JP2005314120A - High strength mortar - Google Patents

High strength mortar Download PDF

Info

Publication number
JP2005314120A
JP2005314120A JP2004130370A JP2004130370A JP2005314120A JP 2005314120 A JP2005314120 A JP 2005314120A JP 2004130370 A JP2004130370 A JP 2004130370A JP 2004130370 A JP2004130370 A JP 2004130370A JP 2005314120 A JP2005314120 A JP 2005314120A
Authority
JP
Japan
Prior art keywords
strength
mortar
curing
reducing agent
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004130370A
Other languages
Japanese (ja)
Other versions
JP4556164B2 (en
Inventor
Yasuo Koga
康男 古賀
Kozo Murata
浩三 村田
Yoshihito Kuroiwa
義仁 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004130370A priority Critical patent/JP4556164B2/en
Publication of JP2005314120A publication Critical patent/JP2005314120A/en
Application granted granted Critical
Publication of JP4556164B2 publication Critical patent/JP4556164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide high strength mortar which reduces pre-curing period, does not need special curing conditions nor special curing facilities and has a large initial flow, excellent compressive strength and flexural strength and low dry shrinkage. <P>SOLUTION: The high strength mortar is obtained by mixing cement, pozzolanic fine powder, fine aggregate, a water-reducing agent, a reinforcing fiber, a shrinkage-reducing agent, an air content-adjusting agent and water. The mortar has a fluidity of ≥250 mm at the initial flow, a compressive strength of ≥150 N/mm<SP>2</SP>and a flexural strength of ≥20 N/mm<SP>2</SP>after steam curing and a dry shrinkage in terms of the ratio of change in the length of ≤50×10<SP>-6</SP>. Thus, pre-curing period is shortened. Special curing conditions and special curing facilities become unnecessary. A large initial flow, excellent compressive strength and flexural strength and a low dry shrinkage are achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、補強用繊維により補強された高強度モルタル、詳しくは生産性が高く、しかも特殊な養生方法および特殊な製造設備を用いなくても製造が可能な高強度モルタルに関する。   The present invention relates to a high-strength mortar reinforced with reinforcing fibers, and more particularly to a high-strength mortar that is highly productive and can be manufactured without using a special curing method and special manufacturing equipment.

近年、土木分野および建築分野では、部材の薄肉化、軽量化をめざし、高強度、高靱性のモルタル(以下、高強度モルタル)が開発されている。
従来の高強度モルタルとして、例えば特許文献1が知られている。特許文献1の高強度モルタルは、セメント、ポゾラン質微粉末、粒度2mm以下の細骨材、減水剤、収縮低減剤および水を含んでいる。これによれば、例えば200N/mm以上の圧縮強度を発現し、曲げ強度/圧縮強度の比は1/4〜1/7と大きくなる。すなわち、特許文献1の高強度モルタルは、高い圧縮強度が得られると同時に、曲げ強度/圧縮強度の比も大きくなる特性を有している。
In recent years, high strength and high toughness mortars (hereinafter referred to as high strength mortars) have been developed in the civil engineering and construction fields with the aim of reducing the thickness and weight of members.
For example, Patent Document 1 is known as a conventional high-strength mortar. The high-strength mortar of Patent Document 1 includes cement, fine pozzolanic powder, fine aggregate having a particle size of 2 mm or less, a water reducing agent, a shrinkage reducing agent, and water. According to this, for example, a compressive strength of 200 N / mm 2 or more is developed, and the ratio of bending strength / compressive strength is increased to 1/4 to 1/7. That is, the high-strength mortar of Patent Document 1 has a characteristic that a high compressive strength can be obtained and a ratio of bending strength / compressive strength is increased.

ところで、モルタルを原料としたプレキャスト製品の製造工場では、モルタルの養生工程として、養生時間が短い蒸気養生などの促進養生が汎用されている。これにより、プレキャスト製品の生産性が高められていた。蒸気養生では、昇温工程、最高温度保持工程および降温工程を順に施す。
特開平2001−181004号公報
By the way, in the manufacturing plant of the precast product which uses mortar as a raw material, accelerated curing, such as steam curing with a short curing time, is widely used as a mortar curing process. Thereby, the productivity of the precast product was improved. In steam curing, a temperature raising step, a maximum temperature holding step, and a temperature lowering step are sequentially performed.
Japanese Patent Laid-Open No. 2001-181004

しかしながら、特許文献1によれば、蒸気養生によりプレキャスト製品を得るには、蒸気養生の前置き時間として48時間以上を要していた。しかも、蒸気養生時には、最高温度90℃前後、48時間の養生を施さなければならなかった。すなわち、モルタルを打設してからプレキャスト製品の脱型までに4日以上かかり、生産性が低いという課題があった。
ちなみに、汎用のモルタルを原料とした場合には、蒸気養生の前置き時間が2〜3時間と短く、蒸気養生時の最高温度も60℃前後、これを2〜5時間保持するだけでよい。そのため、モルタルを打設した翌日には、脱型することができた。
また、既成の蒸気養生設備では、90℃前後の最高温度を得ることは困難であった。そのため、高温(90℃前後)での養生が可能な特殊な蒸気養生設備を別に作製する必要があった。
However, according to Patent Document 1, in order to obtain a precast product by steam curing, it took 48 hours or more as the pre-curing time for steam curing. Moreover, at the time of steam curing, it was necessary to perform curing for 48 hours at a maximum temperature of about 90 ° C. That is, it took 4 days or more from placing the mortar to demolding the precast product, resulting in low productivity.
By the way, when general-purpose mortar is used as a raw material, the pre-setting time for steam curing is as short as 2 to 3 hours, the maximum temperature during steam curing is also around 60 ° C., and it is only necessary to hold this for 2 to 5 hours. Therefore, the mold could be removed the day after the mortar was placed.
In addition, it is difficult to obtain a maximum temperature of about 90 ° C. with the existing steam curing equipment. Therefore, it was necessary to separately prepare a special steam curing facility capable of curing at a high temperature (around 90 ° C.).

さらに、特許文献1に記載された構成材料および強度性状(圧縮強度210Mpa)から判断すれば、高強度モルタルは低水結合比と推定される。しかしながら、モルタルの混練に汎用のミキサを採用すれば、材料を短時間で均一に分散させ、所定の流動性を与えることは困難である。その結果、材料の混練時間には10分以上を要し、プレキャスト製品の生産性がさらに低下するおそれがあった。   Furthermore, judging from the constituent materials and strength properties (compressive strength 210 Mpa) described in Patent Document 1, high strength mortar is estimated to have a low water binding ratio. However, if a general-purpose mixer is used for kneading mortar, it is difficult to uniformly disperse the material in a short time and to give a predetermined fluidity. As a result, the material kneading time required 10 minutes or more, and the productivity of the precast product may be further reduced.

そこで、発明者は、鋭意研究の結果、所定の条件でセメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水を混練すれば、蒸気養生の前置き時間の短縮が図れ、0打フローで表されるモルタルの流動性、蒸気養生後の圧縮強度および曲げ強度がそれぞれ高く、しかも乾燥収縮量が小さい高強度モルタルが得られることを知見し、この発明を完成した。
この発明は、養生時の前置き時間の短縮が図れ、また特殊な養生条件および専用の養生設備が不要で、しかも0打フローが大きく、圧縮強度と曲げ強度に優れ、乾燥収縮量が小さい高強度モルタルを提供することを目的としている。
Therefore, as a result of diligent research, the inventors have determined that steam curing can be achieved by kneading cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent, and water under predetermined conditions. It has been found that a high strength mortar can be obtained by shortening the pre-treatment time of the mortar, which has a high flowability, compressive strength and bending strength after steam curing represented by zero stroke flow, and a small amount of drying shrinkage. This invention was completed.
This invention can shorten the pre-setting time during curing, does not require special curing conditions and special curing equipment, has a large zero stroke flow, is excellent in compressive strength and bending strength, and has a low dry shrinkage amount. The purpose is to provide mortar.

また、この発明は、細骨材の粒度分布は最密充填が可能なものとなり、さらに高い性状が得られる高強度モルタルを提供することを目的としている。
さらに、この発明は、養生後の高強度モルタルの曲げ強度が高まる高強度モルタルを提供することを目的としている。
さらにまた、この発明は、流動性を低下させずに曲げ強度を高めることができる高強度モルタルを提供することを目的としている。
Another object of the present invention is to provide a high-strength mortar in which the fine particle size distribution can be close-packed and higher properties can be obtained.
Furthermore, this invention aims at providing the high intensity | strength mortar which the bending strength of the high intensity | strength mortar after hardening increases.
Still another object of the present invention is to provide a high-strength mortar that can increase the bending strength without reducing fluidity.

請求項1に記載の発明は、セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水からなる高強度モルタルであって、その特性として、0打フローで表される流動性が250mm以上、蒸気養生後の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上および乾燥収縮量が長さ変化率で50×10−6以下である高強度モルタルである。 The invention according to claim 1 is a high-strength mortar composed of cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent, and water. The fluidity represented by the zero stroke flow is 250 mm or more, the compressive strength after steam curing is 150 N / mm 2 or more, the bending strength is 20 N / mm 2 or more, and the drying shrinkage is 50 × 10 −6 or less in terms of length change rate. It is a high strength mortar.

請求項1に記載の発明によれば、セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水を混練し、その特性として、0打フローで表される流動性が250mm以上、蒸気養生後の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上および乾燥収縮量が長さ変化率で50×10−6以下となる高強度モルタルを得る。この高強度モルタルによれば、養生時の前置き時間の短縮が図れ、また特殊な養生条件(モルタル成形後20℃、48時間の養生前置き、その後90℃、48時間の蒸気養生)および専用の養生設備が不要で、しかも0打フローが大きく、圧縮強度と曲げ強度に優れ、乾燥収縮量が小さいものとなる。 According to the first aspect of the present invention, cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent and water are kneaded, and the properties are zero stroke flow. In which the fluidity represented by the formula is 250 mm or more, the compressive strength after steam curing is 150 N / mm 2 or more, the bending strength is 20 N / mm 2 or more, and the drying shrinkage is 50 × 10 −6 or less in terms of the length change rate. Get strength mortar. According to this high-strength mortar, it is possible to shorten the pretreatment time during curing, and special curing conditions (20 ° C after mortar molding, pretreatment for 48 hours, then 90 ° C, 48 hours steam curing) and special curing No equipment is required, and the zero-stroke flow is large, the compression strength and bending strength are excellent, and the amount of drying shrinkage is small.

セメントの種類は限定されない。例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、耐硫酸塩ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメントなどの各種のポルトランドセメントを採用することができる。その他、高炉セメント、シリカセメント、フライアッシュセメントなどの混合セメントなどでもよい。このうち、強度を早期に発現させたい場合には、早強ポルトランドセメントが好ましい。また、流動性をさらに高めたい場合には、低熱型ポルトランドセメントなどが好ましい。   The type of cement is not limited. For example, various Portland cements such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, sulfate-resistant Portland cement, moderately hot Portland cement, and low heat Portland cement can be used. In addition, mixed cements such as blast furnace cement, silica cement, and fly ash cement may be used. Among these, early strength Portland cement is preferable when it is desired to develop the strength early. Further, when it is desired to further improve the fluidity, low heat type Portland cement or the like is preferable.

ポゾラン質微粉末の種類は限定されない。例えば、シリカフューム、高炉スラグ、フライアッシュなどを採用することができる。その他、火山灰、珪藻土などの天然ポゾラン類でもよい。このうち、ポゾラン活性の度合い、マイクロフィラー効果およびセメント粒子の分散性などを考慮し、シリカフュームが好ましい。一般的にシリカヒュームは平均粒径が0.1μm程度の超微粒子である。   The kind of pozzolanic fine powder is not limited. For example, silica fume, blast furnace slag, fly ash, etc. can be employed. In addition, natural pozzolans such as volcanic ash and diatomaceous earth may be used. Of these, silica fume is preferred in consideration of the degree of pozzolanic activity, the microfiller effect and the dispersibility of cement particles. In general, silica fume is an ultrafine particle having an average particle diameter of about 0.1 μm.

ポゾラン質微粉末の添加量は、セメント100重量部に対して、10〜25重量部である。10重量部未満では強度増進効果が得られない。また、25重量部を超えると流動性が低下するとともに、粘性が高くなり、作業性が悪くなってコスト高も招くおそれがある。
ポゾラン質微粉末は、高強度モルタルの製造工程において、適時、セメントに添加することができる。しかしながら、予めセメントと混合し、ポゾラン質微粉末をセメント中に均一に分散させた方が好ましい。
The amount of pozzolanic fine powder added is 10 to 25 parts by weight per 100 parts by weight of cement. If it is less than 10 parts by weight, the strength enhancement effect cannot be obtained. Moreover, when it exceeds 25 weight part, while fluidity | liquidity falls, viscosity becomes high, workability | operativity worsens and there exists a possibility of causing high cost.
The pozzolanic fine powder can be added to cement in a timely manner in the production process of high-strength mortar. However, it is preferable to preliminarily mix with cement and uniformly disperse the pozzolanic fine powder in the cement.

細骨材としては、例えば川砂、陸砂、海砂、砕砂、硅砂およびこれらの2つまたは3つ以上を混合した物を採用することができる。
細骨材の添加量は、セメント100重量部に対して50〜200重量部である。50重量部未満では材料分離が生じやすく、また収縮量が多くなる。また、200重量部を超えると流動性が低下し、強度も低下する。
As the fine aggregate, for example, river sand, land sand, sea sand, crushed sand, dredged sand, and a mixture of two or more of these can be employed.
The amount of fine aggregate added is 50 to 200 parts by weight with respect to 100 parts by weight of cement. If the amount is less than 50 parts by weight, material separation tends to occur and the amount of shrinkage increases. Moreover, when it exceeds 200 weight part, fluidity | liquidity will fall and intensity | strength will also fall.

減水剤としては、例えばAE減水剤、高性能減水剤、高性能AE減水剤などを採用することができる。具体的には、ナフタレン系、メラミン系、リグニン系、ポリカルボン酸系などの減水剤から選択される。このうち、強度増進には、水粉体比を低下させる必要があるので、減水効果の高い高性能AE減水剤が好ましい。
また、減水剤の添加量は、凝結遅延作用やコスト面を考慮し、セメント100重量部に対して0.5〜5.0重量部である。0.5重量部未満では減水効果があまり得られない。また、5.0重量部を超えても流動性は高まらない。しかも、凝結は遅延し、蒸気養生の前置き時間は48時間以上となる。
As the water reducing agent, for example, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, or the like can be employed. Specifically, it is selected from water reducing agents such as naphthalene, melamine, lignin, and polycarboxylic acid. Of these, a high-performance AE water reducing agent having a high water reducing effect is preferable because the water powder ratio needs to be lowered for strength enhancement.
Moreover, the addition amount of the water reducing agent is 0.5 to 5.0 parts by weight with respect to 100 parts by weight of cement in consideration of setting delay action and cost. If the amount is less than 0.5 parts by weight, the water reducing effect is not obtained so much. Moreover, even if it exceeds 5.0 weight part, fluidity | liquidity does not increase. In addition, the setting is delayed and the pre-curing time for steam curing is 48 hours or more.

補強用繊維としては、例えば金属繊維、有機質繊維を採用することができる。その他、炭素繊維などを採用してもよい。
補強用繊維の直径(太さ)は限定されない。補強用繊維は短繊維でもよいし、長繊維でもよい。
補強用繊維の添加量は、モルタル容積の0.2〜5容量%である。0.2容量%未満では、所定の曲げ強度が得られない。また、5容量%を超えると曲げ強度は高まるものの、混練後の高強度モルタルの流動性は低下する。補強用繊維の好ましい添加量は、0.5〜3容量%である。
As the reinforcing fibers, for example, metal fibers and organic fibers can be employed. In addition, carbon fiber may be used.
The diameter (thickness) of the reinforcing fiber is not limited. The reinforcing fiber may be a short fiber or a long fiber.
The addition amount of the reinforcing fiber is 0.2 to 5% by volume of the mortar volume. If it is less than 0.2% by volume, a predetermined bending strength cannot be obtained. On the other hand, if it exceeds 5% by volume, the bending strength increases, but the fluidity of the high strength mortar after kneading decreases. The preferable addition amount of the reinforcing fiber is 0.5 to 3% by volume.

収縮低減剤の種類は限定されない。例えば、低級アルコールアルキレンオキサイド付加物、グリコールエーテル系の界面活性剤、ポリエーテル系の界面活性剤などを主成分とするものを採用することができる。
収縮低減剤の添加量はセメント100重量部に対して1〜5重量部である。1重量部未満では、モルタルの硬化後の乾燥収縮を低減する効果が得られない。また、5重量部を超えると、強度の低下が著しい。
The kind of shrinkage reducing agent is not limited. For example, those having a main component of a lower alcohol alkylene oxide adduct, a glycol ether surfactant, a polyether surfactant or the like can be employed.
The addition amount of the shrinkage reducing agent is 1 to 5 parts by weight with respect to 100 parts by weight of cement. If it is less than 1 part by weight, the effect of reducing drying shrinkage after curing of the mortar cannot be obtained. Moreover, when it exceeds 5 weight part, the fall of an intensity | strength is remarkable.

空気量調整剤の種類は限定されない。例えば、ポリアルキレングリコール誘導体などが挙げられる。空気量調整剤を添加することにより、モルタル混練時、モルタル中に連行される過剰な空気を低減することができる。
空気量調整剤の添加量は、セメント100重量部に対して0.002〜0.02重量部である。0.002重量部未満では空気量低減効果がない。また、0.02重量部を超えても、大幅な空気量低減効果は期待できない。
The kind of air amount adjusting agent is not limited. Examples thereof include polyalkylene glycol derivatives. By adding an air amount adjusting agent, it is possible to reduce excess air entrained in the mortar at the time of mortar kneading.
The addition amount of the air amount adjusting agent is 0.002 to 0.02 parts by weight with respect to 100 parts by weight of cement. If it is less than 0.002 parts by weight, there is no effect of reducing the amount of air. Moreover, even if it exceeds 0.02 part by weight, a significant air amount reduction effect cannot be expected.

水セメント比は限定されない。例えば、15〜25%である。水セメント比が15%未では減水剤の添加量が大幅に増加し、セメントの凝結が遅くなり、コスト高にもなる。また、25%を超えると高い強度が得られない。   The water cement ratio is not limited. For example, it is 15 to 25%. If the water-cement ratio is less than 15%, the amount of water-reducing agent added is greatly increased, the setting of the cement is slowed, and the cost is increased. On the other hand, if it exceeds 25%, high strength cannot be obtained.

高強度モルタルは、(1) 0打フローで表される流動性が250mm以上、(2) 蒸気養生後の圧縮強度が150N/mm以上、(3) 曲げ強度が20N/mm以上および(4) 乾燥収縮量が長さ変化率で50×10−6以下という4つの特性を全て満足するものである。
(1) 0打フローで表される流動性が250mm未満では作業性が低下し、また型枠などに充填する場合に、充填不良個所が生じやすい。
この発明では、(2) 蒸気養生後の圧縮強度を150N/mm以上、(3) 蒸気養生後の高強度モルタルの曲げ強度を20N/mm以上としているだけで、これらの値未満でも構造的に十分であるという構造物あるいは製品であれば、特に不都合は生じない。ただし、これらの値未満では、部材を軽量化、薄肉化した場合に構造部材として使えない。
(4) 乾燥収縮量が長さ変化率で50×10−6を超えると、収縮により部材にクラックが生じやすい。
High-strength mortar has (1) fluidity represented by zero stroke flow of 250 mm or more, (2) compressive strength after steam curing of 150 N / mm 2 or more, (3) bending strength of 20 N / mm 2 or more and ( 4) The dry shrinkage amount satisfies the four characteristics of 50 × 10 −6 or less in terms of length change rate.
(1) When the fluidity represented by the zero stroke flow is less than 250 mm, the workability is lowered, and when filling a mold or the like, a defective filling portion is likely to occur.
In this invention, (2) the compressive strength after steam curing is 150 N / mm 2 or more, and (3) the bending strength of the high strength mortar after steam curing is 20 N / mm 2 or more. If the structure or product is sufficient, the inconvenience does not occur. However, below these values, the member cannot be used as a structural member when the member is reduced in weight or thickness.
(4) If the amount of drying shrinkage exceeds 50 × 10 −6 in terms of the length change rate, the member is likely to crack due to shrinkage.

高強度モルタルの製造方法は、特に限定されない。例えば、以下の(イ)〜(ハ)の製造方法を採用することができる。
すなわち、(イ)は、セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水を個別にミキサーに投入し、混練する方法である。各材料の投入順序は、順不同でよい。(ロ)は、セメント、ポゾラン質微粉末、細骨材および混和剤(粉末タイプのもの、すなわち減水剤、収縮低減剤、空気量調整剤)をプレミックスし、このプレミックス物をミキサーに投入し、その後、水および補強用繊維を加えて混練する方法である。(ハ)は、予めセメントとポゾラン質微粉末とを混合し、モルタル混練時、その混合物をミキサーに投入し、次に細骨材、水、混和剤(減水剤、収縮低減剤、空気量調整剤)および補強用繊維を投入して混練する方法である。
The manufacturing method of a high intensity | strength mortar is not specifically limited. For example, the following manufacturing methods (A) to (C) can be employed.
That is, (A) is a method in which cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent and water are separately added to a mixer and kneaded. The order of loading the materials may be in any order. (B) Premix cement, pozzolanic fine powder, fine aggregate and admixture (powder type, ie, water reducing agent, shrinkage reducing agent, air amount adjusting agent), and put this premixed product into the mixer Thereafter, water and reinforcing fibers are added and kneaded. (C) Mix cement and pozzolanic fine powder in advance, and mix the mixture into mortar, then add fine aggregate, water, admixture (water reducing agent, shrinkage reducing agent, air amount adjustment) Agent) and reinforcing fibers are added and kneaded.

各混合時に使用されるミキサーとしては、ホバートミキサー、オムニミキサーなどのモルタル用ミキサー、パン型強制攪拌式ミキサー、二軸強制ミキサーなどのモルタルまたはコンクリート混練用のミキサーなどを採用することができる。
モルタルの養生方法としては、蒸気養生が採用される。この蒸気養生の前に、封緘養生(前置き養生の一種で、例えば、20℃で24時間の養生)を行った方が好ましい。
As a mixer used at the time of each mixing, a mortar mixer such as a Hobart mixer or an omni mixer, a mortar such as a pan-type forced stirring mixer or a biaxial forced mixer, or a mixer for concrete kneading can be employed.
Steam curing is adopted as a mortar curing method. Prior to this steam curing, it is preferable to perform sealing curing (a kind of pre-curing, for example, curing at 20 ° C. for 24 hours).

請求項2に記載の発明は、前記細骨材の粒度が、0.01〜5.0mmである請求項1に記載の高強度モルタルである。   The invention according to claim 2 is the high-strength mortar according to claim 1, wherein the fine aggregate has a particle size of 0.01 to 5.0 mm.

細骨材の粒度は0.01〜5.0mmである。0.01mm未満では、微粒分が増え、流動性を高めようとした場合、水量が増えるかまたは減水剤の添加量を増やす必要がある。水量が増えると、強度が低下する。また、減水剤の添加量が増えると凝結が遅れる。さらに、微粒分が増えるので、粘性が高まって作業性が低下する。また、5.0mmを超えると流動性が低下し、また狭い空間への充填性が劣る。   The fine aggregate has a particle size of 0.01 to 5.0 mm. If it is less than 0.01 mm, the amount of fine particles increases, and when it is intended to increase fluidity, it is necessary to increase the amount of water or increase the amount of water reducing agent added. As the amount of water increases, the strength decreases. Moreover, if the amount of the water reducing agent increases, the setting is delayed. Furthermore, since the fine particle content increases, the viscosity increases and the workability decreases. Moreover, when it exceeds 5.0 mm, fluidity | liquidity will fall and the filling property to a narrow space will be inferior.

細骨材のうち、粗粒部分または粗粒分(粒度が1.2〜5.0mm)には、結合材との付着性に優れた砕砂と混合したものを採用してもよい。また、細粒部分または細粒分(粒度が0.01〜1.2mm)には、粒形が丸みを帯びて流動性に優れる珪砂を混合したものを採用してもよい。これは、粗粒分に強度増進の役割を持たせ、細粒分には流動性向上の役割を持たせるためである。粗粒分には、砕砂のような粒形の角張った骨材(表面が粗面で、結合材との付着性に優れる)を使用する。また、細粒分には、珪砂のように、粒形の丸い骨材を使用する(高流動性に寄与)。例えば、砕砂と硅砂の混合では、粒度1.2〜5mmの砕砂と、粒度0.01〜1.2mmの硅砂とを併用してもよい。   Among the fine aggregates, those mixed with crushed sand having excellent adhesion to the binder may be used for the coarse portion or the coarse portion (particle size is 1.2 to 5.0 mm). Moreover, you may employ | adopt what mixed the silica sand which has a round shape and is excellent in fluidity | liquidity for a fine grain part or a fine grain part (particle size is 0.01-1.2 mm). This is because the coarse particles have a role of enhancing strength, and the fine particles have a role of improving fluidity. For the coarse particles, an angular aggregate having a granular shape such as crushed sand (the surface is rough and has excellent adhesion to the binder) is used. In addition, for the fine particles, a round aggregate with a grain shape like silica sand is used (contributes to high fluidity). For example, in mixing crushed sand and cinnabar, crushed sand having a particle size of 1.2 to 5 mm and cinnabar sand having a particle size of 0.01 to 1.2 mm may be used in combination.

粗粒分は、強度増進効果を持たせるという理由により、ペーストとの付着性に優れた細骨材を用いることが好ましい。ペーストとの付着性に優れた細骨材とは、表面が粗状の細骨材を意味する。
細粒分は、流動性を高めるため、粒形の良い細骨材を用いることが好ましい。粒形が良いとは、球形に近いほどよいことを意味する。
It is preferable to use a fine aggregate having excellent adhesion to the paste for the reason that the coarse particles have a strength enhancing effect. The fine aggregate having excellent adhesion to the paste means a fine aggregate having a rough surface.
In order to increase the fluidity of the fine particles, it is preferable to use fine aggregates having a good particle shape. Good grain shape means that the closer to a spherical shape, the better.

粗粒部分と細粒部分とからなる細骨材の粒度分布は、最密充填が可能なものとなるようにふるいを選択する。このように粗粒部分は、ペーストとの付着に優れた細骨材を用い、かつ細粒部分としては、粒形のよい細骨材を用いて細骨材の粒度分布を最密充填が可能になるように調整することで、流動性および強度性状を満足させることができる。
細骨材の粒度分布を最密充填を目標とすれば、好ましくはふるいの通過百分率で、5mmふるいの通過率が100%、2.5mmふるいの通過率が70〜100%、1.2mmふるいの通過率が40〜80%、0.6mmふるいの通過率が25〜50%、0.3mmふるいの通過率が20〜35%、0.15mmふるいの通過率が0〜20%通過する粒度分布の細骨材を用いるのがよい。
The sieve is selected so that the particle size distribution of the fine aggregate composed of the coarse-grained portion and the fine-grained portion can be close-packed. In this way, the fine-grained portion uses fine aggregate with excellent adhesion to the paste, and the fine-grained portion uses fine-grained fine aggregate so that the fine particle size distribution can be packed most closely. By adjusting so that it becomes, fluidity | liquidity and intensity | strength property can be satisfied.
If the particle size distribution of the fine aggregate is targeted for the closest packing, it is preferable that the passing rate of the sieve is 100%, the passing rate of the 5 mm sieve is 100%, the passing rate of the 2.5 mm sieve is 70 to 100%, and the 1.2 mm sieve. The particle size is 40 to 80%, the passage rate of 0.6mm sieve is 25 to 50%, the passage rate of 0.3mm sieve is 20 to 35%, and the passage rate of 0.15mm sieve is 0 to 20% It is better to use fine aggregate with distribution.

最密充填ができない粒度分布の細骨材を使用した場合には、この発明の所定の性状が得られない。例えば、粗粒分の多い粒度分布の細骨材を用いると、圧縮強度が低下する。また粒度が2.5mm以下の細粒分の多い粒度分布の細骨材の場合には、流動性が低下し、0打フロー値が250mm以上の流動性を得ようとした場合、高性能AE減水剤などの減水剤の使用量が増加する。その結果、モルタルに凝結遅延が発生し、蒸気養生の前置き時間が長くなるおそれがある。   When a fine aggregate having a particle size distribution that cannot be packed closely is used, the predetermined properties of the present invention cannot be obtained. For example, when a fine aggregate having a large particle size distribution is used, the compressive strength decreases. In the case of a fine aggregate having a fine particle size distribution with a fine particle size of 2.5 mm or less, the fluidity is lowered, and when trying to obtain a fluidity with a zero flow value of 250 mm or more, high performance AE Use of water reducing agents such as water reducing agents will increase. As a result, a setting delay occurs in the mortar, and there is a possibility that the pretreatment time for steam curing becomes long.

細骨材の好ましい配合量は、流動性および強度性状などの観点から、セメント100重量に対して75〜150重量部である。   A preferable blending amount of the fine aggregate is 75 to 150 parts by weight with respect to 100 parts by weight of cement from the viewpoint of fluidity and strength properties.

請求項3に記載の発明は、前記補強用繊維が、金属繊維およびまたは有機質繊維である請求項1または請求項2に記載の高強度モルタルである。   The invention according to claim 3 is the high-strength mortar according to claim 1 or 2, wherein the reinforcing fibers are metal fibers and / or organic fibers.

請求項3に記載の発明によれば、補強用繊維として金属繊維およびまたは有機質繊維を採用することで、養生後の高強度モルタルの曲げ強度が高まるという優れた効果を奏するものである。   According to the invention described in claim 3, by adopting the metal fiber and / or the organic fiber as the reinforcing fiber, there is an excellent effect that the bending strength of the high strength mortar after curing is increased.

補強用繊維は金属繊維だけでもよいし、有機質繊維だけでもよい。または、金属繊維と有機質繊維との混在物でもよい。
金属繊維としては、例えば鋼繊維(炭素鋼繊維、亜鉛めっき鋼繊維、ステンレス鋼繊維など)を採用することができる。有機質繊維としては、例えばアラミド繊維、炭素繊維、ビニロン繊維、ポリプロピレン繊維などを採用することができる。
金属繊維の直径または有機質繊維の直径は限定されない。金属繊維の長さまたは有機質繊維の長さは限定されない。
The reinforcing fiber may be a metal fiber alone or an organic fiber alone. Alternatively, a mixture of metal fibers and organic fibers may be used.
As the metal fibers, for example, steel fibers (carbon steel fibers, galvanized steel fibers, stainless steel fibers, etc.) can be employed. As the organic fiber, for example, an aramid fiber, a carbon fiber, a vinylon fiber, or a polypropylene fiber can be employed.
The diameter of the metal fiber or the organic fiber is not limited. The length of the metal fiber or the length of the organic fiber is not limited.

請求項4に記載の発明は、前記金属繊維は、直径0.05mm〜1mm、長さ2〜20mmの鋼繊維である請求項3に記載の高強度モルタルである。   The invention according to claim 4 is the high-strength mortar according to claim 3, wherein the metal fiber is a steel fiber having a diameter of 0.05 mm to 1 mm and a length of 2 to 20 mm.

請求項4に記載の発明によれば、金属繊維として直径0.05mm〜1mm、長さ2〜20mmの鋼繊維としたので、混練後の高強度モルタルの流動性を低下させず、曲げ強度を高めることができる。   According to the invention described in claim 4, since the metal fibers are steel fibers having a diameter of 0.05 mm to 1 mm and a length of 2 to 20 mm, the bending strength is reduced without reducing the fluidity of the high strength mortar after kneading. Can be increased.

金属繊維の直径が0.01mm未満では、繊維が切れやすく、曲げ強度が低い。また、1mmを超えると、太くなるために繊維の本数が少なくなり、曲げ強度が低下する。
金属繊維の長さが2mm未満では、曲げ強度増進効果が小さい。また、20mmを超えると、流動性が低下し、練り混ぜ時にファイバーボールが生じやすくなり、均一な混練物が得られない。
When the diameter of the metal fiber is less than 0.01 mm, the fiber is easily cut and the bending strength is low. On the other hand, if the thickness exceeds 1 mm, the fiber becomes thicker and the number of fibers decreases, and the bending strength decreases.
When the length of the metal fiber is less than 2 mm, the bending strength enhancement effect is small. On the other hand, if it exceeds 20 mm, the fluidity is lowered, and fiber balls are easily formed during kneading, and a uniform kneaded product cannot be obtained.

請求項5に記載の発明は、前記有機質繊維は、直径0.01mm〜1mm、長さ2〜20mmの炭素繊維またはアラミド繊維である請求項3に記載の高強度モルタルである。   The invention according to claim 5 is the high-strength mortar according to claim 3, wherein the organic fibers are carbon fibers or aramid fibers having a diameter of 0.01 mm to 1 mm and a length of 2 to 20 mm.

請求項5に記載の発明によれば、有機質繊維が直径0.01mm〜1mm、長さ2〜20mmの炭素繊維またはアラミド繊維であるため、混練後の高強度モルタルの流動性を低下させないで、養生後の高強度モルタルの曲げ強度を高めることができる。   According to the invention of claim 5, since the organic fibers are carbon fibers or aramid fibers having a diameter of 0.01 mm to 1 mm and a length of 2 to 20 mm, without reducing the fluidity of the high strength mortar after kneading, The bending strength of high-strength mortar after curing can be increased.

有機質繊維は炭素繊維でもよい。または、アラミド繊維でもよい。
有機質繊維の直径が0.01mm未満では、繊維が切れやすく、曲げ強度が低い。また、1mmを超えると、繊維が太くなるために繊維の使用本数が少なくなり、曲げ強度が低下する。
有機質繊維の長さが2mm未満では、曲げ強度増進効果が小さい。また、20mmを超えると、流動性が低下し、練り混ぜ時にファイバーボールが生じやすい。
The organic fiber may be a carbon fiber. Or an aramid fiber may be sufficient.
If the diameter of the organic fiber is less than 0.01 mm, the fiber is easily cut and the bending strength is low. On the other hand, if the thickness exceeds 1 mm, the fiber becomes thick and the number of fibers used is reduced, and the bending strength is lowered.
When the length of the organic fiber is less than 2 mm, the bending strength enhancement effect is small. Moreover, when it exceeds 20 mm, fluidity | liquidity will fall and it will be easy to produce a fiber ball at the time of kneading.

この発明によれば、セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水を混練し、その特性が、0打フローで表される流動性が250mm以上、蒸気養生後の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上および乾燥収縮量が長さ変化率で50×10−6以下となる高強度モルタルを得ることで、養生の前置き時間の短縮が図れ、また特殊な養生条件および専用の養生設備が不要になる。しかも、0打フローが大きく、圧縮強度と曲げ強度に優れ、乾燥収縮量が小さい高強度モルタルを得ることができる。 According to the present invention, cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent, and water are kneaded, and the characteristics of the fluid represented by zero stroke flow To obtain a high strength mortar having a property of 250 mm or more, a compressive strength after steam curing of 150 N / mm 2 or more, a bending strength of 20 N / mm 2 or more, and a dry shrinkage of 50 × 10 −6 or less in terms of length change rate. Therefore, the pre-curing time for curing can be shortened, and special curing conditions and special curing equipment are not required. Moreover, it is possible to obtain a high strength mortar having a large zero strike flow, excellent compressive strength and bending strength, and small dry shrinkage.

特に、請求項2に記載の発明によれば、細骨材の粒度を0.01〜5.0mmとしたので、細骨材の粒度分布は最密充填が可能なものとなり、この発明のさらに高い性状が得られる。   In particular, according to the second aspect of the invention, since the fine aggregate has a particle size of 0.01 to 5.0 mm, the fine aggregate has a particle size distribution capable of closest packing. High quality can be obtained.

請求項3に記載の発明によれば、補強用繊維として、金属繊維およびまたは有機質繊維を採用したので、養生後の高強度モルタルの曲げ強度を高めることができる。   According to invention of Claim 3, since the metal fiber and / or organic fiber were employ | adopted as a reinforcement fiber, the bending strength of the high intensity | strength mortar after curing can be raised.

請求項4に記載の発明によれば、金属繊維として直径0.01mm〜1mm、長さ2〜20mmの鋼繊維を採用したので、流動性を低下させず、曲げ強度を高めることができる。   According to the fourth aspect of the present invention, since steel fibers having a diameter of 0.01 mm to 1 mm and a length of 2 to 20 mm are employed as the metal fibers, the bending strength can be increased without reducing the fluidity.

請求項5に記載の発明によれば、有機質繊維として、直径0.01mm〜1mm、長さ2〜20mmの炭素繊維またはアラミド繊維を採用したので、流動性を低下させず、曲げ強度を高めることができる。   According to the invention described in claim 5, since carbon fibers or aramid fibers having a diameter of 0.01 mm to 1 mm and a length of 2 to 20 mm are employed as the organic fibers, the bending strength is increased without reducing the fluidity. Can do.

以下、この発明の実施例を具体的に説明する。ただし、この発明はこれらに限定されるものではない。   Examples of the present invention will be specifically described below. However, the present invention is not limited to these.

(1)使用材料
この発明に使用される材料を以下の表1に示す。
表1中、細骨材を構成する珪砂4号の粒度は0.15〜1.2mm、珪砂5号の粒度は0.186〜0.85mm、珪砂6号の粒度は0.075〜0.6mmである。
(1) Materials Used The materials used in the present invention are shown in Table 1 below.
In Table 1, the particle size of silica sand 4 constituting the fine aggregate is 0.15 to 1.2 mm, the particle size of silica sand 5 is 0.186 to 0.85 mm, and the particle size of silica sand 6 is 0.075 to 0. 6 mm.

(2)評価項目および評価方法
a)流動性の評価
JIS R 5201「セメントの物理試験方法」のフロー試験に準じ、0打フローによるフロー値を測定した。
b)圧縮強度
JSCE−G505「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」を採用した。
c)曲げ強度の評価
JIS R 5201「セメントの物理試験方法」を採用した。
d)乾燥収縮の評価
JIS A 1129−1「モルタルおよびコンクリートの長さ変化試験方法−際1部:コンパレータ方法」に準じ、傾斜型マイクロメーター法により測定した。その際、蒸気養生後を基長とした。
(2) Evaluation item and evaluation method a) Evaluation of fluidity According to the flow test of JIS R 5201 "Physical test method of cement", the flow value by zero stroke flow was measured.
b) Compressive strength JSCE-G505 "Testing method for compressive strength of mortar or cement paste using cylindrical specimen" was adopted.
c) Evaluation of bending strength JIS R 5201 “Cement physical test method” was adopted.
d) Evaluation of drying shrinkage Measured by an inclined micrometer method in accordance with JIS A 1129-1 “Testing method for length change of mortar and concrete—Part 1: Comparator method”. At that time, the base length was after steam curing.

(3)モルタル混練方法
容量100リットルの横二軸強制練りミキサーに粉体と細骨材を投入し、60秒間空練りする。その後、減水剤、収縮低減剤、空気量調整剤および水をミキサーに投入し、低速で120秒間混練する。次に、補強用繊維をミキサーに投入し、90秒間混練した。混練時間は、合計270秒間であった。
(4)供試体の成形
圧縮強度試験では、直径50mm、高さ100mmの円柱供試体を用い、また曲げ強度試験および乾燥収縮試験では、40×40×160mmの角柱供試体を用いた。
(3) Mortar kneading method Powder and fine aggregate are put into a horizontal biaxial forced kneading mixer having a capacity of 100 liters and kneaded for 60 seconds. Thereafter, a water reducing agent, a shrinkage reducing agent, an air amount adjusting agent and water are put into a mixer and kneaded at a low speed for 120 seconds. Next, the reinforcing fiber was put into a mixer and kneaded for 90 seconds. The kneading time was 270 seconds in total.
(4) Molding of Specimen In the compression strength test, a cylindrical specimen having a diameter of 50 mm and a height of 100 mm was used, and in the bending strength test and the drying shrinkage test, a 40 × 40 × 160 mm prismatic specimen was used.

〔試験例1〕
粉体には、あらかじめ混合したセメントとシリカフュームとの混合物を採用した。また減水剤、収縮低減剤、空気量調整剤および水の投入は、減水剤、収縮低減剤および空気量調整剤を含む水により行った。さらに、繊維には鋼繊維を採用して、(3)に示すモルタル混練方法を実施した。ここで、セメント、シリカフューム、細骨材、鋼繊維、減水剤、空気量調整剤および収縮低減剤としては表1中のものを採用し、これらを表2に示す混合割合で用いた。
得られた混練物から、(4)に示す2種類の供試体を成形した。次に、これらの供試体に対して、20℃、24時間の封緘養生をそれぞれ施し(前置き時間)、最高温度60℃で、それぞれ24時間または48時間蒸気養生した。蒸気養生後は気中養生した。得られた供試体を、前記(2)に示す評価項目で評価した。その結果を表3に示す。
[Test Example 1]
As the powder, a mixture of cement and silica fume mixed in advance was adopted. Further, the water reducing agent, the shrinkage reducing agent, the air amount adjusting agent, and the water were charged with water containing the water reducing agent, the shrinkage reducing agent, and the air amount adjusting agent. Furthermore, steel fibers were employed as the fibers, and the mortar kneading method shown in (3) was performed. Here, the cement, silica fume, fine aggregate, steel fiber, water reducing agent, air amount adjusting agent, and shrinkage reducing agent used were those in Table 1, and these were used in the mixing ratio shown in Table 2.
Two types of specimens shown in (4) were formed from the obtained kneaded material. Next, these specimens were subjected to sealing curing at 20 ° C. for 24 hours (preliminary time), and steam curing was performed at a maximum temperature of 60 ° C. for 24 hours or 48 hours, respectively. After steam curing, it was cured in the air. The obtained specimen was evaluated using the evaluation items shown in (2) above. The results are shown in Table 3.

表3から明らかなように、セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水を混練することで得られ、しかも0打フローで表される流動性が250mm以上、蒸気養生後の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上および乾燥収縮量が長さ変化率で50×10−6以下である高強度モルタルは、養生時の前置き時間の短縮が図れ、これにより90℃の蒸気養生ができる特殊な養生条件および専用の養生設備が不要となった。しかも、0打フローは大きく、圧縮強度と曲げ強度に優れ、乾燥収縮量が小さくなった。 As is apparent from Table 3, it is obtained by kneading cement, fine powder of pozzolanic material, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent and water, and is represented by 0 stroke flow. High strength mortar having a flowability of 250 mm or more, a compressive strength after steam curing of 150 N / mm 2 or more, a bending strength of 20 N / mm 2 or more, and a dry shrinkage of 50 × 10 −6 or less in terms of length change rate This shortened the time required for pre-curing, thereby eliminating the need for special curing conditions and dedicated curing equipment capable of steam curing at 90 ° C. Moreover, the zero stroke flow was large, the compression strength and the bending strength were excellent, and the amount of drying shrinkage was small.

〔実施例2〜13,比較例1〜19〕
粉体には、あらかじめ混合したセメントとシリカフュームからなる粉体を用いた。また減水剤、収縮低減剤、空気量調整剤および水の投入は、減水剤、収縮低減剤および空気量調整剤を含む水により行った。繊維としては鋼繊維を採用し、これらを前記(3)に示す混練方法により混練した。ここで、セメント、シリカフューム、細骨材、鋼繊維、減水剤、空気量調整剤、収縮低減剤は、表1に示すものを用い、表4および表5に示す混合割合で用いた。得られた混練物を、前記(4)に示す2種類の供試体を成形によって製造した。ついで、これらの供試体に対して20℃、24時間の封緘養生を施した後(前置き時間)、最高温度60℃で48時間蒸気養生した。蒸気養生後は気中養生した。得られた供試体を、前記(2)に示す評価項目について評価した。その結果を表6および表7に示す。
また、細骨材Aを採用した場合には、細骨材の粒度分布が最密充填の可能な0.01〜5.0mmとなる。これにより、高強度モルタルの特性である0打フロー、圧縮強度、曲げ強度および乾燥収縮量は、細密充填とならない細骨材B,Cに比べて高まることが判った。
[Examples 2 to 13, Comparative Examples 1 to 19]
As the powder, a powder made of cement and silica fume mixed in advance was used. Further, the water reducing agent, the shrinkage reducing agent, the air amount adjusting agent, and the water were charged with water containing the water reducing agent, the shrinkage reducing agent, and the air amount adjusting agent. Steel fibers were employed as the fibers, and these were kneaded by the kneading method shown in (3) above. Here, the cement, silica fume, fine aggregate, steel fiber, water reducing agent, air amount adjusting agent, and shrinkage reducing agent used were those shown in Table 1, and used in the mixing ratios shown in Table 4 and Table 5. Two types of specimens shown in the above (4) were produced from the kneaded product by molding. Subsequently, these specimens were sealed at 20 ° C. for 24 hours (preliminary time) and then steam-cured at a maximum temperature of 60 ° C. for 48 hours. After steam curing, it was cured in the air. The obtained specimen was evaluated for the evaluation items shown in (2) above. The results are shown in Tables 6 and 7.
Moreover, when the fine aggregate A is employ | adopted, the particle size distribution of a fine aggregate will be 0.01-5.0 mm in which close packing is possible. As a result, it was found that the zero-strike flow, compressive strength, bending strength, and dry shrinkage, which are the characteristics of high-strength mortar, are higher than those of fine aggregates B and C that are not finely packed.

〔試験例14,15,比較例20,21〕
粉体には、あらかじめ混合したセメントとシリカフュームからなる粉体を用いた。また減水剤、収縮低減剤、空気量調整剤および水の投入は、減水剤、収縮低減剤および空気量調整剤を含む水により行った。繊維としては有機質繊維を採用し、これらを前記(3)に示す混練方法により混練した。ここで、セメント、シリカフューム、細骨材、有機質繊維、減水剤、空気量調整剤、収縮低減剤は、表8に示すものを用い、表9に示す混合割合で用いた。得られた混練物を、前記(4)に示す2種類の供試体を成形によって製造した。ついで、これらの供試体に対して20℃、24時間の封緘養生を施した後(前置き時間)、最高温度60℃で48時間蒸気養生した。蒸気養生後は気中養生した。得られた供試体を、前記(2)に示す評価項目について評価した。その結果を表10に示す。
表10から明らかなように、繊維として有機質繊維を採用した場合でも、実施例1と同じように、養生時の前置き時間の短縮が図れ、90℃の蒸気養生ができる特殊な養生条件および専用の養生設備が不要となった。しかも、0打フローは大きく、圧縮強度と曲げ強度に優れ、乾燥収縮量が小さくなった。
[Test Examples 14 and 15, Comparative Examples 20 and 21]
As the powder, a powder made of cement and silica fume mixed in advance was used. Further, the water reducing agent, the shrinkage reducing agent, the air amount adjusting agent, and the water were charged with water containing the water reducing agent, the shrinkage reducing agent, and the air amount adjusting agent. Organic fibers were employed as the fibers, and these were kneaded by the kneading method shown in (3) above. Here, cement, silica fume, fine aggregate, organic fiber, water reducing agent, air amount adjusting agent, and shrinkage reducing agent were those shown in Table 8 and used at the mixing ratio shown in Table 9. Two types of specimens shown in the above (4) were produced from the kneaded product by molding. Subsequently, these specimens were sealed at 20 ° C. for 24 hours (preliminary time) and then steam-cured at a maximum temperature of 60 ° C. for 48 hours. After steam curing, it was cured in the air. The obtained specimen was evaluated for the evaluation items shown in (2) above. The results are shown in Table 10.
As can be seen from Table 10, even when organic fibers are used as the fibers, as in Example 1, the pretreatment time during curing can be shortened, special curing conditions capable of steam curing at 90 ° C. Curing equipment is no longer needed. Moreover, the zero stroke flow was large, the compression strength and the bending strength were excellent, and the amount of drying shrinkage was small.

Claims (5)

セメント、ポゾラン質微粉末、細骨材、減水剤、補強用繊維、収縮低減剤、空気量調整剤および水からなる高強度モルタルであって、
その特性として、0打フローで表される流動性が250mm以上、蒸気養生後の圧縮強度が150N/mm以上、曲げ強度が20N/mm以上および乾燥収縮量が長さ変化率で50×10−6以下である高強度モルタル。
A high strength mortar comprising cement, pozzolanic fine powder, fine aggregate, water reducing agent, reinforcing fiber, shrinkage reducing agent, air amount adjusting agent and water,
As its characteristics, the fluidity represented by zero stroke flow is 250 mm or more, the compressive strength after steam curing is 150 N / mm 2 or more, the bending strength is 20 N / mm 2 or more, and the dry shrinkage is 50 × in terms of the rate of change in length. High-strength mortar that is 10 −6 or less.
前記細骨材の粒度が、0.01〜5.0mmである請求項1に記載の高強度モルタル。   The high-strength mortar according to claim 1, wherein the fine aggregate has a particle size of 0.01 to 5.0 mm. 前記補強用繊維が、金属繊維およびまたは有機質繊維である請求項1または請求項2に記載の高強度モルタル。   The high-strength mortar according to claim 1 or 2, wherein the reinforcing fibers are metal fibers and / or organic fibers. 前記金属繊維は、直径0.05mm〜1mm、長さ2〜20mmの鋼繊維である請求項3に記載の高強度モルタル。   The high-strength mortar according to claim 3, wherein the metal fibers are steel fibers having a diameter of 0.05 mm to 1 mm and a length of 2 to 20 mm. 前記有機質繊維は、直径0.01mm〜1mm、長さ2〜20mmの炭素繊維またはアラミド繊維である請求項3に記載の高強度モルタル。   The high-strength mortar according to claim 3, wherein the organic fibers are carbon fibers or aramid fibers having a diameter of 0.01 mm to 1 mm and a length of 2 to 20 mm.
JP2004130370A 2004-04-26 2004-04-26 High strength mortar composition Expired - Fee Related JP4556164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130370A JP4556164B2 (en) 2004-04-26 2004-04-26 High strength mortar composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130370A JP4556164B2 (en) 2004-04-26 2004-04-26 High strength mortar composition

Publications (2)

Publication Number Publication Date
JP2005314120A true JP2005314120A (en) 2005-11-10
JP4556164B2 JP4556164B2 (en) 2010-10-06

Family

ID=35441930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130370A Expired - Fee Related JP4556164B2 (en) 2004-04-26 2004-04-26 High strength mortar composition

Country Status (1)

Country Link
JP (1) JP4556164B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513186A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Manufacturing process for cement-based armor panels
JP2011513185A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Self-leveling cementitious composition with controlled strength growth and ultra-high compressive strength at the time of curing and articles made therefrom
JP2012171806A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp Mortar composition
JP2015028281A (en) * 2013-07-31 2015-02-12 太平洋プレコン工業株式会社 Bar reinforcement cement system structure
JP2015227287A (en) * 2015-09-24 2015-12-17 株式会社大林組 Mortar composition
JP2017186248A (en) * 2016-03-31 2017-10-12 株式会社日本触媒 Admixture composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181004A (en) * 1999-12-28 2001-07-03 Taiheiyo Cement Corp High-strength mortar and high-strength concrete
JP2001294466A (en) * 2000-04-13 2001-10-23 Taiheiyo Cement Corp Admixture for hydraulic composition and hydraulic composition
JP2002242144A (en) * 2001-02-14 2002-08-28 Taiheiyo Cement Corp Buffer stop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181004A (en) * 1999-12-28 2001-07-03 Taiheiyo Cement Corp High-strength mortar and high-strength concrete
JP2001294466A (en) * 2000-04-13 2001-10-23 Taiheiyo Cement Corp Admixture for hydraulic composition and hydraulic composition
JP2002242144A (en) * 2001-02-14 2002-08-28 Taiheiyo Cement Corp Buffer stop

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513186A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Manufacturing process for cement-based armor panels
JP2011513185A (en) * 2008-03-03 2011-04-28 ユナイテッド・ステイツ・ジプサム・カンパニー Self-leveling cementitious composition with controlled strength growth and ultra-high compressive strength at the time of curing and articles made therefrom
JP2012171806A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp Mortar composition
JP2015028281A (en) * 2013-07-31 2015-02-12 太平洋プレコン工業株式会社 Bar reinforcement cement system structure
JP2015227287A (en) * 2015-09-24 2015-12-17 株式会社大林組 Mortar composition
JP2017186248A (en) * 2016-03-31 2017-10-12 株式会社日本触媒 Admixture composition

Also Published As

Publication number Publication date
JP4556164B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4947507B2 (en) Fiber-containing concrete with ultra-high strength and ductility
Lim et al. Strength and toughness of lightweight foamed concrete with different sand grading
CN107963855B (en) Ultrahigh-strength high-performance concrete and preparation method thereof
CN103922662A (en) Ultra-high performance cement base composite material
CN111153655B (en) C60 pump concrete and preparation method thereof
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
JP4556164B2 (en) High strength mortar composition
JP2007076955A (en) Centrifugal force concrete product and its manufacturing method
CN108585679B (en) Low-shrinkage green UHPC and preparation method thereof
CN107032695A (en) Steel Fiber Reinforced Self-compacting Concrete and preparation method thereof, prefabricated components
KR100867250B1 (en) Ultra high strength concrete containing non-sintering binder
Zhang et al. Mechanical properties of polyvinyl alcohol fiber-reinforced concrete composite containing fly ash and nano-SiO2
CN107973555A (en) A kind of glass fibre self-compacting concrete
CN111732382A (en) Compensation shrinkage type ultrahigh-performance concrete prepared from tailing sand and preparation method thereof
CN110482925B (en) High-strength concrete and preparation process thereof
KR100873514B1 (en) Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
Jiang et al. Design of eco-friendly ultra-high performance concrete with supplementary cementitious materials and coarse aggregate
CN112679162B (en) Low-shrinkage ultrahigh-strength self-compacting concrete and preparation method thereof
CN112047699A (en) Large-slump ultrahigh-strength high-performance concrete and preparation method thereof
JP3974970B2 (en) Concrete production method
JP5169368B2 (en) Self-healing hydrated cured product and low-reactivity active cement material
Schmidt et al. Efficiency of high performance concrete types incorporating bio-materials like rice husk ashes, cassava starch, lignosulfonate, and sisal fibres
CN108821702A (en) A kind of steel ground-slag high-strength concrete and preparation method thereof
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
Sounthararajan Effect of accelerated curing on the furnace slag based polypropylene fiber reinforced concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4556164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees