JP2005323331A - Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器 - Google Patents

Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器 Download PDF

Info

Publication number
JP2005323331A
JP2005323331A JP2004323432A JP2004323432A JP2005323331A JP 2005323331 A JP2005323331 A JP 2005323331A JP 2004323432 A JP2004323432 A JP 2004323432A JP 2004323432 A JP2004323432 A JP 2004323432A JP 2005323331 A JP2005323331 A JP 2005323331A
Authority
JP
Japan
Prior art keywords
unit
signal
component
comparison
count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004323432A
Other languages
English (en)
Other versions
JP4470700B2 (ja
Inventor
Yoshitoku Muramatsu
良徳 村松
Noriyuki Fukushima
範之 福島
Yoshikazu Nitta
嘉一 新田
Yukihiro Yasui
幸弘 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004323432A priority Critical patent/JP4470700B2/ja
Priority to US11/268,428 priority patent/US7315273B2/en
Priority to EP09003035A priority patent/EP2065714B1/en
Priority to EP05024229A priority patent/EP1655840B1/en
Priority to DE602005013469T priority patent/DE602005013469D1/de
Priority to TW94138912A priority patent/TWI286904B/zh
Priority to CN2010102009163A priority patent/CN101883220B/zh
Priority to CN2005101315866A priority patent/CN1783958B/zh
Priority to KR1020050106272A priority patent/KR101202167B1/ko
Publication of JP2005323331A publication Critical patent/JP2005323331A/ja
Priority to US11/462,294 priority patent/US7375672B2/en
Priority to US11/462,429 priority patent/US7538709B2/en
Application granted granted Critical
Publication of JP4470700B2 publication Critical patent/JP4470700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】AD変換装置を同一チップ上に搭載した固体撮像装置において、回路規模、消費電力、消費電流、インタフェース用配線数、ノイズなどの問題を解消する。
【解決手段】電圧比較部252とカウンタ部254とを有するカラムAD回路25を垂直信号線19ごとに設ける。電圧比較部252は、行制御線15ごとに垂直信号線19を経由し入力される画素信号と参照電圧RAMPとを比較し、リセット成分や信号成分の各大きさに対応した時間軸方向に大きさを持つパルス信号を生成する。カウンタ部254は、電圧比較部252の比較完了までパルス信号の幅をクロックCK0でカウントし、比較完了時点のカウント値を保持する。通信・タイミング制御部20は、1回目は電圧比較部252でリセット成分を比較処理しカウンタ部254がダウンカウントする一方、2回目は電圧比較部252で信号成分を比較処理しカウンタ部254がアップカウントするように制御する。
【選択図】図1

Description

本発明は、AD(アナログ−デジタル)変換方法およびAD変換装置並びに複数の単位構成要素が配列されてなる物理量分布検知の半導体装置および電子機器に関する。より詳細には、たとえば光や放射線などの外部から入力される電磁波に対して感応性をする複数の単位構成要素が配列されてなり、単位構成要素によって電気信号に変換された物理量分布を、アドレス制御により任意選択して電気信号として読出可能な、たとえば固体撮像装置などの、物理量分布検知の半導体装置やその他の電子機器に用いて好適な、アナログで出力される電気信号をデジタルデータに変換する技術に関する。
光や放射線などの外部から入力される電磁波に対して感応性をする単位構成要素(たとえば画素)をライン状もしくはマトリクス状に複数個配列してなる物理量分布検知半導体装置が様々な分野で使われている。
たとえば、映像機器の分野では、物理量のうちの光(電磁波の一例)を検知するCCD(Charge Coupled Device )型あるいはMOS(Metal Oxide Semiconductor )やCMOS(Complementary Metal-oxide Semiconductor )型の固体撮像装置が使われている。これらは、単位構成要素(固体撮像装置にあっては画素)によって電気信号に変換された物理量分布を電気信号として読み出す。
また、固体撮像装置の中には、電荷生成部で生成された信号電荷に応じた画素信号を生成する画素信号生成部に増幅用の駆動トランジスタを有する増幅型固体撮像素子(APS;Active Pixel Sensor /ゲインセルともいわれる)構成の画素を備えた増幅型固体撮像装置がある。たとえば、CMOS型固体撮像装置の多くはそのような構成をなしている。
このような増幅型固体撮像装置において画素信号を外部に読み出すには、複数の単位画素が配列されている画素部に対してアドレス制御をし、個々の単位画素からの信号を任意に選択して読み出すようにしている。つまり、増幅型固体撮像装置は、アドレス制御型の固体撮像装置の一例である。
たとえば、単位画素がマトリクス状に配されたX−Yアドレス型固体撮像素子の一種である増幅型固体撮像素子は、画素そのものに増幅機能を持たせるために、MOS構造などの能動素子(MOSトランジスタ)を用いて画素を構成している。すなわち、光電変換素子であるフォトダイオードに蓄積された信号電荷(光電子)を前記能動素子で増幅し、画像情報として読み出す。
この種のX−Yアドレス型固体撮像素子では、たとえば、画素トランジスタが2次元行列状に多数配列されて画素部が構成され、ライン(行)ごとあるいは画素ごとに入射光に対応する信号電荷の蓄積が開始され、その蓄積された信号電荷に基づく電流または電圧の信号がアドレス指定によって各画素から順に読み出される。ここで、MOS(CMOSを含む)型においては、アドレス制御の一例として、1行分を同時にアクセスして行単位で画素信号を画素部から読み出す方式が多く用いられている。
画素部から読み出されたアナログの画素信号は、必要に応じて、アナログ−デジタル変換装置(AD変換装置;Analog Digital Converter)にてデジタルデータに変換する。ここで、画素信号は、リセット成分に信号成分が加わった形態で出力されるので、リセット成分に応じた信号電圧と信号成分に応じた信号電圧との差を取ることで、真の有効な信号成分を取り出す必要がある。
アナログの画素信号をデジタルデータに変換する場合も同様であり、最終的には、リセット成分に応じた信号電圧と信号成分に応じた信号電圧との差信号成分をデジタルデータにする必要がある。このため、種々のAD変換の仕組みが提案されている(たとえば非特許文献1〜6、特許文献1参照)。
W. Yang et. al., "An Integrated 800x600 CMOS ImageSystem," ISSCC Digest of Technical Papers, pp. 304-305, Feb., 1999 米本和也著、"CCD/CMOSイメージセンサの基礎と応用"、CQ出版社、2003年8月10日、初版p201〜203 今村俊文、山本美子、"3.高速・機能CMOSイメージセンサの研究"、[online]、[平成16年3月15日検索]、インターネット<URL:http://www.sankaken.gr.jp/project/iwataPJ/report/h12/h12index.html> 今村俊文、山本美子、長谷川尚哉、"3.高速・機能CMOSイメージセンサの研究"、[online]、[平成16年3月15日検索]、インターネット<URL:http://www.sankaken.gr.jp/project/iwataPJ/report/h14/h14index.html> 今村など、"3.高速・機能CMOSイメージセンサの研究"、[online]、[平成16年10月15日検索]、インターネット<URL:http://www.sankaken.gr.jp/project/iwataPJ/report/h14/h14index.html> Oh-Bong Kwon et. al.,"A Novel Double Slope Analog-to-Digital Converter for a High-Quality 640x480 CMOS Imaging System"、VL3-03 1999 IEEE p335〜338 特開平11−331883号公報
しかしながら、従来のAD変換の仕組みは、回路規模や回路面積や消費電力、あるいは他の機能部と間のインタフェース用配線の数や、この配線によるノイズや消費電流などの面で難がある。
<従来の固体撮像装置の構成>
図9は、AD変換装置を画素部と同一の半導体基板に搭載した従来例のCMOS固体撮像装置(CMOSイメージセンサ)の概略構成図である。図9に示すように、この固体撮像装置1は、複数の単位画素3が行および列に配列された画素部(撮像部)10と、画素部10の外側に設けられた駆動制御部7と、カウンタ部(CNT)24と、垂直列ごとに配されたカラムAD回路25を有するカラム処理部26と、カラム処理部26のカラムAD回路25にAD変換用の参照電圧を供給するDAC(Digital Analog Converter)を有して構成された参照信号生成部27と、減算回路29を有して構成された出力回路28とを備えている。
駆動制御部7は、列アドレスや列走査を制御する水平走査回路(列走査回路)12と、行アドレスや行走査を制御する垂直走査回路(行走査回路)14と、端子5aを介してマスタークロックCLK0を受け取り、種々の内部クロックを生成し水平走査回路12や垂直走査回路14などを制御するタイミング制御部21とを備えている。
各単位画素3は、垂直走査回路14で制御される行制御線15や画素信号をカラム処理部26に伝達する垂直信号線19と接続されている。
カラムAD回路25は、参照信号生成部27で生成される参照電圧RAMPと、行制御線15(V0,V1,…)ごとに単位画素3から垂直信号線19(H0,H1,…)を経由し得られるアナログの画素信号とを比較する電圧比較部252と、電圧比較部252が比較処理を完了するまでの時間をカウンタ部24を利用してカウントした結果を保持するメモリ装置としてのラッチ(フリップフロップ)を有して構成されたデータ記憶部255とを備えて構成され、nビットAD変換機能を有している。データ記憶部255は、内部に独立した記憶領域としての、それぞれnビットのラッチ1とラッチ2とを有している。
電圧比較部252の一方の入力端子RAMPは、他の電圧比較部252の入力端子RAMPと共通に、参照信号生成部27で生成される階段状の参照電圧RAMPが入力され、他方の入力端子には、それぞれ対応する垂直列の垂直信号線19が接続され、画素部10からの画素信号電圧が個々に入力される。電圧比較部252の出力信号はデータ記憶部255に供給される。
カウンタ部24は、マスタークロックCLK0に対応したカウントクロックCK0(たとえば双方のクロック周波数が等しい)に基づいてカウント処理を行ない、カウント出力CK1,CK2,…,CKnをカウントクロックCK0とともに、カラム処理部26の各カラムAD回路25に共通に供給する。
つまり、垂直列ごとに配されるデータ記憶部255の各ラッチに対してカウンタ部24からの各カウント出力CK1,CK2,…,CKnの配線を引き回すことで、各垂直列のカラムAD回路25が1つのカウンタ部24を共通に使用する構成となっている。
個々のカラムAD回路25の出力側は、水平信号線18に接続されている。水平信号線18は、2nビット幅分の信号線を有し、図示しないそれぞれの出力線に対応した2n個のセンス回路を経由して出力回路28の減算回路29に接続される。出力回路28から出力された映像データD1は、出力端子5cから固体撮像装置1(デバイス)の外部に出力される。
図10は、図9に示した従来例の固体撮像装置1の動作を説明するためのタイミングチャートである。
たとえば、1回目の読出しのため、先ずカウンタ部254のカウント値を初期値“0”にリセットしておく。そして、任意の行Hxの単位画素3から垂直信号線19(H0,H1,…)への1回目の読み出しが安定した後、参照信号生成部27により概ね鋸歯(ランプ;RAMP)状となるように階段状に時間変化させた参照電圧RAMPを入力し、任意の垂直信号線19(列番号Vx)の画素信号電圧との比較を電圧比較部252にて行なう。
このとき、電圧比較部252の一方の入力端子RAMPへの参照電圧RAMPの入力と同時に、電圧比較部252における比較時間をカウンタ部24を利用して計測するために、参照信号生成部27から発せられるランプ波形電圧に同期して(t10)、カウンタ部24は、1回目のカウント動作として、初期値“0”からダウンカウントを開始する。
電圧比較部252は、参照信号生成部27からのランプ状の参照電圧RAMPと垂直信号線19を介して入力される画素信号電圧Vxとを比較し、双方の電圧が同じになったときに、コンパレータ出力をHレベルからLレベルへ反転させる(t12)。
この結果を受けて、データ記憶部255は、コンパレータ出力の反転とほぼ同時に、比較期間に応じたカウンタ部24からのカウント出力CK1,CK2,…,CKnをカウントクロックCK0に同期してデータ記憶部255のラッチ1にラッチ(保持・記憶)することで、1回目のAD変換を完了する(t12)。
タイミング制御部21は、所定のダウンカウント期間を経過すると(t14)、電圧比較部252への制御データの供給と、カウンタ部254へのカウントクロックCK0の供給とを停止する。これにより、電圧比較部252は、ランプ状の参照電圧RAMPの生成を停止する。
この1回目の読出し時は、単位画素3のリセット成分ΔVを読み出しており、リセット成分ΔV内には、単位画素3ごとにばらつく雑音がオフセットとして含まれている。しかし、このリセット成分ΔVのばらつきは一般に小さく、またリセットレベルは全画素共通なため、任意の垂直信号線19(Vx)の出力はおおよそ既知である。
したがって、1回目のリセット成分ΔVの読出し時には、参照電圧RAMPを調整することにより比較期間を短くすることが可能であり、この従来例では、7ビット分のカウント期間(128クロック)でリセット成分ΔVの比較を行なっている。
2回目の読み出しは、リセット成分ΔVに加えて、単位画素3ごとの入射光量に応じた信号成分Vsig を読み出し、1回目の読み出しと同様の動作を行なう。
すなわち、2回目の読出しのため、先ずカウンタ部254のカウント値を初期値“0”にリセットしておく。そして、任意の行Hxの単位画素3から垂直信号線19(H0,H1,…)への2回目の読み出しが安定した後、参照信号生成部27により概ねランプ状となるように階段状に時間変化させた参照電圧RAMPを入力し、任意の垂直信号線19(列番号Vx)の画素信号電圧との比較を電圧比較部252にて行なう。
このとき、電圧比較部252の一方の入力端子RAMPへの参照電圧RAMPの入力と同時に、電圧比較部252における比較時間をカウンタ部24を利用して計測するために、参照信号生成部27から発せられるランプ波形電圧に同期して(t20)、カウンタ部24は、2回目のカウント動作として、初期値“0”からダウンカウントを開始する。
電圧比較部252は、参照信号生成部27からのランプ状の参照電圧RAMPと垂直信号線19を介して入力される画素信号電圧Vxとを比較し、双方の電圧が同じになったときに、コンパレータ出力をHレベルからLレベルへ反転させる(t22)。
この結果を受けて、データ記憶部255は、コンパレータ出力の反転とほぼ同時に、比較期間に応じたカウンタ部24からのカウント出力CK1,CK2,…,CKnをカウントクロックCK0に同期してデータ記憶部255にラッチ(保持・記憶)することで、2回目のAD変換を完了する(t22)。
このとき、データ記憶部255は、1回目のカウント値と2回目のカウント値とを、当該データ記憶部255内の異なった場所、具体的にはラッチ2に保持する。2回目の読出し時は、単位画素3のリセット成分ΔVと信号成分Vsig との合成分を読み出している。
タイミング制御部21は、所定のダウンカウント期間を経過すると(t24)、電圧比較部252への制御データの供給と、カウンタ部254へのカウントクロックCK0の供給とを停止する。これにより、電圧比較部252は、ランプ状の参照電圧RAMPの生成を停止する。
2回目のカウント処理が完了した後の所定のタイミングで(t28)、タイミング制御部21は水平走査回路12に対して画素データの読出しを指示する。これを受けて、水平走査回路12は、制御線12cを介してデータ記憶部255に供給する水平選択信号CH(i)を順次シフトさせる。
こうすることで、データ記憶部255に記憶・保持したカウント値、すなわちnビットのデジタルデータで表された1回目と2回目のそれぞれnビットの画素データが、それぞれn本(計2n本)の水平信号線18を介して、順次、カラム処理部26外へ掃き出され、出力回路28の減算回路29に入力される。
nビットの減算回路29は、単位画素3のリセット成分ΔVと信号成分Vsig との合成分を示す2回目の画素データから単位画素3のリセット成分ΔVを示す1回目の画素データを対応する画素位置ごとに減算することで、単位画素3の信号成分Vsig を求める。
この後、順次行ごとに同様の動作が繰り返されることで、出力回路28において、2次元画像を表す画像信号が得られる。
しかしながら、このような従来例では、各垂直列のカラムAD回路25が1つのカウンタ部24を共通に使用する構成であり、メモリ装置としてのデータ記憶部255内に1回目と2回目のカウント結果を保持する必要があり、nビットの信号に対し、nビットのラッチが2組(ビットごとでは2n個のラッチが)必要になり、回路面積が増大する(第1の問題という)。
また、同期用のカウントクロックCK0だけでなく、垂直列ごとに配されるデータ記憶部255の各ラッチに対してカウンタ部24からの各カウント出力CK1,CK2,…,CKnの配線する必要があり、この配線の引き回しのため、雑音の増加や消費電力の増大も懸念される(第2の問題という)。
さらに、1回目のカウント値と2回目のカウント値とを、データ記憶部255内の異なった場所に保持させるため、1回目と2回目のカウント結果をデータ記憶部255に伝達するための2n本の信号線が必要となり、それに伴う電流増加も生ずる(第3の問題という)。
加えて、外部出力前には、出力回路28において1回目と2回目のカウント値を減算するために、各回のカウント値を出力回路28に設けられているnビットの減算回路29まで導く2n本の信号線が必要になり、データ転送のための雑音や消費電力の増加が懸念される(第4の問題という)。
つまり、1回目の読出結果を保持するメモリ装置と2回目の読出結果を保持するメモリ装置とをカウンタ部とは別に、それぞれ用意(つまり2系統分用意)しなければならず、またこれらメモリ装置へカウンタ部からnビット分のカウント値を伝達する信号線が必要となり、さらに1回目と2回目のカウント値を減算器まで転送するためにnビットに対して2nビット分(すなわち2倍)の信号線が必要になり、回路規模や回路面積を増大させるとともに、雑音の増加や消費電流や消費電力の増大の問題が生じる。
また、AD変換処理と読出処理を並行して行なうパイプライン動作を行なうように構成するには、AD変換されたデータを保持するメモリ装置がカウント結果を保持するメモリ装置とは別に必要になるが、第1の問題と同様に、このためのメモリ装置が2系統分必要となるため、回路面積が増大する(第5の問題という)。
また、1回目の読み出し時の、単位画素12のリセット成分ΔVは、前述の通り一般にはばらつきが小さいものの、ゲインを上げたときなどは、ばらつきもゲイン倍されるため、比較期間を短くした場合には、リセット成分ΔVが比較可能範囲を超えてしまい比較できなくなることが起こり得る(第6の問題という)。
換言すれば、AD変換を適正に行なうには、リセット成分ΔVの大きさだけでなく、そのばらつきも考慮して比較期間を設定しなければならず、その分だけ比較期間が長くなってしまう。
上記第1の問題点を解決する手法として、たとえば、垂直列に対して共通に使用されるカウンタ部と、垂直列ごとにCDS(Correlated Double Sampling ;相関2重サンプリング)処理機能部とカウンタ部のカウント値を保持するラッチとを直列に配置することでCDS処理機能とAD変換機能を実現するカラム(Column)AD変換回路が提案されている(たとえば非特許文献2参照)。
また、上記第2の問題点を解決する手法として、たとえば、カラム処理部26内に、垂直列ごとにカウンタ部を設けAD変換機能を実現する仕組みも提案されている(たとえば非特許文献3〜6、特許文献1参照)。
非特許文献2に記載のカラムAD変換回路は、垂直信号線(垂直列)ごとに並列処理するカウンタ部およびラッチを利用したAD変換回路により、リセット成分と信号成分との差を取ることで画素の固定パターンノイズを抑圧しながらデジタル信号に変換するので、減算処理が不要でカウント処理が1回で済み、さらにAD変換されたデータを保持するメモリ装置をラッチで実現でき、回路面積の増大を防止できる、すなわち上記第1,3,4,5の問題を解決できる。
しかしながら、図9に示した構成と同様に、カウンタ部を全ての垂直列に対して共通に使用するようにしているので、垂直列ごとに配されるデータ記憶部255の各ラッチに対して、カウンタ部からの各カウント出力CK1,CK2,…,CKnのn本の配線が必要であり、上記第2の問題を解決できない。
また非特許文献3,4に記載の仕組みは、光を検出する複数のピクセルからの電流を同時に出力バス上に出力することで、出力バス上で電流による加減算を行ない、この後、時間軸方向に大きさを持つパルス幅信号に変換し、このパルス幅信号のパルス幅のクロック数を列並列に設けられたカウンタ回路でカウントすることでAD変換を行なうもので、カウント出力の配線が不要であるすなわち上記第2の問題を解消することができる。
しかしながら、リセット成分と信号成分の取扱いについては記載がなく、上記第1,3,4,5の問題を解消することができるとは限らない。このリセット成分と信号成分の取扱いについての記載がないのは、非特許文献1,6も同様である。
これに対して、特許文献1には、リセット成分と信号成分の取扱いについての記載がある。相関2重サンプリングなど、リセット成分と信号成分とから純粋なイメージだけの電圧データを抽出するためには、リセット成分のデジタルデータを信号成分のデジタルデータから減算する減算処理を垂直列ごとに行なうことができるので上記第4の問題を避けることができる。
しかしながら、この特許文献1に記載の仕組みでは、外部システムインタフェース部にてカウント処理を行ないカウント信号を発生して、リセット成分や信号成分の電圧と比較処理の参照電圧とが一致した時点のカウント値を垂直列ごとに設けられた1組のバッファにそれぞれ保存するようにしており、AD変換処理の仕組みは、各垂直列が1つのカウンタを共通に使用する構成である点で、非特許文献1に記載のものと同様である。よって、上記第1〜3,5の問題を避けることができない。
また、上記第6の問題に関しては、図9に示した従来例では、電圧比較部252の回路構成が明確でないが、たとえば一般に良く知られている差動アンプ構成(特許文献5の図8におけるコンパレータ部分を参照)を採用した場合を考える。
この場合、差動対の片方の入力を列線Vxへ、他方を参照信号生成部27に接続することにより画素信号Vxと参照電圧RAMPとの比較が可能であり、AD変換された出力データがデータ記憶部255で保持される。しかしながら、このような構成でも、やはり、上記同様に1回目の読出し時の比較期間を短くした場合には、リセット成分ΔVが比較可能範囲を超えてしまい比較できない場合が考えられ、上記第6の問題の解決にはならない。
本発明は、上記事情に鑑みてなされたものであり、上記第1〜第6の問題の少なくとも1つを解消することのできる新たな仕組みを提供することを目的とする。
本発明に係るAD変換方法は、基準成分と信号成分とを含んで表されるアナログの処理対象信号における、基準成分と信号成分との差信号成分をデジタルデータに変換する方法であって、基準成分および信号成分のそれぞれに応じた信号とデジタルデータに変換するための参照信号とを比較し、この比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、比較処理が完了した時点のカウント値を保持する。この際、基準成分と信号成分の何れについて比較処理を行なっているのかに応じてカウント処理のモードを切り替えることとした。
ここで、カウント処理のモード切替処理としては、先ず、1回目の処理として、画素など同一単位要素から出力される1つの処理対象信号における物理的性質の異なる基準成分と信号成分のうちの何れか一方に応じた信号と、デジタルデータに変換するための参照信号とを比較するとともに、この比較処理と並行してダウンカウントモードおよびアップカウントモードのうちの何れか一方のモードでカウント処理を行ない、比較処理が完了した時点のカウント値を保持する。
この後、2回目の処理として、基準成分と信号成分のうちの他方と参照信号とを比較するとともに、この比較処理と並行してダウンカウントモードおよびアップカウントモードのうちの他方のモードでカウント処理を行ない、この比較処理が完了した時点のカウント値を保持する。こうすることで、2回目の処理後に保持されるカウント値は、1回目のカウント値との差となる。つまり、カウントモードを切り替えた2回のカウント処理を行なうことで、基準成分と信号成分の差に応じたデジタル値が2回目のカウント処理のカウント値として得られる。
なお、2回目の処理で対象とする信号成分とは、少なくとも処理対象信号における真の信号成分を示すものであればよく、真の信号成分のみを意味するものではなく、実際には処理対象信号に含まれる雑音成分やリセット成分などを含むものでもよい。
また、基準成分と信号成分とは、相対的なものであり、基準成分と信号成分との差信号成分は、要するに、画素など同一単位要素から出力される1つの処理対象信号における物理的性質の異なる2つの信号成分間の差の成分であればよい。
基準成分と信号成分とについて比較処理を行なう際には、基準成分や信号成分に応じた信号と所定の傾きで変化する参照信号とを比較して、基準成分や信号成分に応じた信号と参照信号とが一致する点を探すのがよい。所定の傾きは、常に一定の傾きである形態に限らず、たとえば信号成分が大きくなるほど傾きが大きくなるように複数の傾きを段階的に設定することで、ダイナミックレンジを拡大するようにしてもよい。
また、カウント処理を行なう際には、比較処理で用いる参照信号の生成時点から、基準成分や信号成分に応じた信号と参照信号とが一致した時点までをカウントクロックでカウント(計数)することで、基準成分や信号成分の各大きさに対応したカウント値を得るのがよい。
ダウンカウントモードやアップカウントモードでカウント処理を行なうに際しては、共通のアップダウンカウンタを用いつつ、その処理モードを切り替えて行なうのがよい。こうすることで、カウント処理に用いるカウンタ回路をコンパクトにすることができる。加えて、2つのモードを切り替えてカウント処理することで、基準成分と信号成分との減算処理が直接にでき、基準成分と信号成分との差を取るための特別な減算器が不要になる。
また、2回目の処理におけるカウント処理は、1回目の処理において保持しておいたカウント値から開始するのがよい。こうすることで、2回目の処理後に保持されるカウント値は、基準成分と信号成分の差そのもののデジタル値となる。
ここで、1回目の処理として、基準成分について比較処理とカウント処理を行ない、2回目の処理として、信号成分について比較処理とカウント処理を行なうようにすれば、2回目の処理後に保持されるカウント値は、信号成分側から基準成分側を差し引いたデジタル値となる。
加えて、画素などの単位構成要素の処理対象信号が、時間系列として基準成分の後に信号成分が現れるものである場合、2回目の処理は基準成分に信号成分を加えた信号についての処理となり、2回目の処理後に保持されるカウント値は、単位構成要素の信号成分を表すものとなる。
また、基準成分についての処理をダウンカウントモードにて行ない、信号成分についての処理をアップカウントモードにて行なうようにすれば、2回に亘る処理後に保持されるカウント値は、信号成分側から基準成分側を差し引いたデジタル値が正の値として得られる。
これら2つを組み合わせて、1回目の処理として、基準成分について比較処理とダウンカウント処理を行ない、2回目の処理として、信号成分について比較処理とアップカウント処理を行なうようにすれば、2回目の処理後に保持されるカウント値は、信号成分側から基準成分側を差し引いたデジタル値が正の値として得られる。単位構成要素の処理対象信号が、時間系列として基準成分の後に信号成分が現れるものである場合には、単位構成要素の有効信号成分を表すデジタルデータが正の値として得られる。
なお、基準成分と信号成分とを比べた場合、基準成分は概ね一定であるとともにその信号量は少ないのに対して、信号成分は画素などの単位構成要素にて光などの電磁波を検知して得られる変動成分であり、信号量の最大値は大きくなる。よって、基準成分と信号成分の双方の比較処理の最長期間すなわちAD変換期間の最大値を同じにするのではなく、基準成分についての比較処理の最長期間を信号成分についての比較処理の最長期間よりも短くすることで、2回に亘るAD変換期間を短くするのがよい。
また、基準成分はばらつきを持ち、ゲインを上げたときは、ばらつきもゲイン倍されるため、比較期間を短くした場合には、基準成分が比較可能範囲を超え正しい比較できなくなることが起こり得る。これを避けるべく、基準成分について比較処理とカウント処理を行なう際には、先ず、比較部を基準成分を読み出す動作基準値にリセットし、この後に、比較部に参照信号を供給してから比較処理とカウント処理を開始するようにするとよい。
ただし、比較部を動作基準値にリセットするとkTC雑音の発生が懸念されるので、信号成分について比較処理とカウント処理を行なう際には、比較部のリセットを行なわないで、直ちに比較部に参照信号を供給して比較処理とカウント処理を開始するのがよい。
また、前回の処理対象信号について、2回目の処理にて保持したカウント値をさらに別のデータ記憶部に保持しておき、今回の処理対象信号について、1回目の処理と2回目の処理とを行なう際に、データ記憶部からのカウント値の読出処理を並行して行なうのがよい。
上述したAD変換処理は、入射された電磁波に対応する電荷を生成する電荷生成部および電荷生成部により生成された電荷に応じた単位信号を生成する単位信号生成部を単位構成要素内に含み、この単位構成要素が行列状に配された、物理量分布検知のための半導体装置において、単位信号生成部により生成され列方向に出力されたアナログの単位信号を処理対象信号としてデジタルデータに変換する処理に利用することができる。
なおこのように、単位構成要素を2次元マトリックス状に配置してある場合、単位信号生成部により生成され列方向に出力されるアナログの単位信号を行単位で(列並列で)アクセスし取り込む(垂直)スキャン読みを行ない、この行単位で、単位構成要素のそれぞれについて、1回目の処理と2回目の処理とを行なうことで、単位信号の読出しやAD変換処理の高速化を図るのがよい。
本発明に係るAD変換装置は、本発明に係る上記AD変換方法を実施するのに好適な装置であって、基準成分および信号成分のそれぞれに応じた信号とAD変換用の参照信号とを比較する比較部と、比較部における比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、比較部における比較処理が完了した時点のカウント値を保持するカウンタ部とを備えるものとした。
好ましくは、デジタルデータに変換するための参照信号を生成し比較部に供給する参照信号生成部や、比較部が基準成分と信号成分の何れについて比較処理を行なっているのかに応じてカウンタ部におけるカウント処理のモードを切り替える制御部をも備えているとなおよい。
カウンタ部は、共通のカウンタ回路で構成され、かつアップカウントモードとダウンカウントモードとを切替可能に構成されているものとすることもできるし、ダウンカウントモードでカウント処理を行なうダウンカウンタ回路と、アップカウントモードでカウント処理を行なうアップカウンタ回路とを有しているものとすることもできる。後者の場合、回路構成に応じて、ダウンカウンタ回路が保持したカウント値とアップカウンタ回路が保持したカウント値との和を取る加算回路とを有しているものとすることもできる。
本発明に係る半導体装置や電子機器は、本発明に係る上記AD変換方法を適用した装置であって、本発明に係る上記AD変換装置と同様の構成を備えたものである。
本発明に係る半導体装置においては、比較部とカウンタ部とで構成されるAD変換部を、単位構成要素の列の並び方向である行方向に複数備えているものとするのがよい。
また、比較部は、単位信号生成部により生成され列方向に出力されるアナログの単位信号を行単位で取り込み、比較部およびカウンタ部は、行単位で、単位構成要素のそれぞれについて、それぞれが担当する処理を行なうようにするのがよい。また、単位信号生成部は、増幅用の半導体素子を有するものとするのがよい。
ここで、電荷生成部を、電磁波としての光を受光して、この受光した光に対応する電荷を生成する光電変換素子を有しているものとすれば、半導体装置を固体撮像装置として構成することができる。
本発明に係るAD変換方法およびAD変換装置並びに半導体装置および電子機器によれば、AD変換用の参照信号と基準成分と信号成分とを含んで表される処理対象信号とを比較し、この比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、比較処理が完了した時点のカウント値を保持する際、基準成分と信号成分の何れについて比較処理を行なっているのかに応じてカウント処理のモードを切り替えるようにした。
これにより、基準成分と信号成分との差を表すデジタルデータを、ダウンカウントモードおよびアップカウントモードの2つのモードでカウント処理した結果として得ることができる。
この結果、基準成分と信号成分のそれぞれのカウント結果を保持するメモリ装置をカウンタ部が備えるラッチ機能で実現でき、AD変換されたデータを保持する専用のメモリ装置をカウンタとは別に用意する必要がなく、回路規模や回路面積の増大の問題を解消できる。
また、共通に使用されるアップダウンカウンタを用いるか否かに拘わらず、比較部とカウンタ部でAD変換部を構成したので、ビット数によらずカウンタ部を動作させるカウントクロック1本とカウントモードを切り替える制御線とでカウント処理を制御でき、カウンタ部のカウント値をメモリ装置まで導く信号線が不要になり、雑音の増加や消費電力の増大を解消することができる。
アップダウンカウンタを動作モードに拘わらず共通に使用しつつ、その処理モードを切り替えてカウント処理を行なうようにすれば、基準成分と信号成分との減算処理が直接にでき、基準成分と信号成分との差を取るための特別な減算器が不要になる。また、減算器へのデータ転送が不要になり、そのための雑音の増加や電流あるいは消費電力の増大を解消することができる。
ダウンカウンタ回路とアップカウンタ回路との組合せでカウンタ部を構成する場合、2回目のカウント処理の開始前に、1回目のカウント処理で取得したカウント値を初期値として設定することで、基準成分と信号成分との減算処理が直接にでき、基準成分と信号成分との差を取るための特別な加算回路が不要になる。また、減算器へのデータ転送が不要になり、そのための雑音の増加や電流あるいは消費電力の増大を解消することができる。
なお、ダウンカウンタ回路とアップカウンタ回路との組合せでカウンタ部を構成する場合、1回目のカウント処理で取得したカウント値を初期値として設定せず、ゼロからカウントする構成を排除するものではない。この場合、各カウント値の和を取る加算回路が必要となるが、この場合でも、比較部とカウンタ部とで構成されるAD変換部ごとに加算回路を設けるので、配線長を短くでき、データ転送のための雑音の増加や電流あるいは消費電力の増大を解消することができる。
また、比較部とカウンタ部とを対にしてAD変換部を構成したので、単位構成要素が行列状に配された半導体装置から出力された単位信号を処理対象信号とする場合、単位構成要素の列の並び方向である行方向にAD変換部を複数配する場合でも、それぞれにカウンタ部を備えた構成とすることができ、図9に示した従来例のように、カウンタ部からのカウント出力の配線をラッチまで引き回す必要がなく、配線の引き回しによる、雑音の増加や消費電力の増大の問題が生じない。
また、AD変換処理と読出処理を並行して行なうパイプライン動作を行なうように構成する場合にも、AD変換されたデータを保持するメモリ装置がAD変換部ごとに1系統分だけあればよく、回路面積の増大を最低限に抑えることができる。
また、基準成分について比較処理とカウント処理を行なう際に、比較部を基準成分を読み出す動作基準値にリセットしてから比較処理とカウント処理を開始すると、信号の読出電位で比較部の動作点が設定されるようになるので、基準成分のばらつきの影響を受けなくなる。加えて、さらに信号成分について比較処理とカウント処理を行なう際には、比較部のリセットを行なわないで、直ちに比較処理とカウント処理を開始すると、2回の処理によって実質的には減算処理ができ、かつその際には、固定的に生ずるオフセット雑音だけでなく、kTC雑音まで除去できるようになる。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下においては、X−Yアドレス型の固体撮像装置の一例である、CMOS撮像素子をデバイスとして使用した場合を例に説明する。また、CMOS撮像素子は、全ての画素がNMOSよりなるものであるとして説明する。
ただしこれは一例であって、対象となるデバイスはMOS型の撮像デバイスに限らない。光や放射線などの外部から入力される電磁波に対して感応性をする単位構成要素をライン状もしくはマトリクス状に複数個配列してなる物理量分布検知用の半導体装置の全てに、後述する全ての実施形態が同様に適用できる。
<固体撮像装置の構成;第1実施形態>
図1は、本発明に係る半導体装置の第1実施形態であるCMOS固体撮像装置(CMOSイメージセンサ)の概略構成図である。なお、このCMOS固体撮像装置は、本発明に係る電子機器の一態様でもある。
固体撮像装置1は、入射光量に応じた信号を出力する受光素子(電荷生成部の一例)を含む複数個の画素が行および列に配列された(すなわち2次元マトリクス状の)画素部を有し、各画素からの信号出力が電圧信号であって、CDS(Correlated Double Sampling ;相関2重サンプリング)処理機能部やデジタル変換部(ADC;Analog Digital Converter)などが列並列に設けられているものである。
“列並列にCDS処理機能部やデジタル変換部が設けられている”とは、垂直列の垂直信号線19に対して実質的に並列に複数のCDS処理機能部やデジタル変換部が設けられていることを意味する。複数の各機能部は、デバイスを平面視したときに、ともに画素部10に対して列方向の一方の端縁側(図の下側に配されている出力側)にのみ配されている形態のものであってもよいし、画素部10に対して列方向の一方の端縁側(図の下側に配されている出力側)とその反対側である他方の端縁側(図の上側)に分けて配されている形態のものであってもよい。後者の場合、行方向の読出走査(水平走査)を行なう水平走査部も、各端縁側に分けて配して、それぞれが独立に動作可能に構成するのがよい。
たとえば、列並列にCDS処理機能部やデジタル変換部が設けられている典型例としては、撮像部の出力側に設けたカラム領域と呼ばれる部分に、CDS処理機能部やデジタル変換部を垂直列ごとに設け、順次出力側に読み出すカラム型のものである。また、カラム型に限らず、隣接する複数(たとえば2つ分)の垂直信号線19(垂直列)に対して1つのCDS処理機能部やデジタル変換部を割り当てる形態や、N本おき(Nは正の整数;間にN−1本を配する)のN本分の垂直信号線19(垂直列)に対して1つのCDS処理機能部やデジタル変換部を割り当てる形態などを採ることもできる。
カラム型を除くものは、何れの形態も、複数の垂直信号線19(垂直列)が1つのCDS処理機能部やデジタル変換部を共通に使用する構成となるので、画素部10側から供給される複数列分の画素信号を1つのCDS処理機能部やデジタル変換部に供給する切替回路(スイッチ)を設ける。なお、後段の処理によっては、出力信号を保持するメモリを設けるなどの対処が必要になる。
何れにしても、複数の垂直信号線19(垂直列)に対して1つのCDS処理機能部やデジタル変換部を割り当てる形態などを採ることで、各画素信号の信号処理を画素列単位で読み出した後に行なうことで、同様の信号処理を各単位画素内で行なうものに比べて、各単位画素内の構成を簡素化し、イメージセンサの多画素化、小型化、低コスト化などに対応できる。
また、列並列に配された複数の信号処理部にて1行分の画素信号を同時並行処理することができるので、出力回路側やデバイスの外部で1つのCDS処理機能部やデジタル変換部にて処理を行なう場合に比べて、信号処理部を低速で動作させることができ、消費電力や帯域性能やノイズなどの面で有利である。逆に言えば、消費電力や帯域性能などを同じにする場合、センサ全体の高速動作が可能となる。
なお、カラム型の構成の場合、低速で動作させることができ消費電力や帯域性能やノイズなどの面で有利であるとともに切替回路(スイッチ)が不要である利点もある。以下の実施形態では、特に断りのない限り、このカラム型で説明する。
図1に示すように、第1実施形態の固体撮像装置1は、複数の単位画素3が行および列に配列された画素部(撮像部)10と、画素部10の外側に設けられた駆動制御部7と、カラム処理部26と、カラム処理部26にAD変換用の参照電圧を供給する参照信号生成部27と、出力回路28とを備えている。
なお、カラム処理部26の前段または後段には、必要に応じて信号増幅機能を持つAGC(Auto Gain Control) 回路などをカラム処理部26と同一の半導体領域に設けることも可能である。カラム処理部26の前段でAGCを行なう場合にはアナログ増幅、カラム処理部26の後段でAGCを行なう場合にはデジタル増幅となる。nビットのデジタルデータを単純に増幅してしまうと、階調が損なわれてしまう可能性があるため、どちらかというとアナログにて増幅した後にデジタル変換するのが好ましいと考えられる。
駆動制御部7は、画素部10の信号を順次読み出すための制御回路機能を備えている。たとえば、駆動制御部7としては、列アドレスや列走査を制御する水平走査回路(列走査回路)12と、行アドレスや行走査を制御する垂直走査回路(行走査回路)14と、内部クロックを生成するなどの機能を持つ通信・タイミング制御部20とを備えている。
なお、図中、通信・タイミング制御部20の近傍に点線で示すように、高速クロック生成部の一例であって、入力されたクロック周波数よりも高速のクロック周波数のパルスを生成するクロック変換部23を設けるようにしてもよい。通信・タイミング制御部20は、端子5aを介して入力される入力ロック(マスタークロック)CLK0やクロック変換部23で生成された高速クロックに基づいて内部クロックを生成する。
クロック変換部23で生成された高速クロックを源とする信号を用いることで、AD変換処理などを高速に動作させることができるようになる。また、高速クロックを用いて、高速の計算を必要とする動き抽出や圧縮処理を行なうことができる。また、カラム処理部26から出力されるパラレルデータをシリアルデータ化してデバイス外部に映像データD1を出力することもできる。こうすることで、AD変換されたデジタルデータのビット分よりも少ない端子で高速動作出力する構成を採ることができる。
クロック変換部23は、入力されたクロック周波数よりも高速のクロック周波数のパルスを生成する逓倍回路を内蔵している。このクロック変換部23は、通信・タイミング制御部20から低速クロックCLK2を受け取り、それを元にして2倍以上高い周波数のクロックを生成する。クロック変換部23の逓倍回路としては、k1を低速クロックCLK2の周波数の倍数としたときk1逓倍回路を設ければよく、周知の様々な回路を利用することができる。
図1では、簡単のため行および列の一部を省略して示しているが、現実には、各行や各列には、数十から数千の単位画素3が配置される。この単位画素3は、典型的には、受光素子(電荷生成部)としてのフォトダイオードと、増幅用の半導体素子(たとえばトランジスタ)を有する画素内アンプとから構成される。
画素内アンプとしては、たとえばフローティングディフュージョンアンプ構成のものが用いられる。一例としては、電荷生成部に対して、電荷読出部(転送ゲート部/読出ゲート部)の一例である読出選択用トランジスタ、リセットゲート部の一例であるリセットトランジスタ、垂直選択用トランジスタ、およびフローティングディフュージョンの電位変化を検知する検知素子の一例であるソースフォロア構成の増幅用トランジスタを有する、CMOSセンサとして汎用的な4つのトランジスタからなる構成のものを使用することができる。
あるいは、特許第2708455号公報に記載のように、電荷生成部により生成された信号電荷に対応する信号電圧を増幅するための、ドレイン線(DRN)に接続された増幅用トランジスタと、電荷生成部をリセットするためのリセットトランジスタと、垂直シフトレジスタより転送配線(TRF)を介して走査される読出選択用トランジスタ(転送ゲート部)を有する、3つのトランジスタからなる構成のものを使用することもできる。
また、駆動制御部7の他の構成要素として、水平走査回路12、垂直走査回路14、および通信・タイミング制御部20が設けられている。水平走査回路12は、カラム処理部26からカウント値を読み出す読出走査部の機能を持つ。これらの駆動制御部7の各要素は、画素部10とともに、半導体集積回路製造技術と同様の技術を用いて単結晶シリコンなどの半導体領域に一体的に形成され、半導体システムの一例である固体撮像素子(撮像デバイス)として構成される。
単位画素3は、行選択のための行制御線15を介して垂直走査回路14と、また垂直信号線19を介してカラムAD回路25が垂直列ごとに設けられているカラム処理部26と、それぞれ接続されている。ここで、行制御線15は垂直走査回路14から画素に入る配線全般を示す。
水平走査回路12や垂直走査回路14は、後述のようにデコーダを含んで構成され、通信・タイミング制御部20から与えられる制御信号CN1,CN2に応答してシフト動作(走査)を開始するようになっている。このため、行制御線15には、単位画素3を駆動するための種々のパルス信号(たとえば、リセットパルスRST、転送パルスTRF、DRN制御パルスDRNなど)が含まれる。
通信・タイミング制御部20は、図示しないが、各部の動作に必要なクロックや所定タイミングのパルス信号を供給するタイミングジェネレータTG(読出アドレス制御装置の一例)の機能ブロックと、端子5aを介してマスタークロックCLK0を受け取り、また端子5bを介して動作モードなどを指令するデータDATAを受け取り、さらに固体撮像装置1の情報を含むデータを出力する通信インタフェースの機能ブロックとを備える。
たとえば、水平アドレス信号を水平デコーダ12aへ、また垂直アドレス信号を垂直デコーダ14aへ出力し、各デコーダ12a,14aは、それを受けて対応する行もしくは列を選択する。
この際、単位画素3を2次元マトリックス状に配置してあるので、画素信号生成部5により生成され垂直信号線19を介して列方向に出力されるアナログの画素信号を行単位で(列並列で)アクセスし取り込む(垂直)スキャン読みを行ない、この後に、垂直列の並び方向である行方向にアクセスし画素信号(本例ではデジタル化された画素データ)を出力側へ読み出す(水平)スキャン読みを行なうようにすることで、画素信号や画素データの読出しの高速化を図るのがよい。勿論、スキャン読みに限らず、読み出したい単位画素3を直接にアドレス指定することで、必要な単位画素3の情報のみを読み出すランダムアクセスも可能である。
また、第1実施形態の通信・タイミング制御部20では、端子5aを介して入力されるマスタークロック(マスタークロック)CLK0と同じ周波数のクロックCLK1や、それを2分周したクロックやより分周した低速のクロックをデバイス内の各部、たとえば水平走査回路12、垂直走査回路14、カラム処理部26などに供給する。以下、2分周したクロックやそれ以下の周波数のクロック全般を纏めて、低速クロックCLK2という。
垂直走査回路14は、画素部10の行を選択し、その行に必要なパルスを供給するものである。たとえば、垂直方向の読出行を規定する(画素部10の行を選択する)垂直デコーダ14aと、垂直デコーダ14aにて規定された読出アドレス上(行方向)の単位画素3に対する行制御線15にパルスを供給して駆動する垂直駆動回路14bとを有する。なお、垂直デコーダ14aは、信号を読み出す行の他に、電子シャッタ用の行なども選択する。
水平走査回路12は、低速クロックCLK2に同期してカラム処理部26のカラムAD回路25を順番に選択し、その信号を水平信号線(水平出力線)18に導くものである。たとえば、水平方向の読出列を規定する(カラム処理部26内の個々のカラムAD回路25を選択する)水平デコーダ12aと、水平デコーダ12aにて規定された読出アドレスに従って、カラム処理部26の各信号を水平信号線18に導く水平駆動回路12bとを有する。なお、水平信号線18は、たとえばカラムAD回路25が取り扱うビット数n(nは正の整数)分、たとえば10(=n)ビットならば、そのビット数分に対応して10本配置される。
このような構成の固体撮像装置1において、単位画素3から出力された画素信号は、垂直列ごとに、垂直信号線19を介して、カラム処理部26のカラムAD回路25に供給される。
カラム処理部26の各カラムAD回路25は、1列分の画素の信号を受けて、その信号を処理する。たとえば、各カラムAD回路25は、アナログ信号を、たとえば低速クロックCLK2を用いて、たとえば10ビットのデジタルデータに変換するADC(Analog Digital Converter)回路を持つ。
ADC回路の構成については、詳細は後述するが、コンパレータ(電圧比較器)にランプ状の参照電圧RAMPを供給すると同時にクロック信号でのカウント(計数)を開始し、垂直信号線19を介して入力されたアナログの画素信号を参照電圧RAMPと比較することによってパルス信号が得られるまでカウントすることでAD変換を行なう。
また、この際、回路構成を工夫することで、AD変換とともに、垂直信号線19を介して入力された電圧モードの画素信号に対して、画素リセット直後の信号レベル(ノイズレベル)と真の(受光光量に応じた)信号レベルVsig との差分をとる処理を行なうことができる。これにより、固定パターンノイズ(FPN;Fixed Pattern Noise )やリセットノイズといわれるノイズ信号成分を取り除くことができる。
このカラムAD回路25でデジタル化された画素データは、水平走査回路12からの水平選択信号により駆動される図示しない水平選択スイッチを介して水平信号線18に伝達され、さらに出力回路28に入力される。なお、10ビットは一例であって、10ビット未満(たとえば8ビット)や10ビットを超えるビット数(たとえば14ビット)など、その他のビット数としてもよい。
このような構成によって、電荷生成部としての受光素子が行列状に配された画素部10からは、行ごとに各垂直列について画素信号が順次出力される。そして、受光素子が行列状に配された画素部10に対応する1枚分の画像すなわちフレーム画像が、画素部10全体の画素信号の集合で示されることとなる。
<カラムAD回路と参照信号生成部の詳細>
参照信号生成部27は、DA変換回路(DAC;Digital Analog Converter)27aを有して構成されており、通信・タイミング制御部20からの制御データCN4で示される初期値からカウントクロックCK0に同期して、階段状の鋸歯状波(ランプ波形)を生成して、カラム処理部26の個々のカラムAD回路25に、この生成した鋸歯状波をAD変換用の参照電圧(ADC基準信号)として供給するようになっている。なお、図示を割愛しているが、ノイズ防止用のフィルタを設けるとよい。
なお、この階段状の鋸歯状波は、クロック変換部23からの高速クロック、たとえば逓倍回路で生成される逓倍クロックを元に生成することで、端子5aを介して入力されるマスタークロックCLK0に基づき生成するよりも高速に変化させることができる。
通信・タイミング制御部20から参照信号生成部27のDA変換回路27aに供給する制御データCN4は、比較処理ごとのランプ電圧が同じ傾き(変化率)となるように、時間に対するデジタルデータの変化率を同じにする情報も含んでいる。具体的には、単位時間ごとに1ずつカウント値を変化させるのがよい。
カラムAD回路25は、参照信号生成部27のDA変換回路27aで生成される参照電圧RAMPと、行制御線15(V0,V1,…)ごとに単位画素3から垂直信号線19(H0,H1,…)を経由し得られるアナログの画素信号とを比較する電圧比較部(コンパレータ)252と、電圧比較部252が比較処理を完了するまでの時間をカウントし、その結果を保持するカウンタ部254とを備えて構成されnビットAD変換機能を有している。
通信・タイミング制御部20は、電圧比較部252が画素信号のリセット成分ΔVと信号成分Vsig の何れについて比較処理を行なっているのかに応じてカウンタ部254におけるカウント処理のモードを切り替える制御部の機能を持つ。この通信・タイミング制御部20から各カラムAD回路25のカウンタ部254には、カウンタ部254がダウンカウントモードで動作するのかアップカウントモードで動作するのかを指示するための制御信号CN5が入力されている。
電圧比較部252の一方の入力端子RAMPは、他の電圧比較部252の入力端子RAMPと共通に、参照信号生成部27で生成される階段状の参照電圧RAMPが入力され、他方の入力端子には、それぞれ対応する垂直列の垂直信号線19が接続され、画素部10からの画素信号電圧が個々に入力される。電圧比較部252の出力信号はカウンタ部254に供給される。
カウンタ部254のクロック端子CKには、他のカウンタ部254のクロック端子CKと共通に、通信・タイミング制御部20からカウントクロックCK0が入力されている。
このカウンタ部254は、その構成については図示を割愛するが、図9に示したラッチで構成されたデータ記憶部255の配線形態を同期カウンタ形式に変更することで実現でき、1本のカウントクロックCK0の入力で、内部カウントを行なうようになっている。カウントクロックCK0も、階段状の電圧波形と同様に、クロック変換部23からの高速クロック(たとえば逓倍クロック)を元に生成することで、端子5aを介して入力されるマスタークロックCLK0より高速にすることができる。
n個のラッチの組合せでnビットのカウンタ部254を実現でき、図9に示した2系統のn個のラッチで構成されたデータ記憶部255の回路規模に対して半分になる。加えて、カウンタ部24が不要になるから、全体としては、図9に示した構成よりも大幅にコンパクトになる。
ここで、第1実施形態のカウンタ部254は、詳細は後述するが、カウントモードに拘わらず共通のアップダウンカウンタ(U/D CNT)を用いて、ダウンカウント動作とアップカウント動作とを切り替えて(具体的には交互に)カウント処理を行なうことが可能に構成されている点に特徴を有する。また、第1実施形態のカウンタ部254は、カウント出力値がカウントクロックCK0に同期して出力される同期カウンタを使用する。
なお、同期カウンタの場合、すべてのフリップフロップ(カウンタ基本要素)の動作がカウントクロックCK0で制限される。よって、より高周波数動作が要求される場合には、カウンタ部254としては、その動作制限周波数が最初のフリップフロップ(カウンタ基本要素)の制限周波数でのみ決められるため高速動作に適する非同期カウンタの使用がより好ましい。
カウンタ部254には、水平走査回路12から制御線12cを介して制御パルスが入力される。カウンタ部254は、カウント結果を保持するラッチ機能を有しており、制御線12cを介しての制御パルスによる指示があるまでは、カウンタ出力値を保持する。
このような構成のカラムAD回路25は、先にも述べたように、垂直信号線19(H0,H1,…)ごとに配置され、列並列構成のADCブロックであるカラム処理部26が構成される。
個々のカラムAD回路25の出力側は、水平信号線18に接続されている。先にも述べたように、水平信号線18は、カラムAD回路25のビット幅であるnビット幅分の信号線を有し、図示しないそれぞれの出力線に対応したn個のセンス回路を経由して出力回路28に接続される。
このような構成において、カラムAD回路25は、水平ブランキング期間に相当する画素信号読出期間において、カウント動作を行ない、所定のタイミングでカウント結果を出力する。すなわち、先ず、電圧比較部252では、参照信号生成部27からのランプ波形電圧と、垂直信号線19を介して入力される画素信号電圧とを比較し、双方の電圧が同じになると、電圧比較部252のコンパレータ出力が反転(本例ではHレベルからLレベルへ遷移)する。
カウンタ部254は、参照信号生成部27から発せられるランプ波形電圧に同期してダウンカウントモードもしくはアップカウントモードでカウント動作を開始しており、コンパレータ出力の反転した情報がカウンタ部254に通知されると、カウント動作を停止し、その時点のカウント値を画素データとしてラッチ(保持・記憶)することでAD変換を完了する。
この後、カウンタ部254は、所定のタイミングで水平走査回路12から制御線12cを介して入力される水平選択信号CH(i)によるシフト動作に基づいて、記憶・保持した画素データを、順次、カラム処理部26外や画素部10を有するチップ外へ出力端子5cから出力する。
なお、本実施形態の説明としては直接関連しないため特に図示しないが、その他の各種信号処理回路なども、固体撮像装置1の構成要素に含まれる場合がある。
<固体撮像装置の動作;第1実施形態>
図2は、図1に示した第1実施形態の固体撮像装置1のカラムAD回路25における動作を説明するためのタイミングチャートである。
画素部10の各単位画素3で感知されたアナログの画素信号をデジタル信号に変換する仕組みとしては、たとえば、所定の傾きで下降するランプ波形状の参照電圧RAMPと単位画素3からの画素信号における基準成分や信号成分の各電圧とが一致する点を探し、この比較処理で用いる参照電圧RAMPの生成時点から、画素信号における基準成分や信号成分に応じた信号と参照信号とが一致した時点までをカウントクロックでカウント(計数)することで、基準成分や信号成分の各大きさに対応したカウント値を得る手法を採る。
ここで、垂直信号線19から出力される画素信号は、時間系列として、基準成分としての画素信号の雑音を含むリセット成分ΔVの後に信号成分Vsig が現れるものである。1回目の処理を基準成分(リセット成分ΔV)について行なう場合、2回目の処理は基準成分(リセット成分ΔV)に信号成分Vsig を加えた信号についての処理となる。以下具体的に説明する。
1回目の読出しのため、先ず通信・タイミング制御部20は、カウンタ部254のカウント値を初期値“0”にリセットさせるとともに、カウンタ部254をダウンカウントモードに設定する。そして、任意の行Hxの単位画素3から垂直信号線19(H0,H1,…)への1回目の読出しが安定した後、通信・タイミング制御部20は、参照信号生成部27に向けて、参照電圧RAMP生成用の制御データCN4を供給する。
これを受けて、参照信号生成部27は、電圧比較部252の一方の入力端子RAMPへの比較電圧として、全体として鋸歯状(RAMP状)に時間変化させた階段状の波形(RAMP波形)を入力する。電圧比較部252は、このRAMP波形の比較電圧と画素部10から供給される任意の垂直信号線19(Vx)の画素信号電圧とを比較する。
電圧比較部252の入力端子RAMPへの参照電圧RAMPの入力と同時に、電圧比較部252における比較時間を、行ごとに配置されたカウンタ部254で計測するために、参照信号生成部27から発せられるランプ波形電圧に同期して(t10)、カウンタ部254のクロック端子に通信・タイミング制御部20からカウントクロックCK0を入力し、1回目のカウント動作として、初期値“0”からダウンカウントを開始する。すなわち、負の方向にカウント処理を開始する。
電圧比較部252は、参照信号生成部27からのランプ状の参照電圧RAMPと垂直信号線19を介して入力される画素信号電圧Vxとを比較し、双方の電圧が同じになったときに、コンパレータ出力をHレベルからLレベルへ反転させる(t12)。つまり、リセット成分Vrst に応じた電圧信号と参照電圧RAMPとを比較して、リセット成分Vrst の大きさに対応した時間軸方向に大きさを持っているアクティブロー(L)のパルス信号を生成して、カウンタ部254に供給する。
この結果を受けて、カウンタ部254は、コンパレータ出力の反転とほぼ同時にカウント動作を停止し、その時点のカウント値を画素データとしてラッチ(保持・記憶)することでAD変換を完了する(t12)。つまり、電圧比較部252における比較処理によって得られる時間軸方向に大きさを持っているアクティブロー(L)のパルス信号の幅をカウントクロックCK0でカウント(計数)することで、リセット成分Vrst の大きさに対応したカウント値を得る。
通信・タイミング制御部20は、所定のダウンカウント期間を経過すると(t14)、電圧比較部252への制御データの供給と、カウンタ部254へのカウントクロックCK0の供給とを停止する。これにより、電圧比較部252は、ランプ状の参照電圧RAMPの生成を停止する。
この1回目の読出し時は、画素信号電圧VxにおけるリセットレベルVrst を電圧比較部252で検知してカウント動作を行なっているので、単位画素3のリセット成分ΔVを読み出していることになる。
このリセット成分ΔV内には、単位画素3ごとにばらつく雑音がオフセットとして含まれている。しかし、このリセット成分ΔVのばらつきは一般に小さく、またリセットレベルVrst は概ね全画素共通であるので、任意の垂直信号線19の画素信号電圧Vxにおけるリセット成分ΔVの出力値はおおよそ既知である。
したがって、1回目のリセット成分ΔVの読出し時には、RAMP電圧を調整することにより、ダウンカウント期間(t10〜t14;比較期間)を短くすることが可能である。本実施形態では、リセット成分ΔVについての比較処理の最長期間を、7ビット分のカウント期間(128クロック)にして、リセット成分ΔVの比較を行なっている。
続いての2回目の読出し時には、リセット成分ΔVに加えて、単位画素3ごとの入射光量に応じた信号成分Vsig を読み出し、1回目の読出しと同様の動作を行なう。すなわち、先ず通信・タイミング制御部20は、カウンタ部254をアップカウントモードに設定する。そして、任意の行Hxの単位画素3から垂直信号線19(H0,H1,…)への2回目の読出しが安定した後、通信・タイミング制御部20は、参照信号生成部27に向けて、参照電圧RAMP生成用の制御データCN4を供給する。
これを受けて、参照信号生成部27は、電圧比較部252の一方の入力端子RAMPへの比較電圧として、全体として鋸歯状(RAMP状)に時間変化させた階段状の波形(RAMP波形)を入力する。電圧比較部252は、このRAMP波形の比較電圧と画素部10から供給される任意の垂直信号線19(Vx)の画素信号電圧とを比較する。
電圧比較部252の入力端子RAMPへの参照電圧RAMPの入力と同時に、電圧比較部252における比較時間を、行ごとに配置されたカウンタ部254で計測するために、参照信号生成部27から発せられるランプ波形電圧に同期して(t20)、カウンタ部254のクロック端子に通信・タイミング制御部20からカウントクロックCK0を入力し、2回目のカウント動作として、1回目の読出し時に取得された単位画素3のリセット成分ΔVに対応するカウント値から、1回目とは逆にアップカウントを開始する。すなわち、正の方向にカウント処理を開始する。
電圧比較部252は、参照信号生成部27からのランプ状の参照電圧RAMPと垂直信号線19を介して入力される画素信号電圧Vxとを比較し、双方の電圧が同じになったときに、コンパレータ出力をHレベルからLレベルへ反転させる(t22)。つまり、信号成分Vsig に応じた電圧信号と参照電圧RAMPとを比較して、信号成分Vsig の大きさに対応した時間軸方向に大きさを持っているアクティブロー(L)のパルス信号を生成して、カウンタ部254に供給する。
この結果を受けて、カウンタ部254は、コンパレータ出力の反転とほぼ同時にカウント動作を停止し、その時点のカウント値を画素データとしてラッチ(保持・記憶)することでAD変換を完了する(t22)。つまり、電圧比較部252における比較処理によって得られる時間軸方向に大きさを持っているアクティブロー(L)のパルス信号の幅をカウントクロックCK0でカウント(計数)することで、信号成分Vsig の大きさに対応したカウント値を得る。
通信・タイミング制御部20は、所定のダウンカウント期間を経過すると(t24)、電圧比較部252への制御データの供給と、カウンタ部254へのカウントクロックCK0の供給とを停止する。これにより、電圧比較部252は、ランプ状の参照電圧RAMPの生成を停止する。
この2回目の読出し時は、画素信号電圧Vxにおける信号成分Vsig を電圧比較部252で検知してカウント動作を行なっているので、単位画素3の信号成分Vsig を読み出していることになる。
ここで、本実施形態においては、カウンタ部254におけるカウント動作を、1回目の読出し時にはダウンカウント、2回目の読出し時にはアップカウントとしているので、カウンタ部254内で自動的に、式(1)で示す減算が行なわれ、この減算結果に応じたカウント値がカウンタ部254に保持される。
Figure 2005323331
ここで、式(1)は、式(2)のように変形でき、結果としては、カウンタ部254に保持されるカウント値は信号成分Vsig に応じたものとなる。
Figure 2005323331
つまり、上述のようにして、1回目の読出し時におけるダウンカウントと2回目の読出し時におけるアップカウントといった、2回の読出しとカウント処理によるカウンタ部254内での減算処理によって、単位画素3ごとのばらつきを含んだリセット成分ΔVとカラムAD回路25ごとのオフセット成分とを除去することができ、単位画素3ごとの入射光量に応じた信号成分Vsig のみを簡易な構成で取り出すことができる。この際、リセット雑音も除去できる利点がある。
よって、本実施形態のカラムAD回路25は、アナログの画素信号をデジタルの画素データに変換するデジタル変換部としてだけでなく、CDS(Correlated Double Sampling ;相関2重サンプリング)処理機能部としても動作することとなる。
また、式(2)で得られるカウント値が示す画素データは正の信号電圧を示すので、補数演算などが不要となり、既存のシステムとの親和性が高い。
ここで、2回目の読出し時は、入射光量に応じた信号成分Vsig を読み出すので、光量の大小を広い範囲で判定するために、アップカウント期間(t20〜t24;比較期間)を広く取り、電圧比較部252に供給するランプ電圧を大きく変化させる必要がある。
そこで本実施形態では、信号成分Vsig についての比較処理の最長期間を、10ビット分のカウント期間(1024クロック)にして、信号成分Vsig の比較を行なっている。つまり、リセット成分ΔV(基準成分)についての比較処理の最長期間を、信号成分Vsig についての比較処理の最長期間よりも短くする。リセット成分ΔV(基準成分)と信号成分Vsig の双方の比較処理の最長期間すなわちAD変換期間の最大値を同じにするのではなく、リセット成分ΔV(基準成分)についての比較処理の最長期間を信号成分Vsig についての比較処理の最長期間よりも短くすることで、2回に亘るトータルのAD変換期間が短くなるように工夫する。
この場合、1回目と2回目との比較ビット数が異なるが、通信・タイミング制御部20から制御データを参照信号生成部27に供給して、この制御データに基づいて参照信号生成部27にてランプ電圧を生成するようにすることで、ランプ電圧の傾きすなわち参照電圧RAMPの変化率を1回目と2回目とで同じにする。デジタル制御でランプ電圧を生成するので、ランプ電圧の傾きを1回目と2回目とで同じにすることが容易である。これにより、AD変換の精度を等しくできるため、アップダウンカウンタによる式(1)で示した減算結果が正しく得られる。
2回目のカウント処理が完了した後の所定のタイミングで(t28)、通信・タイミング制御部20は水平走査回路12に対して画素データの読出しを指示する。これを受けて、水平走査回路12は、制御線12cを介してカウンタ部254に供給する水平選択信号CH(i)を順次シフトさせる。
こうすることで、カウンタ部254に記憶・保持した式(2)で示されるカウント値、すなわちnビットのデジタルデータで表された画素データが、n本の水平信号線18を介して、順次、カラム処理部26外や画素部10を有するチップ外へ出力端子5cから出力され、その後、順次行ごとに同様の動作が繰り返されることで、2次元画像を表す映像データD1が得られる。
以上説明したように、第1実施形態の固体撮像装置によれば、アップダウンカウンタを用いつつ、その処理モードを切り替えて2回に亘ってカウント処理を行なうようにした。また、行列状に単位画素3が配列された構成において、カラムAD回路25を垂直列ごとに設けた列並列カラムAD回路で構成した。
このため、基準成分(リセット成分)と信号成分との減算処理が2回目のカウント結果として垂直列ごとに直接に取得することができ、基準成分と信号成分のそれぞれのカウント結果を保持するメモリ装置をカウンタ部が備えるラッチ機能で実現でき、AD変換されたデータを保持する専用のメモリ装置をカウンタとは別に用意する必要がない。
加えて、基準成分と信号成分との差を取るための特別な減算器が不要になる。よって、従来構成よりも、回路規模や回路面積を少なくすることができ、加えて、雑音の増加や電流あるいは消費電力の増大を解消することができる。
また、比較部とカウンタ部でカラムAD回路(AD変換部)を構成したので、ビット数によらずカウンタ部を動作させるカウントクロック1本とカウントモードを切り替える制御線とでカウント処理を制御でき、従来構成で必要としていたカウンタ部のカウント値をメモリ装置まで導く信号線が不要になり、雑音の増加や消費電力の増大を解消することができる。
つまり、AD変換装置を同一チップ上に搭載した固体撮像装置1において、電圧比較部252とカウンタ部254とを対にしてAD変換部としてのカラムAD回路25を構成するとともに、カウンタ部254の動作としてダウンカウントとアップカウントとを組み合わせて使用しつつ、処理対象信号の基本成分(本実施形態ではリセット成分)と信号成分との差をデジタルデータにすることで、回路規模や回路面積や消費電力、あるいは他の機能部と間のインタフェース用配線の数や、この配線によるノイズや消費電流などの問題を解消することができる。
<固体撮像装置の構成;第2実施形態>
図3は、本発明の第2実施形態に係るCMOS固体撮像装置(CMOSイメージセンサ)の概略構成図である。この第2実施形態の固体撮像装置1は、第1実施形態の固体撮像装置1に対して、カラムAD回路25の構成を変形している。
すなわち、第2実施形態におけるカラムAD回路25は、カウンタ部254の後段に、このカウンタ部254の保持したカウント結果を保持するnビットのメモリ装置としてのデータ記憶部256と、カウンタ部254とデータ記憶部256との間に配されたスイッチ258とを備えている。
スイッチ258には、他の垂直列のスイッチ258と共通に、通信・タイミング制御部20から、所定のタイミングで、制御パルスとしてのメモリ転送指示パルスCN8が供給される。スイッチ258は、メモリ転送指示パルスCN8が供給されると、対応するカウンタ部254のカウント値をデータ記憶部256に転送する。データ記憶部256は、転送されたカウント値を保持・記憶する。
なお、カウンタ部254のカウント値を所定のタイミングでデータ記憶部256に保持させる仕組みは、両者間にスイッチ258を配する構成に限らず、たとえば、カウンタ部254とデータ記憶部256とを直接に接続しつつ、カウンタ部254の出力イネーブルをメモリ転送指示パルスCN8で制御することで実現することもできるし、データ記憶部256のデータ取込タイミングを決めるラッチクロックとしてメモリ転送指示パルスCN8を用いることでも実現できる。
データ記憶部256には、水平走査回路12から制御線12cを介して制御パルスが入力される。データ記憶部256は、制御線12cを介しての制御パルスによる指示があるまでは、カウンタ部254から取り込んだカウント値を保持する。
水平走査回路12は、カラム処理部26の各電圧比較部252とカウンタ部254とが、それぞれが担当する処理を行なうのと並行して、各データ記憶部256が保持していたカウント値を読み出す読出走査部の機能を持つ。
このような第2実施形態の構成によれば、カウンタ部254が保持したカウント結果を、データ記憶部256に転送することができるため、カウンタ部254のカウント動作すなわちAD変換処理と、カウント結果の水平信号線18への読出動作とを独立して制御可能であり、AD変換処理と外部への信号の読出動作とを並行して行なうパイプライン動作が実現できる。
<固体撮像装置の動作;第2実施形態>
図4は、図3に示した第2実施形態の固体撮像装置1のカラムAD回路25における動作を説明するためのタイミングチャートである。カラムAD回路25におけるAD変換処理は、第1実施形態と同様である。ここではその詳細な説明を割愛する。
第2実施形態においては、第1実施形態の構成に、データ記憶部256を追加したものであり、AD変換処理を始めとする基本的な動作は第1実施形態と同様であるが、カウンタ部254の動作前(t30)に、通信・タイミング制御部20からのメモリ転送指示パルスCN8に基づき、前行Hx−1のカウント結果をデータ記憶部256に転送する。
第1実施形態では、2回目の読出処理、すなわちAD変換処理が完了した後でなければ画素データをカラム処理部26の外部に出力することができないので、読出処理には制限があるのに対して、第2実施形態の構成では、1回目の読出処理(AD変換処理)に先立って前回の減算処理結果を示すカウント値をデータ記憶部256に転送しているので、読出処理には制限がない。
こうすることで、データ記憶部256から水平信号線18および出力回路28を経た外部への信号出力動作と、現行Hxの読出しおよびカウンタ部254のカウント動作とを並行して行なうことができ、より効率のよい信号出力が可能となる。
<電圧比較部の構成;第3実施形態>
図5は、本発明の第3実施形態に係るCMOS固体撮像装置(CMOSイメージセンサ)に使用される電圧比較部252の概略回路図である。この第3実施形態の固体撮像装置1は、第1実施形態の固体撮像装置1に対して、電圧比較部252の構成を工夫することで、リセット成分ΔVのばらつきに左右されずに比較期間を設定できるようにする点に特徴を有する。以下具体的に説明する。
電圧比較部252の基本構成は、特許文献5の図8におけるコンパレータ部分と同様に、一般に良く知られている差動アンプ構成を採用しており、NMOS型のトランジスタ302,304を有する差動トランジスタ対部300と、差動トランジスタ対部300の出力負荷となるPMOS型のトランジスタ312,314を有する電源側に配された負荷トランジスタ対部310と、各部300,310に一定の動作電流を供給する接地(GND)側に配されたNMOS型の定電流源トランジスタ322を有する電流源部320とを備えている。
トランジスタ302,304の各ソースが共通に定電流源トランジスタ322のドレインと接続され、トランジスタ302,304の各ドレイン(出力端子)に負荷トランジスタ対部310の対応するトランジスタ312,314のドレインが接続されている。定電流源トランジスタ322のゲートには、DCゲート電圧VGが入力される。
差動トランジスタ対部300の出力(図示した例ではトランジスタ304のドレイン)は、図示しないアンプに接続され、さらに図示しないバッファを経て、十分な増幅がなされた後、カウンタ部254に出力されるようになっている。
また、本実施形態特有の構成として、電圧比較部252の動作点をリセットする動作点リセット部330が設けられている。動作点リセット部330は、スイッチトランジスタ332,334と信号結合用の容量素子336,338とを有している。
ここで、スイッチトランジスタ332は、トランジスタ302のゲート(入力端子)−ドレイン(出力端子)間に接続され、またスイッチトランジスタ334は、トランジスタ304のゲート(入力端子)−ドレイン(出力端子)間に接続され、各ゲートには共通に比較器リセット信号PSETが供給されるようになっている。
また、トランジスタ302のゲート(入力端子)には、容量素子336を介して画素信号Vxが供給され、トランジスタ304のゲート(入力端子)には、図示しない参照信号生成部27から参照電圧RAMPが供給されるようになっている。
このような構成において、動作点リセット部330は、容量素子336,338を介して入力される信号に対してサンプル/ホールド機能を発揮する。すなわち、画素信号Vxと参照電圧RAMPとの比較を開始する直前だけ比較器リセット信号PSETをアクティブ(本例ではHレベル)にし、差動トランジスタ対部300の動作点をドレイン電圧(読出電位;基準成分や信号成分を読み出す動作基準値)にリセットする。その後、容量素子336を介して画素信号Vxをトランジスタ302へ、また容量素子338を介して参照電圧RAMPを入力し、画素信号Vxと参照電圧RAMPとが同電位となるまで比較を行なう。画素信号Vxと参照電圧RAMPとが同電位となると出力が反転する。
ここで、比較器リセット信号PSETを供給して差動トランジスタ対部300のトランジスタ302,304のゲートとドレインを一時的に接続(ショート)してダイオード接続とし、単位画素3の増幅用トランジスタ42の入力にトランジスタ304のオフセット成分を加えたものをトランジスタ304の入力端子(ゲート)に保持した後に参照電圧RAMPを入力して、画素信号Vxと参照電圧RAMPとの比較を開始する。こうすることで、画素信号の読出電位で電圧比較部252の動作点が設定されるようになるので、リセット成分ΔVのばらつきの影響を受け難くなる。
<固体撮像装置の動作;第3実施形態>
図6は、第3実施形態の固体撮像装置1のカラムAD回路25における動作を説明するためのタイミングチャートである。ここでは、第1実施形態に対する変形例で示している。
カラムAD回路25におけるAD変換処理は、動作点リセット部330の動作を除いて、基本的には第1実施形態と同様である。以下では、第3実施形態の特徴部分である動作点リセット部330の動作を中心に説明する。
1回目の読出しのため、先ず通信・タイミング制御部20は、カウンタ部254のカウント値を初期値“0”にリセットさせるとともに、カウンタ部254をダウンカウントモードに設定する。そして、任意の行Hxの単位画素3から垂直信号線19(H0,H1,…)への1回目の読出しが安定した後、通信・タイミング制御部20は、比較器リセット信号PSETをアクティブ(Hレベル)にして電圧比較部252をリセットしてから(t8〜t9)、参照信号生成部27に向けて、参照電圧RAMP生成用の制御データCN4を供給する。これを受けて、電圧比較部252は、RAMP波形の比較電圧と画素部10から供給される任意の垂直信号線19(Vx)の画素信号電圧との比較を開始する。
第1実施形態と同様に、この1回目の読出し時は、画素信号電圧VxにおけるリセットレベルVrst を電圧比較部252で検知してカウント動作を行なっているので、単位画素3のリセット成分ΔVを読み出していることになる。
このリセット成分ΔV内には、単位画素3ごとにばらつく雑音がオフセットとして含まれている。しかし、このリセット成分ΔVのばらつきは一般に小さく、またリセットレベルVrst は概ね全画素共通であるので、任意の垂直信号線19の画素信号電圧Vxにおけるリセット成分ΔVの出力値はおおよそ既知である。
加えて、この第3実施形態では、比較器リセット信号PSETにより電圧比較部252をリセットする際、1回目の読出電位で動作点が設定されるため、ゲインを上げた場合にもリセット成分ΔVのばらつきに関わらず、リセット成分ΔVが比較可能範囲を超えてしまうことが少なくなる。
したがって、1回目のリセット成分ΔVの読出し時には、RAMP電圧を調整することにより、ダウンカウント期間(t10〜t14;比較期間)を第1実施形態よりも短くすることが可能である。
続いての2回目の読出し時には、リセット成分ΔVに加えて、単位画素3ごとの入射光量に応じた信号成分Vsig を読み出し、1回目の読出しと同様の動作を行なう。ただし、比較器リセット信号PSETをオフしたままとし、比較器リセット信号PSETによる電圧比較部252のリセットを行なわない。
1回目の読出し時におけるダウンカウントと2回目の読出し時におけるアップカウントといった、2回の読出しとカウント処理によるカウンタ部254内での減算処理によって、単位画素3ごとのばらつきを含んだリセット成分ΔVとカラムAD回路25ごとのオフセット成分とを除去することができ、単位画素3ごとの入射光量に応じた信号成分Vsig のみを簡易な構成で取り出すことができる。この際、リセット雑音も除去できる利点がある。
加えて、電圧比較部252にサンプル/ホールド機構を持った動作点リセット部330を追加したことでkTC雑音の発生が懸念されるが、比較器リセット信号PSETをオフしたまま2回目の信号を読み出して処理するため、1回目の読出しの比較器リセット信号PSETのサンプル/ホールドにより生じたkTC雑音もカウンタ部254の減算処理により除去される。すなわち、kTC雑音の影響を受けることなく、単位画素3ごとの入射光量に応じた信号成分Vsig のみを取り出すことができる。
つまり、第3実施形態の処理にすることで、カウンタ部254において、1回目と2回目の読出し結果をカウントモードを切り替ながら処理することで、列ごとに直接減算できる利点があることに加えて、カウンタ部254による減算の際、1回目の読出し結果を保持して2回目を読むため、固定的に生ずるオフセット雑音だけでなく、サンプル/ホールドにより生ずるkTC雑音まで除去できる利点もある。
リセット成分ΔVのはばらつきに起因するリセット成分ΔVが比較可能範囲を超えてしまい比較できなくなる問題の解消だけであれば、サンプル/ホールド機能を持つ動作点リセット部330により1回目と2回目の双方について、比較器リセット信号PSETを一旦オンしてから比較処理をしてもよく、比較器リセット信号PSETをオフしたまま2回目の信号を読み出して処理するということは必須ではないが、それでは、サンプル/ホールドを用いた場合のkTC雑音を除去できない。
<固体撮像装置の動作;第4実施形態>
図7は、第4実施形態の固体撮像装置1のカラムAD回路25における動作を説明するためのタイミングチャートである。この第4実施形態は、第2実施形態に対して、第3実施形態と同様に、電圧比較部252の構成を工夫することで、リセット成分ΔVのばらつきに左右されずに比較期間を設定できるようにする点に特徴を有する。カラムAD回路25におけるAD変換処理は、動作点リセット部330の動作を除いて、基本的には第2実施形態と同様である。
すなわち、任意の行Hxの単位画素3から垂直信号線19(H0,H1,…)への1回目の読出しが安定した後、通信・タイミング制御部20は、比較器リセット信号PSETをアクティブ(Hレベル)にして電圧比較部252をリセットしてから(t8〜t9)、参照信号生成部27に向けて、参照電圧RAMP生成用の制御データCN4を供給する。一方、2回目の読出し時には、比較器リセット信号PSETをオフしたままとし、比較器リセット信号PSETによる電圧比較部252のリセットを行なわない。
動作点リセット部330の動作は第3実施形態と同様であり、第3実施形態で説明したと同様に、ゲインを上げた場合にもリセット成分ΔVのばらつきに関わらずリセット成分ΔVが比較可能範囲を超えてしまうことが少なくなる。また、kTC雑音の影響を受けることなく、単位画素3ごとの入射光量に応じた信号成分Vsig のみを取り出すことができる。
以上、本発明を実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれる。
また、上記の実施形態は、クレーム(請求項)にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組合せの全てが発明の解決手段に必須であるとは限らない。前述した実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組合せにより種々の発明を抽出できる。実施形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。
たとえば、上記実施形態では、電圧比較部252とカウンタ部254からなるカラムAD回路25を垂直列ごとに設けて垂直列ごとにデジタルデータ化する構成としていたが、これに限らず、垂直列に対しての切替回路を設けることで、複数の垂直列に対して1つのカラムAD回路25を配するようにしてもよい。
また、上記実施形態では、画素部10の読出し側に位置するカラム領域にAD変換機能部を設けていたが、その他の箇所に設けることもできる。たとえば、水平信号線18までアナログで画素信号を出力して、その後にAD変換を行ない出力回路28に渡すような構成としてもよい。
この場合でも、AD変換用の参照信号と基準成分と信号成分とを含んで表される処理対象信号とを比較し、この比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、比較処理が完了した時点のカウント値を保持する際、基準成分と信号成分の何れについて比較処理を行なっているのかに応じてカウント処理のモードを切り替えることで、基準成分と信号成分との差を表すデジタルデータを、ダウンカウントモードおよびアップカウントモードの2つのモードでカウント処理した結果として得ることができる。
この結果、基準成分と信号成分のそれぞれのカウント結果を保持するメモリ装置をカウンタ部が備えるラッチ機能で実現でき、AD変換されたデータを保持する専用のメモリ装置をカウンタとは別に用意する必要がない。全ての垂直列に対して1つのAD変換機能部を設ければよく、高速な変換処理が必要にはなるものの回路規模は上記実施形態よりも少なくなる。
また、上記実施形態では、2回目の処理におけるカウント処理を、1回目の処理において保持しておいたカウント値から開始するようにしていたが、カウント出力値がカウントクロックCK0に同期して出力される同期式のアップダウンカウンタを用いる場合には、モード切替時に特段の対処を要することなく、このことを実現できる。
しかしながら、動作制限周波数が最初のフリップフロップ(カウンタ基本要素)の制限周波数でのみ決められ高速動作に適する利点がある非同期式のアップダウンカウンタを用いる場合には、カウントモードを切り替えた際、カウント値が破壊されてしまい、切替え前後で値を保ったまま連続しての正常なカウント動作が行なえない問題を有する。よって、2回目の処理におけるカウント処理が、1回目の処理において保持しておいたカウント値から開始可能にする調整処理部を設けることが好ましい。なお、ここでは調整処理部の詳細については説明を割愛する。
また、上記実施形態では、画素信号が、時間系列として、同一画素について、リセット成分ΔV(基準成分)の後に信号成分Vsig が現れ、後段の処理部が正極性(信号レベルが大きいほど正の値が大きい)の信号について処理するものに対応して、1回目の処理として、リセット成分ΔV(基準成分)について比較処理とダウンカウント処理を行ない、2回目の処理として、信号成分Vsig について比較処理とアップカウント処理を行なうようにしていたが、基準成分と信号成分が現れる時間系列に拘わらず、対象信号成分とカウントモードとの組合せや処理順は任意である。処理手順によっては、2回目の処理で得られるデジタルデータが負の値になることもあるが、その場合には、補正演算をするなどの対処をすればよい。
勿論、画素部10のデバイスアーキテクチャとして、信号成分Vsig の後にリセット成分ΔV(基準成分)を読み込まなければならず、後段の処理部が正極性の信号について処理するものである場合には、1回目の処理として、信号成分Vsig について比較処理とダウンカウント処理を行ない、2回目の処理として、リセット成分ΔV(基準成分)について比較処理とアップカウント処理を行なうのが効率的である。
また、上記実施形態では、アップダウンカウンタを動作モードに拘わらず共通に使用しつつ、その処理モードを切り替えてカウント処理を行なうようにしていたが、基準成分と信号成分とについて、ダウンカウントモードとアップカウントモードを組み合わせてカウント処理を行なうものであればよく、モード切替可能なアップダウンカウンタを用いた構成に限定されない。
たとえば、基準成分と信号成分の何れか一方について比較処理を行なってダウンカウント処理を行なうダウンカウンタ回路と、基準成分と信号成分の他方について比較処理を行なってアップカウント処理を行なうアップカウンタ回路との組合せでカウンタ部を構成することもできる。
この場合、2回目のカウント処理を行なうカウンタ回路は、公知の技術を利用して任意の初期値をロードすることのできる構成のものとするのがよい。たとえば、ダウンカウントの後にアップカウントを行なう場合であれば、図8(A)に示すように、1回目のカウント処理ではダウンカウンタ回路を作動させ、2回目のカウント処理ではアップカウンタ回路を作動させる。
このとき、カウントモード切替用の切替制御信号CN5によりカウントモードを切り替えた後のアップカウント処理の開始前に、初期値設定用の切替制御信号CNloadをアップカウンタ回路のロード端子LDuに供給することで、ダウンカウント処理で取得したダウンカウント値を初期値としてアップカウンタ回路に設定する。
また、アップカウントの後にダウンカウントを行なう場合であれば、図8(B)に示すように、1回目のカウント処理ではアップカウンタ回路を作動させ、2回目のカウント処理ではダウンカウンタ回路を作動させる。
このとき、カウントモード切替用の切替制御信号CN5によりカウントモードを切り替えた後のダウンカウント処理の開始前に、初期値設定用の切替制御信号CNloadをダウンカウンタ回路のロード端子LDdに供給することで、アップカウント処理で取得したアップカウント値を初期値としてダウンカウンタ回路に設定する。
こうすることで、図8(A)および図8(B)の何れの構成も、後段のカウンタ回路の出力としては、基準成分と信号成分との減算処理が直接にでき、基準成分と信号成分との差を取るための特別な加算回路が不要になる。また、非特許文献1では必要としていた減算器へのデータ転送が不要になり、そのための雑音の増加や電流あるいは消費電力の増大を解消することができる。
なお、ダウンカウンタ回路とアップカウンタ回路との組合せでカウンタ部を構成する場合、2回目のカウント処理に際して、1回目のカウント処理で取得したカウント値を初期値として設定せず、ゼロからカウントする構成を排除するものではない。この場合、図8(C)に示すように、アップカウンタ回路の出力Qupとダウンカウンタ回路の出力Qdownの和を取る加算回路が必要となるが、この場合でも、比較部とカウンタ部とで構成されるAD変換部ごとに加算回路を設けるので、配線長を短くでき、データ転送のための雑音の増加や電流あるいは消費電力の増大を解消することができる。
図8に示した何れの構成も、ダウンカウンタ回路とアップカウンタ回路の動作の指示は、上記実施形態と同様に通信・タイミング制御部20が行なうことができる。また、ダウンカウンタ回路とアップカウンタ回路は、ともにカウントクロックCK0で動作させればよい。
また、上記第3および第4実施形態では、電圧比較部252の基本構成として、特許文献5の図8におけるコンパレータ部分と同様の構成を採用したが、基準成分について比較処理とカウント処理を行なう際には、先ず、比較部を所定の動作基準値にリセットした後に、比較部に参照信号を供給して比較処理とカウント処理を開始するなどの第3および第4実施形態の仕組みは、電圧比較部の構成が如何なるものであっても適用可能である。
たとえば、差動トランジスタ対部300の差動対のうち、画素信号入力側は単位画素3の画素信号生成部と直流的に結合された構成でもよく、この場合にも、参照電圧RAMPの入力側のトランジスタの入出力間を一時的にショートして、入力端子を所定の動作基準値にリセットする仕組みを設ければよい。
また、上記実施形態では、NMOSより構成されている単位画素で構成されたセンサを一例に説明したが、これに限らず、PMOSよりなる画素のものについても、電位関係を反転(電位の正負を逆に)して考えることで、上記実施形態で説明したと同様の作用・効果を享受可能である。
また、上記実施形態では、アドレス制御により個々の単位画素からの信号を任意選択して読出可能な固体撮像装置の一例として、光を受光することで信号電荷を生成する画素部を備えたCMOSセンサを例に示したが、信号電荷の生成は、光に限らず、たとえば赤外線、紫外線、あるいはX線などの電磁波一般に適用可能であり、この電磁波を受けてその量に応じたアナログ信号を出力する素子が多数配列された単位構成要素を備えた半導体装置に、上記実施形態で示した事項を適用可能である。
また、上記実施形態では、基準成分および信号成分のそれぞれに応じた信号とAD変換用の参照信号とを比較する比較部と、比較部における比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、比較部における比較処理が完了した時点のカウント値を保持するカウンタ部とを備えてなるAD変換回路(AD変換装置;前例ではカラムAD回路)を固体撮像装置に適用した事例を説明したが、上記実施形態で説明したAD変換回路の仕組みは、固体撮像装置に限らず、2つの信号成分の差信号成分をデジタルデータに変換するためのAD変換の仕組みを用いるあらゆる電子機器に適用することができる。
また、上記実施形態で説明したAD変換回路(AD変換装置)は、固体撮像装置やその他の電子機器に組み込まれて提供されることに限らず、たとえばIC(Integrated Circuit;集積回路)やAD変換モジュールなどのようにして、単独の装置として提供されてもよい。
この場合、比較部とカウンタ部とを備えたAD変換装置で提供してもよいが、AD変換用の参照信号を生成し比較部に供給する参照信号生成部や、比較部が基準成分と信号成分の何れについて比較処理を行なっているのかに応じてカウンタ部におけるカウント処理のモードを切り替える制御部も同一の半導体基板上に配したIC(集積回路)や個別チップなどの組合せでなるモジュールに組み込んで提供してもよい。
これらを組み込んで提供することで、比較部とカウンタ部の動作を制御するために必要な機能部を纏めて取り扱うことができ、部材の取扱いや管理が簡易になる。また、AD変換処理に必要な要素がICやモジュールとして纏まって(一体となって)いるので、固体撮像装置やその他の電子機器の完成品の製造も容易になる。
本発明の第1実施形態に係るCMOS固体撮像装置の概略構成図である。 図1に示した第1実施形態の固体撮像装置のカラムAD回路における動作を説明するためのタイミングチャートである。 本発明の第2実施形態に係るCMOS固体撮像装置の概略構成図である。 図3に示した第2実施形態の固体撮像装置のカラムAD回路における動作を説明するためのタイミングチャートである。 本発明の第3実施形態に係るCMOS固体撮像装置(CMOSイメージセンサ)に使用される電圧比較部の概略回路図である。 第3実施形態の固体撮像装置のカラムAD回路における動作を説明するためのタイミングチャートである。 第4実施形態の固体撮像装置のカラムAD回路における動作を説明するためのタイミングチャートである。 カウンタ部の変形例を示す回路ブロック図である。 AD変換装置を画素部と同一の半導体基板に搭載した従来例のCMOS固体撮像装置の概略構成図である。 図9に示した従来例の固体撮像装置の動作を説明するためのタイミングチャートである。
符号の説明
1…固体撮像装置、3…単位画素、7…駆動制御部、10…画素部、12…水平走査回路、14…垂直走査回路、15…行制御線、18…水平信号線、19…垂直信号線、20…通信・タイミング制御部、21…タイミング制御部、23…クロック変換部、24…カウンタ部、25…カラムAD回路、26…カラム処理部、27…参照信号生成部、27a…DA変換回路、28…出力回路、29…減算回路、300…差動トランジスタ対部、310…負荷トランジスタ対部、320…電流源部、330…動作点リセット部

Claims (37)

  1. 基準成分と信号成分とを含んで表されるアナログの処理対象信号の前記基準成分と前記信号成分との差信号成分をデジタルデータに変換するAD変換方法であって、
    1回目の処理として、前記基準成分と前記信号成分のうちの何れか一方に応じた信号と、前記デジタルデータに変換するための参照信号とを比較するとともに、この比較処理と並行してダウンカウントモードおよびアップカウントモードのうちの何れか一方のモードでカウント処理を行ない、前記比較処理が完了した時点のカウント値を保持し、
    この後、2回目の処理として、前記基準成分と前記信号成分のうちの他方と前記参照信号とを比較するとともに、この比較処理と並行して前記ダウンカウントモードおよび前記アップカウントモードのうちの他方のモードでカウント処理を行ない、前記比較処理が完了した時点のカウント値を保持する
    ことを特徴とするAD変換方法。
  2. 前記ダウンカウントモードと前記アップカウントモードとにおける各カウント処理を、アップダウンカウンタを共通に用いつつ、その処理モードを切り替えて行なう
    ことを特徴とする請求項1に記載のAD変換方法。
  3. 前記2回目の処理における前記カウント処理を、前記1回目の処理において保持しておいたカウント値から開始する
    ことを特徴とする請求項1に記載のAD変換方法。
  4. 前記基準成分について前記比較処理と前記カウント処理を行なう際には、先ず、前記比較処理を行なう比較部を所定の動作基準値にリセットし、この後に、前記比較部に前記参照信号を供給して前記比較処理と前記カウント処理を開始する
    ことを特徴とする請求項1に記載のAD変換方法。
  5. 前記信号成分について前記比較処理と前記カウント処理を行なう際には、前記比較部に対する前記リセットの処理を行なわずに、前記比較部に前記参照信号を供給して前記比較処理と前記カウント処理を開始する
    ことを特徴とする請求項4に記載のAD変換方法。
  6. 前記1回目の処理は、前記基準成分について前記比較処理と前記カウント処理を行ない、
    前記2回目の処理は、前記信号成分について前記比較処理と前記カウント処理を行なう
    ことを特徴とする請求項1に記載のAD変換方法。
  7. 前記基準成分についての処理は、前記ダウンカウントモードにて行ない、
    前記信号成分についての処理は、前記アップカウントモードにて行なう
    ことを特徴とする請求項1に記載のAD変換方法。
  8. 前記基準成分についての前記比較処理の最長期間は、前記信号成分についての前記比較処理の最長期間よりも短くする
    ことを特徴とする請求項1に記載のAD変換方法。
  9. 前記1回目の処理と前記2回目の処理のそれぞれについての前記参照信号の変化特性を同じにする
    ことを特徴とする請求項1に記載のAD変換方法。
  10. 前回の処理対象信号について、前記2回目の処理にて保持した前記カウント値をさらに別のデータ記憶部に保持しておき、
    今回の処理対象信号について、前記1回目の処理と前記2回目の処理とを行なう際に、前記データ記憶部からの前記カウント値の読出処理を並行して行なう
    ことを特徴とする請求項1に記載のAD変換方法。
  11. 前記処理対象信号は、入射された電磁波に対応する電荷を生成する電荷生成部および前記電荷生成部により生成された電荷に応じた単位信号を生成する単位信号生成部を単位構成要素内に含み、当該単位構成要素が行列状に配された、物理量分布検知のための半導体装置における、前記単位信号生成部により生成され列方向に出力されたアナログの単位信号である
    ことを特徴とする請求項1に記載のAD変換方法。
  12. 前記単位信号生成部により生成され列方向に出力される前記アナログの単位信号を行単位で取り込み、
    この行単位で、前記単位構成要素のそれぞれについて、前記1回目の処理と前記2回目の処理とを行なう
    ことを特徴とする請求項11に記載のAD変換方法。
  13. 前記基準成分は、前記単位信号の雑音を含むリセット成分である
    ことを特徴とする請求項11に記載のAD変換方法。
  14. 基準成分と信号成分とを含んで表されるアナログの処理対象信号の前記基準成分と前記信号成分との差信号成分をデジタルデータに変換するAD変換装置であって、
    前記基準成分および前記信号成分のそれぞれに応じた信号と前記デジタルデータに変換するための参照信号とを比較する比較部と、
    前記比較部における比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、前記比較部における前記比較処理が完了した時点のカウント値を保持するカウンタ部と
    を備えたことを特徴とするAD変換装置。
  15. 前記デジタルデータに変換するための参照信号を生成し前記比較部に供給する参照信号生成部
    をさらに備えたことを特徴とする請求項14に記載のAD変換装置。
  16. 前記カウンタ部は、共通のカウンタ回路で構成され、かつ前記アップカウントモードと前記ダウンカウントモードとを切替可能に構成されている
    ことを特徴とする請求項14に記載のAD変換装置。
  17. 前記比較部が前記基準成分と前記信号成分の何れについて前記比較処理を行なっているのかに応じて前記カウンタ部における前記カウント処理のモードを切り替える制御部
    をさらに備えたことを特徴とする請求項14に記載のAD変換装置。
  18. 前記制御部は、2回目の処理における前記カウント処理を、1回目の処理において保持しておいたカウント値から開始させる
    ことを特徴とする請求項17に記載のAD変換装置。
  19. 前記基準成分について前記比較処理と前記カウント処理を行なう際には、先ず、前記比較部を前記基準成分を読み出す動作基準値にリセットし、この後に、前記比較部に前記参照信号を供給して前記比較処理と前記カウント処理を開始する
    ことを特徴とする請求項14に記載のAD変換装置。
  20. 前記信号成分について前記比較処理と前記カウント処理を行なう際には、前記比較部に対する前記リセットの処理を行なわずに、前記比較部に前記参照信号を供給して前記比較処理と前記カウント処理を開始する
    ことを特徴とする請求項19に記載のAD変換装置。
  21. 前記比較部は、前記処理対象信号が入力される入力端子および出力端子を有する第1のトランジスタと、前記参照信号が入力される入力端子および出力端子を有する第2のトランジスタとが差動対を構成するように接続された差動トランジスタ対部と、前記トランジスタの前記入力端子と前記出力端子とを接続可能に構成された前記リセットを行なう動作点リセット部とを備え、
    前記基準成分について前記比較処理と前記カウント処理を行なう際には、前記トランジスタの前記入力端子と前記出力端子とを一時的に接続するよう前記動作点リセット部を制御することで前記リセットを行なう
    ことを特徴とする請求項19に記載のAD変換装置。
  22. 前記制御部は、1回目の処理は前記基準成分について前記比較処理と前記カウント処理を行ない、2回目の処理は前記信号成分について前記比較処理と前記カウント処理を行なうように制御する
    ことを特徴とする請求項17に記載のAD変換装置。
  23. 前記制御部は、前記比較部が前記基準成分について前記比較処理を行なう際には前記カウンタ部が前記ダウンカウントモードにて前記カウント処理を行ない、前記比較部が前記信号成分について前記比較処理を行なう際には前記カウンタ部が前記アップカウントモードにて前記カウント処理を行なうように、前記カウンタ部における前記カウント処理のモードを切り替える
    ことを特徴とする請求項17に記載のAD変換装置。
  24. 前記参照信号生成部は、前記1回目の処理と前記2回目の処理のそれぞれについての前記参照信号の変化特性を同じにする
    ことを特徴とする請求項15に記載のAD変換装置。
  25. 前回の処理対象信号について、前記カウンタ部にて保持した前記カウント値を保持するデータ記憶部と、
    今回の処理対象信号について、前記比較部と前記カウンタ部とが、それぞれが担当する処理を行なうのと並行して、前記データ記憶部から前記カウント値を読み出す読出走査部と
    をさらに備えたことを特徴とする請求項14に記載のAD変換装置。
  26. 入射された電磁波に対応する電荷を生成する電荷生成部および前記電荷生成部により生成された電荷に応じた、基準成分と信号成分とを含んで表されるアナログの単位信号を生成する単位信号生成部を単位構成要素内に含み、当該単位構成要素が行列状に配された物理量分布検知のための半導体装置であって、
    前記信号成分のデジタルデータを生成するための参照信号と前記基準成分および前記信号成分のそれぞれとに対応する信号とを比較する比較部と、
    前記比較部における比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、前記比較部における前記比較処理が完了した時点のカウント値を保持するカウンタ部と
    を備えたことを特徴とする半導体装置。
  27. 前記デジタルデータに変換するための参照信号を生成し前記比較部に供給する参照信号生成部
    をさらに備えたことを特徴とする請求項26に記載の半導体装置。
  28. 前記比較部と前記カウンタ部とを有して構成されるAD変換部を、前記単位構成要素の列の並び方向である行方向に複数備えている
    ことを特徴とする請求項26に記載の半導体装置。
  29. 前記比較部は、前記単位信号生成部により生成され列方向に出力される前記アナログの単位信号を行単位で取り込み、
    前記比較部および前記カウンタ部は、前記行単位で、前記単位構成要素のそれぞれについて、それぞれが担当する処理を行なう
    ことを特徴とする請求項26に記載の半導体装置。
  30. 前記比較部が前記基準成分と前記信号成分の何れについて前記比較処理を行なっているのかに応じて前記カウンタ部における前記カウント処理のモードを切り替える制御部
    をさらに備えたことを特徴とする請求項26に記載の半導体装置。
  31. 前記基準成分について前記比較処理と前記カウント処理を行なう際には、先ず、前記比較部を前記基準成分を読み出す動作基準値にリセットし、この後に、前記比較部に前記参照信号を供給して前記比較処理と前記カウント処理を開始する
    ことを特徴とする請求項26に記載の半導体装置。
  32. 前記信号成分について前記比較処理と前記カウント処理を行なう際には、前記比較部に対する前記リセットの処理を行なわずに、前記比較部に前記参照信号を供給して前記比較処理と前記カウント処理を開始する
    ことを特徴とする請求項31に記載の半導体装置。
  33. 前記比較部は、前記処理対象信号が入力される入力端子および出力端子を有する第1のトランジスタと、前記参照信号が入力される入力端子および出力端子を有する第2のトランジスタとが差動対を構成するように接続された差動トランジスタ対部と、前記トランジスタの前記入力端子と前記出力端子とを接続可能に構成された前記リセットを行なう動作点リセット部とを備え、
    前記基準成分について前記比較処理と前記カウント処理を行なう際には、前記トランジスタの前記入力端子と前記出力端子とを一時的に接続するよう前記動作点リセット部を制御することで前記リセットを行なう
    ことを特徴とする請求項31に記載の半導体装置。
  34. 前記比較部は、前記基準成分として、前記単位信号の雑音を含むリセット成分を取り込む
    ことを特徴とする請求項26に記載の半導体装置。
  35. 前記電荷生成部は、前記電磁波としての光を受光して、この受光した光に対応する電荷を生成する光電変換素子を有している
    ことを特徴とする請求項26に記載の半導体装置。
  36. 前記単位信号生成部は、増幅用の半導体素子を有する
    ことを特徴とする請求項26に記載の半導体装置。
  37. 基準成分と信号成分とを含んで表されるアナログの処理対象信号の前記基準成分と前記信号成分との差信号成分をデジタルデータに変換するための参照信号を生成する参照信号生成部と、
    前記基準成分と前記信号成分のそれぞれに応じた信号と、前記参照信号生成部が生成した参照信号とを比較する比較部と、
    前記比較部における比較処理と並行して、ダウンカウントモードおよびアップカウントモードの何れか一方のモードでカウント処理を行ない、前記比較部における前記比較処理が完了した時点のカウント値を保持するカウンタ部と、
    前記比較部が前記基準成分と前記信号成分の何れについて前記比較処理を行なっているのかに応じて前記カウンタ部における前記カウント処理のモードを切り替える制御部と
    を備えたことを特徴とする電子機器。
JP2004323432A 2004-02-23 2004-11-08 Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器 Active JP4470700B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004323432A JP4470700B2 (ja) 2004-02-23 2004-11-08 Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器
EP09003035A EP2065714B1 (en) 2004-11-08 2005-11-07 Comparing method and device for analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity
EP05024229A EP1655840B1 (en) 2004-11-08 2005-11-07 Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
DE602005013469T DE602005013469D1 (de) 2004-11-08 2005-11-07 Verfahren zur Analog-Digital-Wandlung, Analog-Digital-Wandler, Halbleitervorrichtung zur Detektierung der Verteilung von physikalischen Grössen und elektronisches Gerät
TW94138912A TWI286904B (en) 2004-02-23 2005-11-07 Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
US11/268,428 US7315273B2 (en) 2004-11-08 2005-11-07 Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
CN2010102009163A CN101883220B (zh) 2004-11-08 2005-11-08 图像传感器、其驱动方法、模块、电子设备、模数转换方法和模数转换器
CN2005101315866A CN1783958B (zh) 2004-11-08 2005-11-08 模数转换方法、模数转换器、半导体设备及电子装置
KR1020050106272A KR101202167B1 (ko) 2004-11-08 2005-11-08 아날로그/디지털 변환 방법, 아날로그/디지털 변환 장치,물리량 분포 검출용 반도체 장치, 및 전자 기기
US11/462,294 US7375672B2 (en) 2004-11-08 2006-08-03 Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
US11/462,429 US7538709B2 (en) 2004-11-08 2006-08-04 Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004045942 2004-02-23
JP2004110866 2004-04-05
JP2004323432A JP4470700B2 (ja) 2004-02-23 2004-11-08 Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009245598A Division JP4983889B2 (ja) 2004-02-23 2009-10-26 Ad変換方法およびad変換装置

Publications (2)

Publication Number Publication Date
JP2005323331A true JP2005323331A (ja) 2005-11-17
JP4470700B2 JP4470700B2 (ja) 2010-06-02

Family

ID=35470233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323432A Active JP4470700B2 (ja) 2004-02-23 2004-11-08 Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器

Country Status (2)

Country Link
JP (1) JP4470700B2 (ja)
TW (1) TWI286904B (ja)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303648A (ja) * 2004-04-12 2005-10-27 Sony Corp Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器
JP2007221760A (ja) * 2006-01-17 2007-08-30 Matsushita Electric Ind Co Ltd 固体撮像装置
JP2007306348A (ja) * 2006-05-12 2007-11-22 Sony Corp 固体撮像装置
JP2008042885A (ja) * 2006-07-11 2008-02-21 Matsushita Electric Ind Co Ltd Ad変換器
EP1971139A2 (en) 2007-03-12 2008-09-17 Sony Corporation Column readout circuit for CMOS image sensor
US7474246B2 (en) 2006-03-14 2009-01-06 Sony Corporation AD converter device, physical quantity distribution detecting unit and imaging apparatus
WO2009041474A1 (ja) 2007-09-28 2009-04-02 Sony Corporation A/d変換回路、固体撮像素子、およびカメラシステム
WO2009041552A1 (ja) * 2007-09-28 2009-04-02 Sony Corporation 固体撮像装置、駆動制御方法、および撮像装置
WO2009041413A1 (ja) 2007-09-28 2009-04-02 Sony Corporation 固体撮像素子およびカメラシステム
WO2009151010A1 (ja) * 2008-06-09 2009-12-17 オリンパス株式会社 撮像装置
WO2009150994A1 (ja) * 2008-06-09 2009-12-17 オリンパス株式会社 撮像装置
US7671317B2 (en) 2007-07-25 2010-03-02 Panasonic Corporation Physical quantity detecting apparatus and method for driving the same
US7683817B2 (en) 2007-04-26 2010-03-23 Panasonic Corporation Solid-state imaging device, AD converter, and AD converting method
US7750836B2 (en) 2006-03-06 2010-07-06 Sony Corporation Solid-state imaging device, method of driving solid-state imaging device and camera
US7777170B2 (en) 2007-12-25 2010-08-17 Panasonic Corporation Solid-state imaging device and camera
US7791524B2 (en) 2008-02-22 2010-09-07 Panasonic Corporation Solid-state imaging device, semiconductor integrated circuit, and signal processing method
JP2010259051A (ja) * 2009-04-03 2010-11-11 Sony Corp 電子機器、ad変換装置、ad変換方法
US7903160B2 (en) 2007-05-10 2011-03-08 Sony Corporation Data transfer circuit, solid-state imaging device and camera
US7911519B2 (en) 2007-09-28 2011-03-22 Sony Corporation Solid-state image pickup device, driving method thereof, and camera system
US7948533B2 (en) 2006-08-31 2011-05-24 Sony Corporation Solid state image sensor device having signal noise reduction circuitry
US7952510B2 (en) 2007-12-26 2011-05-31 Panasonic Corporation Solid-state imaging device, driving method thereof, and camera
US7990304B2 (en) 2009-02-13 2011-08-02 Samsung Electronics Co., Ltd. Double data rate (DDR) counter, analog-to-digital converter (ADC) using the same, CMOS image sensor using the same and methods in DDR counter, ADC and CMOS image sensor
US8040414B2 (en) 2008-05-13 2011-10-18 Panasonic Corporation A/D converter-incorporated solid-state imaging device
JP2011229120A (ja) * 2010-03-30 2011-11-10 Sony Corp 固体撮像装置、固体撮像装置の信号処理方法、及び、電子機器
US8089544B2 (en) 2008-03-26 2012-01-03 Kabushiki Kaisha Toshiba Image sensor and driving method therefor
JP2012517168A (ja) * 2009-02-06 2012-07-26 トリクセル エス.アー.エス. 感光点のアレイによって取得される画像の補正方法
WO2012141042A1 (ja) 2011-04-11 2012-10-18 ソニー株式会社 固体撮像素子およびカメラシステム
US8319522B2 (en) 2009-01-16 2012-11-27 Sony Corporation Data transfer circuit, solid-state imaging device and camera system
JP2013005088A (ja) * 2011-06-14 2013-01-07 Olympus Corp Ad変換回路および撮像装置
US8362818B2 (en) 2010-05-24 2013-01-29 Sony Corporation Clock adjustment circuit, shift detection circuit of duty ratio, imaging device and clock adjustment method
US8395539B2 (en) 2009-03-03 2013-03-12 Samsung Electronics Co., Ltd. Double data rate (DDR) counter, analog-to-digital converter (ADC) using the same, CMOS image sensor using the same and methods in DDR counter, ADC and CMOS image sensor
US8395688B2 (en) 2007-06-28 2013-03-12 Panasonic Corporation Solid-state imaging device having a shortened correlated double sampling (CDS) period, driving method of the same, and camera including the same
JP2013065924A (ja) * 2011-09-15 2013-04-11 Canon Inc アナログデジタル変換回路、撮像装置、アナログデジタル変換回路の検査方法
WO2013058167A1 (ja) 2011-10-20 2013-04-25 ソニー株式会社 固体撮像素子およびカメラシステム
WO2013058147A1 (ja) 2011-10-18 2013-04-25 ソニー株式会社 撮像素子およびカメラシステム
JP2013085102A (ja) * 2011-10-07 2013-05-09 Canon Inc Ad変換器、光電変換装置、および撮像システム
US8462260B2 (en) 2009-07-23 2013-06-11 Sony Corporation Image pickup apparatus and image pickup method
WO2013089036A1 (ja) 2011-12-16 2013-06-20 ソニー株式会社 撮像装置
US8587707B2 (en) 2009-08-28 2013-11-19 Sony Corporation DA converter and solid-state imaging device that provides reduced power consumption
US8692177B2 (en) 2010-02-08 2014-04-08 Panasonic Corporation Solid-state imaging device including analog-to-digital converter and analog-to-digital conversion method
US8698062B2 (en) 2010-06-18 2014-04-15 Canon Kabushiki Kaisha A/D converter, solid-state image sensor using plurality of A/D converters and driving method of A/D converter for correcting an offset value of the A/D converter based on a held offset value
US8735796B2 (en) 2010-02-26 2014-05-27 Panasonic Corporation Solid-state imaging device comprising an analog to digital converter with column comparison circuits, column counter circuits, first and second inverters, and buffers
US8754973B2 (en) 2010-02-26 2014-06-17 Panasonic Corporation Solid-state imaging device, method for driving the same where a low-pass filter is inserted in column signal line to improve reading speed and reduce noise
US8803993B2 (en) 2010-02-19 2014-08-12 Sony Corporation Solid-state imaging device and camera system with a reset-level variation correction function
EP2773099A2 (en) 2013-03-01 2014-09-03 Canon Kabushiki Kaisha Image pickup apparatus, driving method for image pickup apparatus, image pickup system, and driving method for image pickup system
US9025041B2 (en) 2012-01-18 2015-05-05 Canon Kabushiki Kasha Solid-state imaging apparatus and method for driving the same
US9204070B2 (en) 2010-06-01 2015-12-01 Sony Corporation Integrating A/D converter, integrating A/D conversion method, solid-state imaging device and camera system
WO2015198877A1 (ja) * 2014-06-25 2015-12-30 ソニー株式会社 撮像素子および撮像素子の駆動方法、電子機器、並びにプログラム
US9609257B2 (en) 2013-02-13 2017-03-28 Olympus Corporation Solid-state imaging device
CN106840440A (zh) * 2017-03-03 2017-06-13 成都信息工程大学 一种基于mcu内部比较器的温度采集器及温度采集方法
JP2018133794A (ja) * 2017-02-16 2018-08-23 ソニーセミコンダクタソリューションズ株式会社 撮像システムおよび撮像装置
US10158820B2 (en) 2015-03-26 2018-12-18 Canon Kabushiki Kaisha Imaging apparatus having image sensor to reduce column noise
US10326957B2 (en) 2016-12-05 2019-06-18 Tech Idea Co., Ltd. A/D converter and sensor device using the same
JP2020198640A (ja) * 2014-05-08 2020-12-10 ソニー株式会社 撮像装置および撮像方法
KR20210023838A (ko) 2018-06-28 2021-03-04 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 전자 기기
WO2022149388A1 (ja) * 2021-01-05 2022-07-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置および測距システム
WO2022153901A1 (ja) * 2021-01-14 2022-07-21 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728826B2 (ja) * 2010-04-30 2015-06-03 ソニー株式会社 カラムa/d変換器、カラムa/d変換方法、固体撮像素子およびカメラシステム

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303648A (ja) * 2004-04-12 2005-10-27 Sony Corp Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器
JP4655500B2 (ja) * 2004-04-12 2011-03-23 ソニー株式会社 Ad変換装置並びに物理量分布検知の半導体装置および電子機器
US8319869B2 (en) 2006-01-17 2012-11-27 Panasonic Corporation Solid-state imaging device
JP2007221760A (ja) * 2006-01-17 2007-08-30 Matsushita Electric Ind Co Ltd 固体撮像装置
US7750836B2 (en) 2006-03-06 2010-07-06 Sony Corporation Solid-state imaging device, method of driving solid-state imaging device and camera
KR101340183B1 (ko) * 2006-03-06 2013-12-10 소니 주식회사 고체 촬상 장치, 고체 촬상 장치를 구동하는 방법 및카메라
US7474246B2 (en) 2006-03-14 2009-01-06 Sony Corporation AD converter device, physical quantity distribution detecting unit and imaging apparatus
JP2007306348A (ja) * 2006-05-12 2007-11-22 Sony Corp 固体撮像装置
JP2008042885A (ja) * 2006-07-11 2008-02-21 Matsushita Electric Ind Co Ltd Ad変換器
US8421888B2 (en) 2006-08-31 2013-04-16 Sony Corporation Solid state imaging device having signal noise combining circuitry for masking image reproduction errors
US7948533B2 (en) 2006-08-31 2011-05-24 Sony Corporation Solid state image sensor device having signal noise reduction circuitry
JP2008227800A (ja) * 2007-03-12 2008-09-25 Sony Corp データ処理方法、データ処理装置、固体撮像装置、撮像装置、電子機器
EP1971139A2 (en) 2007-03-12 2008-09-17 Sony Corporation Column readout circuit for CMOS image sensor
KR101450718B1 (ko) 2007-03-12 2014-10-16 소니 주식회사 데이터 처리 방법, 데이터 처리 장치, 고체 촬상 장치,촬상 장치, 전자기기
US7642947B2 (en) 2007-03-12 2010-01-05 Sony Corporation Data processing method, data processing device, solid-state imaging device, imaging apparatus, and electronic device
US7683817B2 (en) 2007-04-26 2010-03-23 Panasonic Corporation Solid-state imaging device, AD converter, and AD converting method
US7903160B2 (en) 2007-05-10 2011-03-08 Sony Corporation Data transfer circuit, solid-state imaging device and camera
US8395688B2 (en) 2007-06-28 2013-03-12 Panasonic Corporation Solid-state imaging device having a shortened correlated double sampling (CDS) period, driving method of the same, and camera including the same
US7671317B2 (en) 2007-07-25 2010-03-02 Panasonic Corporation Physical quantity detecting apparatus and method for driving the same
US8039781B2 (en) 2007-07-25 2011-10-18 Panasonic Corporation Physical quantity detecting apparatus and method for driving the same
JP2009088901A (ja) * 2007-09-28 2009-04-23 Sony Corp 固体撮像装置、駆動制御方法、および撮像装置
US8330635B2 (en) 2007-09-28 2012-12-11 Sony Corporation A/D conversion circuit, solid-state image sensor, and camera system
US7911519B2 (en) 2007-09-28 2011-03-22 Sony Corporation Solid-state image pickup device, driving method thereof, and camera system
WO2009041413A1 (ja) 2007-09-28 2009-04-02 Sony Corporation 固体撮像素子およびカメラシステム
US8269867B2 (en) 2007-09-28 2012-09-18 Sony Corporation Solid-state image pickup device, driving control method, and image pickup apparatus
US8981983B2 (en) 2007-09-28 2015-03-17 Sony Corporation A/D conversion circuit, solid-state image sensor, and camera system
US8890990B2 (en) 2007-09-28 2014-11-18 Sony Corporation Solid-state image pickup device and camera system
WO2009041474A1 (ja) 2007-09-28 2009-04-02 Sony Corporation A/d変換回路、固体撮像素子、およびカメラシステム
US8035717B2 (en) 2007-09-28 2011-10-11 Sony Corporation Solid-state image pickup device and camera system
WO2009041552A1 (ja) * 2007-09-28 2009-04-02 Sony Corporation 固体撮像装置、駆動制御方法、および撮像装置
US8476568B2 (en) 2007-12-25 2013-07-02 Panasonic Corporation Solid-state imaging device that adjusts frequency of a clock to change a gain of a counter to a determined gain
US7777170B2 (en) 2007-12-25 2010-08-17 Panasonic Corporation Solid-state imaging device and camera
US7952510B2 (en) 2007-12-26 2011-05-31 Panasonic Corporation Solid-state imaging device, driving method thereof, and camera
US7791524B2 (en) 2008-02-22 2010-09-07 Panasonic Corporation Solid-state imaging device, semiconductor integrated circuit, and signal processing method
US8089544B2 (en) 2008-03-26 2012-01-03 Kabushiki Kaisha Toshiba Image sensor and driving method therefor
US8040414B2 (en) 2008-05-13 2011-10-18 Panasonic Corporation A/D converter-incorporated solid-state imaging device
WO2009151010A1 (ja) * 2008-06-09 2009-12-17 オリンパス株式会社 撮像装置
WO2009150994A1 (ja) * 2008-06-09 2009-12-17 オリンパス株式会社 撮像装置
JP2009296499A (ja) * 2008-06-09 2009-12-17 Olympus Corp 撮像装置
US8416324B2 (en) 2008-06-09 2013-04-09 Olympus Corporation Imaging device having pixels and A/D conversion elements
US8319522B2 (en) 2009-01-16 2012-11-27 Sony Corporation Data transfer circuit, solid-state imaging device and camera system
JP2012517168A (ja) * 2009-02-06 2012-07-26 トリクセル エス.アー.エス. 感光点のアレイによって取得される画像の補正方法
US7990304B2 (en) 2009-02-13 2011-08-02 Samsung Electronics Co., Ltd. Double data rate (DDR) counter, analog-to-digital converter (ADC) using the same, CMOS image sensor using the same and methods in DDR counter, ADC and CMOS image sensor
US8395539B2 (en) 2009-03-03 2013-03-12 Samsung Electronics Co., Ltd. Double data rate (DDR) counter, analog-to-digital converter (ADC) using the same, CMOS image sensor using the same and methods in DDR counter, ADC and CMOS image sensor
JP2010259051A (ja) * 2009-04-03 2010-11-11 Sony Corp 電子機器、ad変換装置、ad変換方法
US7973695B2 (en) 2009-04-03 2011-07-05 Sony Corporation Electronic apparatus, AD converter, and AD conversion method
US8462260B2 (en) 2009-07-23 2013-06-11 Sony Corporation Image pickup apparatus and image pickup method
US8587707B2 (en) 2009-08-28 2013-11-19 Sony Corporation DA converter and solid-state imaging device that provides reduced power consumption
US8692177B2 (en) 2010-02-08 2014-04-08 Panasonic Corporation Solid-state imaging device including analog-to-digital converter and analog-to-digital conversion method
US8803993B2 (en) 2010-02-19 2014-08-12 Sony Corporation Solid-state imaging device and camera system with a reset-level variation correction function
US8735796B2 (en) 2010-02-26 2014-05-27 Panasonic Corporation Solid-state imaging device comprising an analog to digital converter with column comparison circuits, column counter circuits, first and second inverters, and buffers
US8754973B2 (en) 2010-02-26 2014-06-17 Panasonic Corporation Solid-state imaging device, method for driving the same where a low-pass filter is inserted in column signal line to improve reading speed and reduce noise
US9215390B2 (en) 2010-03-30 2015-12-15 Sony Corporation Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US9986178B2 (en) 2010-03-30 2018-05-29 Sony Corporation Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
JP2011229120A (ja) * 2010-03-30 2011-11-10 Sony Corp 固体撮像装置、固体撮像装置の信号処理方法、及び、電子機器
US8964086B2 (en) 2010-03-30 2015-02-24 Sony Corporation Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US10257452B2 (en) 2010-03-30 2019-04-09 Sony Corporation Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US9769396B2 (en) 2010-03-30 2017-09-19 Sony Corporation Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US9462200B2 (en) 2010-03-30 2016-10-04 Sony Corporation Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
US8362818B2 (en) 2010-05-24 2013-01-29 Sony Corporation Clock adjustment circuit, shift detection circuit of duty ratio, imaging device and clock adjustment method
US9204070B2 (en) 2010-06-01 2015-12-01 Sony Corporation Integrating A/D converter, integrating A/D conversion method, solid-state imaging device and camera system
US8698062B2 (en) 2010-06-18 2014-04-15 Canon Kabushiki Kaisha A/D converter, solid-state image sensor using plurality of A/D converters and driving method of A/D converter for correcting an offset value of the A/D converter based on a held offset value
KR20140006920A (ko) 2011-04-11 2014-01-16 소니 주식회사 고체 촬상 소자 및 카메라 시스템
WO2012141042A1 (ja) 2011-04-11 2012-10-18 ソニー株式会社 固体撮像素子およびカメラシステム
US9344656B2 (en) 2011-04-11 2016-05-17 Sony Corporation Solid-state image sensor and camera system
JP2013005088A (ja) * 2011-06-14 2013-01-07 Olympus Corp Ad変換回路および撮像装置
JP2013065924A (ja) * 2011-09-15 2013-04-11 Canon Inc アナログデジタル変換回路、撮像装置、アナログデジタル変換回路の検査方法
JP2013085102A (ja) * 2011-10-07 2013-05-09 Canon Inc Ad変換器、光電変換装置、および撮像システム
WO2013058147A1 (ja) 2011-10-18 2013-04-25 ソニー株式会社 撮像素子およびカメラシステム
WO2013058167A1 (ja) 2011-10-20 2013-04-25 ソニー株式会社 固体撮像素子およびカメラシステム
US9843747B2 (en) 2011-10-20 2017-12-12 Sony Semiconductor Solutions Corporation Solid-state image sensor and camera system
US9451189B2 (en) 2011-10-20 2016-09-20 Sony Corporation Solid-state image sensor and camera system
KR20140073509A (ko) 2011-10-20 2014-06-16 소니 주식회사 고체 촬상 소자 및 카메라 시스템
WO2013089036A1 (ja) 2011-12-16 2013-06-20 ソニー株式会社 撮像装置
US9025041B2 (en) 2012-01-18 2015-05-05 Canon Kabushiki Kasha Solid-state imaging apparatus and method for driving the same
US9609257B2 (en) 2013-02-13 2017-03-28 Olympus Corporation Solid-state imaging device
EP2773099A2 (en) 2013-03-01 2014-09-03 Canon Kabushiki Kaisha Image pickup apparatus, driving method for image pickup apparatus, image pickup system, and driving method for image pickup system
US9219872B2 (en) 2013-03-01 2015-12-22 Canon Kabushiki Kaisha Image pickup apparatus, driving method for image pickup apparatus, image pickup system, and driving method for image pickup system
JP2020198640A (ja) * 2014-05-08 2020-12-10 ソニー株式会社 撮像装置および撮像方法
JPWO2015198877A1 (ja) * 2014-06-25 2017-04-20 ソニー株式会社 撮像素子および撮像素子の駆動方法、電子機器、並びにプログラム
US10021332B2 (en) 2014-06-25 2018-07-10 Sony Semiconductor Solutions Corporation Image sensor, method of driving an image sensor, electronic apparatus, and program
KR20170023795A (ko) 2014-06-25 2017-03-06 소니 주식회사 촬상 소자 및 촬상 소자의 구동 방법, 전자 기기 및 프로그램
WO2015198877A1 (ja) * 2014-06-25 2015-12-30 ソニー株式会社 撮像素子および撮像素子の駆動方法、電子機器、並びにプログラム
US10158820B2 (en) 2015-03-26 2018-12-18 Canon Kabushiki Kaisha Imaging apparatus having image sensor to reduce column noise
US10326957B2 (en) 2016-12-05 2019-06-18 Tech Idea Co., Ltd. A/D converter and sensor device using the same
JP2018133794A (ja) * 2017-02-16 2018-08-23 ソニーセミコンダクタソリューションズ株式会社 撮像システムおよび撮像装置
CN106840440B (zh) * 2017-03-03 2023-07-28 成都信息工程大学 一种基于mcu内部比较器的温度采集器及温度采集方法
CN106840440A (zh) * 2017-03-03 2017-06-13 成都信息工程大学 一种基于mcu内部比较器的温度采集器及温度采集方法
KR20210023838A (ko) 2018-06-28 2021-03-04 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 전자 기기
US11258975B2 (en) 2018-06-28 2022-02-22 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device
WO2022149388A1 (ja) * 2021-01-05 2022-07-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置および測距システム
WO2022153901A1 (ja) * 2021-01-14 2022-07-21 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Also Published As

Publication number Publication date
TW200633509A (en) 2006-09-16
JP4470700B2 (ja) 2010-06-02
TWI286904B (en) 2007-09-11

Similar Documents

Publication Publication Date Title
JP4470700B2 (ja) Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器
JP4983889B2 (ja) Ad変換方法およびad変換装置
KR101202167B1 (ko) 아날로그/디지털 변환 방법, 아날로그/디지털 변환 장치,물리량 분포 검출용 반도체 장치, 및 전자 기기
JP4655500B2 (ja) Ad変換装置並びに物理量分布検知の半導体装置および電子機器
JP4524652B2 (ja) Ad変換装置並びに半導体装置
KR101202140B1 (ko) 카운터 회로, ad 변환 방법, ad 변환 장치, 물리량 분포 검지용 반도체 장치 및 전자 기기
JP4743227B2 (ja) Ad変換方法およびad変換装置、並びに物理量分布検知の半導体装置および電子機器
JP2005328135A (ja) Ad変換方法および物理量分布検知の半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4470700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250