JP2005310916A - 半導体発光装置の製造方法 - Google Patents

半導体発光装置の製造方法 Download PDF

Info

Publication number
JP2005310916A
JP2005310916A JP2004123331A JP2004123331A JP2005310916A JP 2005310916 A JP2005310916 A JP 2005310916A JP 2004123331 A JP2004123331 A JP 2004123331A JP 2004123331 A JP2004123331 A JP 2004123331A JP 2005310916 A JP2005310916 A JP 2005310916A
Authority
JP
Japan
Prior art keywords
layer
epitaxial growth
emitting device
conductivity type
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123331A
Other languages
English (en)
Inventor
Katsuhiro Ishikawa
克博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004123331A priority Critical patent/JP2005310916A/ja
Publication of JP2005310916A publication Critical patent/JP2005310916A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 水平広がり角θ//が正確に設定された埋め込み型半導体発光装置を高い歩留まりをもって製造することができるようにする。
【解決手段】 基体1上に少なくとも第1導電型クラッド層3と、活性層7と、第2導電型クラッド層9、11と、第2導電型コンタクト層13とを有する積層半導体層の第1のエピタキシャル成長工程と、積層半導体層に所要の幅のストライプリッジ22を形成するリッジ溝21形成工程と、リッジ溝21にストライプリッジ22の両側面を埋め込む埋め込み電流阻止層14を形成する第2のエピタキシャル成長工程とを有し、目的とする発光の水平広がり角θ//を得るための上記第1のエピタキシャル成長工程およびリッジ溝形成工程におけるそれぞれの設計からのずれを、第2のエピタキシャル成長工程における成長条件の選定によって補償して目的とする水平広がり角θ//を有する半導体発光装置を得る方法をとる。
【選択図】 図1

Description

本発明は、半導体発光装置、特に埋め込み型半導体レーザの製造に適用して好適な半導体発光装置の製造方法に関する。
半導体発光装置、例えばDVD(Digital Versatile Disc)の記録再生用の光源としては、650nm帯の半導体レーザ例えばAlGaInP系半導体レーザが用いられる。
また、DVD等の光記録再生において、再生時には低出力例えば5mWのレーザ光によって再生がなされるが、記録時には、例えば100mWの高出力レーザ光が要求される。この種の半導体発光装置としては、電流集中がなされるストライプリッジを囲んで電流阻止層が形成された埋め込み型半導体レーザが用いられる。
AlGaInP系の半導体レーザにおける上述した埋め込み電流阻止層としては、このAlGaInP系の活性層からの発光の吸収によるロスを回避することができるAlInPによる電流阻止層が用いられる。
一方、各種用途、例えばDVDにおいては、発光の水平広がり角θ//が、規格化されていることから、その製造においては、目的とする規格内に水平広がり角θ//が収まる特性を有する半導体レーザの製造が必要となる。
このような目的とする水平広がり角θ//を得ることができる半導体レーザの構造については、種々の提案がなされている(例えば特許文献1)。
しかしながら、最終的に目的とする水平広がり角θ//を得るためには、予め設計された制御パラメータの下での製造がなされることが必要である。ところが、実際には、製造現場において、諸々の事情によって、設計された制御パラメータの値をもって製造できない場合があり、この場合、目的とする水平広がり角θ//が得られない半導体レーザを、不本意ながら製造してしまう。
図1を参照して更に説明すると、図1は、埋め込み型半導体発光装置の一例の概略断面図で、この場合、基体1上に、バッファ層2、第1導電型第1クラッド層3、MM(Mode Modify)井戸層4、第1導電型第2クラッド層5、第1ガイド層6、例えば多重量子井戸構造(MQW)による活性層7、第2ガイド層8、厚さd1の第2導電型第1クラッド層9、光ガイド層10、厚さd2の第2導電型第2クラッド層11、中間層12、コンタクト層13が順次エピタキシャル成長される(このエピタキシャル成長を第1のエピタキシャル成長と呼称する)。
次に、コンタクト層13、中間層12および第2導電型第2クラッド層11に渡る深さにストライプリッジ22を形成するためのリッジ溝21を所要の間隔をもって形成するリッジ溝形成工程がなされる。
このリッジ溝21形成は、正確な形状のエッチングを行うことができる異方性エッチングと、光ガイド層10によって実質的にエッチングの停止を良好に行うことができるウエットエッチングとの組み合わせによって行う。
このリッジ溝21の形成は、まず、上述した第1のエピタキシャル成長による積層半導体層上に、すなわちコンタクト層13上に、例えばSiOによるマスク層を、目的とするストライプリッジ22の形成位置およびパターンに形成する。
このマスク層をエッチングマスクとして第2導電型第2クラッド層11の厚さd2より浅く、充分薄い所要の厚さd2sを残す深さに、RIE(反応性イオンエッチング)等による異方性エッチングを行う。
その後ウエットエッチングによって光ガイド層10によってエッチングストップがなされる深さ、すなわち、第2導電型第2クラッド層11の全厚さに至るエッチングを行う。
このようにして、所定の深さを有するリッジ溝21間に、高い精度に所定のパターンのストライプリッジ22を所定の高さをもって形成する。
そして、リッジ溝21に、埋め込み電流阻止層14をエピタキシャル成長する(このエピタキシャル成長を第2のエピタキシャル成長と呼称する)。
このようにして、ストライプリッジ22の側面を埋め込み電流阻止層14によって埋め込む。
コンタクト層13上には、第1電極31がオーミックに被着され、基体1の裏面には、第2電極32がオーミックに被着される。
通常、この方法によって、目的とする所定の水平広がり角θ//が得られる半導体レーザを製造するには、上述した第1のエピタキシャル成長工程に際して、予め設計された製造条件下でのエピタキシャル成長がなされる。
記録媒体の製造においては、具体的には、DOE(Design of Experimentation:実験計画法)の重回帰式より水平広がり角θ//の最適条件を決定する。
制御すべきパラメータは、上述した第1のエピタキシャル成長工程では、
(1)歪みΔa/a(p)
(a(p)は、第2導電型クラッド層9および11の格子定数、Δaは、これと基体1の格子定数との差)
(2)活性層近傍(活性層7とこれを挟む第1および第2のガイド層6および8)のドーピング濃度Nd
(3)第2導電型第1クラッド層9の厚さd1
(4)Zn(p型不純物)の非ドーピング部の厚さ
であり、ストライプリッジを形成するリッジ溝の形成工程では、
(5)ストライプリッジ22の幅
(6)リッジ溝形成工程における異方性エッチングにおける第2導電型第2クラッド層11の上述した残り厚さd2s
である。
このように、半導体発光装置の製造過程においては、目的とする水平広がり角θ//を得るために、予め選定された最適条件によって製造条件の設定がなされる。
ところが、この方法によって製造した半導体発光装置は、目的とする水平広がり角θ//を有する半導体発光装置が、高い歩留まりで得られないという問題が生じている。
すなわち、通常においては、これら制御パラメータについて、実際の製造装置、そのほか諸条件によって、目的の条件が得られない場合が発生する。しかし、この場合においても、上述した第2のエピタキシャル成長工程が続行される。
したがって、最終的に得られた半導体発光装置においては、目的とする範囲、すなわち規格に合わない水平広がり角θ//を有する半導体発光装置が製造される場合があり、歩留まりの低下を来たす。
特開2002−246692号
本発明においては、水平広がり角θ//が正確に所定の範囲内に収まるように設定された半導体発光装置を、高い歩留まりをもって製造することができるようにした半導体発光装置の製造方法を提供する。
本発明による半導体発光装置の製造方法は、埋め込み型半導体発光装置の製造方法であって、基体上に少なくとも第1導電型クラッド層と、活性層と、第2導電型クラッド層と、第2導電型コンタクト層とを有する積層半導体層の第1のエピタキシャル成長工程と、上記積層半導体層に所要の幅のストライプリッジを形成するリッジ溝形成工程と、上記リッジ溝に上記ストライプリッジの両側面を埋め込む埋め込み電流阻止層を形成する第2のエピタキシャル成長工程とを有し、目的とする範囲の発光の水平広がり角θ//を得るための上記第1のエピタキシャル成長工程および上記リッジ溝形成工程におけるそれぞれの設計パラメータからのずれを、上記第2のエピタキシャル成長工程における成長条件の選定によって補償して目的とする範囲内の水平広がり角θ//を有する半導体発光装置を得ることを特徴とする。
また、本発明製造方法は、上述の半導体発光装置の製造方法にあって、上記第1のエピタキシャル成長工程において、上記第2導電型クラッド層を形成する、第2導電型第1クラッド層と第2導電型第2クラッド層のエピタキシャル成長と、これら第2導電型第1クラッド層と第2クラッド層のエピタキシャル成長との間に光ガイド層のエピタキシャル成長とを有し、上記リッジ溝形成工程において、異方性エッチングによる第1のエッチング工程と、ウエットエッチングによる第2のエッチング工程とを有し、上記第1のエッチング工程は、上記第2導電型第2クラッド層を、該第2クラッド層の全厚さd2に比して充分小なる厚さのd2sだけ残す深さにエッチングし、上記第2のエッチング工程は、上記光ガイド層によって規定される上記第2クラッド層の全厚さに渡る深さにエッチングすることを特徴とする。
また、本発明製造方法は、上述の半導体発光装置の製造方法にあって、上記半導体発光装置が、AlGaInP系半導体発光装置であり、上記埋め込み電流阻止層にAlを含む半導体層を有し、上記第2のエピタキシャル成長工程における成長条件の選定による補償を、上記Alの原料供給量と、上記電流阻止層の濃度の制御によって行うことを特徴とする。
上述したように、本発明においては、第1のエピタキシャル成長工程と、リッジ溝形成工程、すなわちストライブリッジの形成工程において、通常のように、目的とする水平広がり角θ//が得られる半導体発光装置を得る製造条件下で行うものであるが、このとき、不本意にこの条件から外れる条件で各工程がなされる場合、この条件のずれを勘案し、これに応じて第2のエピタキシャル成長工程製造条件の調整、具体的には、水平広がり角θ//の決定に関与し得る原料流量、濃度の調整を行うようにすることから、最終的に目的とする水平広がり角θ//を有する半導体発光装置を高い歩留まりをもって製造することができるものである。
図面を参照して本発明による半導体発光装置、すなわち埋め込み型半導体発光装置の製造方法の実施の形態を説明する。
この形態例においては、前述した図1に概略断面図を示した半導体レーザ、特にAlGaInP系の半導体レーザによる半導体発光装置を製造する場合の実施の形態例で、図2〜図4の工程図を参照して説明するが、本発明製造方法および各部の構成材は、この実施形態例に限定されるものではない。
この場合、共通の基体1に複数の半導体レーザ素子を形成し、分断することによって図1で示した半導体発光装置を得る場合である。
先ず、図2Aに示すように、第1導電型(例えばn型、以下同様)の例えばGaAs基板による基体1すなわちウエーハ上に、GaInPによる第1導電型のバッファ層2、AlGaInPによる第1導電型第1クラッド層3、GaInPによるMM井戸層4、AlGaInPによる第1導電型第2クラッド層5、第1導電型の第1ガイド層6、GaInPとAlGaInPとの多重量子井戸構造(MQW)構造によるによる第1導電型の活性層7、第2導電型(例えばp型、以下同様)の第2ガイド層8、AlGaInPによる厚さd2の第2導電型第1クラッド層9、第2導電型のGaInPによる光ガイド層10、AlGaInPによる第2導電型第2クラッド層11、第2導電型のGaInPによる中間層12、第2導電型のGaAsによるコンタクト層13が順次連続的にエピタキシャル成長される(これらエピタキシャル成長を、第1のエピタキシャル成長と呼称する)。
次に、図1で示したストライプ状の電流注入領域を構成するストライプリッジ22を形成するリッジ溝のエッチングのためのマスク層15を形成する。
このマスク層15の形成は、第1のエピタキシャル成長による積層半導体層上、すなわちコンタクト層13上に、例えばSiOによるマスク層を全面的に形成し、フォトリソグラフィ技術によるパターンエッチングによって、図2Aに示すように、ストライプリッジの形成位置およびパターンに形成する。
次に、図2Bに示すように、マスク層15をエッチングマスクとして、コンタクト層13、中間層12および第2導電型第2クラッド層11に渡る深さに、第1のエッチングを、第2導電型第2クラッド層11の厚さd1より浅く、所要の厚さd2sを残す深さに、RIE(反応性イオンエッチング)等による異方性エッチングを行う。
その後、図3Aに示すように、マスク層15をエッチングマスクとしてウエットエッチングによる第2のエッチングを行って光ガイド層10によるエッチング速度が低下する位置でエッチングを停止し、所定の深さすなわち、第2導電型第2クラッド層11の全厚さd1に至るエッチングを行う。
このようにして、これらリッジ溝21間に、高い精度に所定のパターンのストライプリッジ22を所定の幅および深さに形成する。
そして、図3Bに示すように、リッジ溝21に、上述した例えばSiOによるマスク層15を選択的エピタキシャル成長のマスクとして、埋め込み下地層20、第1埋め込み層141、第2埋め込み層142をエピタキシャル成長して、埋め込み電流阻止層14をエピタキシャル成長する(このエピタキシャル成長を第2のエピタキシャル成長と呼称する)。
このようにして、ストライプリッジ22の側面を埋め込み電流阻止層14によって埋め込む。
次に、図4に示すように、マスク層15を、エッチング除去し、コンタクト層13上には、第1電極31をオーミックに被着し、基体1の裏面に、第2電極32がオーミックに被着して、図4に鎖線aに沿って例えば各ストライプリッジ22に関して、分断することによって、それぞれ図1で示した例えば単体の半導体レーザによる半導体発光装置を形成する。
上述した第1および第2のエピタキシャル成長は、MOCVD(Metal Organic Chemical Vapor Deposition)によることができ、この場合の原料は、例えばAlの原料としては、TMA(トリメチルアルミニウム)、Gaの原料としては、TMG(トリメチルガリウム)、Inの原料としては、TMIn(トリメチルインジウム)、りん(P)の原料としてはフォスフィンPHを用いることができる。
通常、この方法によって、目的とする所定の水平広がり角θ//が得られる半導体レーザを製造するには、前述したように、第1のエピタキシャル成長工程に際して、予め設計された製造条件下でのエピタキシャル成長がなされる。
具体的には、DOE(Design of Experimentation:実験計画法)の重回帰式より水平広がり角θ//の最適条件を決定する。
制御すべきパラメータは、上述した第1のエピタキシャル成長工程では、
(1)歪みΔa/a(p)
(a(p)は、第2導電型クラッド層9および11の格子定数、Δaは、これと基体1の格子定数との差)
(2)活性層近傍(活性層7とこれを挟む第1および第2のガイド層6および8)のドーピング濃度Nd
(3)第2導電型第1クラッド層9の厚さd1
(4)Zn(p型不純物)の非ドーピング部の厚さ
である。
また、ストライプリッジ22を形成するリッジ溝21の形成工程では、
(5)ストライプリッジ22の幅
(6)リッジ溝形成工程における異方性エッチングにおける第2導電型第2クラッド層11の上述した残り厚さd2s。
本発明においては、上述した第1のエピタキシャル成長工程およびリッジ溝21の形成工程におけるこれら制御パラメータに関する設計からのずれの情報は、各工程の現場で、知り得るパラメータであることから、この情報に基く、ずれに対処して、第2のエピタキシャル成長工程において、次の制御パラメータによってそのずれの補償を行う。
すなわち、この第2のエピタキシャル成長において、
(7)第1埋め込み層141のAlの原料TMAの供給量、
(8)第1の埋め込み領域141の不純物濃度
の制御によって上述した補償を行う。
図5は、目的とする水平広がり角θ//の規格が、出力5mWにおいて7.5°〜8.5°の範囲内とする場合における、作業ロットにおける水平広がり角θ//を示す図である。
図5において、横軸に作業ロットを、縦軸に水平広がり角θ//を示し、直線a1およびa2間が、水平広がり角θ//7.5°〜8.5°の範囲である。
また、横軸において直線bより左側は、前述した第1のエピタキシャル成長においてのみパラメータ制御を行った作業ロット、すなわち、いわば従来方法による作業ロットであり、直線bより右側が第2のエピタキシャル成長において補償のパラメータ制御を行った本発明方法による作業ロットである。
そして、図5において、ひし形黒印◆は、先行FC(先行FC(FC:Final Check)とは、半導体レーザを形成する前述したウエーハの一部を切り出し、これについて最終工程までを行って、水平広がり角θ//を測定した値)による水平広がり角θ//をプロットしたものである。
そして、本発明においては、直線bより左側の従来の第1のエピタキシャル成長でのみパラメータ制御を行ったときのデータをもとに、DOEをかけて第2のエピタキシャル成長におけるAl濃度を変化させることによって、水平広がり角θ//が変化することが見出されたことにより、この知見により、第2のエピタキシャル成長において)パラメータ(Al濃度)の制御によって水平広がり角θ//を予測するものであり、白四角□印は、この予測値をプロットしたものである。
図5の直線bより右側の本発明方法における黒印◆と□印とを対比して明らかなように、本発明方法によるときは、従来に比し、格段に目的の水平広がり角θ//を有する半導体レーザが得られることが分かる。
これによって明らかなように、本発明方法によるときは、従来方法におけるときに比し、目的とする水平広がり角θ//を有する半導体レーザを高い歩留まりで製造できる。
因みに、従来方法による場合、θ//不良率65%程度である場合、本発明方法によるときは、7%程度とすることができた。
本発明製造方法によるときは、高い歩留まりをもって目的とする水平広がり角θ//を有する半導体レーザ、すなわち半導体発光装置を得ることができる。
上述の例では、単体半導体レーザについて説明したが、半導体レーザを回路素子とする半導体集積回路等に適用するなど種々の例に適用することができるものである。
本発明によって得る半導体発光装置の一例の概略断面図である。 AおよびBは、本発明製造方法の一例の一部の工程図である。 AおよびBは、本発明製造方法の一例の一部の工程図である。 AおよびBは、本発明製造方法の一例の一部の工程図である。 従来方法および本発明方法によって得た水平広がり角θ//の測定結果を示す図である。
符号の説明
1・・・基体、2・・・バッファ層、3・・・第1導電型第1クラッド層、4・・・MM−井戸層、5・・・第1導電型第2クラッド層、6・・・第1ガイド層6、7・・・活性層、8・・・第2ガイド層、9・・・第2導電型第1クラッド層、10・・・光ガイド層、11・・・第2導電型第2クラッド層、12・・・中間層、13・・・コンタクト層、14・・・埋め込み電流阻止層、141・・・第1埋め込み層、142・・・第2埋め込み層、15・・・マスク層、20・・・埋め込み下地層、21・・・リッジ溝、22・・・ストライプリッジ、31・・・第1電極、32・・・第2電極

Claims (3)

  1. 埋め込み型半導体発光装置の製造方法であって、
    基体上に少なくとも第1導電型クラッド層と、活性層と、第2導電型クラッド層と、第2導電型コンタクト層とを有する積層半導体層の第1のエピタキシャル成長工程と、
    上記積層半導体層に所要の幅のストライプリッジを形成するリッジ溝形成工程と、
    上記リッジ溝に上記ストライプリッジの両側面を埋め込む埋め込み電流阻止層を形成する第2のエピタキシャル成長工程とを有し、
    目的とする範囲の発光の水平広がり角θ//を得るための上記第1のエピタキシャル成長工程および上記リッジ溝形成工程におけるそれぞれの設計パラメータからのずれを、上記第2のエピタキシャル成長工程における成長条件の選定によって補償して目的とする範囲内の水平広がり角θ//を有する半導体発光装置を得ることを特徴とする半導体発光装置の製造方法。
  2. 上記第1のエピタキシャル成長工程において、上記第2導電型クラッド層を形成する、第2導電型第1クラッド層と第2導電型第2クラッド層のエピタキシャル成長と、これら第2導電型第1クラッド層と第2クラッド層のエピタキシャル成長との間に光ガイド層のエピタキシャル成長とを有し、
    上記リッジ溝形成工程において、異方性エッチングによる第1のエッチング工程と、ウエットエッチングによる第2のエッチング工程とを有し、
    上記第1のエッチング工程は、上記第2導電型第2クラッド層を、該第2クラッド層の全厚さd2に比して充分小なる厚さのd2sだけ残す深さにエッチングし、
    上記第2のエッチング工程は、上記光ガイド層によって規定される上記第2クラッド層の全厚さに渡る深さにエッチングすることを特徴とする請求項1に記載の半導体発光装置の製造方法。
  3. 上記半導体発光装置が、AlGaInP系半導体発光装置であり、上記埋め込み電流阻止層にAlを含む半導体層を有し、
    上記第2のエピタキシャル成長工程における成長条件の選定による補償を、上記Alの原料供給量と、上記電流阻止層の濃度の制御によって行うことを特徴とする請求項1に記載の半導体発光装置の製造方法。
JP2004123331A 2004-04-19 2004-04-19 半導体発光装置の製造方法 Pending JP2005310916A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123331A JP2005310916A (ja) 2004-04-19 2004-04-19 半導体発光装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123331A JP2005310916A (ja) 2004-04-19 2004-04-19 半導体発光装置の製造方法

Publications (1)

Publication Number Publication Date
JP2005310916A true JP2005310916A (ja) 2005-11-04

Family

ID=35439356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123331A Pending JP2005310916A (ja) 2004-04-19 2004-04-19 半導体発光装置の製造方法

Country Status (1)

Country Link
JP (1) JP2005310916A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368591A (zh) * 2011-10-28 2012-03-07 武汉华工正源光子技术有限公司 一种条形掩埋分布反馈半导体激光器的制作方法
JP2019186387A (ja) * 2018-04-10 2019-10-24 ローム株式会社 半導体レーザ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368591A (zh) * 2011-10-28 2012-03-07 武汉华工正源光子技术有限公司 一种条形掩埋分布反馈半导体激光器的制作方法
JP2019186387A (ja) * 2018-04-10 2019-10-24 ローム株式会社 半導体レーザ装置
JP7181699B2 (ja) 2018-04-10 2022-12-01 ローム株式会社 半導体レーザ装置

Similar Documents

Publication Publication Date Title
KR100763827B1 (ko) 반도체 레이저 소자 및 그 제조방법
US8198637B2 (en) Nitride semiconductor laser and method for fabricating the same
JP2002016312A (ja) 窒化物系半導体素子およびその製造方法
JP5471256B2 (ja) 半導体素子、半導体ウェハ、半導体ウェハの製造方法、半導体素子の製造方法
JP2008244423A (ja) 半導体レーザの製造方法、半導体レーザ、光ピックアップ、光ディスク装置、半導体装置の製造方法、半導体装置および窒化物系iii−v族化合物半導体層の成長方法
US8501511B2 (en) Method of manufacturing laser diode
JP5906108B2 (ja) フォトニック結晶の製造方法及び面発光レーザの製造方法
JP4772314B2 (ja) 窒化物半導体素子
JP4797257B2 (ja) 半導体素子の作製方法
JP2010087083A (ja) 半導体レーザの製造方法、半導体レーザ、光ピックアップおよび光ディスク装置
JP2006134926A5 (ja)
JP4847682B2 (ja) 窒化物半導体素子およびその製造方法
JP2005310916A (ja) 半導体発光装置の製造方法
JP2005322786A (ja) 窒化物半導体素子及びその製造方法
JP2008028375A (ja) 窒化物半導体レーザ素子
JP4679867B2 (ja) 窒化物半導体発光素子、及びその製造方法
JP5079613B2 (ja) 窒化物系半導体レーザ素子およびその製造方法
JP4890509B2 (ja) 半導体発光素子の製造方法
JP4689195B2 (ja) 半導体素子の製造方法
JP5530341B2 (ja) 半導体素子及びその製造方法
JP2011018912A (ja) 窒化物半導体素子の製造方法
JP2001044568A (ja) 発光素子及びその製造方法
JP2006108225A (ja) 半導体レーザ
JP2007305635A (ja) 窒化物半導体発光素子
JP4895488B2 (ja) 窒化物半導体発光素子、その製造方法、およびウエハ