JP2005308571A - Diffused light measurement device and its measuring method - Google Patents
Diffused light measurement device and its measuring method Download PDFInfo
- Publication number
- JP2005308571A JP2005308571A JP2004126568A JP2004126568A JP2005308571A JP 2005308571 A JP2005308571 A JP 2005308571A JP 2004126568 A JP2004126568 A JP 2004126568A JP 2004126568 A JP2004126568 A JP 2004126568A JP 2005308571 A JP2005308571 A JP 2005308571A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement sample
- diffused light
- measuring device
- specularly reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005259 measurement Methods 0.000 title claims description 46
- 230000003287 optical Effects 0.000 claims description 13
- 230000000875 corresponding Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- WFSWBUPMXLWVRH-UHFFFAOYSA-N C=C1C(C2)CC2CC1 Chemical compound C=C1C(C2)CC2CC1 WFSWBUPMXLWVRH-UHFFFAOYSA-N 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000003595 spectral Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/065—Integrating spheres
Abstract
Description
反射物体の拡散光量を測定するための積分球を有する装置、及びその測定方法に関する。 The present invention relates to an apparatus having an integrating sphere for measuring the amount of diffused light of a reflecting object, and a measuring method thereof.
近年、より少ない光学面数によって光学系を形成する需要が高まり、性能を確保するために光学面を自由曲面とすることが必須となってきている。自由曲面を作成するには、従来の回転軸を中心として一様に磨く方法は適応できず、目的とする面形状に沿って切削する方法が主に用いられている。この場合、光学表面には、粗さや傷が残りやすく、拡散光をより発生させる原因になると考えられる。よって、自由曲面上にのる粗さや傷の拡散量を定量的に確認しておく必要がある。 In recent years, the demand for forming an optical system with a smaller number of optical surfaces has increased, and it has become essential to make the optical surface a free-form surface in order to ensure performance. In order to create a free-form surface, the conventional method of polishing centering around the rotation axis cannot be applied, and a method of cutting along a desired surface shape is mainly used. In this case, roughness and scratches are likely to remain on the optical surface, which is considered to cause more diffuse light. Therefore, it is necessary to quantitatively confirm the roughness on the free-form surface and the amount of scratch diffusion.
従来、物体の拡散光量を測定する場合、反射物体の分光測色を行う場合と同様の測定装置、測定方法が用いられている。図4は反射物体の分光測色を行う場合に一般的に用いられる装置図である(非特許文献1)。これら装置は、入射光が積分球A内に入射するための開口部Ai, 測定サンプル保持部As、拡散光を検出する受光器Ad、正反射光IRを除くための射出部Aoから成る。射出部Aoは光トラップ部に限らず開口の場合もある。また、一般的な測定サンプルの保持部の概略図を図5に記した。積分球の外部から測定サンプルを当て、押さえ込むようにして保持するタイプのものが多く、測定サンプルは積分球Aに対してある方向に固定される。 Conventionally, when measuring the amount of diffused light of an object, the same measuring apparatus and measuring method as those used for spectrocolorimetric measurement of a reflecting object are used. FIG. 4 is an apparatus diagram generally used when performing spectral colorimetry of a reflective object (Non-Patent Document 1). These devices comprise an opening Ai for incident light to enter the integrating sphere A, a measurement sample holding part As, a light receiver Ad for detecting diffused light, and an emission part Ao for removing specularly reflected light IR. The emission part Ao is not limited to the optical trap part but may be an opening. Moreover, the schematic of the holding part of a general measurement sample was described in FIG. In many cases, a measurement sample is applied from the outside of the integrating sphere and held so as to be pressed down, and the measuring sample is fixed in a certain direction with respect to the integrating sphere A.
拡散光の測定時には、入射光用の開口Aiから光を入射させ、測定サンプル表面からの正反射光IRはそれを除くための射出部Aoから逃し、拡散した光を積分球内壁で捉えて、その強度を受光器で検出する。 During the measurement of diffused light, light is made incident from the aperture Ai for incident light, the specularly reflected light IR from the measurement sample surface escapes from the exit Ao to remove it, and the diffused light is captured by the inner wall of the integrating sphere, The intensity is detected by a light receiver.
尚、この拡散強度の絶対値の校正は、常用標準白色面と測定サンプルとを置換して測定し、その拡散強度との比率によって行われる。
反射物体の拡散光量を測定する装置において、理想的には、正反射光を除く為の射出部分Aoは拡散光の漏出が問題にならないほど十分に小さく、測定サンプル面からの反射光が正反射方向に十分に集中していることが望ましい。しかし実際は、正反射光を除くための射出部分Aoは調整上の問題等の理由である程度余裕を持った径が必要であり、測定サンプルからの反射光は、その表面状態によっては、拡散光が正反射光の周辺にかなり広がって分布している。そのため射出される正反射光周辺の拡散光量を無視することができない。 In an apparatus that measures the amount of diffused light from a reflecting object, ideally, the exit part Ao for removing specularly reflected light is small enough that leakage of diffused light does not become a problem, and the reflected light from the measurement sample surface is specularly reflected. It is desirable to be fully concentrated in the direction. However, in reality, the exit part Ao for removing specularly reflected light needs a diameter with a certain margin for reasons such as adjustment problems, and the reflected light from the measurement sample may be diffused light depending on its surface condition. It is distributed widely around the specular reflection light. Therefore, the amount of diffused light around the regularly reflected light that is emitted cannot be ignored.
図6は射出部から抜けた正反射光の強度分布を射出面における位置に対して記した概念図であり、図6(a)は射出面の中央に正反射光の方向が一致している場合、図6(b)は射出面の中央に正反射光の方向が一致していない場合を示している。 FIG. 6 is a conceptual diagram in which the intensity distribution of the specularly reflected light that has passed through the exit portion is shown with respect to the position on the exit surface. FIG. 6A shows the direction of the specularly reflected light at the center of the exit surface. In this case, FIG. 6B shows a case where the direction of specularly reflected light does not coincide with the center of the exit surface.
図6(a)と図6(b)の比較から、射出面の中央に正反射光の方向が一致しているか否かで、射出光量、すなわち、積分球の内壁で捕らえられる拡散光量に、差が生じることがわかる。ところが、従来の拡散光量の測定装置であると、上記、射出面と正反射光の位置の関係を確認する手段がなく、正確な値を常に測定できているとは限らない。 From the comparison between FIG. 6 (a) and FIG. 6 (b), the amount of emitted light, that is, the amount of diffused light captured by the inner wall of the integrating sphere is determined by whether or not the direction of specularly reflected light coincides with the center of the exit surface. It can be seen that there is a difference. However, in the conventional diffused light amount measuring device, there is no means for confirming the relationship between the exit surface and the position of the specularly reflected light, and an accurate value cannot always be measured.
また、従来の測定装置における測定サンプルの保持形式では、測定サンプルは固定され、その傾きを調整することはできない。よって、仮に図6(b)のように射出面の中央部に正反射光の方向が一致していなくとも、それを直す手段を有していない。 Further, in the measurement sample holding format in the conventional measurement apparatus, the measurement sample is fixed and the inclination thereof cannot be adjusted. Therefore, even if the direction of the specularly reflected light does not coincide with the center of the exit surface as shown in FIG. 6B, there is no means for correcting it.
しかも、測定サンプルの形状は平板に限られ、曲率を有する形状においては、その正反射光は拡散してしまい、射出部Aoから十分に射出することが出来ない。 Moreover, the shape of the measurement sample is limited to a flat plate, and in the shape having a curvature, the specularly reflected light diffuses and cannot be sufficiently emitted from the emission part Ao.
請求項1の発明の積分球を用いた拡散光測定装置は、正反射光を除くための積分球側面の延長上に張る射出面に対して正反射光の位置を確認する機構を有することを特徴としている。 The diffused light measuring device using the integrating sphere of the invention of claim 1 has a mechanism for confirming the position of the specularly reflected light with respect to the exit surface extending on the extension of the integrating sphere side surface for removing the specularly reflected light. It is a feature.
請求項2の発明は、請求項1の発明において、正反射光を除くための射出面の位置に対して正反射光の位置を確認する機構が、2次元配列から成る固定されたセンサーであることを特徴としている。 According to a second aspect of the present invention, in the first aspect of the invention, the mechanism for confirming the position of the regular reflection light with respect to the position of the exit surface for removing the regular reflection light is a fixed sensor comprising a two-dimensional array. It is characterized by that.
請求項3の発明は、請求項1の発明において、正反射光を除くための射出面に対して正反射光の位置を確認する手段が、2次元的に走査するセンサーであることを特徴としている。 According to a third aspect of the present invention, in the first aspect of the present invention, the means for confirming the position of the regular reflection light with respect to the exit surface for removing the regular reflection light is a sensor that scans two-dimensionally. Yes.
請求項4の発明は、請求項1の発明において、正反射光を除くための射出面内の位置に対応した強度の分布を測定することを特徴としている。 The invention of claim 4 is characterized in that, in the invention of claim 1, the distribution of intensity corresponding to the position in the exit surface for removing regular reflection light is measured.
請求項5の発明は、請求項1の発明において、測定サンプル面の法線方向を調整できる機構を有することを特徴としている。 The invention of claim 5 is characterized in that, in the invention of claim 1, it has a mechanism capable of adjusting the normal direction of the measurement sample surface.
請求項6の発明は、請求項5の発明において、測定サンプル面が凹面である場合に、入射光用の開口部に対して積分球よりも外側に、測定サンプル面の持つ焦点距離位置に焦点を結ぶアナモルフィック光学系である集光レンズを配することを特徴としている。 According to a sixth aspect of the invention, in the fifth aspect of the invention, when the measurement sample surface is a concave surface, the measurement sample surface is focused on the focal length position of the measurement sample surface outside the integrating sphere with respect to the incident light opening. It is characterized by arranging a condensing lens which is an anamorphic optical system connecting the two.
請求項7の発明は、請求項5の発明において請求項5に記載の反射物体の拡散光量を測定する装置において、測定サンプル面が凸面である場合に、入射光用の開口部に対して積分球よりも外側に、測定サンプル面の持つ虚像空間の焦点距離位置に焦点を結ぶアナモルフィック光学系である集光レンズを配することを特徴としている。 According to a seventh aspect of the present invention, in the apparatus for measuring a diffused light amount of the reflecting object according to the fifth aspect of the invention of the fifth aspect, when the measurement sample surface is a convex surface, the integration is performed with respect to the opening for incident light. A condensing lens, which is an anamorphic optical system that focuses on the focal length position of the virtual image space of the measurement sample surface, is arranged outside the sphere.
本発明による反射物体の拡散光量の測定装置では、正反射光を除くための積分球側面の延長上に張る射出面の位置に対して正反射光の位置を確認する機構を有することで、正反射光が射出面において適当な位置に配しているかを確認でき、正確な測定値を得ることが出来る。その上、正反射光を除くための射出面の位置に対応する正反射光の強度分布を測定する機構を有することで、正反射光の周辺に広がる拡散光量を測定することが出来る。 The apparatus for measuring the amount of diffused light of a reflecting object according to the present invention has a mechanism for confirming the position of specularly reflected light with respect to the position of the exit surface extending on the extension of the integrating sphere side surface for removing specularly reflected light. It can be confirmed whether the reflected light is arranged at an appropriate position on the exit surface, and an accurate measurement value can be obtained. In addition, by having a mechanism for measuring the intensity distribution of regular reflection light corresponding to the position of the exit surface for removing regular reflection light, the amount of diffused light spreading around the regular reflection light can be measured.
また、本発明による反射物体の拡散光量の測定装置では、測定サンプル面の法線方向を調整することができる機構を有することにより、射出面内における正反射光の位置を適当に調整することができ、常に、正確かつ測定再現性の高い測定値を得ることが可能となる。 In addition, the apparatus for measuring the amount of diffused light of a reflecting object according to the present invention has a mechanism that can adjust the normal direction of the measurement sample surface, so that the position of specularly reflected light in the exit surface can be adjusted appropriately. It is possible to always obtain an accurate and highly reproducible measurement value.
上記、本発明による反射物体の拡散光量の測定装置に加えて、入射光用の開口部に対して積分球よりも外側に、測定サンプル面の持つ焦点距離位置に焦点を結ぶアナモルフィック光学系の集光レンズを配することで、測定サンプル面が曲率を持つ場合においても、正反射光を平行光として射出部より除くことが可能となり、拡散光量を正確に測定することが出来る。 In addition to the apparatus for measuring the amount of diffused light of a reflecting object according to the present invention, an anamorphic optical system that focuses on the focal length position of the measurement sample surface outside the integrating sphere with respect to the opening for incident light. By arranging this condenser lens, even when the measurement sample surface has a curvature, it becomes possible to remove the specularly reflected light as parallel light from the emitting part, and the amount of diffused light can be measured accurately.
図1は本発明による反射物体の拡散光量を測定する装置図である。積分球Aは、光が入射するための開口Ai、正反射光を射出するための射出部Ao、測定サンプル台As、受光器Adを有し、積分球Aから離れて、入射光Iと測定サンプルの交点と正反射光を除くための積分球側面の延長上に張る射出面の中央とを結ぶ直線上の周囲に、射出面の位置に対応した取り外し可能な2次元配列から成るセンサーCが配置されている。本実施例では、センサーとして、CCDを用いた。 FIG. 1 is an apparatus diagram for measuring the amount of diffuse light of a reflecting object according to the present invention. The integrating sphere A has an aperture Ai for incident light, an emitting part Ao for emitting specularly reflected light, a measurement sample base As, and a light receiver Ad. A sensor C consisting of a removable two-dimensional array corresponding to the position of the exit surface is located around a straight line connecting the intersection of the sample and the center of the exit surface extending on the side of the integrating sphere to exclude specular reflection. Has been placed. In this example, a CCD was used as the sensor.
図2は、本発明の測定装置における、測定サンプル台Asを示すものである。積分球Aの壁に開口があり、測定サンプル台Asは、その開口を積分球の壁に沿って覆う形状をした基盤上に開口より小さなサイズの突起台を持ち、突起台に測定サンプルSを固定した状態で積分球の開口部にはめ込むようになっている。サンプル面の法線方向を調整するための複数の調整ネジAs‐2を有している。 FIG. 2 shows a measurement sample stage As in the measurement apparatus of the present invention. There is an opening in the wall of the integrating sphere A, and the measurement sample stage As has a protruding table with a size smaller than the opening on the base that is shaped to cover the opening along the wall of the integrating sphere. In the fixed state, it fits into the opening of the integrating sphere. It has multiple adjusting screws As-2 to adjust the normal direction of the sample surface.
本発明による反射物体の拡散光量を測定する装置においては、射出面の位置に対応した取り外し可能な2次元配列から成るセンサーCによって、正反射光を除くための射出面の位置に対する正反射光の位置を確認することができる。射出面の位置に対する正反射光の位置を確認する手段として、2次元配列から成るセンサーCの他に、スリガラスを通して直接目で確認する方法や、二次元的に走査するセンサーであってもよい。ただし、二次元的に走査するセンサーである場合は、走査位置と射出面の位置を対応させるメカ的な機構を有している。 In the apparatus for measuring the diffused light amount of the reflecting object according to the present invention, the sensor C comprising a removable two-dimensional array corresponding to the position of the exit surface is used to detect the specularly reflected light with respect to the position of the exit surface for removing the specularly reflected light. The position can be confirmed. As a means for confirming the position of the specularly reflected light with respect to the position of the exit surface, in addition to the sensor C having a two-dimensional array, a method of directly confirming with eyes through a ground glass or a sensor that scans two-dimensionally may be used. However, a sensor that scans two-dimensionally has a mechanical mechanism that associates the scanning position with the position of the exit surface.
また、センサーCによる情報から、入射光と測定サンプルの交点と正反射光を除くための射出面の中央とを結ぶ直線上に正反射方向が一致していない場合、測定サンプル台にある調整ネジAs‐1を調節することで、正反射方向を適当な方向に移動させることができる。その他、センサーCによって、射出面内の位置に対応した強度分布も得られるので、正反射光の周辺に広がる拡散光量を相対的に測定することができる。 If the specular reflection direction does not match the straight line connecting the intersection of the incident light and the measurement sample and the center of the exit surface for removing the specular reflection light from the information from sensor C, the adjustment screw on the measurement sample base By adjusting As-1, the specular reflection direction can be moved to an appropriate direction. In addition, since the sensor C can also obtain an intensity distribution corresponding to the position in the exit surface, it is possible to relatively measure the amount of diffused light spreading around the specularly reflected light.
上記のように、正反射方向を最適に配置させた後、センサーCの表面で生じるの反射光が積分球内に戻ることを避けるために、センサーCを取り外し、拡散光量を測定する。 As described above, after the specular reflection direction is optimally arranged, the sensor C is removed and the amount of diffused light is measured in order to prevent the reflected light generated on the surface of the sensor C from returning to the integrating sphere.
図3は測定サンプル面が凹面である場合の測定装置図を示す。前記、本発明の反射物体の拡散光量を測定する装置に加えて、入射光用の開口部に対して積分球よりも外側に、アナモルフィック光学系の集光レンズBを配している。集光レンズを配することで、正反射光を平行光とし、測定サンプルが入射光に対して凹面である場合においても、正反射を射出部から除くことが出来る。ただし、集光レンズはアナモルフィック光学系である必要がある。アナモルフィック光学系の形状は、積分球に入射する光が入射角φの角度をもつことから、図3の紙面内方向と紙面垂直方向で入射光のうけるパワーが異なる為に生じるピント位置の違いに対応した形状である必要がある。 FIG. 3 shows a measurement apparatus diagram when the measurement sample surface is concave. In addition to the apparatus for measuring the amount of diffused light of the reflecting object of the present invention, a condensing lens B of an anamorphic optical system is disposed outside the integrating sphere with respect to the opening for incident light. By arranging the condenser lens, the specular reflection light can be made parallel light, and the specular reflection can be removed from the emission part even when the measurement sample is concave with respect to the incident light. However, the condensing lens needs to be an anamorphic optical system. The shape of the anamorphic optical system is such that the light incident on the integrating sphere has an incident angle φ, and the focus position generated due to the difference in the power received by the incident light in the in-plane direction of FIG. The shape must correspond to the difference.
測定サンプル面は凸面においても、上記と同様のことが言える。 The same can be said for the measurement sample surface even on the convex surface.
I 入射光
IR 反射光
A 積分球
As 積分球における測定サンプル台もしくは測定サンプル保持部
Ad 積分球における受光器
Ai 入射光の入射する開口部
Ao 正反射光の射出部
As-1 測定さんプル台における調整ネジ
S 測定サンプル
C センサー
B 集光レンズ
I Incident light
IR reflected light
A integrating sphere
As measurement sample stage or measurement sample holder in integrating sphere
Ad receiver in integrating sphere
Ai Aperture for incident light
Ao Regular reflection light emission part
Adjustment screw on As-1 measuring table pull sample S Measurement sample
C sensor
B Condenser lens
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004126568A JP2005308571A (en) | 2004-04-22 | 2004-04-22 | Diffused light measurement device and its measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004126568A JP2005308571A (en) | 2004-04-22 | 2004-04-22 | Diffused light measurement device and its measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005308571A true JP2005308571A (en) | 2005-11-04 |
Family
ID=35437515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004126568A Withdrawn JP2005308571A (en) | 2004-04-22 | 2004-04-22 | Diffused light measurement device and its measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005308571A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014215152A (en) * | 2013-04-25 | 2014-11-17 | 日本分光株式会社 | Integrating spher and reflection light measurement method |
-
2004
- 2004-04-22 JP JP2004126568A patent/JP2005308571A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014215152A (en) * | 2013-04-25 | 2014-11-17 | 日本分光株式会社 | Integrating spher and reflection light measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002039960A (en) | Method for inspecting pattern defect and apparatus therefor | |
WO2003069263A3 (en) | System for detecting anomalies and/or features of a surface | |
US20160069808A1 (en) | Fluorescence imaging autofocus systems and methods | |
TW201109646A (en) | Inspection systems for glass sheets | |
US7880798B2 (en) | Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image | |
JP2010277070A (en) | Illuminator, and spectral apparatus and image reading apparatus using the same | |
US20090079969A1 (en) | Method and apparatus for scatterfield microscopical measurement | |
JP2012229978A (en) | Device for photographing inner peripheral surface of hole | |
US10345248B2 (en) | Optical system and method for inspecting a transparent plate | |
US20140132750A1 (en) | Lighting apparatus for measuring electronic material-processed part and test apparatus using the same | |
US20140240489A1 (en) | Optical inspection systems and methods for detecting surface discontinuity defects | |
WO2016132451A1 (en) | Microscope | |
KR101754108B1 (en) | System for measuring vignetting caused by camera lenz | |
WO2016054266A1 (en) | Wafer edge inspection with trajectory following edge profile | |
JP2008039750A (en) | Device for height measuring | |
KR100576806B1 (en) | A device for optically capturing objects | |
JP2005308571A (en) | Diffused light measurement device and its measuring method | |
JP2005331302A (en) | Outside surface inspection method and outside surface inspection device | |
JP2008026049A (en) | Flange focal distance measuring instrument | |
US8248603B2 (en) | Focus apparatus of image measuring system | |
JP2008064656A (en) | Peripheral edge inspecting apparatus | |
US20100220292A1 (en) | Vision measuring system and assistant focusing system thereof | |
JP3981895B2 (en) | Automatic macro inspection device | |
JP2008164387A (en) | Optical inspection method and optical inspection device | |
JP2018163072A (en) | Optical connector end face inspection device and focused image data acquisition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070703 |