JP2005337764A - Conveyance device and dangerous substance detection device using it - Google Patents

Conveyance device and dangerous substance detection device using it Download PDF

Info

Publication number
JP2005337764A
JP2005337764A JP2004154052A JP2004154052A JP2005337764A JP 2005337764 A JP2005337764 A JP 2005337764A JP 2004154052 A JP2004154052 A JP 2004154052A JP 2004154052 A JP2004154052 A JP 2004154052A JP 2005337764 A JP2005337764 A JP 2005337764A
Authority
JP
Japan
Prior art keywords
neutron
conveyance
transfer device
moving part
closed space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004154052A
Other languages
Japanese (ja)
Inventor
Takahiro Tadokoro
孝広 田所
Kazuhiro Takeuchi
一浩 竹内
Yukio Kawakubo
幸雄 川久保
Manabu Aoki
学 青木
Masaki Matsumoto
雅喜 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004154052A priority Critical patent/JP2005337764A/en
Publication of JP2005337764A publication Critical patent/JP2005337764A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Control Of Conveyors (AREA)
  • Specific Conveyance Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an explosive detection device using a neutron method capable of avoiding a problem of reflection line protection by streaming or the like, and having the large number of detections (throughput) per unit time and a light device weight. <P>SOLUTION: Concerning a conveyance device and the explosive detection device using it, a device is provided, having the conveyance device equipped with a moving part and a fixed part, and forming a space constituted of the moving part and the fixed part as one or a plurality of closed spaces and open spaces by allowing a part or the whole of the moving part to be brought close to or separated from the fixed part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は搬送装置及びそれを用いた危険物検知装置に係り、例えば空港における荷物検査で荷物に爆発物や禁制薬物が混入されていないかを検知するものに関するものである。   The present invention relates to a transport apparatus and a dangerous substance detection apparatus using the same, and relates to an apparatus for detecting whether or not explosives or forbidden drugs are mixed in a luggage, for example, in a luggage inspection at an airport.

爆発物及び禁制薬物を検知する従来技術としては、検査対象物内部の密度や形状を測定することで爆発物及び禁制薬物を同定するX線CT法や、検査対象物からの爆発物及び禁制薬物蒸気の検出により爆発物及び禁制薬物を同定する化学的検出法、あるいは検査対象物の元素成分分布を測定することで爆発物及び禁制薬物を同定する中性子法などが知られている。ここで、爆発物及び禁制薬物は、その構成元素(例えば、炭素,酸素,窒素など)の元素含有量が、他の物質と差別化できるので、このような元素の含有量を測定できる中性子法は爆発物及び禁制薬物の検知に有効な手段である。   Conventional techniques for detecting explosives and forbidden drugs include the X-ray CT method for identifying explosives and forbidden drugs by measuring the density and shape of the inside of the test object, and explosives and forbidden drugs from the test object. There are known chemical detection methods for identifying explosives and forbidden drugs by detecting vapor, or neutron methods for identifying explosives and forbidden drugs by measuring the distribution of elemental components of a test object. Here, explosives and forbidden drugs can be distinguished from other substances in the element content of their constituent elements (for example, carbon, oxygen, nitrogen, etc.), so the neutron method can measure the content of such elements Is an effective means for detecting explosives and forbidden drugs.

X線CT法は、形状や密度分布から爆発物を比較的詳細に分類できるという利点を有するが、例えばプラスチック爆発物のようにカモフラージュ用物質と組み合わせて成型された爆発物及び禁制薬物の検知は困難である。また、化学的検出法は爆発物及び禁制薬物の蒸気を検出する必要がある。したがって、密封された容器に収納されて蒸気を外部に放出しないようになっている爆発物の検知は困難である。中性子法はこのように有効な手段ではあるが、中性子法を用いた爆発物及び禁制薬物検知装置においては、中性子のストリーミング等による放射線防護上の問題があり使用することが困難であった。また、放射線防護上の問題がなくなるように、前記ストリーミング等を防ぐためには、移動部分を曲線的または迷路状にするなどの必要があり、搬送装置を含めた装置全体が大きくなり、装置重量も増加するという問題があった。ストリーミング等による放射線防護上の問題を回避する方法としては、移動部分に開閉扉を設けて中性子線が発生している時間は扉を開けて移動部分を移動させ、搬送物を搬送する方法としては特開平1−92648号公報が知られている。   The X-ray CT method has the advantage that explosives can be classified in relatively detail from the shape and density distribution, but detection of explosives and forbidden drugs molded in combination with camouflage substances such as plastic explosives is not possible. Have difficulty. Chemical detection methods also need to detect explosives and forbidden drug vapors. Therefore, it is difficult to detect an explosive that is housed in a sealed container so as not to release steam to the outside. The neutron method is an effective means as described above. However, explosives and forbidden drug detectors using the neutron method are difficult to use due to radiation protection problems due to neutron streaming and the like. In addition, in order to prevent the above-mentioned streaming and the like so as to eliminate radiation protection problems, it is necessary to make the moving part curved or maze-like, and the entire apparatus including the transport apparatus becomes large, and the apparatus weight also increases. There was a problem of increasing. As a method of avoiding radiation protection problems due to streaming etc., as a method of transporting the transported goods by opening and closing the door at the moving part and opening the door to move the moving part during the time when the neutron beam is generated Japanese Laid-Open Patent Publication No. 1-92648 is known.

特開平1−92648号公報JP-A-1-92648

上記従来技術(特開平1−92648号公報)では、遮蔽を兼ねた扉自身の重量が重いため扉の開閉に時間を要することと、扉を開けて中性子線の発生を停止した時のみ搬送物を搬送した場合、実質的に搬送時間が多くかかってしまい、危険物検査のスループットが低下してしまうという問題があった。   In the above prior art (Japanese Patent Laid-Open No. 1-92648), the door itself, which also serves as a shield, is heavy, so it takes time to open and close the door, and only when the door is opened and the generation of neutrons is stopped However, there has been a problem that it takes a lot of time for transportation and the throughput of the dangerous goods inspection is lowered.

本発明の目的は、ストリーミング等による放射線防護上の問題を回避した上で、単位時間あたりの検知数(スループット)が高く、装置重量が軽い、中性子法を用いた搬送装置及びそれを用いた危険物検知装置を提供することである。   An object of the present invention is to avoid a problem of radiation protection due to streaming or the like, and to have a high number of detections (throughput) per unit time and a light weight of the apparatus, and a transport apparatus using the neutron method and a danger using the same. It is to provide an object detection device.

本発明は、上記の目的を達成するために、回転軸と共に回転する回転床、該回転床を複数に仕切る仕切り部からなり、その仕切られた回転床に搬送物が載置される移動部分と、該移動部分に隣接して設置され、該移動部分の前記仕切り部で仕切られた部分の1つと密着して閉空間を形成する固定部分とからなり、前記閉空間内にある搬送物の危険物を検知する手段を提供するものである。   In order to achieve the above object, the present invention comprises a rotating bed that rotates together with a rotating shaft, and a partition that partitions the rotating bed into a plurality of parts, and a moving part on which a conveyed product is placed on the partitioned rotating bed, And a fixed part that is installed adjacent to the moving part and forms a closed space in close contact with one of the parts partitioned by the partitioning part of the moving part. A means for detecting an object is provided.

本発明によれば、ストリーミング等による放射線防護上の問題を回避した上で、単位時間当たりの検知数(スループット)が高く、装置重量が軽い、中性子法を用いた爆発物検知装置を供給できる。   According to the present invention, it is possible to supply an explosives detection device using a neutron method that has a high number of detections (throughput) per unit time and a low device weight, while avoiding radiation protection problems due to streaming or the like.

本発明の実施の形態を説明するために、本発明が適用される爆発物検知装置の概略構造を図1を用いて説明する。尚、図1に示す基本構造は、爆発物の他に禁制薬物検知にも使用できる。   In order to describe an embodiment of the present invention, a schematic structure of an explosives detection device to which the present invention is applied will be described with reference to FIG. The basic structure shown in FIG. 1 can be used for detecting forbidden drugs in addition to explosives.

図1に示す如く爆発物検知装置1は、コンベア等からなる搬入装置2aで搬送される搬送物(検査対象物)3,該搬送物3を搬出する搬出装置2b,検査空間5,トリチウムと重水素の核融合反応を用いて高速中性子(以下、単に中性子と呼ぶ)とα線検出器7a,中性子と物質との核反応により発生するγ線を検出するγ線検出器12a,搬送物3が検査空間5内に設置してあることを監視する検査対象物監視装置13,開空間4,検査空間5が開または閉空間になっていることを検知する開または閉空間検知装置14,開空間4,検査空間5が開または閉空間になっていることを検知する開及び閉空間検知装置14及び検査空間5の外部の中性子束を測定する中性子検出器15aを有する。検査対象物監視装置13からの信号は、中性子発生制御装置6bに接続されており、搬送物(検査対象物)3が検査空間5内に存在する場合のみ、中性子を発生させる働きをする。開及び閉空間検知装置14は、検査空間5が閉空間であるか開空間であるか検知する装置であり、開及び閉空間検知装置14からの信号は、中性子発生制御装置6bに接続しており、検査空間5が閉空間を形成した場合のみ中性子を発生させる働きをする。開及び閉空間検知装置14は、検査空間5が閉空間であるか開空間であるか検知する装置であり、開及び閉空間検知装置14からの信号は、中性子発生制御装置6bに接続しており、中性子検出器15aにおいて一定の大きさ以上の中性子束を検出した場合、中性子発生を止める働きをする。α線検出器7aからの信号はα線検出回路7bを通して同時計数信号処理装置16に送る。トリチウムと重水素の核融合反応で発生する中性子とα線は、ほぼ180°方向に発生する。また、中性子のエネルギーが14MeV、α線のエネルギーが3.5MeV と決まっていることから中性子とα線の速度が一定であることと、γ線の速さが中性子及びα線の速さと比較して十分早いことから、中性子発生点9と2次元上に設置したα線検出器7aの位置を固定しておけば、α線検出時刻とγ線検出時刻を固定することができる。γ線のエネルギーを測定することで、元素の種類と位置を固定することができる。同時計数信号処理装置16では、α線検出回路7b及びγ線検出回路12bからの信号から、同じ核融合反応によって生じたα線と中性子に起因しているα線とγ線の信号であるとの判別を行い、データ収集・解析装置17において、α線検出時刻,γ線検出時刻及びγ線エネルギーの値をもとに元素の3次元分布を導出し、爆発物の元素構成データと比較することで、爆発物の位置及び量を同定する。また、出力装置18によって、同定結果を表示する。   As shown in FIG. 1, the explosives detection device 1 includes a transported object (inspection object) 3 carried by a carry-in device 2a comprising a conveyor, an unloading device 2b for unloading the transported object 3, an inspection space 5, tritium and A fast neutron (hereinafter simply referred to as neutron) and α-ray detector 7a using a hydrogen fusion reaction, a γ-ray detector 12a for detecting γ-rays generated by a nuclear reaction between a neutron and a substance, and a carrier 3 Inspection object monitoring device 13 for monitoring that it is installed in inspection space 5, open space 4, open or closed space detection device 14 for detecting that inspection space 5 is open or closed space, open space 4, an open / closed space detector 14 for detecting that the inspection space 5 is open or closed, and a neutron detector 15a for measuring a neutron flux outside the inspection space 5. The signal from the inspection object monitoring device 13 is connected to the neutron generation control device 6 b and functions to generate neutrons only when the transported object (inspection object) 3 exists in the inspection space 5. The open and closed space detection device 14 is a device that detects whether the examination space 5 is a closed space or an open space, and a signal from the open and closed space detection device 14 is connected to the neutron generation control device 6b. The neutron is generated only when the inspection space 5 forms a closed space. The open and closed space detection device 14 is a device that detects whether the examination space 5 is a closed space or an open space, and a signal from the open and closed space detection device 14 is connected to the neutron generation control device 6b. When the neutron detector 15a detects a neutron flux of a certain size or more, it functions to stop neutron generation. The signal from the α-ray detector 7a is sent to the coincidence signal processing device 16 through the α-ray detection circuit 7b. Neutrons and α rays generated by the fusion reaction of tritium and deuterium are generated in a direction of approximately 180 °. Also, since the neutron energy is 14 MeV and the α-ray energy is 3.5 MeV, the neutron and α-ray velocities are constant, and the γ-ray speed is compared with the neutron and α-ray velocities. Therefore, if the positions of the neutron generation point 9 and the α-ray detector 7a installed two-dimensionally are fixed, the α-ray detection time and the γ-ray detection time can be fixed. By measuring the energy of γ-rays, the type and position of the element can be fixed. In the coincidence signal processing device 16, the signals from the α-ray detection circuit 7b and the γ-ray detection circuit 12b are α-ray and γ-ray signals caused by the same α-ray and neutron generated by the same fusion reaction. In the data collection / analysis device 17, a three-dimensional distribution of elements is derived based on the values of the alpha ray detection time, the gamma ray detection time, and the gamma ray energy, and is compared with the elemental composition data of the explosive. Thus, the position and amount of explosives are identified. Further, the identification result is displayed by the output device 18.

本実施形態における爆発物検知装置の構成の他の一例について図2に示す。図1との違いは、中性子発生装置6aにおける中性子発生反応に、重水素と重水素との核融合反応を用いたことである。重水素と重水素との核融合反応によって、2.5MeV のエネルギーをもつ中性子を発生する。発生した中性子を中性子減速材19によってエネルギーの低い熱中性子に変換し、この熱中性子検査対象物3に照射する。熱中性子が物質中に捕獲された時に放出するγ線を、γ線検出器12aによって測定する。放出するγ線のエネルギーは、元素によって特有の値を持つことから、γ線のエネルギーを測定することで元素の同定ができる。この装置では、元素の3次元分布を測定することが困難であるため、検査対象物3全体または一部分の元素量を測定することになる。したがって、爆発物検知精度は高速中性子を用いた方法と比較して低下するが、発生する中性子がエネルギーの低い中性子であることから、装置遮蔽に用いる遮蔽壁の厚さが高速中性子を用いる装置と比較して薄くすることができ、装置全体の重量が軽くなるという利点がある。   FIG. 2 shows another example of the configuration of the explosive detection device in the present embodiment. The difference from FIG. 1 is that the fusion reaction of deuterium and deuterium was used for the neutron generation reaction in the neutron generator 6a. A neutron having an energy of 2.5 MeV is generated by a fusion reaction between deuterium and deuterium. The generated neutrons are converted into thermal neutrons with low energy by the neutron moderator 19 and irradiated on the thermal neutron inspection object 3. Γ-rays emitted when thermal neutrons are trapped in the substance are measured by the γ-ray detector 12a. Since the energy of the emitted γ-ray has a specific value depending on the element, the element can be identified by measuring the energy of the γ-ray. In this apparatus, since it is difficult to measure the three-dimensional distribution of elements, the amount of the element in the whole or a part of the inspection object 3 is measured. Therefore, the explosives detection accuracy is lower than the method using fast neutrons, but the generated neutrons are low energy neutrons. Compared to this, there is an advantage that the thickness can be reduced and the weight of the entire apparatus is reduced.

図3a及び図3bに本発明の実施形態における爆発物検知装置の搬送部分の一例を示す。搬送部分は、コンベア等からなる搬入装置2a,搬出装置2b,複数枚の扉で構成される搬送装置回転扉20,搬送装置回転軸21,搬送装置固定壁22,搬送装置回転床23a及び搬送装置回転天井23bを有する。搬入装置2aから、複数の搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23bで構成される開空間4に、検査対象物3を搬入する。開空間4に搬入した検査対象物3は、搬送装置回転軸21を中心に回転する搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23bで構成される開空間内に設置し、回転が進むにつれて、搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23bと、搬送装置固定扉22が密着することによって、検査空間5が閉空間を形成する。搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23b及び搬送装置固定壁22は、中性子及びγ線の遮蔽壁としての性能を有しており、形成した閉空間は、中性子及びγ線の遮蔽空間になっている。中性子遮蔽壁としては、水,ポリエチレン,ボロン入りポリエチレン,コンクリート,水素化リチウム及びフッ素化リチウム等が好ましい。γ線遮蔽材としては、鉄,ステンレス,鉛及びチタン等が好ましい。このように、搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23bと搬送装置固定壁22が遮蔽空間を形成したときに、中性子発生装置6aから中性子を発生する。   An example of the conveyance part of the explosives detection apparatus in embodiment of this invention is shown to FIG. 3a and 3b. The transfer portion includes a carry-in device 2a composed of a conveyor and the like, a carry-out device 2b, a transfer device rotating door 20 composed of a plurality of doors, a transfer device rotating shaft 21, a transfer device fixing wall 22, a transfer device rotating floor 23a, and a transfer device. It has a rotating ceiling 23b. The inspection object 3 is carried from the carry-in device 2a into the open space 4 constituted by the plurality of transfer device rotary doors 20, the transfer device rotary floor 23a, and the transfer device rotary ceiling 23b. The inspection object 3 carried into the open space 4 is installed in an open space composed of a transport device rotating door 20 that rotates around the transport device rotating shaft 21, a transport device rotating floor 23a, and a transport device rotating ceiling 23b. As the rotation proceeds, the inspection space 5 forms a closed space by closely contacting the transfer device rotating door 20, the transfer device rotating floor 23a, the transfer device rotating ceiling 23b, and the transfer device fixing door 22. The transfer device rotary door 20, the transfer device rotary floor 23a, the transfer device rotary ceiling 23b, and the transfer device fixed wall 22 have performance as shielding walls for neutrons and γ rays. It is a shielded space for lines. As the neutron shielding wall, water, polyethylene, polyethylene containing boron, concrete, lithium hydride, lithium fluoride and the like are preferable. As the γ-ray shielding material, iron, stainless steel, lead, titanium and the like are preferable. Thus, neutrons are generated from the neutron generator 6a when the transfer device rotary door 20, the transfer device rotary floor 23a, the transfer device rotary ceiling 23b, and the transfer device fixed wall 22 form a shielding space.

検査対象物3の構成元素と中性子が核反応を起こして発生するγ線を遮蔽空間内に設置したγ線検出器12aで検出する。搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23bと搬送装置固定壁22が遮蔽空間を形成したことの検知は、閉空間外に設置した開及び閉空間検知装置14で検知し、閉空間を形成したときのみ、中性子を発生させる。また、閉空間外には、中性子検出器15aも設置し、一定の大きさ以上の中性子束を検出した場合、中性子発生を止める働きをする。回転が進むにつれて、搬送装置回転扉20と搬送装置回転床23a及び搬送装置回転天井23bと、搬送装置回転壁22が離れることによって、検査対象物3を設置した空間が開空間を形成し、開空間を形成したときに検査対象物3を搬出する。このように、搬送装置回転扉20と搬送装置回転床23aと搬送装置回転天井23b及び搬送装置固定壁22が形成する空間を、連続的に開空間及び閉空間とし、閉空間を形成する時に中性子を照射して検査を行い、開空間を形成する時に検査対象物3の搬入搬出を行うことで、ストリーミング等における放射線防護上の問題を回避した上で、単位時間当たりの検知数(スループット)が高く、装置重量が軽い、中性子法を用いた爆発物検知装置を提供できる。   The γ-ray generated by the nuclear reaction between the constituent element of the inspection object 3 and the neutron is detected by the γ-ray detector 12a installed in the shielding space. The detection that the transfer device rotating door 20, the transfer device rotating floor 23a, the transfer device rotating ceiling 23b, and the transfer device fixed wall 22 form a shielded space is detected by the open and closed space detection device 14 installed outside the closed space. Only when a closed space is formed, neutrons are generated. In addition, a neutron detector 15a is also installed outside the closed space, and functions to stop neutron generation when a neutron flux of a certain size or more is detected. As the rotation progresses, the transfer device rotating door 20, the transfer device rotating floor 23a, the transfer device rotating ceiling 23b, and the transfer device rotating wall 22 are separated, so that the space in which the inspection object 3 is installed forms an open space. When the space is formed, the inspection object 3 is carried out. As described above, the space formed by the transfer device rotating door 20, the transfer device rotating floor 23a, the transfer device rotating ceiling 23b, and the transfer device fixed wall 22 is continuously opened and closed, and neutrons are formed when forming the closed space. The number of detections per unit time (throughput) is reduced by carrying in and out the inspection object 3 when forming an open space, avoiding radiation protection problems in streaming and the like. It is possible to provide an explosive detection device using a neutron method that is high and light in weight.

図4に本発明の実施の形態における爆発物検知装置の搬送部分の他の実施例を示す。搬入方向と搬出方向を一直線状にすることで、他の爆発物検知装置との組み合わせがし易くなった。   FIG. 4 shows another example of the transport portion of the explosives detection device in the embodiment of the present invention. By making the carry-in direction and the carry-out direction straight, it becomes easy to combine with other explosives detection devices.

図5に本発明の実施の形態における爆発物検知装置の搬送部分の他の実施例を示す。搬送装置回転扉20の枚数を増やすことで、一定の回転速度で回転させた場合、単位時間当たりの検知数(スループット)を向上させることができる。   FIG. 5 shows another example of the transport portion of the explosives detection device in the embodiment of the present invention. By increasing the number of conveyance device revolving doors 20, the number of detections (throughput) per unit time can be improved when the conveyance device revolving door 20 is rotated at a constant rotation speed.

図6に放射線実効線量分布を計算した結果を示す。装置構成材料として、ボロン入りポリエチレン及びステンレスを用いた場合、大型X線CT装置と同程度の重量(10t以下)及び大きさで、装置表面の実効線量が0.6μSv/h 以下と放射線防護上問題がないことを確認した。   FIG. 6 shows the result of calculating the effective radiation dose distribution. When polyethylene and stainless steel containing boron are used as the material for the equipment, the effective dose on the equipment surface is 0.6 μSv / h or less with the same weight (less than 10 t) and size as large X-ray CT equipment. Confirmed that there was no problem.

図7a〜図7cに、本発明の実施の形態における開及び閉空間検知装置14の一実施例を示す。搬送装置回転軸21を中心に回転する搬送装置回転扉20の回転にともなって、搬送装置回転扉20と開及び閉空間検知器14aが接触する。開及び閉空間検知装置14は、接触したという信号をもとに閉空間であることを判断する。その後、搬送装置回転軸21を中心に回転する搬送装置回転扉20のさらなる回転にともなって、搬送装置回転扉20によって開及び閉空間検知器14aが押され、開及び閉空間検知器支持用軸14cを中心に回転する。開及び閉空間検知器14aは、バネ等で搬送装置回転扉22に押さえつけられるようにしている。搬送装置回転軸21を中心に回転する搬送装置回転扉20のさらなる回転にともなって、搬送装置回転扉20と開及び閉空間検知装置14aが離れ、離れたという信号をもとに開空間であることを判断する。   7a to 7c show an example of the open and closed space detecting device 14 in the embodiment of the present invention. With the rotation of the conveyance device rotation door 20 that rotates about the conveyance device rotation shaft 21, the conveyance device rotation door 20 and the open / closed space detector 14a come into contact with each other. The open / closed space detecting device 14 determines that the space is closed based on a signal that the contact has been made. Thereafter, along with the further rotation of the transport device rotating door 20 that rotates about the transport device rotating shaft 21, the open / closed space detector 14a is pushed by the transport device rotating door 20, and the open / closed space detector support shaft. It rotates around 14c. The open / closed space detector 14a is pressed against the transfer device rotating door 22 by a spring or the like. With the further rotation of the transfer device rotating door 20 that rotates about the transfer device rotating shaft 21, the transfer device rotating door 20 and the open / closed space detecting device 14a are separated from each other. Judge that.

図8a〜図8hに、本発明の実施の形態における搬送物の搬送方法の一実施例を示す。コンベア等からなる搬入装置2aから検査対象物3を押し出すことで、検査対象物3を設置する。検査対象物搬入用台26から、検査対象設置台24上に検査対象物設置台24を検査対象物設置台用固定台27に設置する。検査対象物搬入用台26は回転可能な構造となっており、検査対象物3の形状に応じて、効率良く中性子が照射できる角度に、検査対象物3が設置してある検査対象物設置台24の検査対象物設置台用固定台27に対する角度を設定できる。検査が終わった検査対象物3は、検査対象物設置台24に取り付けてあるフックを引っ張ることによって検査対象物設置台24とともに引き出し、検査対象物搬出台25に設置する。検査対象物搬出台25上の検査対象物設置台24上の検査対象物3をコンベア等からなる搬出装置2bに押し出すことで搬出する。検査対象物3を押し出した後、上部に何も設置していない状態の検査対象物設置台24を、検査対象物設置台移動装置28によって、搬入装置2aの前面に設置してある検査対象物搬入台26に移動して固定する。上記の手順を連続的に繰り返すことで、連続的に検査対象物3の搬入及び搬出を行う。   8a to 8h show an example of a method for conveying a conveyed product in the embodiment of the present invention. The inspection object 3 is installed by extruding the inspection object 3 from the carry-in device 2a including a conveyor. The inspection object installation table 24 is installed on the inspection object installation table fixing table 27 on the inspection object installation table 24 from the inspection object loading table 26. The inspection object carry-in table 26 has a rotatable structure, and the inspection object installation base in which the inspection object 3 is installed at an angle at which neutrons can be efficiently irradiated according to the shape of the inspection object 3. The angle with respect to 24 inspection object installation stand fixing bases 27 can be set. The inspection object 3 that has been inspected is pulled out together with the inspection object installation table 24 by pulling a hook attached to the inspection object installation table 24, and installed on the inspection object carry-out table 25. The inspection object 3 on the inspection object installation stand 24 on the inspection object carry-out stand 25 is unloaded by being pushed out to a carry-out device 2b composed of a conveyor or the like. After the inspection object 3 is pushed out, the inspection object installation table 24 in a state where nothing is installed on the upper part is installed on the front surface of the carry-in device 2a by the inspection object installation table moving device 28. Move to the loading table 26 and fix. By repeating the above procedure continuously, the inspection object 3 is continuously carried in and out.

本発明の爆発物検知装置のシステムのフロー図。The flow chart of the system of the explosive detection device of the present invention. 本発明の他の爆発物検知装置のシステムのフロー図。The flowchart of the system of the other explosives detection apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の概略図。Schematic of the explosives detection apparatus using the conveying apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の概略図。Schematic of the explosives detection apparatus using the conveying apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の搬送部分構造の断面図。Sectional drawing of the conveyance partial structure of the explosives detection apparatus using the conveyance apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の搬送部分構造の正面図。The front view of the conveyance partial structure of the explosives detection apparatus using the conveyance apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の搬送部分構造の断面図。Sectional drawing of the conveyance partial structure of the explosives detection apparatus using the conveyance apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の閉空間検知図。The closed space detection figure of the explosives detection apparatus using the conveying apparatus of this invention. 本発明の搬送装置を用いた爆発物検知装置の搬送のシーケンス。The sequence of conveyance of the explosives detection apparatus using the conveyance apparatus of this invention.

符号の説明Explanation of symbols

1…爆発物検知装置、2a…搬入装置、2b…搬出装置、3…検査対象物、4…開空間、5…検査空間、6a…中性子発生装置、6b…中性子発生制御装置、7a…α線検出器、7b…α線検出回路、8…α線、9…中性子発生点、10a…高速中性子、10b…熱中性子、11…γ線、12a…γ線検出器、12b…γ線検出回路、13…検査対象物監視装置、14…開及び閉空間検知装置。

DESCRIPTION OF SYMBOLS 1 ... Explosives detection apparatus, 2a ... Carry-in apparatus, 2b ... Carry-out apparatus, 3 ... Inspection object, 4 ... Open space, 5 ... Inspection space, 6a ... Neutron generator, 6b ... Neutron generation control apparatus, 7a ... Alpha ray Detector, 7b ... α ray detection circuit, 8 ... α ray, 9 ... neutron generation point, 10a ... fast neutron, 10b ... thermal neutron, 11 ... γ ray, 12a ... γ ray detector, 12b ... γ ray detection circuit, 13 ... Inspection object monitoring device, 14 ... Open and closed space detection device.

Claims (8)

回転軸と共に回転する回転床、該回転床を複数に仕切る仕切り部からなり、その仕切られた回転床に搬送物が載置される移動部分と、該移動部分に隣接して設置され、該移動部分の前記仕切り部で仕切られた部分の1つと密着して閉空間を形成する固定部分と、前記閉空間内にある搬送物の危険物を検知する手段を備えていることを特徴とする搬送装置。   A rotating bed that rotates together with the rotating shaft, and a partition part that divides the rotating bed into a plurality of parts, a moving part on which the conveyed product is placed on the partitioned rotating bed, and a moving part that is installed adjacent to the moving part and moves A conveyance part comprising: a fixed part that is in close contact with one of the parts partitioned by the partition part to form a closed space; and means for detecting a dangerous substance of a conveyed product in the closed space. apparatus. 前記回転床は円形状を成し、かつ、仕切り部は前記円形状の回転床の中心にある回転軸から複数放射状に延びる回転扉から成ることを特徴とする請求項1記載の搬送装置。   2. The conveying apparatus according to claim 1, wherein the rotary floor has a circular shape, and the partition portion includes a rotary door extending radially from a rotary shaft at the center of the circular rotary floor. 前記搬送物の危険物を検知する手段は、中性子発生装置であることを特徴とする請求項1又は2記載の搬送装置。   3. The transport apparatus according to claim 1, wherein the means for detecting a dangerous substance in the transported object is a neutron generator. 請求項1ないし3のいずれかに記載の搬送装置と、該搬送装置の閉空間が位置する部分に設置され、中性子を発生する中性子発生装置と、該中性子発生装置によって発生する荷電粒子を検出する荷電粒子検出器と、前記中性子発生装置で発生した中性子を照射した際に搬送物から発生するγ検出器と、取得した荷電粒子及びγ線の信号に基づいて作成される搬送物内の構成元素分布についての情報を出力する手段とを備えていることを特徴とする危険物検知装置。   A neutron generator for generating neutrons, and a charged particle generated by the neutron generator, which is installed in a portion where the closed space of the transfer device is located, and the transfer device according to any one of claims 1 to 3 is detected. A charged particle detector, a γ detector generated from a transported object when irradiated with neutrons generated by the neutron generator, and a constituent element in the transported object created based on the acquired charged particle and γ-ray signals A dangerous substance detection apparatus comprising: means for outputting information about distribution. 前記中性子発生装置は核融合反応を用いて中性子を反応させることを特徴とする請求項4に記載の危険物検知装置。   The hazardous material detection apparatus according to claim 4, wherein the neutron generator reacts neutrons using a fusion reaction. 前記搬送物の形状に応じて該回転床に設けた搬送物設置台の角度を調整することを特徴とする請求項1又は4に記載の危険物検知装置。   The dangerous substance detection apparatus according to claim 1 or 4, wherein an angle of a conveyance installation table provided on the rotating floor is adjusted according to a shape of the conveyance object. 前記移動部分と固定部分の少なくとも一部に、水,ポリエチレン,ボロン入りポリエチレン,コンクリート,水素化リチウム及びフッ化リチウム等の中性子遮蔽材を用いていることを特徴とする請求項1又は4に記載の危険物検知装置。   5. The neutron shielding material such as water, polyethylene, boron-containing polyethylene, concrete, lithium hydride and lithium fluoride is used for at least a part of the moving part and the fixed part. Dangerous goods detection device. 前記移動部分と固定部分の少なくとも一部にγ線遮蔽材を用いていることを特徴とする請求項4に記載の危険物検知装置。


The dangerous substance detection device according to claim 4, wherein a γ-ray shielding material is used for at least a part of the moving part and the fixed part.


JP2004154052A 2004-05-25 2004-05-25 Conveyance device and dangerous substance detection device using it Pending JP2005337764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154052A JP2005337764A (en) 2004-05-25 2004-05-25 Conveyance device and dangerous substance detection device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154052A JP2005337764A (en) 2004-05-25 2004-05-25 Conveyance device and dangerous substance detection device using it

Publications (1)

Publication Number Publication Date
JP2005337764A true JP2005337764A (en) 2005-12-08

Family

ID=35491516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154052A Pending JP2005337764A (en) 2004-05-25 2004-05-25 Conveyance device and dangerous substance detection device using it

Country Status (1)

Country Link
JP (1) JP2005337764A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023628A (en) * 2006-07-19 2008-02-07 Denso Corp Assembling apparatus
JP2009180563A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Explosive inspection device
US10114130B2 (en) 2016-11-29 2018-10-30 Battelle Energy Alliance, Llc Detectors for use with particle generators and related assemblies, systems and methods
CN110118649A (en) * 2019-04-29 2019-08-13 宁波智汇门道系统控制技术有限公司 A kind of two wings rotary door test method
CN110525955A (en) * 2019-09-11 2019-12-03 中山易必固新材料科技有限公司 A kind of revolution door type turning electronic beam curing screening arrangement for plate
CN110579809A (en) * 2019-09-12 2019-12-17 浙江智探安防科技有限公司 Radiation-proof security inspection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023628A (en) * 2006-07-19 2008-02-07 Denso Corp Assembling apparatus
JP2009180563A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Explosive inspection device
US10114130B2 (en) 2016-11-29 2018-10-30 Battelle Energy Alliance, Llc Detectors for use with particle generators and related assemblies, systems and methods
CN110118649A (en) * 2019-04-29 2019-08-13 宁波智汇门道系统控制技术有限公司 A kind of two wings rotary door test method
CN110118649B (en) * 2019-04-29 2021-05-28 宁波智汇门道系统控制技术有限公司 Method for testing two-wing revolving door
CN110525955A (en) * 2019-09-11 2019-12-03 中山易必固新材料科技有限公司 A kind of revolution door type turning electronic beam curing screening arrangement for plate
CN110525955B (en) * 2019-09-11 2024-05-07 中山易必固电子束科技有限公司 Rotary door type corner electron beam curing shielding device for plates
CN110579809A (en) * 2019-09-12 2019-12-17 浙江智探安防科技有限公司 Radiation-proof security inspection device

Similar Documents

Publication Publication Date Title
US7492862B2 (en) Computed tomography cargo inspection system and method
KR100261529B1 (en) Apparatus and method for detecting contraband using fast neutron activation
KR102348360B1 (en) Integration of inspection scanners for efficient processing and scanning of cargo containers in port
US7551714B2 (en) Combined X-ray CT/neutron material identification system
US9103925B2 (en) Radiation scanning and disabling of hazardous targets in containers
JP2018077229A (en) Particle detection and applications in security and portal monitoring
US7539283B2 (en) Combined computed tomography and nuclear resonance fluorescence cargo inspection system and method
WO2015034958A1 (en) Radiation-monitoring system with correlated hodoscopes
KR20190028524A (en) Inspection equipment and inspection method
JP3827224B2 (en) Luggage inspection device
JP2005337764A (en) Conveyance device and dangerous substance detection device using it
Licata et al. The potential of real-time, fast neutron and γ radiography for the characterization of low-mass, solid-phase media
Marques et al. Development of a portable neutron detection system for Security and Defense applications
US20090232277A1 (en) System and method for inspection of items of interest in objects
Aleksakhin et al. Use of the tagged neutron technique for detecting dangerous underwater substances
Sibczynski et al. C-BORD-an overview of efficient toolbox for high-volume freight inspection
Pino et al. Non-intrusive inspection of cargo containers using the C-BORD Rapidly Relocatable Tagged Neutron Inspection System
Blackwell The use of cosmic-rays in detecting illicit nuclear materials
Sahoo et al. Radiation Environment in Industrial and Research Facilities
Havenith et al. QUANTOM− Non-destructive scanning of waste packages for material characterization
Jing et al. Tagged Neutron Method Analysis: A Technique for Explosives Detection and Identification
Megahid et al. Low cost combined systems for detection of contraband hidden in cargo containers
CEA et al. CHANCE project
Schwellenbach et al. Passive imaging of warhead-like configurations with cosmic-ray muon tracking scanners
Bücherl et al. A versatile system for the in-field non-destructive characterization of radioactive waste packages and of objects in the defense against nuclear threats

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309