type high feed groove cutting test (normal table feed is 450 mm / min), the present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm, JIS / SCM440 plate,
Cutting speed: 60 m / min. ,
Groove depth (cut): 12 mm,
Table feed: 400mm / min,
We performed dry high-cut and high-feed groove cutting tests (normal groove depth and table feed of 8 mm and 240 mm / min) for alloy steel under the above conditions. The cutting groove length was measured until the flank wear width reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 7, respectively.

Figure 2005342856
Figure 2005342856

Figure 2005342856
Figure 2005342856

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる下部層と、同じく表8に示される目標層厚のZrO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 and the ZrO having the target layer thickness also shown in Table 8 are used. By forming a hard coating layer composed of two upper layers by vapor deposition, the surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present invention coated carbide tools are provided. Each was manufactured.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. By charging the apparatus and vapor-depositing a hard coating layer comprising a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above. Conventional surface coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SNCM439の板材、
切削速度:40m/min.、
送り:0.4mm/rev.、
穴深さ:8mm、
の条件での合金鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.2mm/rev.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・S45Cの板材、
切削速度:50m/min.、
送り:0.5mm/rev、
穴深さ:16mm、
の条件での炭素鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.25mm/rev.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・FC300の板材、
切削速度:70m/min.、
送り:0.7mm/rev、
穴深さ:32mm、
の条件での鋳鉄の湿式高送り穴あけ切削加工試験(通常の送りは0.4mm/rev.)、をそれぞれ行い、いずれの湿式高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS / SNCM439 plate material,
Cutting speed: 40 m / min. ,
Feed: 0.4 mm / rev. ,
Hole depth: 8mm,
About the wet high feed drilling test of the alloy steel under the conditions (normal feed is 0.2 mm / rev.), The present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS / S45C plate material,
Cutting speed: 50 m / min. ,
Feed: 0.5mm / rev,
Hole depth: 16mm,
With respect to the carbon steel wet high feed drilling test (normal feed is 0.25 mm / rev.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm plate material of JIS / FC300,
Cutting speed: 70 m / min. ,
Feed: 0.7mm / rev,
Hole depth: 32mm,
We performed high-feed drilling machining test of cast iron under normal conditions (normal feed is 0.4mm / rev.), And any wet high-feed drilling test (using water-soluble cutting oil) The number of drilling processes until the flank wear width of the surface reached 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 2005342856
Figure 2005342856

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al,Si)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al,Si)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   The hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tools obtained as a result (Ti, Al, Si) ) From the composition of the N layer (lower layer) and the conventional coated chips 1-16 as a conventional coated carbide tool, the conventional coated end mills 1-8, and the (Ti, Al, Si) N layer of the conventional coated drills 1-8 When the composition of the resulting hard coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the constituent layers of the hard coating layer was measured by a cross-section using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層を構成する上部層のZrO層の作用で断続重切削時に発生する高い機械的熱的衝撃が吸収され、前記高衝撃が下部層の(Ti,Al,Si)N層に及ばないことから、断続重切削条件での切削加工でも、前記(Ti,Al,Si)N層にチッピングの発生なく、前記(Ti,Al,Si)N層の有するすぐれた高温硬さと耐熱性、さらにすぐれた高温強度が確保されることから、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が(Ti,Al,Si)N層で構成された従来被覆超硬工具においては、いずれも硬質被覆層である前記(Ti,Al,Si)N層が断続重切削時に発生する高い機械的熱的衝撃に耐えられず、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, the coated carbide tool of the present invention absorbs the high mechanical and thermal shock generated during intermittent heavy cutting by the action of the ZrO 2 layer of the upper layer constituting the hard coating layer. Since the high impact does not reach the (Ti, Al, Si) N layer of the lower layer, the (Ti, Al, Si) N layer does not generate chipping even in cutting under intermittent heavy cutting conditions. (Ti, Al, Si) N layer has excellent high-temperature hardness and heat resistance, as well as excellent high-temperature strength, ensuring excellent wear resistance over a long period of time, hard coating In the conventional coated carbide tool whose layer is composed of a (Ti, Al, Si) N layer, the (Ti, Al, Si) N layer, which is a hard coating layer, is highly mechanically generated during intermittent heavy cutting. It cannot withstand thermal shock and chipping occurs. It is clear that the service life is reached in a relatively short time due to this.

上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い機械的熱的衝撃を伴なう断続重切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の効率化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel and cast iron, but also for intermittent heavy cutting with particularly high mechanical and thermal shock. However, since it exhibits excellent wear resistance without chipping and exhibits excellent cutting performance over a long period of time, it is fully satisfactory for improving the performance of cutting equipment and increasing the efficiency of cutting. It can be done.

被覆超硬工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises a coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)1〜10μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)を満足するTiとAlとSiの複合窒化物層からなる下部層、
(b)0.5〜5μmの平均層厚を有する酸化ジルコニウム層からなる上部層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、断続重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 1 to 10 μm and a composition formula: (Ti 1− (X + Z) Al X Si Z ) N (wherein, in terms of atomic ratio, X is 0.45 to 0.70, Z Is a lower layer composed of a composite nitride layer of Ti, Al, and Si that satisfies 0.01 to 0.15),
(B) an upper layer comprising a zirconium oxide layer having an average layer thickness of 0.5 to 5 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under intermittent heavy cutting conditions, formed by forming the hard coating layer composed of (a) and (b) above.
JP2004166791A 2004-06-04 2004-06-04 Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition Pending JP2005342856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166791A JP2005342856A (en) 2004-06-04 2004-06-04 Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166791A JP2005342856A (en) 2004-06-04 2004-06-04 Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition

Publications (1)

Publication Number Publication Date
JP2005342856A true JP2005342856A (en) 2005-12-15

Family

ID=35495688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166791A Pending JP2005342856A (en) 2004-06-04 2004-06-04 Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition

Country Status (1)

Country Link
JP (1) JP2005342856A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209336A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2793773B2 (en) * 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP2002254204A (en) * 2001-02-23 2002-09-10 Mmc Kobelco Tool Kk Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793773B2 (en) * 1994-05-13 1998-09-03 神鋼コベルコツール株式会社 Hard coating, hard coating tool and hard coating member excellent in wear resistance
JPH08209336A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2002254204A (en) * 2001-02-23 2002-09-10 Mmc Kobelco Tool Kk Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip

Similar Documents

Publication Publication Date Title
JP2009125832A (en) Surface-coated cutting tool
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4535250B2 (en) Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2007007765A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high-hardness steel
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP2004338008A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4211500B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3962921B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP2004322279A (en) Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance under high speed double cutting condition
JP2005342856A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance on intermittent double cutting condition
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070601

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Effective date: 20100701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101118

Free format text: JAPANESE INTERMEDIATE CODE: A02