JP2005329375A - Apparatus for generating electrolytic water - Google Patents

Apparatus for generating electrolytic water Download PDF

Info

Publication number
JP2005329375A
JP2005329375A JP2004152358A JP2004152358A JP2005329375A JP 2005329375 A JP2005329375 A JP 2005329375A JP 2004152358 A JP2004152358 A JP 2004152358A JP 2004152358 A JP2004152358 A JP 2004152358A JP 2005329375 A JP2005329375 A JP 2005329375A
Authority
JP
Japan
Prior art keywords
electrode
electrolyzed water
cation exchange
exchange membrane
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004152358A
Other languages
Japanese (ja)
Other versions
JP4249657B2 (en
Inventor
Koichi Miyashita
公一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004152358A priority Critical patent/JP4249657B2/en
Publication of JP2005329375A publication Critical patent/JP2005329375A/en
Application granted granted Critical
Publication of JP4249657B2 publication Critical patent/JP4249657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating electrolytic water obtaining drinking alkaline electrolytic water and acid electrolytic water having the power of disinfection from one apparatus. <P>SOLUTION: The apparatus for generating the electrolytic water includes electrolytic chambers 3 and 4 arranged by facing each other through an ion permeable diaphragm 2, raw water supply means 9, electrodes 6 and 7 provided in the electrolytic chambers 3 and 4, and electrolytic water removing means 18 and 19 for removing the electrolytic water from the electrolytic chambers 3 and 4. The apparatus for generating the electrolytic water further includes a cation exchange membrane 2, a first electrode 6 separately provided in the electrolytic chamber 3 on an anode side from the cation exchange membrane 2 and a second electrode 7 closed so as to integrate with the surface of the cation exchange membrane 3 in the electrolytic chamber 4 on a cathode side. The raw water supply means 9 includes at least anode side raw water supply means 11 for supplying an aqueous solution of chloride to the electrolytic chamber 3. The electrode 6 is served as a mesh-like or porous solid electrode. The electrode 7 is served as a porous body formed by coating the surface of the cation exchange membrane 2 with an electrode material containing a conductive powder and a binding agent, heating and pressuring. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオン透過性隔膜を介して対向配置された1対の電解室に設けられた1対の電極に直流電圧を印加し、各電解室に供給された原水を電解することにより電解水を得る電解水生成装置に関するものである。   The present invention applies electrolysis water by applying a DC voltage to a pair of electrodes provided in a pair of electrolysis chambers arranged opposite to each other via an ion-permeable diaphragm and electrolyzing raw water supplied to each electrolysis chamber. It is related with the electrolyzed water generating apparatus which obtains.

従来、イオン透過性隔膜を介して対向配置された1対の電解室に、それぞれ該イオン透過性隔膜から離間して電極を設け、両電極間に直流電圧を印加して、各電解室に供給された原水を電解する電解水生成装置が知られている。前記電解水生成装置で飲用のアルカリ性電解水を生成させる場合には、両電極間に印加される電圧を調整することにより、陰極側の電解室から飲用のアルカリ性電解水を得ることができる。しかし、このとき同時に陽極側の電解室から得られる酸性電解水は、若干のアストリンゼント効果は認められるものの、残留塩素濃度が低いために十分な殺菌効果を得ることができない。このため、前記酸性電解水に、別途次亜塩素酸ナトリウムを添加することにより殺菌力を付与することも行われている(例えば特許文献1参照)。   Conventionally, an electrode is provided in a pair of electrolytic chambers arranged opposite to each other with an ion-permeable diaphragm, spaced apart from the ion-permeable diaphragm, and a DC voltage is applied between both electrodes to be supplied to each electrolytic chamber. There is known an electrolyzed water generating device for electrolyzing the raw water. When drinking alkaline electrolyzed water is generated by the electrolyzed water generating device, drinking alkaline electrolyzed water can be obtained from the electrolysis chamber on the cathode side by adjusting the voltage applied between both electrodes. At this time, however, the acidic electrolyzed water obtained from the electrolytic chamber on the anode side has a slight astringent effect, but cannot obtain a sufficient sterilizing effect due to the low residual chlorine concentration. For this reason, bactericidal power is also imparted to the acidic electrolyzed water by separately adding sodium hypochlorite (see, for example, Patent Document 1).

前記電解水生成装置では、両電極間に印加される電圧を高くすれば、陽極側の電解室から殺菌力のある酸性電解水を得ることができる。しかし、この場合には陰極側の電解水から得られるアルカリ性電解水はpHが高く、飲用に供することができない。   In the electrolyzed water generating apparatus, if the voltage applied between both electrodes is increased, acidic electrolyzed water having sterilizing power can be obtained from the electrolysis chamber on the anode side. However, in this case, alkaline electrolyzed water obtained from the electrolyzed water on the cathode side has a high pH and cannot be used for drinking.

そこで、1つの装置から飲用のアルカリ性電解水と、殺菌力のある酸性電解水との両方を得るために、複数の電解槽を直列に多段に設ける電解水生成装置が知られている(例えば特許文献2参照)。   Therefore, in order to obtain both drinking alkaline electrolyzed water and sterilizing acidic electrolyzed water from one apparatus, an electrolyzed water generating apparatus is known in which a plurality of electrolytic cells are provided in multiple stages in series (for example, a patent). Reference 2).

しかしながら、複数の電解槽を直列に多段に設けると、装置構成が複雑になり、装置全体が大型になることが避けられないという不都合がある。
特開平7−31980号公報 特開平7−51670号公報
However, if a plurality of electrolytic cells are provided in multiple stages in series, there is an inconvenience that the structure of the apparatus becomes complicated and the entire apparatus cannot be avoided in size.
JP-A-7-31980 JP-A-7-51670

本発明は、かかる不都合を解消して、簡単な装置構成により1つの装置から飲用のアルカリ性電解水と、殺菌力のある酸性電解水との両方を得ることができる電解水生成装置を提供することを目的とする。   The present invention provides an electrolyzed water generating device capable of eliminating both the disadvantages and obtaining both drinking alkaline electrolyzed water and sterilizing acidic electrolyzed water from a single device with a simple device configuration. With the goal.

かかる目的を達成するために、本発明は、イオン透過性隔膜を介して対向配置された1対の電解室と、各電解室に原水を供給する原水供給手段と、該隔膜を挟んで各電解室に設けられた1対の電極と、両電極に直流電圧を印加して該原水供給手段により各電解室に供給された原水を電解することにより得られた電解水を各電解室から取り出す電解水取出手段とを備える電解水生成装置において、該イオン透過性隔膜としての陽イオン交換膜と、陽極側の電解室に該陽イオン交換膜と別体に設けられた第1の電極と、陰極側の電解室に該陽イオン交換膜の表面と一体となるように密着して設けられた第2の電極とを備え、該原水供給手段は、少なくとも陽極側の電解室に塩化物水溶液を供給する陽極側原水供給手段を備えることを特徴とする。   In order to achieve such an object, the present invention provides a pair of electrolysis chambers arranged opposite to each other with an ion-permeable diaphragm, raw water supply means for supplying raw water to each electrolysis chamber, and each electrolysis with the diaphragm interposed therebetween. Electrolysis that takes out electrolyzed water obtained by electrolyzing raw water supplied to each electrolysis chamber by applying a DC voltage to the electrodes and a pair of electrodes provided in the chamber, and from each electrolysis chamber In the electrolyzed water generating apparatus comprising the water extraction means, a cation exchange membrane as the ion permeable diaphragm, a first electrode provided separately from the cation exchange membrane in the electrolytic chamber on the anode side, and a cathode A second electrode provided in close contact with the surface of the cation exchange membrane in the electrolysis chamber on the side, and the raw water supply means supplies an aqueous chloride solution to at least the electrolysis chamber on the anode side An anode side raw water supply means is provided.

本発明の電解水生成装置では、陽極側の電解室には、第1の電極が前記陽イオン交換膜と別体に設けられており、前記陽極側原水供給手段から塩化物水溶液が供給されている。前記第1の電極は、例えば、メッシュ状または多孔質状の固体電極である。   In the electrolyzed water generating apparatus of the present invention, the first electrode is provided separately from the cation exchange membrane in the electrolysis chamber on the anode side, and an aqueous chloride solution is supplied from the anode side raw water supply means. Yes. The first electrode is, for example, a mesh-like or porous solid electrode.

一方、陰極側の電解室には、第2の電極が前記陽イオン交換膜の表面と一体となるように密着して設けられている。前記第2の電極は、例えば、導電性の粉体と結着剤とを含むペースト状の電極材料を前記陽イオン交換膜の表面に塗布し、加熱、加圧することにより形成された多孔質体である。また、陰極側の電解室には、前記原水供給手段により原水が供給されている。前記原水は、飲用となるものであれば、例えば井水でも水道水でもよく、またそれらを活性炭と中空糸膜とで処理した浄水であってもよい。   On the other hand, in the electrolysis chamber on the cathode side, the second electrode is provided in close contact with the surface of the cation exchange membrane. The second electrode is, for example, a porous body formed by applying a paste-like electrode material containing conductive powder and a binder to the surface of the cation exchange membrane, and heating and pressing. It is. Further, raw water is supplied to the electrolysis chamber on the cathode side by the raw water supply means. The raw water may be, for example, well water or tap water, and may be purified water obtained by treating them with activated carbon and a hollow fiber membrane.

そこで、第1、第2の両電極に直流電圧を印加すると、前記陽極側の電解室では、式(1)、(2)に示すように、水の電解により酸素(O2 )と水素イオン(H+ )とが生成する一方、前記塩化物由来の塩素イオン(Cl- )から塩素(Cl2 )が生成する。 Therefore, when a DC voltage is applied to both the first and second electrodes, oxygen (O 2 ) and hydrogen ions are electrolyzed in the electrolysis chamber on the anode side by water electrolysis as shown in equations (1) and (2). While (H + ) is generated, chlorine (Cl 2 ) is generated from chloride ions (Cl ) derived from the chloride.

Figure 2005329375

前記酸素、水素イオン、塩素はいずれも第1の電極の近傍で生成するが、第1の電極を第2の電極のように前記陽イオン交換膜の表面と一体となるように密着して設けると、前記陽イオン交換膜と電極との間で反応が進むために、塩化物水溶液の該電極内への拡散が遅くなり、式(1)で示される水の酸化反応が支配的になる。そこで、この場合には式(2)で示される塩素の生成は少なくなる。
Figure 2005329375

The oxygen, hydrogen ions, and chlorine are all generated in the vicinity of the first electrode, but the first electrode is provided in close contact with the surface of the cation exchange membrane like the second electrode. Since the reaction proceeds between the cation exchange membrane and the electrode, the diffusion of the aqueous chloride solution into the electrode is slowed down, and the water oxidation reaction represented by the formula (1) becomes dominant. In this case, therefore, the production of chlorine represented by the formula (2) is reduced.

この点について、本発明の電解水生成装置では、陽極側の電解室には、第1の電極が前記陽イオン交換膜と別体に設けられているので、通常の電解水生成装置と同様に、式(1)、(2)の両方の反応が起こり、式(2)の反応で生成した塩素が水に溶解して、次式(3)に示すように次亜塩素酸(HClO)となる。   In this regard, in the electrolyzed water generating device of the present invention, the first electrode is provided separately from the cation exchange membrane in the electrolysis chamber on the anode side, so that it is the same as that of a normal electrolyzed water generating device. Then, both the reactions of the formulas (1) and (2) occur, and the chlorine generated by the reaction of the formula (2) is dissolved in water. As shown in the following formula (3), hypochlorous acid (HClO) and Become.

Figure 2005329375

また、前記陽極側の電解室で生成した水素イオンの一部は、前記陽イオン交換膜を透過して、前記陰極側の電解室に移動するが、塩素イオンは陰イオンであるために前記陽イオン交換膜を透過することができず、該陽極側の電解室にとどまっている。この結果、前記陽極側の電解室では、適度の次亜塩素酸を含み、殺菌力のある弱酸性の電解水を得ることができる。
Figure 2005329375

Further, some of the hydrogen ions generated in the electrolytic chamber on the anode side permeate the cation exchange membrane and move to the electrolytic chamber on the cathode side, but since the chloride ions are anions, It cannot pass through the ion exchange membrane and remains in the electrolytic chamber on the anode side. As a result, in the electrolytic chamber on the anode side, weakly acidic electrolyzed water containing moderate hypochlorous acid and having sterilizing power can be obtained.

一方、前記陰極側の電解室では、式(4)、(5)に示すように、水の電解により水素(H2 )と水酸イオン(OH- )とが生成する一方、前記陽イオン交換膜を介して前記陽極側の電解室から移動してくる水素イオンが第2の電極の近傍で還元されて水素となる。 On the other hand, in the electrolysis chamber on the cathode side, as shown in equations (4) and (5), hydrogen (H 2 ) and hydroxide ions (OH ) are generated by electrolysis of water, while the cation exchange is performed. Hydrogen ions moving from the anode-side electrolysis chamber through the membrane are reduced in the vicinity of the second electrode to become hydrogen.

Figure 2005329375

このとき、第2の電極が前記陽イオン交換膜の表面に密着して形成されていることにより、式(4)で示される水の電解と、式(5)で示される水素イオンの還元とでは、式(5)の水素イオンの還元の方が支配的になり、式(4)による水酸イオンの生成が抑制される。
Figure 2005329375

At this time, since the second electrode is formed in close contact with the surface of the cation exchange membrane, electrolysis of water represented by formula (4) and reduction of hydrogen ions represented by formula (5) Then, the reduction | restoration of the hydrogen ion of Formula (5) becomes dominant, and the production | generation of the hydroxide ion by Formula (4) is suppressed.

この結果、前記陰極側の電解室では、水素(H2 )に富み、飲用に適した弱アルカリ性の電解水を得ることができる。尚、前記弱アルカリ性の電解水の健康への好ましい影響(健腸作用等)は、該弱アルカリ性の電解水中に含まれている水素が大きな効果をもたらしているということが最近の研究で着目されている。 As a result, in the electrolysis chamber on the cathode side, weak alkaline electrolyzed water rich in hydrogen (H 2 ) and suitable for drinking can be obtained. In recent studies, it has been noted that the favorable influence (healthy bowel action, etc.) on the health of the weak alkaline electrolyzed water has a large effect due to the hydrogen contained in the weak alkaline electrolyzed water. ing.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の電解水生成装置の一構成例を示すシステム構成図であり、図2は本実施形態の電解水生成装置の他の構成例を示す説明的断面図、図3乃至図4は比較例の電解水生成装置の構成例を示す説明的断面図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a system configuration diagram showing a configuration example of the electrolyzed water generating apparatus of the present embodiment, and FIG. 2 is an explanatory cross-sectional view showing another configuration example of the electrolyzed water generating apparatus of the present embodiment, FIGS. 4 is an explanatory cross-sectional view showing a configuration example of an electrolyzed water generating apparatus of a comparative example.

図1に示すように、本実施形態の電解水生成装置1は、陽イオン交換膜2を介して対向配置された陽極側電解室3と陰極側電解室4とからなる電解槽5を備え、陽極側電解室3には陽イオン交換膜2の表面から離間して陽極側電極6が設けられ、陰極側電解室4には陽イオン交換膜2の表面と一体となるように密着して陰極側電極7が設けられている。電極6,7は、電源装置8に接続され、電極6,7間に直流電極が印加されるようになっている。   As shown in FIG. 1, the electrolyzed water generating apparatus 1 according to this embodiment includes an electrolytic cell 5 including an anode-side electrolysis chamber 3 and a cathode-side electrolysis chamber 4 that are arranged to face each other with a cation exchange membrane 2 interposed therebetween. The anode side electrolysis chamber 3 is provided with an anode side electrode 6 spaced from the surface of the cation exchange membrane 2, and the cathode side electrolysis chamber 4 is in close contact with the surface of the cation exchange membrane 2 so as to be integrated with the cathode. A side electrode 7 is provided. The electrodes 6 and 7 are connected to the power supply device 8, and a DC electrode is applied between the electrodes 6 and 7.

電解水生成装置1は原水供給手段9を備え、原水供給手段9は水道水を供給する主導管10から分岐して陽極側電解室3に原水を供給する陽極側原水供給導管11と、主導管10から分岐して陰極側電解室4に原水を供給する陰極側原水供給導管12とからなる。陽極側原水供給導管11は、途中に食塩水添加装置13を備え、原水の食塩濃度を調整できるようになっている。食塩水添加装置13は、食塩水タンク14と、ポンプ15とからなり、食塩水タンク14からポンプ15を介して陽極側原水供給導管11に食塩水を添加するようになっている。   The electrolyzed water generating apparatus 1 includes raw water supply means 9, and the raw water supply means 9 branches from a main conduit 10 that supplies tap water, and an anode-side raw water supply conduit 11 that supplies raw water to the anode-side electrolysis chamber 3, and a main conduit The cathode side raw water supply conduit 12 is branched from 10 and supplies raw water to the cathode side electrolysis chamber 4. The anode-side raw water supply conduit 11 is provided with a salt solution adding device 13 in the middle so that the salt concentration of the raw water can be adjusted. The salt solution adding device 13 includes a salt solution tank 14 and a pump 15, and adds salt solution from the salt solution tank 14 to the anode side raw water supply conduit 11 via the pump 15.

一方、陰極側原水供給導管12は、途中にフィルター16を備えている。フィルター16は、水道水中の塩素、有機物等を吸着して除去する活性炭フィルターと、比較的大きな分子や微生物等を除去する中空糸膜フィルターとを備えており、水道水中の塩素、有機物が実質的に除去された浄水が原水として陰極側電解室4に供給される。フィルター16は、陰極側原水供給導管12とは別に飲料水導管17を備えており、前記浄水はフィルター16から飲料水導管17を介して取り出され、そのまま飲用にも供される。   On the other hand, the cathode side raw water supply conduit 12 includes a filter 16 in the middle. The filter 16 includes an activated carbon filter that adsorbs and removes chlorine, organic matter, and the like in tap water, and a hollow fiber membrane filter that removes relatively large molecules, microorganisms, and the like. The purified water thus removed is supplied to the cathode side electrolysis chamber 4 as raw water. The filter 16 is provided with a drinking water conduit 17 separately from the cathode side raw water supply conduit 12, and the purified water is taken out from the filter 16 through the drinking water conduit 17 and used for drinking as it is.

電解槽5には、陽極側電解室3から酸性電解水を取り出す酸性電解水取出導管18と、陰極側電解室4からアルカリ性電解水を取り出すアルカリ性電解水取出導管19とが備えられている。アルカリ性電解水取出導管19は、三方弁20を介して飲料水導管17に接続されており、飲料水導管17は三方弁20によりフィルター16から得られる浄水の供給と、陰極側電解室4から得られるアルカリ性電解水の供給とを自在に切り替えることができる。   The electrolytic cell 5 includes an acidic electrolyzed water extraction conduit 18 that extracts acidic electrolyzed water from the anode-side electrolysis chamber 3 and an alkaline electrolyzed water extraction conduit 19 that extracts alkaline electrolyzed water from the cathode-side electrolysis chamber 4. The alkaline electrolyzed water extraction conduit 19 is connected to the drinking water conduit 17 via the three-way valve 20, and the drinking water conduit 17 is supplied from the purified water obtained from the filter 16 by the three-way valve 20 and obtained from the cathode side electrolysis chamber 4. The alkaline electrolyzed water supplied can be switched freely.

陽極側電極6は、メッシュ状または多孔質状の固体電極であり、例えば、チタン製金網に白金とイリジウムとを被覆したものを用いることができる。   The anode side electrode 6 is a mesh-like or porous solid electrode, and for example, a titanium wire net covered with platinum and iridium can be used.

陰極側電極7は、炭化チタン(TiC)、窒化チタン(TiN)等のチタン化合物からなる電極基材に、白金黒、イリジウム黒等の触媒を分散させ、さらに結着剤と混合して得られたペースト状体を、陽イオン交換膜2の表面に所定の形状に塗布し、加熱、加圧することにより形成された多孔質体である。前記結着剤としては、例えば、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、ポリメタクリル酸メチル(PMMA)、ポリスチレン(PS)、酢酸セルロース(CA)等のポリマーを用いることができる。   The cathode side electrode 7 is obtained by dispersing a catalyst such as platinum black or iridium black on an electrode base material made of a titanium compound such as titanium carbide (TiC) or titanium nitride (TiN), and further mixing with a binder. It is a porous body formed by applying the paste-like body to the surface of the cation exchange membrane 2 in a predetermined shape, and heating and pressurizing. Examples of the binder include polymers such as polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polystyrene (PS), and cellulose acetate (CA).

電解水生成装置1では、陽極側原水供給導管11から陽極側電解室3に所定濃度の食塩水を供給すると共に、陰極側原水供給導管12から陰極側電解室4に実質的に塩素と有機物とを含まない浄水を供給する。そして、電源装置8により電極6,7間に所定の直流電圧を印加して、電解を行うことにより、酸性電解水取出導管18から適度の次亜塩素酸を含み、殺菌力のある弱酸性(例えばpH3以上)の電解水を取り出すことができる。また、電解水生成装置1では、前記電解により、アルカリ性電解水取出導管19から水素に富み、飲用に適した弱アルカリ性(例えばpH9以下)の電解水を取り出すことができる。   In the electrolyzed water generating apparatus 1, a predetermined concentration of saline is supplied from the anode-side raw water supply conduit 11 to the anode-side electrolysis chamber 3, and substantially chlorine, organic matter, and the like are supplied from the cathode-side raw water supply conduit 12 to the cathode-side electrolysis chamber 4. Supply clean water that does not contain water. Then, by applying a predetermined DC voltage between the electrodes 6 and 7 by the power supply device 8 and performing electrolysis, the acid electrolyzed water extraction conduit 18 contains moderate hypochlorous acid and has a weakly sterilizing power (bactericidal power). For example, electrolyzed water having a pH of 3 or more can be taken out. Moreover, in the electrolyzed water production | generation apparatus 1, it is rich in hydrogen from the alkaline electrolyzed water extraction conduit | pipe 19 by the said electrolysis, and weak alkaline (for example, pH 9 or less) electrolyzed water suitable for drinking can be taken out.

尚、陽極側電極6は、メッシュ状または多孔質の固体電極を使用する等、構造を工夫することにより、陽イオン交換膜2の表面と接触する位置に配置しても、陽イオン交換膜2の表面から離間して配置した場合と同様の効果を期待することができる。   Even if the anode side electrode 6 is arranged at a position in contact with the surface of the cation exchange membrane 2 by devising the structure such as using a mesh-like or porous solid electrode, the cation exchange membrane 2 The same effect as the case where it arrange | positions away from the surface of this can be anticipated.

次に、本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be described.

本実施例では、図2に示す構成の電解水生成装置21を用いて電解水を生成させた。電解水生成装置21は、図1に示す電解水生成装置1を簡略化したものであり、陽イオン交換膜2を介して対向配置された陽極側電解室3と陰極側電解室4とからなる電解槽5を備え、陽極側電解室3には陽イオン交換膜2の表面から離間して陽極側電極6が設けられ、陰極側電解室4には陽イオン交換膜2の表面と一体となるように密着して陰極側電極7が設けられている。電極6,7は、電源装置8に接続されている。   In this example, electrolyzed water was generated using the electrolyzed water generating device 21 having the configuration shown in FIG. The electrolyzed water generating device 21 is a simplification of the electrolyzed water generating device 1 shown in FIG. 1, and is composed of an anode side electrolysis chamber 3 and a cathode side electrolysis chamber 4 that are arranged to face each other with a cation exchange membrane 2 interposed therebetween. An electrolytic cell 5 is provided, the anode side electrolysis chamber 3 is provided with an anode side electrode 6 spaced from the surface of the cation exchange membrane 2, and the cathode side electrolysis chamber 4 is integrated with the surface of the cation exchange membrane 2. The cathode side electrode 7 is provided in close contact. The electrodes 6 and 7 are connected to the power supply device 8.

陽極側電解室3は、原水として別途調製された所定濃度の食塩水を図示しないポンプにより供給する陽極側原水供給導管11と、電解により得られた酸性電解水を取り出す酸性電解水取出導管18とを備えている。また、陰極側電解室4は、原水として塩素、有機物が実質的に除去された浄水を図示しないポンプにより供給する陰極側原水供給導管12と、電解により得られたアルカリ性電解水を取り出すアルカリ性電解水取出導管19とを備えている。   The anode-side electrolysis chamber 3 includes an anode-side raw water supply conduit 11 that supplies a saline solution of a predetermined concentration separately prepared as raw water by a pump (not shown), and an acidic electrolyzed water extraction conduit 18 that extracts acidic electrolyzed water obtained by electrolysis. It has. Further, the cathode side electrolysis chamber 4 includes a cathode side raw water supply conduit 12 for supplying purified water from which chlorine and organic substances have been substantially removed as raw water by a pump (not shown), and alkaline electrolyzed water for taking out alkaline electrolyzed water obtained by electrolysis. And an extraction conduit 19.

電解水生成装置21において、陽イオン交換膜2はデュポン社製ナフィオン(登録商標)117であり、陽極側電極6はチタン製金網に白金とイリジウムとを被覆した固体電極である。また、陰極側電極7は、325メッシュ以下の炭化チタン(TiC)からなる電極基材と、白金黒とイリジウム黒とを3:7の重量比で混合した触媒と、2%−ポリビニルアルコール溶液からなる結着剤とを、100:5:7の重量比で混合したペースト状混合物を、陽イオン交換膜2上に塗布し、乾燥させた後、80℃、10MPaで30分間加熱、加圧することにより形成されている。   In the electrolyzed water generating apparatus 21, the cation exchange membrane 2 is Nafion (registered trademark) 117 manufactured by DuPont, and the anode side electrode 6 is a solid electrode obtained by coating a titanium wire net with platinum and iridium. Moreover, the cathode side electrode 7 consists of the electrode base material which consists of 325 mesh or less titanium carbide (TiC), the catalyst which mixed platinum black and iridium black by the weight ratio of 3: 7, and 2% -polyvinyl alcohol solution. A paste-like mixture prepared by mixing the binder with a weight ratio of 100: 5: 7 is applied on the cation exchange membrane 2 and dried, and then heated and pressurized at 80 ° C. and 10 MPa for 30 minutes. It is formed by.

次に、陽極側原水供給導管11から0.01Mの食塩水を陽極側電解室3に100ml/分の流量で供給すると共に、陰極側原水供給導管12から塩素、有機物が実質的に除去された浄水を陰極側電解室4に100ml/分の流量で供給し、電源装置8により電極6,7間に5Vの直流電圧を印加して電解を行った。電流密度は30mA/cm2であった。 Next, 0.01 M saline was supplied from the anode-side raw water supply conduit 11 to the anode-side electrolysis chamber 3 at a flow rate of 100 ml / min, and chlorine and organic substances were substantially removed from the cathode-side raw water supply conduit 12. Clean water was supplied to the cathode-side electrolysis chamber 4 at a flow rate of 100 ml / min, and the power supply device 8 applied a DC voltage of 5 V between the electrodes 6 and 7 for electrolysis. The current density was 30 mA / cm 2 .

この結果、酸性電解水取出導管18からは有効塩素濃度25〜30ppm、pH3.4の殺菌力のある酸性電解水が得られ、アルカリ性電解水取出導管19からはpH8.4の飲用に適したアルカリ性電解水が得られた。
〔比較例1〕
本比較例では、図3に示す構成の電解水生成装置22を用いて電解水を生成させた。電解水生成装置22は、陰極側電解室4に陽イオン交換膜2の表面から離間して陰極側電極23が設けられていること以外は、図2に示す電解水生成装置21と全く同一の構成を備えている。陰極側電極23は、実施例1の陽極側電極6と全く同一の個体電極である。
As a result, an acidic electrolyzed water having an effective chlorine concentration of 25 to 30 ppm and a pH of 3.4 is obtained from the acidic electrolyzed water outlet conduit 18, and the alkaline electrolyzed water outlet conduit 19 is alkaline suitable for drinking at a pH of 8.4. Electrolyzed water was obtained.
[Comparative Example 1]
In this comparative example, electrolyzed water was generated using the electrolyzed water generating device 22 having the configuration shown in FIG. The electrolyzed water generating device 22 is exactly the same as the electrolyzed water generating device 21 shown in FIG. 2 except that the cathode side electrolysis chamber 4 is provided with a cathode side electrode 23 spaced from the surface of the cation exchange membrane 2. It has a configuration. The cathode side electrode 23 is the same solid electrode as the anode side electrode 6 of the first embodiment.

次に、電解水生成装置22を用いた以外は、実施例1と全く同一にして電解を行ったが、電流密度は2〜4mA/cm2であって電解効率が低く、実質的に電解水を得ることができなかった。 Next, electrolysis was performed in exactly the same manner as in Example 1 except that the electrolyzed water generator 22 was used, but the current density was 2 to 4 mA / cm 2 and the electrolysis efficiency was low. Could not get.

そこで、電解水生成装置22を用い、電源装置8により電極6,7間に15Vの直流電圧を印加した以外は、実施例1と全く同一にして電解を行った。電流密度は50mA/cm2であった。 Therefore, electrolysis was performed in exactly the same manner as in Example 1 except that the electrolyzed water generator 22 was used and a DC voltage of 15 V was applied between the electrodes 6 and 7 by the power supply device 8. The current density was 50 mA / cm 2 .

この結果、酸性電解水取出導管18からは有効塩素濃度30〜35ppm、pH2.7の殺菌力のある酸性電解水が得られたが、アルカリ性電解水取出導管19から得られたアルカリ性電解水は、pH10.7で飲用に不適なものであった。アルカリ性電解水は、pH10以上になると、飲用により血中カリウム濃度が高くなった例が報告されていて、飲用に対して不適であるとされている。
〔比較例2〕
本比較例では、図4に示す構成の電解水生成装置24を用いて電解水を生成させた。電解水生成装置24は、陽極側電解室3に陽イオン交換膜2の表面と一体となるように密着して陽極側電極25が設けられていること以外は、図2に示す電解水生成装置21と全く同一の構成を備えている。陽極側電極25は、実施例1の陰極側電極7と全く同一にして形成されている。
As a result, an acidic electrolyzed water having an effective chlorine concentration of 30 to 35 ppm and a pH of 2.7 was obtained from the acidic electrolyzed water outlet conduit 18, but the alkaline electrolyzed water obtained from the alkaline electrolyzed water outlet conduit 19 was It was unsuitable for drinking at pH 10.7. Alkaline electrolyzed water has been reported to have an increased blood potassium concentration due to drinking when the pH is 10 or more, and is considered unsuitable for drinking.
[Comparative Example 2]
In this comparative example, electrolyzed water was generated using the electrolyzed water generating device 24 having the configuration shown in FIG. The electrolyzed water generating device 24 is the electrolyzed water generating device shown in FIG. 2 except that the anode side electrode 25 is provided in close contact with the surface of the cation exchange membrane 2 in the anode side electrolysis chamber 3. 21 has exactly the same configuration. The anode side electrode 25 is formed in exactly the same manner as the cathode side electrode 7 of the first embodiment.

次に、電解水生成装置24を用いた以外は、実施例1と全く同一にして電解を行った。電流密度は126mA/cm2であった。 Next, electrolysis was performed in exactly the same manner as in Example 1 except that the electrolyzed water generator 24 was used. The current density was 126 mA / cm 2 .

この結果、アルカリ性電解水取出導管19からはpH8.7の飲用に適したアルカリ性電解水が得られたが、酸性電解水取出導管18からはpH3.4で、有効塩素濃度1ppm以下のほとんど殺菌力のない酸性電解水が得られた。本比較例では、電解室3,4のいずれにおいても水の電解が支配的であり、陽極側電解室3では塩素イオンの酸化反応は殆ど起きていないものと考えられる。   As a result, alkaline electrolyzed water suitable for drinking having a pH of 8.7 was obtained from the alkaline electrolyzed water outlet conduit 19, but the acidic electrolyzed water outlet conduit 18 had a pH of 3.4 and an almost sterilizing power with an effective chlorine concentration of 1 ppm or less. Acidic electrolyzed water without water was obtained. In this comparative example, water electrolysis is dominant in both the electrolysis chambers 3 and 4, and it is considered that the oxidation reaction of chlorine ions hardly occurs in the anode side electrolysis chamber 3.

本実施例では、図1に示す構成の電解水生成装置1を用いて電解水を生成させた。電解水生成装置1は、図2に示す電解水生成装置21と全く同一の陽イオン交換膜2、陽極側電極6、陰極側電極7を備えている。   In this example, electrolyzed water was generated using the electrolyzed water generating apparatus 1 having the configuration shown in FIG. The electrolyzed water generating apparatus 1 includes the cation exchange membrane 2, the anode side electrode 6, and the cathode side electrode 7 that are exactly the same as the electrolyzed water generating apparatus 21 shown in FIG.

次に、陽極側原水供給導管11から0.01Mの食塩水を陽極側電解室3に250ml/分の流量で供給すると共に、陰極側原水供給導管12から塩素、有機物が実質的に除去された浄水を陰極側電解室4に250ml/分の流量で供給し、電源装置8により電極6,7間に5Vの直流電圧を印加して電解を行った。水道水のpHは7.1であり、電流密度は30mA/cm2であった。 Next, 0.01 M saline was supplied from the anode-side raw water supply conduit 11 to the anode-side electrolysis chamber 3 at a flow rate of 250 ml / min, and chlorine and organic substances were substantially removed from the cathode-side raw water supply conduit 12. Clean water was supplied to the cathode-side electrolysis chamber 4 at a flow rate of 250 ml / min, and a 5 V DC voltage was applied between the electrodes 6 and 7 by the power supply device 8 for electrolysis. The pH of tap water was 7.1 and the current density was 30 mA / cm 2 .

この結果、酸性電解水取出導管18からは有効塩素濃度26ppm、pH3.4の殺菌力のある酸性電解水が得られ、アルカリ性電解水取出導管19からはpH8.3の飲用に適したアルカリ性電解水が得られた。   As a result, an acidic electrolyzed water having an effective chlorine concentration of 26 ppm and a pH of 3.4 is obtained from the acidic electrolyzed water outlet conduit 18, and an alkaline electrolyzed water suitable for drinking having an pH of 8.3 is obtained from the alkaline electrolyzed water outlet conduit 19. was gotten.

尚、前記実施例1、実施例2では、陰極側原水供給導管12から陰極側電解室4に、水道水を活性炭フィルターと中空糸膜フィルターとで処理した浄水を供給するようにしているが、飲用となるものであれば例えば井水でも水道水であってもよい。   In Example 1 and Example 2, purified water obtained by treating tap water with an activated carbon filter and a hollow fiber membrane filter is supplied from the cathode side raw water supply conduit 12 to the cathode side electrolysis chamber 4. For example, well water or tap water may be used as long as it is drinkable.

本発明の電解水生成装置の一構成例を示すシステム構成図。The system block diagram which shows the example of 1 structure of the electrolyzed water generating apparatus of this invention. 本発明の電解水生成装置の他の構成例を示す説明的断面図。Explanatory sectional drawing which shows the other structural example of the electrolyzed water generating apparatus of this invention. 比較例の電解水生成装置の一構成例を示す説明的断面図。Explanatory sectional drawing which shows the example of 1 structure of the electrolyzed water generating apparatus of a comparative example. 比較例の電解水生成装置の他の構成例を示す説明的断面図。Explanatory sectional drawing which shows the other structural example of the electrolyzed water generating apparatus of a comparative example.

符号の説明Explanation of symbols

1…電解水生成装置、 2…イオン透過性隔膜(陽イオン交換膜)、 3…陽極側の電解室、 4…陰極側の電解室、 6…第1の電極、 7…第2の電極、 11…陽極側原水供給手段、 12…陰極側原水供給手段、 18,19…電解水取出手段。   DESCRIPTION OF SYMBOLS 1 ... Electrolyzed water production | generation apparatus, 2 ... Ion-permeable separation membrane (cation exchange membrane), 3 ... Electrolytic chamber on the anode side, 4 ... Electrolytic chamber on the cathode side, 6 ... 1st electrode, 7 ... 2nd electrode, DESCRIPTION OF SYMBOLS 11 ... Anode side raw | natural water supply means, 12 ... Cathode side raw | natural water supply means, 18, 19 ... Electrolyzed water extraction means.

Claims (3)

イオン透過性隔膜を介して対向配置された1対の電解室と、各電解室に原水を供給する原水供給手段と、該隔膜を挟んで各電解室に設けられた1対の電極と、両電極に直流電圧を印加して該原水供給手段により各電解室に供給された原水を電解することにより得られた電解水を各電解室から取り出す電解水取出手段とを備える電解水生成装置において、
該イオン透過性隔膜としての陽イオン交換膜と、陽極側の電解室に該陽イオン交換膜と別体に設けられた第1の電極と、陰極側の電解室に該陽イオン交換膜の表面と一体となるように密着して設けられた第2の電極とを備え、
該原水供給手段は、少なくとも陽極側の電解室に塩化物水溶液を供給する陽極側原水供給手段を備えることを特徴とする電解水生成装置。
A pair of electrolysis chambers disposed opposite to each other with an ion-permeable diaphragm, raw water supply means for supplying raw water to each electrolysis chamber, a pair of electrodes provided in each electrolysis chamber with the diaphragm interposed therebetween, In an electrolyzed water generating apparatus comprising: an electrolyzed water extraction means for taking out electrolyzed water obtained by applying direct current voltage to the electrodes and electrolyzing raw water supplied to each electrolyzing chamber by the raw water supplying means;
A cation exchange membrane as the ion permeable membrane, a first electrode provided separately from the cation exchange membrane in the anode-side electrolysis chamber, and a surface of the cation exchange membrane in the cathode-side electrolysis chamber And a second electrode provided in close contact with each other,
The raw water supply means comprises an anode-side raw water supply means for supplying a chloride aqueous solution to at least the anode-side electrolysis chamber.
前記第1の電極は、メッシュ状または多孔質状の固体電極であることを特徴とする請求項1または請求項2記載の電解水生成装置。   The electrolyzed water generating apparatus according to claim 1 or 2, wherein the first electrode is a mesh or porous solid electrode. 前記第2の電極は、導電性の粉体と結着剤とを含むペースト状の電極材料を前記陽イオン交換膜の表面に塗布し、加熱、加圧することにより形成された多孔質体であることを特徴とする請求項1記載の電解水生成装置。   The second electrode is a porous body formed by applying a paste-like electrode material containing conductive powder and a binder to the surface of the cation exchange membrane, and heating and pressurizing the material. The electrolyzed water generating apparatus according to claim 1.
JP2004152358A 2004-05-21 2004-05-21 Electrolyzed water generator Expired - Fee Related JP4249657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152358A JP4249657B2 (en) 2004-05-21 2004-05-21 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152358A JP4249657B2 (en) 2004-05-21 2004-05-21 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2005329375A true JP2005329375A (en) 2005-12-02
JP4249657B2 JP4249657B2 (en) 2009-04-02

Family

ID=35484366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152358A Expired - Fee Related JP4249657B2 (en) 2004-05-21 2004-05-21 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4249657B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178771A (en) * 2007-01-23 2008-08-07 Matsushita Electric Works Ltd Electrolytic water generator
WO2008130016A1 (en) 2007-04-13 2008-10-30 Yusho Arai Apparatus for producing electrolyzed water, method for producing electrolyzed water, and electrolyzed water
WO2010044272A1 (en) * 2008-10-17 2010-04-22 有限会社スプリング Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water
DE102009005011A1 (en) * 2009-01-17 2010-07-22 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Electrochemical disinfection of drinking- and industrial water or for production of disinfectant concentrates from water with high hard contents using electrolysis cells with anodes, comprises flowing anode space by water to be treated
CN103038176A (en) * 2010-05-03 2013-04-10 金日捧 Portable hydrogen-rich water generator
WO2014114806A1 (en) * 2013-01-28 2014-07-31 Industrie De Nora S.P.A. An electrolyzed water generating method and a generator
JP2016044317A (en) * 2014-08-20 2016-04-04 株式会社アルバック Electrolysis device and method for producing the same, and electrode for electrolysis
JP2016101287A (en) * 2014-11-28 2016-06-02 株式会社魚市 Electrolytic water producing device
WO2020166776A1 (en) * 2019-02-11 2020-08-20 주식회사 보야스에너지 Lithium cation exchange membrane water electrolysis system
WO2022030761A1 (en) * 2020-08-07 2022-02-10 주식회사 보야스에너지 Lithium cation exchange membrane for water electrolysis, and water electrolysis system using same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677993B2 (en) * 2007-01-23 2011-04-27 パナソニック電工株式会社 Electrolyzed water generator
JP2008178771A (en) * 2007-01-23 2008-08-07 Matsushita Electric Works Ltd Electrolytic water generator
WO2008130016A1 (en) 2007-04-13 2008-10-30 Yusho Arai Apparatus for producing electrolyzed water, method for producing electrolyzed water, and electrolyzed water
US8518225B2 (en) 2008-10-17 2013-08-27 Spring Co., Ltd. Apparatus and method for producing hydrogen-dissolved drinking water
WO2010044272A1 (en) * 2008-10-17 2010-04-22 有限会社スプリング Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water
DE102009005011A1 (en) * 2009-01-17 2010-07-22 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Electrochemical disinfection of drinking- and industrial water or for production of disinfectant concentrates from water with high hard contents using electrolysis cells with anodes, comprises flowing anode space by water to be treated
CN103038176B (en) * 2010-05-03 2014-09-03 金日奉 Portable hydrogen-rich water generator
CN103038176A (en) * 2010-05-03 2013-04-10 金日捧 Portable hydrogen-rich water generator
US8974646B2 (en) 2010-05-03 2015-03-10 Ilbong Kim Portable hydrogen-rich water generator
WO2014114806A1 (en) * 2013-01-28 2014-07-31 Industrie De Nora S.P.A. An electrolyzed water generating method and a generator
KR20150110782A (en) * 2013-01-28 2015-10-02 인두스트리에 데 노라 에스.피.에이. An electrolyzed water generating method and a generator
CN104903251B (en) * 2013-01-28 2018-06-05 德诺拉工业有限公司 Electrolysis water production method and generator
EA030556B1 (en) * 2013-01-28 2018-08-31 Индустрие Де Нора С.П.А. Electrolyzed water generating method and generator
KR102218817B1 (en) * 2013-01-28 2021-02-25 인두스트리에 데 노라 에스.피.에이. An electrolyzed water generating method and a generator
JP2016044317A (en) * 2014-08-20 2016-04-04 株式会社アルバック Electrolysis device and method for producing the same, and electrode for electrolysis
JP2016101287A (en) * 2014-11-28 2016-06-02 株式会社魚市 Electrolytic water producing device
WO2020166776A1 (en) * 2019-02-11 2020-08-20 주식회사 보야스에너지 Lithium cation exchange membrane water electrolysis system
WO2022030761A1 (en) * 2020-08-07 2022-02-10 주식회사 보야스에너지 Lithium cation exchange membrane for water electrolysis, and water electrolysis system using same

Also Published As

Publication number Publication date
JP4249657B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP4392354B2 (en) High electrolysis cell
EP2338841A1 (en) Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water
CN103951020B (en) Healthy drinking machine
CN103936109A (en) Drinking water electrolysis preparation device
WO2014006740A1 (en) Device for producing water for preparing dialysate
CN203938504U (en) Drinking-water Electrowinning device and apply the equipment of this device
EP2017229A1 (en) Water treatment device and water treatment method
Yang et al. Ibuprofen removal from drinking water by electro-peroxone in carbon cloth filter
EP2961863B1 (en) Electrochemical module configuration for the continuous acidification of alkaline water sources and recovery of co2 with continuous hydrogen gas production
CN203833744U (en) Commercial water dispenser
JP4249657B2 (en) Electrolyzed water generator
KR102240030B1 (en) Secondary battery for desalinated water production and desalinated apparatus including the same
CN103951118A (en) Business water machine
TW202033456A (en) Hydrogenation method and hydrogenation device
JP2007275778A (en) Electrolytic water producer and method of manufacturing electrolyzed water
CN203833687U (en) Healthy water dispenser
JP2005144240A (en) Electrolytic cell and electrolytic water generator
JP2007307502A (en) Method for generating electrolytic water and electrolytic water generator
JP4249658B2 (en) Electrolyzed water generator
KR101071636B1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
CN205241298U (en) Low -power consumption hydrogen -rich water electrolysis commercial affairs water machine
JP5019422B2 (en) Domestic water supply method and apparatus
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JP6650586B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees