JP2005282869A - Combination type refrigeration cycle equipment and its operating method - Google Patents

Combination type refrigeration cycle equipment and its operating method Download PDF

Info

Publication number
JP2005282869A
JP2005282869A JP2004092867A JP2004092867A JP2005282869A JP 2005282869 A JP2005282869 A JP 2005282869A JP 2004092867 A JP2004092867 A JP 2004092867A JP 2004092867 A JP2004092867 A JP 2004092867A JP 2005282869 A JP2005282869 A JP 2005282869A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigeration
refrigerant circuit
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004092867A
Other languages
Japanese (ja)
Inventor
Tetsuji Fujino
哲爾 藤野
Keiichi Horiuchi
敬一 堀内
Hiroshi Ishizuka
浩史 石塚
Tadashi Fujisaki
忠司 藤崎
Harunobu Mizukami
春信 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004092867A priority Critical patent/JP2005282869A/en
Publication of JP2005282869A publication Critical patent/JP2005282869A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combination type refrigeration cycle equipment of high efficiency improved in COP of the entire equipment. <P>SOLUTION: In this air conditioning/refrigerating/freezing equipment 1 (combination type refrigeration cycle equipment) comprising an air conditioner 2, a refrigerating device 3 and a freezing device 4, a refrigerant circuit 12 of the air conditioner 2 is constituted to successively mount an indoor heat exchanger 13, a compressor 14, an outdoor heat exchanger for air conditioning 15 (first outdoor heat exchanger) and an electronic expansion valve 16 in this order. The refrigerant circuit 12 is provided with a bypass flow channel 51 for supplying a part of the refrigerant having passed through the outdoor heat exchanger for air conditioning 15 to the compressor 14 in constituting the refrigeration cycle. An expansion valve for over cooling 52 and a first heat exchange part 53 are mounted on the bypass flow channel 51 in this order from an upstream side. The first heat exchange part 53 exchanges the heat with the refrigerant having passed through outdoor heat exchangers for refrigerating and freezing 25, 35 (second outdoor heat exchangers) of refrigerant circuits 22, 32 of the refrigerating and freezing devices 3, 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複合型冷凍サイクル設備及びその運転方法に関するものである。   The present invention relates to a combined refrigeration cycle facility and an operation method thereof.

例えば、大型店舗やコンビニエンスストア等には、店舗内の暖房または冷房を行う空気調和装置に加えて、飲料水や食品等を冷蔵状態で保存または陳列する冷蔵装置、及び氷やアイスクリーム、冷凍食品等を冷凍状態で保存または陳列する冷凍装置が備えられている。
このように空気調和装置、冷蔵装置、及び冷凍装置を備える店舗には、例えば後記の特許文献1に記載の店舗用冷凍空調装置が用いられる。
この店舗用冷凍空調装置は、空調側冷凍サイクルと冷凍側冷凍サイクルとを有している。
For example, in large stores and convenience stores, in addition to air conditioning devices that heat or cool the stores, refrigeration devices that store or display drinking water, food, etc. in a refrigerated state, ice, ice cream, frozen food And the like are stored or displayed in a frozen state.
As described above, for example, a store refrigeration air conditioner described in Patent Document 1 is used in a store including an air conditioner, a refrigerator, and a refrigeration apparatus.
This store refrigeration air conditioner has an air conditioning side refrigeration cycle and a refrigeration side refrigeration cycle.

特開2000−179961号公報(段落[0021],及び図1)Japanese Patent Laying-Open No. 2000-179961 (paragraph [0021] and FIG. 1)

しかし、冷蔵装置及び冷凍装置は、室内熱交換器(蒸発器)の周辺雰囲気の温度が低いため、蒸発温度が低くなり、低圧が低く圧力差が大きいため、空気調和装置に比べて効率が悪い。このため、設備全体のCOPは、冷蔵装置及び冷凍装置の効率に左右される。
また、空気調和装置、冷蔵装置、及び冷凍装置はそれぞれ冷媒回路が独立していて、いずれかの装置の負荷が大きい場合にも、他の装置の負荷が低くて余力が生じている場合がある。この場合には、各装置の能力を十分に活用することができず、設備全体としてのCOPが低かった。
However, since the temperature of the ambient atmosphere of the indoor heat exchanger (evaporator) is low, the refrigeration apparatus and the refrigeration apparatus have a low evaporation temperature, a low pressure, and a large pressure difference. Therefore, the efficiency is lower than that of the air conditioner. . For this reason, COP of the whole installation is influenced by the efficiency of a refrigeration apparatus and a freezing apparatus.
In addition, the air conditioning apparatus, the refrigeration apparatus, and the refrigeration apparatus have independent refrigerant circuits, and even when the load on one of the apparatuses is large, the load on the other apparatus may be low and the remaining power may be generated. . In this case, the capability of each device could not be fully utilized, and the COP as the entire facility was low.

本発明は、このような事情に鑑みてなされたものであって、設備全体のCOPを向上させた高効率の複合型冷凍サイクル設備を提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the highly efficient composite type | mold refrigerating-cycle installation which improved COP of the whole installation.

上記課題を解決するために、本発明の複合型冷凍サイクル設備及びその運転方法は、以下の手段を採用する。
すなわち、本発明にかかる複合型冷凍サイクル設備は、複数の独立した冷媒回路を有する複合型冷凍サイクル設備であって、圧縮機と第一室外熱交換器と膨張弁と室内熱交換器とがこの順番で配置された第一冷媒回路と、冷凍サイクル形成時に凝縮器として作用する第二室外熱交換器を有する第二冷媒回路とを、それぞれ少なくとも一つずつ有しており、前記第一冷媒回路には、冷凍サイクル形成時に前記第一室外熱交換器を通過した冷媒の一部を前記圧縮機に供給するバイパス流路が設けられており、該バイパス流路には、過冷却用膨張弁と、前記バイパス流路内を流通する冷媒と前記第二冷媒回路の前記第二室外熱交換器を通過した冷媒との間で熱交換を行う第一熱交換部とが、上流側からこの順番で設けられていることを特徴とする。
In order to solve the above-described problems, the combined refrigeration cycle facility and the operation method thereof of the present invention employ the following means.
That is, the combined refrigeration cycle facility according to the present invention is a combined refrigeration cycle facility having a plurality of independent refrigerant circuits, and includes a compressor, a first outdoor heat exchanger, an expansion valve, and an indoor heat exchanger. The first refrigerant circuit has at least one each of a first refrigerant circuit arranged in order and a second refrigerant circuit having a second outdoor heat exchanger that acts as a condenser when forming a refrigeration cycle. Is provided with a bypass flow path for supplying a part of the refrigerant that has passed through the first outdoor heat exchanger to the compressor when the refrigeration cycle is formed. A first heat exchanging unit that performs heat exchange between the refrigerant flowing through the bypass flow path and the refrigerant that has passed through the second outdoor heat exchanger of the second refrigerant circuit in this order from the upstream side. It is provided.

このように構成される複合型冷凍サイクル設備においては、第一冷媒回路内を循環する冷媒は、冷凍サイクル形成時には、第一室外熱交換器によって室外雰囲気と熱交換されて凝縮・液化される。その後、冷媒の大部分は、膨張弁に送り込まれて減圧・膨張されて低温低圧の冷媒とされる。この低温低圧の冷媒は、室内熱交換器に送り込まれて室内雰囲気と熱交換されて室内雰囲気の冷却に寄与したのち、圧縮機によって加圧されて高温高圧となり、再び室外熱交換器に送り込まれる。   In the combined refrigeration cycle equipment configured as described above, the refrigerant circulating in the first refrigerant circuit is condensed and liquefied by heat exchange with the outdoor atmosphere by the first outdoor heat exchanger when the refrigeration cycle is formed. Thereafter, most of the refrigerant is sent to the expansion valve and decompressed / expanded into a low-temperature / low-pressure refrigerant. This low-temperature and low-pressure refrigerant is sent to the indoor heat exchanger and exchanges heat with the indoor atmosphere and contributes to the cooling of the indoor atmosphere. Then, the refrigerant is pressurized by the compressor to become high-temperature and high-pressure, and is sent to the outdoor heat exchanger again. .

一方、第一冷媒回路では、冷凍サイクル形成時に第一室外熱交換器によって熱交換が行われた冷媒の一部は、バイパス流路内に供給される。バイパス流路内に供給された冷媒は、過冷却用膨張弁に送り込まれて減圧・膨張されて低温低圧の冷媒とされる。この低温低圧の冷媒は、第一熱交換部によって第二冷媒回路の第二室外熱交換器を通過した冷媒と熱交換されて、第二冷媒回路の冷媒のさらなる冷却に寄与する。その後、この冷媒は、第一冷媒回路の圧縮機に送り込まれて、圧縮機による加圧によって高温高圧となり、再び第一冷媒回路の室外熱交換器に送り込まれる。
すなわち、このように構成される複合型冷凍サイクル設備では、第二冷媒回路内で第二室外熱交換器によって凝縮・液化された冷媒が、第一冷媒回路内を循環する冷媒の一部を利用して、さらに冷却されるので、第二冷媒回路の冷凍サイクル形成時におけるCOPが向上する。
On the other hand, in the first refrigerant circuit, a part of the refrigerant heat-exchanged by the first outdoor heat exchanger when the refrigeration cycle is formed is supplied into the bypass flow path. The refrigerant supplied into the bypass flow path is sent to the supercooling expansion valve and decompressed / expanded to be a low temperature / low pressure refrigerant. The low-temperature and low-pressure refrigerant is heat-exchanged with the refrigerant that has passed through the second outdoor heat exchanger of the second refrigerant circuit by the first heat exchange unit, and contributes to further cooling of the refrigerant in the second refrigerant circuit. Thereafter, the refrigerant is sent to the compressor of the first refrigerant circuit, becomes high temperature and pressure by pressurization by the compressor, and is sent again to the outdoor heat exchanger of the first refrigerant circuit.
That is, in the combined refrigeration cycle equipment configured as described above, the refrigerant condensed and liquefied by the second outdoor heat exchanger in the second refrigerant circuit uses a part of the refrigerant circulating in the first refrigerant circuit. And since it cools further, COP at the time of refrigeration cycle formation of a 2nd refrigerant circuit improves.

例えば、第一冷媒回路がCOPの高い空気調和装置として用いられ、第二冷媒回路が空気調和装置よりもCOPの低い冷蔵装置や冷凍装置として用いられている場合には、複合型冷凍サイクル設備全体のCOPが向上する。
また、この複合型冷凍サイクル設備は、第二冷媒回路の冷媒のさらなる冷却に、第一冷媒回路の余剰の冷熱を利用しているので、第二冷媒回路の冷媒のさらなる冷却のために冷熱源を別個に設けた場合に比べて、製造コスト及び設置スペースが少なくて済む。
For example, when the first refrigerant circuit is used as an air conditioner having a high COP and the second refrigerant circuit is used as a refrigeration apparatus or a refrigeration apparatus having a COP lower than that of the air conditioner, the entire combined refrigeration cycle facility COP is improved.
In addition, since this combined refrigeration cycle facility uses the excessive cold heat of the first refrigerant circuit for further cooling of the refrigerant of the second refrigerant circuit, a cold heat source is used for further cooling of the refrigerant of the second refrigerant circuit. The manufacturing cost and installation space can be reduced as compared with the case where these are provided separately.

また、この複合型冷凍サイクル設備では、第一、第二冷媒回路がそれぞれ冷凍サイクルを形成している場合には、過冷却用膨張弁を操作して、バイパス流路への冷媒の流通を制御することで、第一冷媒回路、第二冷媒回路のそれぞれの負荷に応じて、適切な運転を行うことができる。
例えば、第一冷媒回路の負荷が大きい場合は、過冷却用膨張弁を閉じてバイパス流路への冷媒の流通を停止させる。これにより、第一冷媒回路内の冷媒が全て第一冷媒回路の冷凍サイクルに使用されることとなり、第一冷媒回路の冷凍能力を最大限に発揮することができる。
また、第一冷媒回路の負荷が小さく、第二冷媒回路の負荷も小さくて第二冷媒回路の冷媒のさらなる冷却が不要である場合には、過冷却用膨張弁を閉じて第一冷媒回路の冷媒を全て冷凍サイクルに使用することで、第一冷媒回路での冷媒の循環量を低下させて圧縮機の負担を軽くすることができ、第一冷媒回路の効率を向上させることができる。
In this combined refrigeration cycle facility, when the first and second refrigerant circuits each form a refrigeration cycle, the refrigerant flow to the bypass channel is controlled by operating the supercooling expansion valve. By doing so, an appropriate operation can be performed according to the respective loads of the first refrigerant circuit and the second refrigerant circuit.
For example, when the load on the first refrigerant circuit is large, the supercooling expansion valve is closed to stop the refrigerant flow to the bypass flow path. Thereby, all the refrigerant | coolants in a 1st refrigerant circuit will be used for the refrigerating cycle of a 1st refrigerant circuit, and the refrigerating capacity of a 1st refrigerant circuit can be exhibited to the maximum.
Further, when the load on the first refrigerant circuit is small and the load on the second refrigerant circuit is also small and further cooling of the refrigerant in the second refrigerant circuit is unnecessary, the subcooling expansion valve is closed and the first refrigerant circuit is closed. By using all the refrigerant in the refrigeration cycle, it is possible to reduce the amount of refrigerant circulating in the first refrigerant circuit and lighten the burden on the compressor, and to improve the efficiency of the first refrigerant circuit.

さらに、単に過冷却用膨張弁を開閉させるだけでなく、過冷却用膨張弁の開度を制御することで、より細やかな運転の制御を行うことができる。
例えば、過冷却用膨張弁の開度を大きくしてバイパス流路への冷媒の流通量を増大させると、第一熱交換部による熱交換量が増大し、第二冷媒回路の冷媒の冷却が促進されるので、第二冷媒回路のCOPを向上させることができる。
また、過冷却用膨張弁の開度を小さくしてバイパス流路への冷媒の流通量を低減させると、第一冷媒回路において冷凍サイクルに使用される冷媒の量が増大するので、その分、第一冷媒回路の効率向上や、室内雰囲気の冷却能力の向上を図ることができる。
Further, not only simply opening and closing the supercooling expansion valve, but also controlling the opening degree of the supercooling expansion valve, it is possible to control the operation more finely.
For example, if the degree of opening of the supercooling expansion valve is increased to increase the amount of refrigerant flowing into the bypass flow path, the amount of heat exchange by the first heat exchanging unit increases, and the refrigerant in the second refrigerant circuit is cooled. Since it is promoted, the COP of the second refrigerant circuit can be improved.
Also, if the amount of refrigerant used in the refrigeration cycle is increased in the first refrigerant circuit by reducing the opening of the supercooling expansion valve to reduce the amount of refrigerant flowing to the bypass flow path, It is possible to improve the efficiency of the first refrigerant circuit and the cooling capacity of the indoor atmosphere.

また、この複合型冷凍サイクル設備において、前記第一冷媒回路の前記室内熱交換器の上流側と下流側とのうちの少なくともいずれか一方における冷媒の圧力を測定する圧力測定装置と、該圧力測定装置の測定値に基づいて前記過冷却用膨張弁の動作を制御する制御装置が設けられており、該制御装置は、前記室内熱交換器の上流側の冷媒圧力が第一基準値以上となった場合、もしくは前記室内熱交換器の下流側の冷媒圧力が第二基準値以下となった場合に、前記過冷却用膨張弁を開く構成とされていてもよい。   Further, in this combined refrigeration cycle facility, a pressure measuring device that measures the pressure of the refrigerant in at least one of the upstream side and the downstream side of the indoor heat exchanger of the first refrigerant circuit, and the pressure measurement A control device is provided for controlling the operation of the supercooling expansion valve based on the measured value of the device, and the control device has a refrigerant pressure on the upstream side of the indoor heat exchanger equal to or higher than a first reference value. If the refrigerant pressure on the downstream side of the indoor heat exchanger becomes equal to or lower than the second reference value, the supercooling expansion valve may be opened.

ここで、冷媒回路の室内熱交換器は、例えば室内空調ユニット(室内機)や冷蔵庫等の装置に組み込まれて、室内雰囲気や庫内雰囲気の冷却のための冷熱源として用いられる。一般に、室内空調ユニットや冷蔵庫等の装置には、室内雰囲気や庫内雰囲気が目標温度に達した場合や室内熱交換器の霜取り運転を行う場合など、室内熱交換器による熱交換を停止させたい条件となった場合に、室内熱交換器への冷媒の供給を停止または低減させる機構が設けられている。   Here, the indoor heat exchanger of the refrigerant circuit is incorporated in a device such as an indoor air conditioning unit (indoor unit) or a refrigerator, and used as a cold heat source for cooling the indoor atmosphere or the internal atmosphere. In general, for devices such as indoor air conditioning units and refrigerators, it is desirable to stop heat exchange by the indoor heat exchanger, such as when the indoor atmosphere or internal atmosphere reaches a target temperature, or when the indoor heat exchanger is defrosted. A mechanism is provided to stop or reduce the supply of the refrigerant to the indoor heat exchanger when the conditions are met.

一方、冷媒回路では、圧縮機による冷媒の圧送が行われているので、室内熱交換器への冷媒の供給が停止または急激に低減させられると、室内熱交換器の上流側での冷媒圧力が急激に上昇し、冷媒回路を構成する各部材に負担がかかる(このとき、室内熱交換器の下流側では、冷媒圧力が急激に低下する)。
このような急激な圧力変動に追従させて圧縮機の冷媒送出量の制御を行うことは困難であるので、従来は、冷媒回路内の室内熱交換器の上流側の冷媒圧力の急上昇を防止することは困難であった。
On the other hand, in the refrigerant circuit, since the refrigerant is pumped by the compressor, when the supply of the refrigerant to the indoor heat exchanger is stopped or rapidly reduced, the refrigerant pressure on the upstream side of the indoor heat exchanger is reduced. The temperature rapidly rises and a load is applied to each member constituting the refrigerant circuit (at this time, the refrigerant pressure rapidly decreases on the downstream side of the indoor heat exchanger).
Since it is difficult to control the refrigerant delivery amount of the compressor by following such a rapid pressure fluctuation, conventionally, a sudden rise in the refrigerant pressure upstream of the indoor heat exchanger in the refrigerant circuit is prevented. It was difficult.

これに対して、本発明にかかる複合型冷凍サイクル設備では、室内熱交換器の上流側の冷媒圧力が、予め定められた第一基準値以上となった場合、もしくは室内熱交換器の下流側の冷媒圧力が、予め定められた第二基準値以下となった場合に、制御装置によって過冷却用膨張弁が開かれるようになっている。
すなわち、室内熱交換器への冷媒の供給が停止または急激に低減させられた場合には、室内熱交換器の上流側の冷媒がバイパス流路を通じて室内熱交換器の下流側へ逃がされるので、圧縮機による冷媒の送出量を低下させなくても、冷媒回路内の冷媒圧力の異常上昇が防止されて、冷媒回路を構成する各部材が保護される。さらに、このようにバイパス流路への冷媒の流通を許容することで、前記したように第二冷媒回路の冷媒との熱交換が行われ、冷熱を回収することができる。
In contrast, in the combined refrigeration cycle facility according to the present invention, when the refrigerant pressure upstream of the indoor heat exchanger is equal to or higher than a predetermined first reference value, or downstream of the indoor heat exchanger When the refrigerant pressure becomes equal to or lower than a predetermined second reference value, the supercooling expansion valve is opened by the control device.
That is, when the supply of refrigerant to the indoor heat exchanger is stopped or rapidly reduced, the refrigerant on the upstream side of the indoor heat exchanger is released to the downstream side of the indoor heat exchanger through the bypass flow path. Even if the amount of refrigerant delivered by the compressor is not reduced, an abnormal increase in the refrigerant pressure in the refrigerant circuit is prevented, and each member constituting the refrigerant circuit is protected. Further, by allowing the refrigerant to flow into the bypass flow path as described above, heat exchange with the refrigerant in the second refrigerant circuit is performed as described above, and cold heat can be recovered.

また、この複合型冷凍サイクル設備において、前記第二冷媒回路は、前記第二室外熱交換器を通過した冷媒を一時貯留するレシーバを有しており、前記第一冷媒回路の前記バイパス流路は、一部が前記レシーバ内の冷媒貯留範囲内に挿通されていて、該挿通部分が前記第一熱交換部とされていてもよい。   Further, in this combined refrigeration cycle facility, the second refrigerant circuit has a receiver that temporarily stores the refrigerant that has passed through the second outdoor heat exchanger, and the bypass flow path of the first refrigerant circuit is In addition, a part may be inserted into the refrigerant storage range in the receiver, and the insertion part may be the first heat exchange unit.

このように構成される複合型冷凍サイクル設備では、第一冷媒回路のバイパス流路のうち、第二冷媒回路のレシーバに挿通される挿通部が第一熱交換部を構成している。このため、この複合型冷凍サイクル設備では、第二冷媒回路の冷媒の冷却のための熱交換器を新たに設ける必要がないので、製造コスト及び設置スペースを低減することができる。   In the combined refrigeration cycle equipment configured as described above, the insertion portion inserted into the receiver of the second refrigerant circuit in the bypass flow path of the first refrigerant circuit constitutes the first heat exchange portion. For this reason, in this combined refrigeration cycle facility, there is no need to newly provide a heat exchanger for cooling the refrigerant in the second refrigerant circuit, so that the manufacturing cost and installation space can be reduced.

また、この複合型冷凍サイクル設備において、前記第一熱交換部に供給される前記冷媒との間で熱交換が行われる蓄熱体を有していてもよい。   Moreover, this composite refrigeration cycle facility may include a heat storage body that performs heat exchange with the refrigerant supplied to the first heat exchange unit.

このように構成される複合型冷凍サイクル設備では、第一冷媒回路内を循環する冷媒のうち、第一熱交換部に供給された冷媒の冷熱が、蓄熱体に一時的に蓄えられて、第二冷媒回路の冷媒の冷却に利用される。
例えば、第二冷媒回路の負荷が一時的に増加して冷媒流量が増加したり、第一冷媒回路の負荷が一時的に多くなってバイパス流路への冷媒の供給が停止または供給量が低下させられるなどした場合には、第一熱交換部に供給された冷媒の冷熱に加えて、蓄熱体に蓄えられた冷熱が第二冷媒回路の冷媒の冷却に利用される。
これにより、第一冷媒回路の負荷が変動しても、第二冷媒回路の冷媒の冷却を、安定して行うことができる。
In the combined refrigeration cycle equipment configured as described above, among the refrigerant circulating in the first refrigerant circuit, the cold heat of the refrigerant supplied to the first heat exchange unit is temporarily stored in the heat storage body, Used to cool the refrigerant in the two refrigerant circuit.
For example, the load on the second refrigerant circuit temporarily increases to increase the refrigerant flow rate, or the load on the first refrigerant circuit temporarily increases to stop the supply of refrigerant to the bypass flow path or to reduce the supply amount In the case where the heat is stored, the cold stored in the heat storage body is used for cooling the refrigerant in the second refrigerant circuit in addition to the cold of the refrigerant supplied to the first heat exchange unit.
Thereby, even if the load of a 1st refrigerant circuit fluctuates, cooling of the refrigerant | coolant of a 2nd refrigerant circuit can be performed stably.

ここで、この蓄熱体は、第一、第二冷媒回路の負荷変動によって一時的に不足する冷熱を補填するのに必要なだけの冷熱を蓄えることができればよいので、蓄熱体は少量で済み、また長時間保温するための特別な保温構造を設ける必要がないので、この構成を採用しても、複合型冷凍サイクル設備を大型化させずに済む。   Here, since this heat storage body should just be able to store only the cold heat necessary to make up for the cold heat temporarily insufficient due to the load fluctuation of the first and second refrigerant circuits, the heat storage body needs only a small amount, Further, since it is not necessary to provide a special heat retaining structure for keeping warm for a long time, even if this structure is adopted, it is not necessary to enlarge the combined refrigeration cycle equipment.

また、この複合型冷凍サイクル設備において、前記第一冷媒回路は、冷凍サイクル形成時に前記室内熱交換器に供給される冷媒と前記第一冷媒回路の前記バイパス流路内を流通する冷媒との間で熱交換を行う第二熱交換部を有していてもよい。   Further, in this combined refrigeration cycle facility, the first refrigerant circuit is between a refrigerant supplied to the indoor heat exchanger when the refrigeration cycle is formed and a refrigerant flowing in the bypass flow path of the first refrigerant circuit. You may have the 2nd heat exchange part which performs heat exchange by.

このように構成される複合型冷凍サイクル設備では、第二熱交換部によって、第一冷媒回路において室内熱交換器に供給される冷媒が、第一冷媒回路のバイパス流路内を流通する冷媒との間で熱交換される。これにより、バイパス流路内を流通する冷媒の冷熱を回収して第一冷媒回路の冷熱として利用することができ、第一冷媒回路の効率が向上する。
また、複合型冷凍サイクル設備が、第一熱交換部内に供給される冷媒との間で熱交換が行われる前記蓄熱体を有している場合には、第一冷媒回路において室内熱交換器に供給される冷媒が、蓄熱体に蓄えられていた冷熱によってさらに冷却される。
すなわち、第一冷媒回路は、冷凍サイクルの負荷が急増して必要な冷熱量が急増しても、自身が発生させた冷熱によって不足分の冷熱が補われるので、室内雰囲気の冷却を安定して行うことができる。
In the combined refrigeration cycle equipment configured as described above, the refrigerant supplied to the indoor heat exchanger in the first refrigerant circuit by the second heat exchange unit is circulated in the bypass passage of the first refrigerant circuit. Heat exchange between. Thereby, the cold heat of the refrigerant | coolant which distribute | circulates the inside of a bypass flow path can be collect | recovered, and it can utilize as cold heat of a 1st refrigerant circuit, and the efficiency of a 1st refrigerant circuit improves.
In addition, when the combined refrigeration cycle facility has the heat storage body that performs heat exchange with the refrigerant supplied into the first heat exchange unit, the indoor heat exchanger is provided in the first refrigerant circuit. The supplied refrigerant is further cooled by the cold heat stored in the heat storage body.
In other words, the first refrigerant circuit stabilizes the cooling of the indoor atmosphere because even if the load of the refrigeration cycle suddenly increases and the necessary amount of cooling heat rapidly increases, the cold heat generated by itself compensates for the insufficient cooling heat. It can be carried out.

また、この複合型冷凍サイクル設備において、前記第一冷媒回路は、暖房サイクル形成時に前記室内熱交換器を通過した冷媒のうちの少なくとも一部の流通方向を、前記第一室外熱交換器から前記バイパス流路に切り替える切換装置を有していてもよい。   In the combined refrigeration cycle facility, the first refrigerant circuit may change the flow direction of at least a part of the refrigerant that has passed through the indoor heat exchanger during the heating cycle from the first outdoor heat exchanger. You may have the switching apparatus switched to a bypass flow path.

第一冷媒回路では、暖房サイクル形成時には、第一冷媒回路内を循環する冷媒は冷凍サイクル形成時とは逆向きに循環させられる。具体的には、暖房サイクル形成時には、第一冷媒回路内の冷媒は、圧縮機によって加圧されて高温高圧となったのち、室内熱交換器によって室内雰囲気と熱交換されて、室内雰囲気の加熱に寄与する。その後、冷媒は、膨張弁に送り込まれて減圧・膨張されて低温低圧の冷媒とされる。この低温低圧の冷媒は、第一室外熱交換器に送り込まれて室外雰囲気と熱交換されて蒸発・気化したのち、再び圧縮機に送り込まれる。   In the first refrigerant circuit, when the heating cycle is formed, the refrigerant circulating in the first refrigerant circuit is circulated in the direction opposite to that when the refrigeration cycle is formed. Specifically, at the time of forming a heating cycle, the refrigerant in the first refrigerant circuit is pressurized by a compressor to become high temperature and high pressure, and then heat exchanged with the indoor atmosphere by the indoor heat exchanger to heat the indoor atmosphere. Contribute to. Thereafter, the refrigerant is sent to an expansion valve and decompressed / expanded to be a low-temperature and low-pressure refrigerant. This low-temperature and low-pressure refrigerant is sent to the first outdoor heat exchanger, exchanges heat with the outdoor atmosphere, evaporates and vaporizes, and then is sent again to the compressor.

本発明にかかる複合型冷凍サイクル設備では、第一冷媒回路に設けられた切換装置を操作することで、室内熱交換器によって熱交換が行われた冷媒の一部が、第一室外熱交換器ではなく、バイパス流路内に供給される。
バイパス流路内に供給された冷媒は、過冷却用膨張弁に送り込まれて減圧・膨張されて低温低圧の冷媒とされ、第一熱交換部によって第二冷媒回路の第二室外熱交換器を通過した冷媒と熱交換されて、第二冷媒回路の冷媒のさらなる冷却に寄与する。このとき、バイパス流路内を流通する冷媒は、第二冷媒回路内の冷媒の熱を吸収して、蒸発・気化する。すなわち、第一熱交換部は、第一冷媒回路の蒸発器として作用する。
そして、第一熱交換部を通過した冷媒は、第一冷媒回路の圧縮機に送り込まれて、圧縮機による加圧によって高温高圧となり、再び第一冷媒回路の室内熱交換器に送り込まれる。
In the combined refrigeration cycle facility according to the present invention, by operating a switching device provided in the first refrigerant circuit, a part of the refrigerant heat-exchanged by the indoor heat exchanger is converted into the first outdoor heat exchanger. Instead, it is supplied into the bypass channel.
The refrigerant supplied into the bypass flow path is sent to the subcooling expansion valve and decompressed / expanded to be a low-temperature / low-pressure refrigerant, and the second heat exchanger is connected to the second outdoor heat exchanger of the second refrigerant circuit. Heat exchange with the passed refrigerant contributes to further cooling of the refrigerant in the second refrigerant circuit. At this time, the refrigerant flowing through the bypass flow path absorbs the heat of the refrigerant in the second refrigerant circuit and evaporates and vaporizes. That is, the first heat exchange unit acts as an evaporator of the first refrigerant circuit.
And the refrigerant | coolant which passed the 1st heat exchange part is sent to the compressor of a 1st refrigerant circuit, becomes high temperature high pressure by the pressurization by a compressor, and is again sent to the indoor heat exchanger of a 1st refrigerant circuit.

このように、この複合型冷凍サイクル設備では、第一冷媒回路が暖房サイクルを形成しているときにも、第二冷媒回路の冷媒のさらなる冷却を行うことができる。
また、第一熱交換部が蒸発器として作用するので、第一室外熱交換器に供給される冷媒の流量を低減するか、または供給を停止させることができる。これにより、第一室外熱交換器の温度が低下しにくくなって室外雰囲気温度に近くなるので、第一室外熱交換器の霜付きを防止することができ、メンテナンスの手間やデフロストの回数を低減することができる。
Thus, in this combined refrigeration cycle facility, it is possible to further cool the refrigerant in the second refrigerant circuit even when the first refrigerant circuit forms a heating cycle.
Moreover, since a 1st heat exchange part acts as an evaporator, the flow volume of the refrigerant | coolant supplied to a 1st outdoor heat exchanger can be reduced, or supply can be stopped. As a result, the temperature of the first outdoor heat exchanger is unlikely to decrease, and the temperature of the outdoor outdoor air exchanger becomes close to the outdoor ambient temperature, so that frosting of the first outdoor heat exchanger can be prevented, reducing maintenance work and the number of defrosts. can do.

本発明にかかる複合型冷凍サイクル設備の運転方法は、圧縮機と第一室外熱交換器と膨張弁と室内熱交換器とがこの順番で配置された第一冷媒回路と、冷凍サイクル形成時に凝縮器として作用する第二室外熱交換器を有する第二冷媒回路とを、それぞれ少なくとも一つずつ有する複合型冷凍サイクル設備の運転方法であって、
前記第一及び第二冷媒回路がそれぞれ冷凍サイクルを形成している状態では、前記第一室外熱交換器を通過した冷媒の一部を減圧・膨張させて低温低圧の冷媒とするとともに、該低温の冷媒と前記第二冷媒回路の前記第二室外熱交換器を通過した冷媒との間で熱交換を行うことを特徴とする。
A method for operating a combined refrigeration cycle facility according to the present invention includes a first refrigerant circuit in which a compressor, a first outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are arranged in this order, and condensation when a refrigeration cycle is formed. A second refrigerant circuit having a second outdoor heat exchanger acting as a storage unit, and a method for operating a combined refrigeration cycle facility having at least one each,
In a state where the first and second refrigerant circuits each form a refrigeration cycle, a part of the refrigerant that has passed through the first outdoor heat exchanger is decompressed and expanded to form a low-temperature and low-pressure refrigerant, Heat exchange is performed between the refrigerant and the refrigerant that has passed through the second outdoor heat exchanger of the second refrigerant circuit.

この複合型冷凍サイクル設備の運転方法では、第一冷媒回路内を循環する冷媒は、冷凍サイクル形成時には、第一室外熱交換器によって室外雰囲気と熱交換されて凝縮・液化される。その後、冷媒の大部分は、膨張弁に送り込まれて減圧・膨張されて低温低圧の冷媒とされる。この低温低圧の冷媒は、室内熱交換器に送り込まれて室内雰囲気と熱交換されて室内雰囲気の冷却に寄与したのち、圧縮機によって加圧されて高温高圧となり、再び室外熱交換器に送り込まれる。   In this combined refrigeration cycle facility operation method, the refrigerant circulating in the first refrigerant circuit is condensed and liquefied by heat exchange with the outdoor atmosphere by the first outdoor heat exchanger when the refrigeration cycle is formed. Thereafter, most of the refrigerant is sent to the expansion valve and decompressed / expanded into a low-temperature / low-pressure refrigerant. This low-temperature and low-pressure refrigerant is sent to the indoor heat exchanger and exchanges heat with the indoor atmosphere and contributes to the cooling of the indoor atmosphere. Then, the refrigerant is pressurized by the compressor to become high-temperature and high-pressure, and is sent to the outdoor heat exchanger again. .

本発明にかかる複合型冷凍サイクル設備の運転方法では、第一冷媒回路の冷凍サイクル形成時に第一室外熱交換器によって熱交換が行われた冷媒の一部を減圧・膨張させて低温低圧の冷媒とする。
さらに、この低温低圧の冷媒と第二冷媒回路の第二室外熱交換器を通過した冷媒とを熱交換させて、第二冷媒回路の冷媒のさらなる冷却を行う。
すなわち、この複合型冷凍サイクル設備の運転方法では、第二冷媒回路内で第二室外熱交換器によって凝縮・液化された冷媒が、第一冷媒回路内を循環する冷媒の一部を利用してさらに冷却されるので、第二冷媒回路の冷凍サイクル形成時におけるCOPが向上する。
この効果は、第一冷媒回路の冷媒において第二冷媒回路の冷媒との熱交換に使用する冷媒の量を増大させるにつれて増大する。
In the operation method of the combined refrigeration cycle facility according to the present invention, a low-temperature and low-pressure refrigerant is obtained by decompressing and expanding a part of the refrigerant heat-exchanged by the first outdoor heat exchanger when the refrigeration cycle of the first refrigerant circuit is formed. And
Furthermore, the refrigerant of the second refrigerant circuit is further cooled by exchanging heat between the low-temperature and low-pressure refrigerant and the refrigerant that has passed through the second outdoor heat exchanger of the second refrigerant circuit.
That is, in the operation method of the combined refrigeration cycle facility, the refrigerant condensed and liquefied by the second outdoor heat exchanger in the second refrigerant circuit uses a part of the refrigerant circulating in the first refrigerant circuit. Furthermore, since it cools, COP at the time of refrigeration cycle formation of a 2nd refrigerant circuit improves.
This effect increases as the amount of refrigerant used for heat exchange with the refrigerant in the second refrigerant circuit increases in the refrigerant in the first refrigerant circuit.

例えば、第一冷媒回路がCOPの高い空気調和装置として用いられ、第二冷媒回路が空気調和装置よりもCOPの低い冷蔵装置や冷凍装置として用いられている場合には、複合型冷凍サイクル設備全体のCOPが向上する。
また、この複合型冷凍サイクル設備の運転方法では、第二冷媒回路の冷媒のさらなる冷却に、第一冷媒回路の余剰の冷熱を利用していて、第二冷媒回路の冷媒のさらなる冷却のために冷熱源を別個に設ける必要がないので、複合型冷凍サイクル設備の製造コスト及び設置スペースが少なくて済む。
For example, when the first refrigerant circuit is used as an air conditioner having a high COP and the second refrigerant circuit is used as a refrigeration apparatus or a refrigeration apparatus having a COP lower than that of the air conditioner, the entire combined refrigeration cycle facility COP is improved.
Further, in this method of operating the combined refrigeration cycle facility, the extra cooling heat of the first refrigerant circuit is used for further cooling of the refrigerant in the second refrigerant circuit, and further cooling of the refrigerant in the second refrigerant circuit is performed. Since it is not necessary to provide a separate cold heat source, the manufacturing cost and installation space of the combined refrigeration cycle facility can be reduced.

この複合型冷凍サイクル設備の運転方法において、前記第一冷媒回路の負荷が大きい場合、または、前記第一冷媒回路の負荷が小さく、前記第二冷媒回路の負荷も小さくて該第二冷媒回路の冷媒のさらなる冷却が不要である場合には、前記第一冷媒回路の冷媒と前記第二冷媒回路の冷媒との間での熱交換を停止または低減させてもよい。   In the operation method of the combined refrigeration cycle facility, when the load of the first refrigerant circuit is large, or the load of the first refrigerant circuit is small and the load of the second refrigerant circuit is small, When further cooling of the refrigerant is unnecessary, heat exchange between the refrigerant in the first refrigerant circuit and the refrigerant in the second refrigerant circuit may be stopped or reduced.

この運転方法では、第一、第二冷媒回路がそれぞれ冷凍サイクルを形成している状態で、第一冷媒回路の負荷が大きい場合は、前記冷媒同士の熱交換を停止または低減させるので、第一冷媒回路内の冷媒の冷熱が第一冷媒回路の冷凍サイクルにより多く使用されることとなり、第一冷媒回路の冷凍能力をより発揮することができる。
また、第一冷媒回路の負荷が小さく、第二冷媒回路の負荷も小さくて第二冷媒回路の冷媒のさらなる冷却が不要である場合には、前記冷媒同士の熱交換を停止または低減させて、第一冷媒回路の冷媒の冷熱を第一冷媒回路の冷凍サイクルにより多く使用するので、第一冷媒回路での冷媒の循環量を低下させて圧縮機の負担を軽くすることができ、第一冷媒回路の効率を向上させることができる。
In this operation method, when the load of the first refrigerant circuit is large in a state where the first and second refrigerant circuits respectively form a refrigeration cycle, heat exchange between the refrigerants is stopped or reduced. The cold heat of the refrigerant in the refrigerant circuit is used more in the refrigeration cycle of the first refrigerant circuit, and the refrigeration capacity of the first refrigerant circuit can be further exhibited.
In addition, when the load of the first refrigerant circuit is small, the load of the second refrigerant circuit is also small and further cooling of the refrigerant of the second refrigerant circuit is unnecessary, the heat exchange between the refrigerants is stopped or reduced, Since the cold heat of the refrigerant in the first refrigerant circuit is used more in the refrigeration cycle of the first refrigerant circuit, the amount of refrigerant circulating in the first refrigerant circuit can be reduced and the burden on the compressor can be reduced. The efficiency of the circuit can be improved.

この複合型冷凍サイクル装置の運転方法において、前記第一冷媒回路の冷凍サイクル形成時に、該第一冷媒回路の前記室内熱交換器の上流側と下流側とのうちの少なくともいずれか一方における冷媒の圧力を測定し、前記室内熱交換器の上流側の冷媒圧力が第一基準値以上となった場合、もしくは前記室内熱交換器の下流側の冷媒圧力が第二基準値以下となった場合に、前記第一室外熱交換器を通過した冷媒の一部を前記圧縮機に供給するようにしてもよい。   In the operation method of the combined refrigeration cycle apparatus, when the refrigeration cycle of the first refrigerant circuit is formed, the refrigerant in at least one of the upstream side and the downstream side of the indoor heat exchanger of the first refrigerant circuit is When the pressure is measured and the refrigerant pressure upstream of the indoor heat exchanger is equal to or higher than the first reference value, or when the refrigerant pressure downstream of the indoor heat exchanger is equal to or lower than the second reference value. A part of the refrigerant that has passed through the first outdoor heat exchanger may be supplied to the compressor.

すなわち、室内熱交換器への冷媒の供給が停止または急激に低減させられた場合には、室内熱交換器の上流側の冷媒がバイパス流路を通じて室内熱交換器の下流側へ逃がされる。これにより、圧縮機による冷媒の送出量を低下させなくても、冷媒回路内の冷媒圧力の異常上昇が防止されて、冷媒回路を構成する各部材が保護される。さらに、このようにバイパス流路への冷媒の流通を許容することで、前記したように第二冷媒回路の冷媒との熱交換が行われ、冷熱を回収することができる。   That is, when the supply of the refrigerant to the indoor heat exchanger is stopped or rapidly reduced, the refrigerant on the upstream side of the indoor heat exchanger is released to the downstream side of the indoor heat exchanger through the bypass channel. Thereby, even if it does not reduce the amount of refrigerant delivered by the compressor, the abnormal increase in the refrigerant pressure in the refrigerant circuit is prevented, and each member constituting the refrigerant circuit is protected. Further, by allowing the refrigerant to flow into the bypass flow path as described above, heat exchange with the refrigerant in the second refrigerant circuit is performed as described above, and cold heat can be recovered.

本発明にかかる複合型冷凍サイクル設備の運転方法は、請求項1記載の複合型冷凍サイクル設備の運転方法であって、前記第一冷媒回路の前記室内熱交換器の上流側と下流側とのうちの少なくともいずれか一方における冷媒の圧力を測定する圧力測定装置を設けてその測定値を監視し、前記室内熱交換器の上流側の冷媒圧力が第一基準値以上となった場合、もしくは前記室内熱交換器の下流側の冷媒圧力が第二基準値以下となった場合に、前記過冷却用膨張弁の開度を大きくすることを特徴とする。   An operating method of a combined refrigeration cycle facility according to the present invention is the operating method of the combined refrigeration cycle facility according to claim 1, wherein the upstream side and the downstream side of the indoor heat exchanger of the first refrigerant circuit. Providing a pressure measuring device for measuring the pressure of the refrigerant in at least one of them and monitoring the measured value, and when the refrigerant pressure on the upstream side of the indoor heat exchanger is equal to or higher than a first reference value, or When the refrigerant pressure on the downstream side of the indoor heat exchanger becomes equal to or lower than the second reference value, the opening degree of the supercooling expansion valve is increased.

本発明にかかる複合型冷凍サイクル設備の運転方法では、室内熱交換器の上流側の冷媒圧力が、予め定められた第一基準値以上となった場合、もしくは室内熱交換器の下流側の冷媒圧力が、予め定められた第二基準値以下となった場合に、過冷却用膨張弁を開く。
すなわち、室内熱交換器への冷媒の供給が停止または急激に低減させられた場合には、過冷却用膨張弁が開かれて、室内熱交換器の上流側の冷媒がバイパス流路を通じて室内熱交換器の下流側へ逃がされる。これにより、圧縮機による冷媒の送出量を低下させなくても、冷媒回路内の冷媒圧力の異常上昇が防止されて、冷媒回路を構成する各部材が保護される。さらに、このようにバイパス流路への冷媒の流通を許容することで、前記したように第二冷媒回路の冷媒との熱交換が行われ、冷熱を回収することができる。
In the operation method of the combined refrigeration cycle facility according to the present invention, when the refrigerant pressure on the upstream side of the indoor heat exchanger is equal to or higher than a predetermined first reference value, or the refrigerant on the downstream side of the indoor heat exchanger When the pressure falls below a predetermined second reference value, the supercooling expansion valve is opened.
That is, when the supply of the refrigerant to the indoor heat exchanger is stopped or rapidly reduced, the supercooling expansion valve is opened, and the refrigerant on the upstream side of the indoor heat exchanger passes through the bypass flow path through the indoor heat exchanger. Escape to the downstream side of the exchanger. Thereby, even if it does not reduce the amount of refrigerant delivered by the compressor, the abnormal increase in the refrigerant pressure in the refrigerant circuit is prevented, and each member constituting the refrigerant circuit is protected. Further, by allowing the refrigerant to flow into the bypass flow path as described above, heat exchange with the refrigerant in the second refrigerant circuit is performed as described above, and cold heat can be recovered.

本発明にかかる複合型冷凍サイクル設備、及びその運転方法によれば、第二冷媒回路は、第一冷媒回路の余剰の冷熱を利用することができるので、第一,第二冷媒回路の能力を十分に活用することができ、設備全体としてのCOPが高い。   According to the combined refrigeration cycle facility and the method of operating the same according to the present invention, the second refrigerant circuit can utilize the excessive cold heat of the first refrigerant circuit, so that the capabilities of the first and second refrigerant circuits are increased. It can be fully utilized and the COP of the entire equipment is high.

本発明にかかる複合型冷凍サイクル設備の運転方法によれば、室内熱交換器への冷媒の供給が停止または急激に低減させられた場合にも、冷媒回路内の冷媒圧力の異常上昇が防止されて、冷媒回路を構成する各部材が保護される。   According to the operation method of the combined refrigeration cycle facility according to the present invention, even when the supply of the refrigerant to the indoor heat exchanger is stopped or rapidly reduced, an abnormal increase in the refrigerant pressure in the refrigerant circuit is prevented. Thus, each member constituting the refrigerant circuit is protected.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第一実施形態]
以下、本発明の第一実施形態について、図1から図3を用いて説明する。
本実施形態では、複合型冷凍サイクル設備を、図1に示す空調・冷蔵・冷凍設備1に適用した例について示す。
空調・冷蔵・冷凍設備1は、図1に示すように、大型店舗やコンビニエンスストア等の店舗に適用されるものであって、店舗内の暖房または冷房を行う空気調和装置2と、飲料水や食品等を冷蔵状態で保存または陳列する冷蔵装置3、及び氷やアイスクリーム、冷凍食品等を冷凍状態で保存または陳列する冷凍装置4を備えている。
これら空気調和装置2、冷蔵装置3、及び冷凍装置4は、それぞれ独立した冷媒回路を有している。
Embodiments according to the present invention will be described below with reference to the drawings.
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
In the present embodiment, an example in which the combined refrigeration cycle equipment is applied to the air conditioning / refrigeration / refrigeration equipment 1 shown in FIG. 1 will be described.
As shown in FIG. 1, the air conditioning / refrigeration / refrigeration facility 1 is applied to a store such as a large store or a convenience store, and is equipped with an air conditioner 2 for heating or cooling the store, drinking water, A refrigeration apparatus 3 for storing or displaying food or the like in a refrigerated state and a refrigeration apparatus 4 for storing or displaying ice, ice cream, frozen food or the like in a frozen state are provided.
The air conditioner 2, the refrigeration apparatus 3, and the refrigeration apparatus 4 have independent refrigerant circuits.

空気調和装置2は、店舗内に設けられる室内空調ユニット11を有している。この室内空調ユニット11には、図2に示す冷媒回路12(第一冷媒回路)が接続されている。
冷媒回路12は、暖房サイクルと冷房サイクルとのうちのいずれか一方を選択的に形成するものである。
冷媒回路12は、冷媒が循環される冷媒流路上に、室内空調ユニット11内に設けられて冷媒と店舗内雰囲気との間で熱交換を行う室内熱交換器13と、冷媒を加圧する圧縮機14と、冷媒と室外雰囲気との間で熱交換を行う空調用室外熱交換器15(第一室外熱交換器)と、冷媒を膨張させて減圧する電子膨張弁(絞り抵抗器)16とが、この順番で設けられた構成とされている。
The air conditioner 2 has an indoor air conditioning unit 11 provided in the store. A refrigerant circuit 12 (first refrigerant circuit) shown in FIG. 2 is connected to the indoor air conditioning unit 11.
The refrigerant circuit 12 selectively forms one of a heating cycle and a cooling cycle.
The refrigerant circuit 12 includes an indoor heat exchanger 13 provided in the indoor air conditioning unit 11 on the refrigerant flow path through which the refrigerant is circulated to exchange heat between the refrigerant and the store atmosphere, and a compressor that pressurizes the refrigerant. 14, an air conditioning outdoor heat exchanger 15 (first outdoor heat exchanger) that performs heat exchange between the refrigerant and the outdoor atmosphere, and an electronic expansion valve (throttle resistor) 16 that expands the refrigerant to reduce the pressure. The configuration is provided in this order.

また、この冷媒回路12では、圧縮機14は、四方弁17を介して、室内熱交換器13及び空調用室外熱交換器15と接続されている。
四方弁17は、冷媒流路における圧縮機14からの冷媒吐出方向及び冷媒流路における圧縮機14への冷媒供給方向を制御して、冷媒流路内での冷媒の流れを制御して、暖房サイクルと冷房サイクルとのうちのいずれか一方を選択的に形成するものである。
また、この冷媒回路12において、圧縮機14の上流側には、冷媒回路12内を流通する冷媒から液冷媒を取り除いて気体冷媒のみを通過させるアキュームレータ18が設けられている。
In the refrigerant circuit 12, the compressor 14 is connected to the indoor heat exchanger 13 and the air conditioning outdoor heat exchanger 15 via a four-way valve 17.
The four-way valve 17 controls the refrigerant discharge direction from the compressor 14 in the refrigerant flow path and the refrigerant supply direction to the compressor 14 in the refrigerant flow path, controls the flow of the refrigerant in the refrigerant flow path, and performs heating. One of the cycle and the cooling cycle is selectively formed.
In the refrigerant circuit 12, an accumulator 18 that removes the liquid refrigerant from the refrigerant flowing through the refrigerant circuit 12 and passes only the gaseous refrigerant is provided on the upstream side of the compressor 14.

ここで、冷媒回路12には、電子膨張弁16として、室内熱交換器13側に冷房用膨張弁16aが設けられており、室外熱交換器15側には暖房用膨張弁16bが設けられており、空気調和装置2は、運転モードに応じてこれら電子膨張弁16を使い分ける構成とされている。
具体的には、図2に示すように、冷媒回路12には、暖房用膨張弁16bを迂回する迂回路19aが設けられており、この迂回路19aには、冷房サイクル形成時の流通方向のみ冷媒の流通を許容する逆止弁19bが設けられている。これにより、冷房サイクル形成時には、冷媒が暖房用膨張弁16bを迂回して冷房用膨張弁16aによって膨張・減圧させられるようになっている。
また、冷媒回路12には、冷房用膨張弁16aを迂回する迂回路19cが設けられており、この迂回路19cには、暖房サイクル形成時の流通方向にのみ冷媒の流通を許容する逆止弁19dが設けられている。これにより、暖房サイクル形成時には冷媒が冷房用膨張弁16aを迂回して暖房用膨張弁16bによって膨張・減圧させられるようになっている。
Here, in the refrigerant circuit 12, as the electronic expansion valve 16, a cooling expansion valve 16a is provided on the indoor heat exchanger 13 side, and a heating expansion valve 16b is provided on the outdoor heat exchanger 15 side. The air conditioner 2 is configured to use these electronic expansion valves 16 in accordance with the operation mode.
Specifically, as shown in FIG. 2, the refrigerant circuit 12 is provided with a bypass circuit 19a that bypasses the heating expansion valve 16b, and this bypass circuit 19a has only a flow direction when a cooling cycle is formed. A check valve 19b that allows the refrigerant to flow is provided. Thus, when the cooling cycle is formed, the refrigerant bypasses the heating expansion valve 16b and is expanded and depressurized by the cooling expansion valve 16a.
The refrigerant circuit 12 is provided with a bypass circuit 19c that bypasses the cooling expansion valve 16a. The bypass circuit 19c includes a check valve that allows the refrigerant to flow only in the flow direction when the heating cycle is formed. 19d is provided. Thus, when the heating cycle is formed, the refrigerant bypasses the cooling expansion valve 16a and is expanded and depressurized by the heating expansion valve 16b.

冷蔵装置3は、図1に示すように、店舗内に設けられて冷蔵対象物を収納・陳列する冷蔵ショーケース21を有している。この冷蔵ショーケース21には、図2に示す冷媒回路22(第二冷媒回路)が接続されている。
冷媒回路22は、冷蔵ショーケース21内の雰囲気を冷却する冷凍サイクルを形成するものである。
この冷媒回路22は、冷媒が循環される冷媒流路上に、冷蔵ショーケース21内に設けられて冷媒と冷蔵ショーケース21内の雰囲気との間で熱交換を行う室内熱交換器23と、冷媒を加圧する圧縮機24と、冷媒と室外雰囲気との間で熱交換を行って冷媒を凝縮させる冷蔵用室外熱交換器25(第二室外熱交換器)と、冷媒を膨張させて冷却する膨張弁(絞り抵抗器)26とがこの順番で設けられた構成とされている。
また、この冷媒回路22において、圧縮機24の上流側には、冷媒回路22内を流通する冷媒から液冷媒を取り除いて気体冷媒のみを通過させるアキュームレータ28が設けられている。
As shown in FIG. 1, the refrigeration apparatus 3 includes a refrigerated showcase 21 that is provided in a store and stores and displays refrigerated objects. A refrigerant circuit 22 (second refrigerant circuit) shown in FIG. 2 is connected to the refrigerated showcase 21.
The refrigerant circuit 22 forms a refrigeration cycle for cooling the atmosphere in the refrigerated showcase 21.
The refrigerant circuit 22 includes an indoor heat exchanger 23 that is provided in the refrigerated showcase 21 and exchanges heat between the refrigerant and the atmosphere in the refrigerated showcase 21 on a refrigerant flow path through which the refrigerant is circulated, and a refrigerant A compressor 24 that pressurizes the refrigerant, an outdoor heat exchanger 25 (second outdoor heat exchanger) that condenses the refrigerant by exchanging heat between the refrigerant and the outdoor atmosphere, and an expansion that cools the refrigerant by expanding the refrigerant. The valve (throttle resistor) 26 is provided in this order.
Further, in the refrigerant circuit 22, an accumulator 28 that removes the liquid refrigerant from the refrigerant flowing through the refrigerant circuit 22 and passes only the gaseous refrigerant is provided on the upstream side of the compressor 24.

冷凍装置4は、図1に示すように、店舗内に設けられて冷凍対象物を収納・陳列する冷凍ショーケース31を有している。この冷凍ショーケース31には、図2に示す冷媒回路32(第二冷媒回路)が接続されている。
冷媒回路32は、冷凍ショーケース31内の雰囲気を冷却する冷凍サイクルを形成するものである。
この冷媒回路32は、冷媒が循環される冷媒流路上に、冷凍ショーケース31内に設けられて冷媒と冷凍ショーケース31内の雰囲気との間で熱交換を行う室内熱交換器33と、冷媒を加圧する圧縮機34と、冷媒と室外雰囲気との間で熱交換を行って冷媒を凝縮させる冷凍用室外熱交換器35(第二室外熱交換器)と、冷媒を膨張させて冷却する膨張弁(絞り抵抗器)36とがこの順番で設けられた構成とされている。
また、この冷媒回路32において、圧縮機34の上流側には、冷媒回路32内を流通する冷媒から液冷媒を取り除いて気体冷媒のみを通過させるアキュームレータ38が設けられている。
As shown in FIG. 1, the refrigeration apparatus 4 includes a refrigeration showcase 31 that is provided in a store and stores and displays objects to be frozen. A refrigerant circuit 32 (second refrigerant circuit) shown in FIG. 2 is connected to the refrigeration showcase 31.
The refrigerant circuit 32 forms a refrigeration cycle for cooling the atmosphere in the refrigeration showcase 31.
The refrigerant circuit 32 includes an indoor heat exchanger 33 that is provided in the refrigeration showcase 31 and exchanges heat between the refrigerant and the atmosphere in the refrigeration showcase 31 on the refrigerant flow path through which the refrigerant circulates, A compressor 34 that pressurizes the refrigerant, an outdoor heat exchanger 35 (second outdoor heat exchanger) that condenses the refrigerant by exchanging heat between the refrigerant and the outdoor atmosphere, and an expansion that cools the refrigerant by expanding the refrigerant. The valve (throttle resistor) 36 is provided in this order.
In the refrigerant circuit 32, an accumulator 38 that removes the liquid refrigerant from the refrigerant flowing through the refrigerant circuit 32 and passes only the gaseous refrigerant is provided on the upstream side of the compressor 34.

図1及び図2に示すように、この空調・冷蔵・冷凍設備1には、上記各冷媒回路12,22,32の空調用室外熱交換器15、冷蔵用室外熱交換器25、及び冷凍用室外熱交換器35が収納される一台の室外機42が設けられている。
室外機42には、室外機42内に外気を取り込んで、空調用室外熱交換器15、冷蔵用室外熱交換器25、及び冷凍用室外熱交換器35に接触させる送風装置(図示せず)が設けられており、これによってこれら各室外熱交換器と外気との間で熱交換が行われるようになっている。
As shown in FIGS. 1 and 2, the air conditioning / refrigeration / refrigeration facility 1 includes an air conditioning outdoor heat exchanger 15, a refrigeration outdoor heat exchanger 25, and a refrigeration unit for the refrigerant circuits 12, 22, and 32. One outdoor unit 42 in which the outdoor heat exchanger 35 is accommodated is provided.
An air blower (not shown) that takes outside air into the outdoor unit 42 and makes it contact the outdoor heat exchanger 15 for air conditioning, the outdoor heat exchanger 25 for refrigeration, and the outdoor heat exchanger 35 for freezing. Thus, heat exchange is performed between these outdoor heat exchangers and the outside air.

ここで、上記空気調和装置2を構成する冷媒回路12には、冷房サイクル形成時に前記空調用室外熱交換器15を通過した冷媒の一部を圧縮機14に供給するバイパス流路51が設けられている。本実施形態では、バイパス流路51は、冷媒回路12において暖房用膨張弁16bと冷房用膨張弁16aとの間に位置する部分から、アキュームレータ18の上流側に位置する部分とを接続する構成とされている。
また、バイパス流路51には、過冷却用膨張弁52と、第一熱交換部53とが、上流側からこの順番で設けられている。
Here, the refrigerant circuit 12 constituting the air conditioner 2 is provided with a bypass flow path 51 for supplying a part of the refrigerant that has passed through the air-conditioning outdoor heat exchanger 15 to the compressor 14 when the cooling cycle is formed. ing. In the present embodiment, the bypass flow path 51 connects a portion located between the heating expansion valve 16b and the cooling expansion valve 16a in the refrigerant circuit 12 to a portion located upstream of the accumulator 18. Has been.
The bypass channel 51 is provided with a supercooling expansion valve 52 and a first heat exchange unit 53 in this order from the upstream side.

バイパス流路51上には、内部に蓄熱体が封入された蓄熱容器56が設けられていて、バイパス流路51の一部は、この蓄熱容器56内に挿通されている。
前記第一熱交換部53は、バイパス流路51において蓄熱容器56内に挿通されている部分によって構成されていて、バイパス流路51内を流通する冷媒と蓄熱容器56内の蓄熱体との間で熱交換が行われるようになっている。
本実施形態では、蓄熱体は、内部に蓄熱材が充填された球状のカプセルとされており、蓄熱容器56は、内部に複数のカプセルが隙間なく充填されている。
On the bypass flow path 51, a heat storage container 56 in which a heat storage body is enclosed is provided, and a part of the bypass flow path 51 is inserted into the heat storage container 56.
The first heat exchanging portion 53 is configured by a portion inserted into the heat storage container 56 in the bypass flow path 51, and between the refrigerant circulating in the bypass flow path 51 and the heat storage body in the heat storage container 56. The heat exchange is done at.
In the present embodiment, the heat storage body is a spherical capsule filled with a heat storage material, and the heat storage container 56 is filled with a plurality of capsules without gaps.

また、この蓄熱容器56には、冷媒回路22において冷蔵用室外熱交換器25と膨張弁26との間に位置する部分の一部が挿通されており、冷媒回路32において冷凍用室外熱交換器35と膨張弁36との間に位置する部分の一部も挿通されている。これにより、蓄熱体と冷媒回路22,32内を流通する冷媒との間で熱交換が行われるようになっている。
ここで、バイパス流路51、冷媒回路22,32において、蓄熱容器56内に挿通される部分は、内部を流通する冷媒と蓄熱体との間での熱交換が効率よく行われるように、蓄熱体との接触面積が十分に確保されている。
In addition, a part of the refrigerant circuit 22 located between the refrigeration outdoor heat exchanger 25 and the expansion valve 26 is inserted into the heat storage container 56, and the refrigeration outdoor heat exchanger is inserted in the refrigerant circuit 32. A part of the portion located between 35 and the expansion valve 36 is also inserted. Thereby, heat exchange is performed between the heat storage body and the refrigerant circulating in the refrigerant circuits 22 and 32.
Here, in the bypass flow path 51 and the refrigerant circuits 22 and 32, the portion inserted into the heat storage container 56 stores the heat so that heat exchange between the refrigerant circulating in the interior and the heat storage body is efficiently performed. A sufficient contact area with the body is secured.

以下、このように構成される空調・冷蔵・冷凍設備1の動作について説明する。
まず、空気調和装置2、冷蔵装置3及び冷凍装置4のそれぞれの動作について説明する。
空気調和装置2は、冷房運転時には、四方弁17によって圧縮機14の冷媒出口が冷媒流路の空調用室外熱交換器15側に接続され、かつ圧縮機14の冷媒入口を冷媒流路の室内熱交換器13側に接続される。
これにより、圧縮機14で加圧されて高温高圧となった気体冷媒が空調用室外熱交換器15に送り込まれる。空調用室外熱交換器15内に送り込まれた冷媒は、室外機42内に取り込まれた外気に熱を奪われて凝縮・液化する。すなわち、空調用室外熱交換器15は凝縮器として機能する。
Hereinafter, the operation of the air conditioning / refrigeration / refrigeration equipment 1 configured as described above will be described.
First, each operation | movement of the air conditioning apparatus 2, the refrigeration apparatus 3, and the freezing apparatus 4 is demonstrated.
During the cooling operation, the air conditioner 2 has the refrigerant outlet of the compressor 14 connected to the air conditioning outdoor heat exchanger 15 side of the refrigerant flow path by the four-way valve 17 and the refrigerant inlet of the compressor 14 is connected to the room of the refrigerant flow path. It is connected to the heat exchanger 13 side.
As a result, the gaseous refrigerant that has been pressurized by the compressor 14 to a high temperature and high pressure is sent to the outdoor heat exchanger 15 for air conditioning. The refrigerant sent into the outdoor heat exchanger 15 for air conditioning is condensed and liquefied by being deprived of heat by the outside air taken into the outdoor unit 42. That is, the outdoor heat exchanger 15 for air conditioning functions as a condenser.

この液冷媒は、空調用室外熱交換器15の下流側に設けられる冷房用膨張弁16aにて膨張・減圧されて、低温低圧の二相冷媒となった後、室内熱交換器13に送り込まれて、室内雰囲気との間で熱交換が行われる。
室内熱交換器13内に送り込まれた冷媒は、室内雰囲気から熱を奪って蒸発気化することとなり、これによって室内雰囲気の冷却が行われる。すなわち、室内熱交換器13は蒸発器として機能する。
そして、室内熱交換器13を通過した気体冷媒は、四方弁17を通じて圧縮機14の冷媒入口に送り込まれ、再び圧縮機14による加圧を受けて、空調用室外熱交換器15に送り込まれ、上記過程が繰り返される。
This liquid refrigerant is expanded and depressurized by a cooling expansion valve 16a provided on the downstream side of the air conditioning outdoor heat exchanger 15 to become a low-temperature and low-pressure two-phase refrigerant, and then sent to the indoor heat exchanger 13. Thus, heat is exchanged with the room atmosphere.
The refrigerant sent into the indoor heat exchanger 13 removes heat from the indoor atmosphere and evaporates, thereby cooling the indoor atmosphere. That is, the indoor heat exchanger 13 functions as an evaporator.
The gaseous refrigerant that has passed through the indoor heat exchanger 13 is sent to the refrigerant inlet of the compressor 14 through the four-way valve 17, is again pressurized by the compressor 14, and sent to the outdoor heat exchanger 15 for air conditioning, The above process is repeated.

一方、空気調和装置2は、暖房運転時には、四方弁17によって圧縮機14の冷媒出口が冷媒流路の室内熱交換器13側に接続され、かつ、圧縮機14の冷媒入口を冷媒流路の空調用室外熱交換器15側に接続される。
これにより、圧縮機14で加圧されて高温高圧となった気体冷媒が室内熱交換器13に送り込まれ、この高温高圧の冷媒と室内雰囲気との間で熱交換が行われる。
室内熱交換器13内に送り込まれた冷媒は、室内雰囲気に熱を奪われて凝縮・液化することとなり、これによって室内雰囲気の加熱が行われる。すなわち、室内熱交換器13は気体冷媒を凝縮・液化する凝縮器として機能する。
On the other hand, in the air conditioning apparatus 2, during the heating operation, the refrigerant outlet of the compressor 14 is connected to the indoor heat exchanger 13 side of the refrigerant flow path by the four-way valve 17, and the refrigerant inlet of the compressor 14 is connected to the refrigerant flow path. It is connected to the outdoor heat exchanger 15 side for air conditioning.
As a result, the gaseous refrigerant that has been pressurized by the compressor 14 to become high temperature and high pressure is sent to the indoor heat exchanger 13, and heat exchange is performed between the high temperature and high pressure refrigerant and the indoor atmosphere.
The refrigerant sent into the indoor heat exchanger 13 is deprived of heat in the indoor atmosphere and condensed and liquefied, whereby the indoor atmosphere is heated. That is, the indoor heat exchanger 13 functions as a condenser that condenses and liquefies the gaseous refrigerant.

このようにして室内熱交換器13によって凝縮・液化された冷媒は、室内熱交換器13の下流側に設けられる暖房用膨張弁16bにて膨張・減圧されて、低温低圧の二相冷媒となる。この二相冷媒は、暖房用膨張弁16bの下流に設けられる空調用室外熱交換器15に送り込まれて、室外機42内に取り込まれた外気との間で熱交換が行われる。
空調用室外熱交換器15内に送り込まれた冷媒は、室外機42内に取り込まれた外気から熱を奪って蒸発気化し、低温低圧の気体冷媒となる。すなわち、空調用室外熱交換器15は、液体冷媒を加熱して蒸発させる蒸発器として機能する。
この気体冷媒は、四方弁17を通じて圧縮機14の冷媒入口に送り込まれ、再び圧縮機14による加圧を受けて、室内熱交換器13に送り込まれ、上記過程が繰り返される。
The refrigerant condensed and liquefied by the indoor heat exchanger 13 in this way is expanded and depressurized by the heating expansion valve 16b provided on the downstream side of the indoor heat exchanger 13, and becomes a low-temperature and low-pressure two-phase refrigerant. . This two-phase refrigerant is sent to the air conditioning outdoor heat exchanger 15 provided downstream of the heating expansion valve 16b, and heat exchange is performed with the outside air taken into the outdoor unit 42.
The refrigerant sent into the outdoor heat exchanger 15 for air conditioning takes heat from the outside air taken into the outdoor unit 42 and evaporates to become a low-temperature and low-pressure gaseous refrigerant. That is, the air conditioning outdoor heat exchanger 15 functions as an evaporator that heats and evaporates the liquid refrigerant.
This gaseous refrigerant is sent to the refrigerant inlet of the compressor 14 through the four-way valve 17, is again pressurized by the compressor 14, is sent to the indoor heat exchanger 13, and the above process is repeated.

冷蔵装置3では、圧縮機24で加圧されて高温高圧となった気体冷媒が、冷蔵用室外熱交換器25に送り込まれて、室外機42内に取り込まれた外気との間で熱交換が行われる。すなわち、冷蔵用室外熱交換器25は、凝縮器として機能する。
このようにして冷蔵用室外熱交換器25によって凝縮・液化された液冷媒は、冷蔵用室外熱交換器25の下流側に設けられる膨張弁26にて膨張・減圧されて、低温低圧の二相冷媒となる。
In the refrigeration apparatus 3, the gaseous refrigerant pressurized to high temperature and high pressure by the compressor 24 is sent to the outdoor heat exchanger 25 for refrigeration and exchanges heat with the outside air taken into the outdoor unit 42. Done. That is, the refrigeration outdoor heat exchanger 25 functions as a condenser.
The liquid refrigerant condensed and liquefied by the refrigeration outdoor heat exchanger 25 in this way is expanded and depressurized by the expansion valve 26 provided on the downstream side of the refrigeration outdoor heat exchanger 25, and is thus low-temperature and low-pressure two-phase. Becomes a refrigerant.

この低温低圧の二相冷媒は、室内熱交換器23に送り込まれて、冷蔵ショーケース21内の雰囲気との間で熱交換が行われる。
室内熱交換器23内に送り込まれた冷媒は、冷蔵ショーケース21内の雰囲気から熱を奪って蒸発気化することとなり、これによって冷蔵ショーケース21内の雰囲気の冷却が行われる。すなわち、室内熱交換器23は、蒸発器として機能する。
そして、室内熱交換器23を通過した気体冷媒は、圧縮機24の冷媒入口に送り込まれ、再び圧縮機24による加圧を受けて、冷蔵用室外熱交換器25に送り込まれ、上記過程が繰り返される。
This low-temperature and low-pressure two-phase refrigerant is sent to the indoor heat exchanger 23 to exchange heat with the atmosphere in the refrigerated showcase 21.
The refrigerant sent into the indoor heat exchanger 23 removes heat from the atmosphere in the refrigerated showcase 21 and evaporates, whereby the atmosphere in the refrigerated showcase 21 is cooled. That is, the indoor heat exchanger 23 functions as an evaporator.
The gaseous refrigerant that has passed through the indoor heat exchanger 23 is sent to the refrigerant inlet of the compressor 24, is again pressurized by the compressor 24, and sent to the outdoor heat exchanger 25 for refrigeration, and the above process is repeated. It is.

冷凍装置4では、圧縮機34で加圧されて高温高圧となった気体冷媒が、冷凍用室外熱交換器35に送り込まれ、この高温高圧の冷媒と室外雰囲気との間で熱交換が行われる。すなわち、冷凍用室外熱交換器35は、凝縮器として機能する。
このようにして冷凍用室外熱交換器35によって凝縮・液化された液冷媒は、冷凍用室外熱交換器35の下流側に設けられる膨張弁36にて膨張・減圧されて、低温低圧の二相冷媒となる。
In the refrigeration apparatus 4, the gaseous refrigerant that has been pressurized by the compressor 34 to a high temperature and high pressure is sent to the refrigeration outdoor heat exchanger 35, and heat exchange is performed between the high temperature and high pressure refrigerant and the outdoor atmosphere. . That is, the freezing outdoor heat exchanger 35 functions as a condenser.
The liquid refrigerant condensed and liquefied by the refrigeration outdoor heat exchanger 35 in this way is expanded and depressurized by an expansion valve 36 provided on the downstream side of the refrigeration outdoor heat exchanger 35, so that two phases of low temperature and low pressure are obtained. Becomes a refrigerant.

この低温低圧の二相冷媒は、室内熱交換器33に送り込まれて、冷凍ショーケース31内の雰囲気との間で熱交換が行われる。
室内熱交換器33内に送り込まれた冷媒は、冷凍ショーケース31内の雰囲気から熱を奪って蒸発気化することとなり、これによって冷凍ショーケース31内の雰囲気の冷却が行われる。すなわち、室内熱交換器33は、蒸発器として機能する。
そして、室内熱交換器33を通過した気体冷媒は、圧縮機34の冷媒入口に送り込まれ、再び圧縮機34による加圧を受けて、冷凍用室外熱交換器35に送り込まれ、上記過程が繰り返される。
The low-temperature and low-pressure two-phase refrigerant is sent to the indoor heat exchanger 33 and heat exchange is performed with the atmosphere in the refrigeration showcase 31.
The refrigerant sent into the indoor heat exchanger 33 takes heat from the atmosphere in the freezer showcase 31 and evaporates, whereby the atmosphere in the freezer showcase 31 is cooled. That is, the indoor heat exchanger 33 functions as an evaporator.
The gaseous refrigerant that has passed through the indoor heat exchanger 33 is sent to the refrigerant inlet of the compressor 34, is again pressurized by the compressor 34, and sent to the outdoor heat exchanger 35 for refrigeration, and the above process is repeated. It is.

この空調・冷蔵・冷凍設備1では、空気調和装置2の冷媒回路12にバイパス流路51が設けられているので、空気調和装置2の冷房運転時には、空調用室外熱交換器15によって熱交換が行われた冷媒の一部は、冷房用膨張弁16aではなく、バイパス流路51内に供給される。
バイパス流路51内に供給された冷媒は、過冷却用膨張弁52に送り込まれて減圧・膨張されて低温低圧の冷媒とされる。
この低温低圧の冷媒は、第一熱交換部53に送り込まれて、第一熱交換部53で、蓄熱容器56内の蓄熱体に冷熱を伝達する。第一熱交換部53に送り込まれた冷媒は、蓄熱容器56内の蓄熱体から熱を奪って蒸発気化することとなり、これによって蓄熱容器56内の蓄熱体の冷却が行われる。すなわち、第一熱交換部53は、蒸発器として機能する。その後、第一熱交換部53を通過した気体冷媒は、アキュームレータ18に回収されたのち、圧縮機14によって再び空調用室外熱交換器15に送り込まれる。
In the air conditioning / refrigeration / refrigeration facility 1, the bypass circuit 51 is provided in the refrigerant circuit 12 of the air conditioner 2, so that heat exchange is performed by the air conditioner outdoor heat exchanger 15 during the cooling operation of the air conditioner 2. A part of the performed refrigerant is supplied not to the cooling expansion valve 16a but into the bypass passage 51.
The refrigerant supplied into the bypass flow path 51 is sent to the supercooling expansion valve 52 and decompressed / expanded to be a low temperature / low pressure refrigerant.
The low-temperature and low-pressure refrigerant is sent to the first heat exchange unit 53, and the first heat exchange unit 53 transmits cold heat to the heat storage body in the heat storage container 56. The refrigerant sent to the first heat exchange section 53 takes heat from the heat storage body in the heat storage container 56 and evaporates, whereby the heat storage body in the heat storage container 56 is cooled. That is, the first heat exchange unit 53 functions as an evaporator. Thereafter, the gaseous refrigerant that has passed through the first heat exchanging unit 53 is collected by the accumulator 18, and then sent again to the outdoor heat exchanger 15 for air conditioning by the compressor 14.

このようにして蓄熱体に蓄熱された冷熱は、冷蔵装置3の冷媒回路22において冷蔵用室外熱交換器25と膨張弁26との間に位置する部分を通過する冷媒、及び冷凍装置4の冷媒回路32において冷凍用室外熱交換器35と膨張弁36との間に位置する部分を通過する冷媒に伝達されて、これら冷媒のさらなる冷却に利用される。   The cold energy stored in the heat storage body in this way is a refrigerant that passes through a portion of the refrigerant circuit 22 of the refrigeration apparatus 3 located between the refrigeration outdoor heat exchanger 25 and the expansion valve 26, and a refrigerant of the refrigeration apparatus 4. In the circuit 32, the refrigerant is transmitted to the refrigerant passing through a portion positioned between the freezing outdoor heat exchanger 35 and the expansion valve 36, and used for further cooling of the refrigerant.

ここで、図3に、冷蔵装置3、及び冷凍装置4の冷凍サイクルを表すモリエル線図を示す。図3において、圧縮機による加圧前の状態をA点で示し、加圧後の状態をB点で示す。また、圧縮機によってそれぞれの室外熱交換器に送り込まれて、室外機42内に取り込まれた外気との熱交換が行われた状態をC点で示す。そして、蓄熱容器56内の蓄熱体に蓄えられた冷熱よって過冷却された後の状態をC点とし、電子膨張弁によって膨張・減圧された状態をD点で示す。
なお、図3では、比較のために、蓄熱容器56内の蓄熱体に蓄えられた冷熱による過冷却が行われていない状態での冷凍サイクルを破線で示している。
Here, in FIG. 3, the Mollier diagram showing the refrigerating cycle of the refrigerator 3 and the freezing apparatus 4 is shown. In FIG. 3, the state before pressurization by the compressor is indicated by point A, and the state after pressurization is indicated by point B. In addition, a state where heat is exchanged with the outside air that has been sent to each outdoor heat exchanger by the compressor and taken into the outdoor unit 42 is indicated by C 0 point. Then, a state after being over-cooled by the cold heat stored in the regenerator in the heat storage container 56 and C 1 point, showing the state of being expanded and decompressed by the electronic expansion valve in point D.
In FIG. 3, for comparison, a refrigeration cycle in a state where supercooling by the cold stored in the heat storage body in the heat storage container 56 is not performed is indicated by a broken line.

図3に示すように、本実施形態にかかる空調・冷蔵・冷凍設備1では、冷媒回路22,32が構成する冷凍サイクル内で循環される冷媒は、それぞれ冷蔵用室外熱交換器25、冷凍用室外熱交換器35によって凝縮されて液化した後に、蓄熱体から冷熱を受けてさらに冷却されて、過冷却状態となる。
すると、これら冷凍サイクルを構成する各室内熱交換器の入口側と出口側とでは、この過冷却分だけ冷媒のエンタルピ差Δh(エンタルピの変化量)が増加する。
すなわち、この空調・冷蔵・冷凍設備1では、バイパス流路51とバイパス流路51上に設けられる各部材を設けていない場合に比べて、冷蔵装置3及び冷凍装置4の各室内熱交換器における冷媒の吸熱量が増加するので、冷媒の循環流量を減少させることができ、従来よりも冷凍サイクルのCOPが高い。
As shown in FIG. 3, in the air conditioning / refrigeration / refrigeration facility 1 according to the present embodiment, the refrigerant circulated in the refrigeration cycle formed by the refrigerant circuits 22 and 32 is the refrigeration outdoor heat exchanger 25 and the refrigeration unit, respectively. After being condensed and liquefied by the outdoor heat exchanger 35, it is further cooled by receiving cold heat from the heat storage body and enters a supercooled state.
Then, the enthalpy difference Δh (the amount of change in enthalpy) of the refrigerant increases by the amount of this supercooling between the inlet side and the outlet side of each indoor heat exchanger that constitutes the refrigeration cycle.
That is, in this air conditioning / refrigeration / refrigeration facility 1, in each indoor heat exchanger of the refrigeration apparatus 3 and the refrigeration apparatus 4, compared to the case where the bypass channel 51 and each member provided on the bypass channel 51 are not provided. Since the amount of heat absorbed by the refrigerant increases, the circulation flow rate of the refrigerant can be reduced, and the COP of the refrigeration cycle is higher than before.

このように、この空調・冷蔵・冷凍設備1では、空気調和装置2の冷房運転時には、COPの優れた空気調和装置2で発生させた冷熱の一部を利用して、冷蔵装置3において冷蔵用室外熱交換器25で凝縮・液化された冷媒、及び冷凍装置4において冷凍用室外熱交換器35で凝縮・液化された冷媒が、さらに冷却される。
これにより、空気調和装置2に比べてCOPの劣る冷蔵装置3、冷凍装置4のCOPが向上することとなり、空調・冷蔵・冷凍設備1全体のCOPが向上する。
As described above, in the air conditioning / refrigeration / refrigeration facility 1, during the cooling operation of the air conditioner 2, a part of the cold generated by the air conditioner 2 with excellent COP is used for refrigeration in the refrigerator 3. The refrigerant condensed and liquefied by the outdoor heat exchanger 25 and the refrigerant condensed and liquefied by the refrigeration outdoor heat exchanger 35 in the refrigeration apparatus 4 are further cooled.
Thereby, the COP of the refrigeration apparatus 3 and the refrigeration apparatus 4 inferior to those of the air conditioner 2 is improved, and the COP of the entire air conditioning / refrigeration / refrigeration equipment 1 is improved.

また、この空調・冷蔵・冷凍設備1は、冷蔵装置3の冷媒回路22内の冷媒及び冷凍装置4の冷媒回路32内の冷媒のさらなる冷却に、空気調和装置2の冷媒回路12で発生させた余剰の冷熱を利用しているので、冷媒回路22,32の冷媒のさらなる冷却のために冷熱源を別個に設けた場合に比べて、製造コスト及び設置スペースが少なくて済む。   Further, the air conditioning / refrigeration / refrigeration facility 1 is generated in the refrigerant circuit 12 of the air conditioner 2 for further cooling of the refrigerant in the refrigerant circuit 22 of the refrigeration apparatus 3 and the refrigerant in the refrigerant circuit 32 of the refrigeration apparatus 4. Since excess cold heat is used, the manufacturing cost and installation space can be reduced as compared with a case where a separate cold heat source is provided for further cooling of the refrigerant in the refrigerant circuits 22 and 32.

また、この空調・冷蔵・冷凍設備1では、過冷却用膨張弁52の開度を調整することで、バイパス流路51内に供給される冷媒の流量を制御することができるので、空気調和装置2と冷蔵装置3、冷凍装置4のそれぞれの負荷に応じて、適切な運転を行うことができる。
具体的には、第一冷媒回路の負荷が大きい場合は、過冷却用膨張弁52を閉じて、バイパス流路51への冷媒の流通量を停止させる。これにより、冷媒回路12内の冷媒が全て空気調和装置2の冷房運転に使用されることとなるので、空気調和装置2の冷房能力を最大限に発揮して、良好な冷房運転を行うことができる。
また、空気調和装置2の負荷が小さく、冷蔵装置3、冷凍装置4の負荷も小さくて冷媒回路22,32の冷媒のさらなる冷却が不要である場合には、過冷却用膨張弁52を閉じて冷媒回路12の冷媒を全て冷房運転に使用することで、冷媒回路12での冷媒の循環量を低下させて圧縮機14の負担を軽くすることができ、空気調和装置2の効率が向上する。
In the air conditioning / refrigeration / refrigeration facility 1, the flow rate of the refrigerant supplied into the bypass passage 51 can be controlled by adjusting the opening degree of the supercooling expansion valve 52. Appropriate operation can be performed according to each load of the refrigeration apparatus 3 and the refrigeration apparatus 4.
Specifically, when the load on the first refrigerant circuit is large, the supercooling expansion valve 52 is closed, and the amount of refrigerant flowing into the bypass passage 51 is stopped. Thereby, since all the refrigerant in the refrigerant circuit 12 is used for the cooling operation of the air conditioner 2, it is possible to maximize the cooling capability of the air conditioner 2 and perform a good cooling operation. it can.
Further, when the load of the air conditioner 2 is small, the loads of the refrigeration apparatus 3 and the refrigeration apparatus 4 are also small, and further cooling of the refrigerant in the refrigerant circuits 22 and 32 is unnecessary, the supercooling expansion valve 52 is closed. By using all of the refrigerant in the refrigerant circuit 12 for the cooling operation, the refrigerant circulation amount in the refrigerant circuit 12 can be reduced to reduce the burden on the compressor 14, and the efficiency of the air conditioner 2 is improved.

さらに、単に過冷却用膨張弁52を開閉させるだけでなく、過冷却用膨張弁52の開度を制御することで、より細やかな運転の制御を行うことができる。
例えば、過冷却用膨張弁52の開度を大きくしてバイパス流路51への冷媒の流通量を増大させると、第一熱交換部53による熱交換量が増大し、冷蔵装置3、冷凍装置4の冷媒の冷却量が大きくなるので、冷蔵装置3、冷凍装置4のCOPを向上させることができる。
また、過冷却用膨張弁52の開度を小さくしてバイパス流路51への冷媒の流通量を低減させると、空気調和装置2において冷房運転に使用される冷媒の量が増大するので、その分、空気調和装置2の効率向上や、冷房能力の向上を図ることができる。
Further, not only simply opening / closing the supercooling expansion valve 52 but also controlling the opening degree of the supercooling expansion valve 52 enables more detailed control of the operation.
For example, when the degree of opening of the supercooling expansion valve 52 is increased to increase the amount of refrigerant flowing into the bypass passage 51, the amount of heat exchange by the first heat exchange unit 53 increases, and the refrigeration apparatus 3 and the refrigeration apparatus Since the cooling amount of the refrigerant No. 4 increases, the COP of the refrigeration apparatus 3 and the refrigeration apparatus 4 can be improved.
Further, if the opening of the supercooling expansion valve 52 is reduced to reduce the amount of refrigerant flowing into the bypass passage 51, the amount of refrigerant used for the cooling operation in the air conditioner 2 increases. Therefore, the efficiency of the air conditioner 2 and the cooling capacity can be improved.

また、この空調・冷蔵・冷凍設備1には、第一熱交換部53に供給される冷媒との間で熱交換が行われる蓄熱体が設けられていて、空気調和装置2の冷媒回路12内を循環する冷媒のうち、第一熱交換部53に供給された冷媒の冷熱が、蓄熱体に一時的に蓄えられて、冷蔵装置3の冷媒回路22の冷媒の冷却、及び冷凍装置4の冷媒回路32の冷媒の冷却に利用される。   The air conditioning / refrigeration / refrigeration facility 1 is provided with a heat storage body that exchanges heat with the refrigerant supplied to the first heat exchanging unit 53, and is provided in the refrigerant circuit 12 of the air conditioner 2. Among the refrigerants circulating in the refrigerant, the cold heat of the refrigerant supplied to the first heat exchanging unit 53 is temporarily stored in the heat storage body to cool the refrigerant in the refrigerant circuit 22 of the refrigeration apparatus 3 and the refrigerant of the refrigeration apparatus 4. This is used for cooling the refrigerant in the circuit 32.

例えば、冷媒回路22,32のうちの少なくとも一方の負荷が一時的に増加してその冷媒流量が増加したり、空気調和装置2の冷媒回路12の負荷が一時的に多くなってバイパス流路51への冷媒の供給が停止または供給量が低下させられるなどした場合には、第一熱交換部53に供給された冷媒の冷熱に加えて、蓄熱体に蓄えられた冷熱が冷媒回路22,32の冷媒の冷却に利用される。
これにより、冷媒回路12の負荷が変動しても、冷媒回路22,32の冷媒の冷却を、安定して行うことができる。
For example, the load of at least one of the refrigerant circuits 22 and 32 temporarily increases to increase the flow rate of the refrigerant, or the load of the refrigerant circuit 12 of the air conditioner 2 temporarily increases to bypass the bypass passage 51. When the supply of the refrigerant to the refrigerant is stopped or the supply amount is reduced, in addition to the cold heat of the refrigerant supplied to the first heat exchanging unit 53, the cold heat stored in the heat storage body is used as the refrigerant circuits 22 and 32. It is used to cool the refrigerant.
Thereby, even if the load of the refrigerant circuit 12 fluctuates, the refrigerant of the refrigerant circuits 22 and 32 can be stably cooled.

ここで、この蓄熱体は、冷媒回路12,22,32の負荷変動によって一時的に不足する冷熱を補填するのに必要なだけの冷熱を蓄えることができればよいので、蓄熱体は少量で済み、また長時間保温するための特別な保温構造を設ける必要がないので、この構成を採用しても、空調・冷蔵・冷凍設備を大型化させずに済む。   Here, since this heat storage body should just be able to store only the cold heat necessary to make up for the cold heat temporarily insufficient due to the load fluctuation of the refrigerant circuits 12, 22, 32, the heat storage body needs a small amount, Further, since it is not necessary to provide a special heat insulation structure for keeping the heat for a long time, even if this structure is adopted, it is not necessary to increase the size of the air conditioning / refrigeration / freezing equipment.

また、この空調・冷蔵・冷凍設備1の空気調和装置2では、暖房サイクル形成時には、室内熱交換器13を通過した冷媒の一部がバイパス流路51内に供給される。
バイパス流路51内に供給された冷媒は、過冷却用膨張弁52に送り込まれて減圧・膨張されて低温低圧の冷媒とされ、第一熱交換部53で蓄熱容器56内の蓄熱体にその冷熱を供給する。
すなわち、空気調和装置2の暖房運転時にも、空気調和装置2が発生させた冷熱を蓄熱体に蓄熱することが可能である。
これにより、この空調・冷蔵・冷凍設備1では、空気調和装置2の冷房運転時だけでなく、暖房運転時にも、冷蔵装置3の冷媒回路22内の冷媒及び冷凍装置4の冷媒回路32内の冷媒の過冷却を行うことができる。
Further, in the air conditioner 2 of the air conditioning / refrigeration / refrigeration facility 1, a part of the refrigerant that has passed through the indoor heat exchanger 13 is supplied into the bypass flow path 51 when the heating cycle is formed.
The refrigerant supplied into the bypass passage 51 is sent to the supercooling expansion valve 52 to be decompressed / expanded into a low-temperature / low-pressure refrigerant, and the first heat exchanging unit 53 converts the refrigerant into the heat storage body in the heat storage container 56. Supply cold heat.
That is, the cold energy generated by the air conditioner 2 can be stored in the heat storage body even during the heating operation of the air conditioner 2.
Thereby, in this air conditioning / refrigeration / refrigeration facility 1, the refrigerant in the refrigerant circuit 22 of the refrigeration apparatus 3 and the refrigerant circuit 32 of the refrigeration apparatus 4 are not only in the cooling operation of the air conditioner 2 but also in the heating operation. The refrigerant can be supercooled.

また、空気調和装置2の暖房サイクル形成時にバイパス流路51内を流通する冷媒は、蓄熱体を介して冷蔵装置3、冷凍装置4の冷媒回路22,32内の冷媒の熱を吸収して、蒸発・気化する。すなわち、第一熱交換部53は、空気調和装置2の冷媒回路12の蒸発器として作用する。
これにより、空調用室外熱交換器15の温度が低下しにくくなって室外雰囲気温度に近くなるので、空調用室外熱交換器15の霜付きを防止することができ、メンテナンスの手間やデフロストの回数を低減することができる。
なお、第一熱交換部53を通過した冷媒は、再び圧縮機14に送り込まれて暖房運転に使用される。
Moreover, the refrigerant | coolant which distribute | circulates the inside of the bypass flow path 51 at the time of the heating cycle formation of the air conditioning apparatus 2 absorbs the heat | fever of the refrigerant | coolant in the refrigerant circuits 22 and 32 of the refrigerator 3 and the freezing apparatus 4 via a thermal storage body, Evaporate and vaporize. That is, the first heat exchange unit 53 functions as an evaporator of the refrigerant circuit 12 of the air conditioner 2.
As a result, the temperature of the outdoor heat exchanger 15 for air conditioning is less likely to decrease and becomes close to the outdoor atmosphere temperature, so that the outdoor heat exchanger 15 for air conditioning can be prevented from being frosted, and maintenance work and the number of defrosts can be prevented. Can be reduced.
In addition, the refrigerant | coolant which passed the 1st heat exchange part 53 is again sent to the compressor 14, and is used for heating operation.

ここで、空気調和装置2の冷媒回路12では、暖房用膨張弁16bの開度を制御することで、暖房サイクル形成時に室内熱交換器13を通過した冷媒のうちの少なくとも一部の流通方向を、空調用室外熱交換器15からバイパス流路51に切り替えることができる。
具体的には、暖房用膨張弁16bの開度を大きくすることで、暖房サイクル形成時に室内熱交換器13を通過した冷媒のうち、空調用室外熱交換器15に供給される冷媒の量が減少し、バイパス流路51に供給される冷媒の量が増加する。
すなわち、この空気調和装置2において、暖房用膨張弁16bは、暖房サイクル形成時に室内熱交換器13を通過した冷媒のうちの少なくとも一部の流通方向を、空調用室外熱交換器15からバイパス流路51に切り替える切換装置を構成している。
Here, in the refrigerant circuit 12 of the air conditioner 2, by controlling the opening degree of the heating expansion valve 16b, the flow direction of at least a part of the refrigerant that has passed through the indoor heat exchanger 13 when the heating cycle is formed is changed. The air conditioner outdoor heat exchanger 15 can be switched to the bypass channel 51.
Specifically, by increasing the opening degree of the heating expansion valve 16b, the amount of refrigerant supplied to the outdoor heat exchanger 15 for air conditioning among the refrigerants that have passed through the indoor heat exchanger 13 during the heating cycle formation is reduced. It decreases and the quantity of the refrigerant | coolant supplied to the bypass flow path 51 increases.
That is, in this air conditioner 2, the heating expansion valve 16b bypasses at least a part of the flow direction of the refrigerant that has passed through the indoor heat exchanger 13 during the heating cycle from the air conditioning outdoor heat exchanger 15. A switching device for switching to the path 51 is configured.

また、暖房用膨張弁16bの開度を小さくすることで、暖房サイクル形成時に室内熱交換器13を通過した冷媒のうち、空調用室外熱交換器15に供給される冷媒の量が増加し、バイパス流路51に供給される冷媒の量が減少する。さらに、過冷却用膨張弁52を閉じてバイパス流路51での冷媒の流通を停止することで、暖房サイクル形成時に室内熱交換器13を通過した冷媒の全てが空調用室外熱交換器15に供給される。   In addition, by reducing the opening of the heating expansion valve 16b, among the refrigerant that has passed through the indoor heat exchanger 13 during the heating cycle formation, the amount of refrigerant supplied to the outdoor heat exchanger 15 for air conditioning increases. The amount of refrigerant supplied to the bypass channel 51 decreases. Furthermore, by closing the supercooling expansion valve 52 and stopping the refrigerant flow in the bypass flow path 51, all of the refrigerant that has passed through the indoor heat exchanger 13 during the heating cycle formation is transferred to the air conditioning outdoor heat exchanger 15. Supplied.

なお、暖房用膨張弁16bを切換装置として用いる代わりに、冷媒回路12において暖房用膨張弁16bとバイパス流路51の入口との間に弁を設けて、この弁によって切換装置を構成してもよい。この場合には、上記操作は、暖房用膨張弁16bに対してではなく、この弁に対して行うこととなる。   Instead of using the heating expansion valve 16b as a switching device, a valve may be provided between the heating expansion valve 16b and the inlet of the bypass passage 51 in the refrigerant circuit 12, and the switching device may be configured by this valve. Good. In this case, the above operation is performed not on the heating expansion valve 16b but on this valve.

ここで、図4に示すように、本実施形態で示す空気調和装置2の冷媒回路12のうち、バイパス流路51の入口と冷房用膨張弁16aとの間に位置する領域が、蓄熱容器56内に挿通されていて、内部を流通する冷媒と蓄熱体との間で熱交換を行う第二熱交換部57とされていてもよい。
この場合には、冷媒回路12において室内熱交換器13に供給される冷媒が、蓄熱体に蓄えられていた冷熱によってさらに冷却される。
すなわち、空気調和装置2は、冷媒回路12の冷房サイクルの負荷が急増して必要な冷熱量が急増しても、自身が発生させた冷熱によって不足分の冷熱が補われるので、室内雰囲気の冷却を安定して行うことができる。
Here, as shown in FIG. 4, in the refrigerant circuit 12 of the air-conditioning apparatus 2 shown in the present embodiment, a region located between the inlet of the bypass passage 51 and the cooling expansion valve 16 a is a heat storage container 56. It may be made into the 2nd heat exchange part 57 currently inserted in and performing heat exchange between the refrigerant | coolant which distribute | circulates an inside, and a thermal storage body.
In this case, the refrigerant supplied to the indoor heat exchanger 13 in the refrigerant circuit 12 is further cooled by the cold energy stored in the heat storage body.
That is, the air conditioner 2 compensates for the deficient cooling by the cooling generated by itself even if the load of the cooling cycle of the refrigerant circuit 12 increases rapidly and the required amount of cooling increases rapidly. Can be performed stably.

また、本実施の形態では、空気調和装置2の冷媒回路12を、バイパス流路51、過冷却用膨張弁52、及び第一熱交換部53が設けられる第一冷媒回路とし、冷蔵装置3の冷媒回路22及び冷凍装置4の冷媒回路32を、第一冷媒回路の余剰の冷熱によって冷媒の冷却が行われる第二冷媒回路とした例を示したが、第一、第二冷媒回路は、空気調和装置2、冷蔵装置3、及び冷凍装置4のそれぞれの構成や運用形態に応じて、冷媒回路12,22,32の中から適宜選択することができる。
例えば、冷蔵装置3の負荷変動が大きく、余剰の冷熱を期待できる場合には、冷蔵装置3の冷媒回路22を第一冷媒回路とすることで、その余剰の冷熱を冷凍装置4の冷媒回路32の冷媒のさらなる冷却に利用することができる。
Moreover, in this Embodiment, the refrigerant circuit 12 of the air conditioning apparatus 2 is made into the 1st refrigerant circuit in which the bypass flow path 51, the subcooling expansion valve 52, and the 1st heat exchange part 53 are provided, Although the refrigerant circuit 22 and the refrigerant circuit 32 of the refrigeration apparatus 4 are shown as the second refrigerant circuit in which the refrigerant is cooled by the excessive cold heat of the first refrigerant circuit, the first and second refrigerant circuits are air Depending on the configuration and operation mode of the harmony device 2, the refrigeration device 3, and the refrigeration device 4, the refrigerant circuits 12, 22, and 32 can be appropriately selected.
For example, when the load fluctuation of the refrigeration apparatus 3 is large and surplus cooling can be expected, the refrigerant circuit 22 of the refrigeration apparatus 3 is used as the first refrigerant circuit, and the surplus cooling is used as the refrigerant circuit 32 of the refrigeration apparatus 4. It can be used for further cooling of the refrigerant.

[第二実施形態]
次に、本発明の第二実施形態について、図5を用いて説明する。
本実施形態にかかる空調・冷蔵・冷凍設備61は、第一実施形態にかかる空調・冷蔵・冷凍設備1において、蓄熱容器56をなくし、代わりに、空気調和装置2の冷媒回路12、冷蔵装置3の冷媒回路22、及び冷凍装置4の冷媒回路32のそれぞれについて一部構成を変更したことを主たる特徴とするものである。
以下、第一実施形態で示した空調・冷蔵・冷凍設備1と同一または同様の構成については同じ符号を用いて示し、詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
The air-conditioning / refrigeration / refrigeration facility 61 according to the present embodiment eliminates the heat storage container 56 in the air-conditioning / refrigeration / refrigeration facility 1 according to the first embodiment. Instead, the refrigerant circuit 12 of the air conditioner 2 and the refrigerator 3 The refrigerant circuit 22 and the refrigerant circuit 32 of the refrigeration apparatus 4 are mainly characterized in that some configurations are changed.
Hereinafter, the same or similar configurations as those of the air conditioning / refrigeration / refrigeration facility 1 shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態にかかる空調・冷蔵・冷凍設備61では、図5に示すように、冷蔵装置3の冷媒回路22において冷蔵用室外熱交換器25と膨張弁26との間には、冷蔵用室外熱交換器25を通過した冷媒を一時的に貯留する冷蔵用レシーバ62が設けられている。
また、冷凍装置4の冷媒回路32において冷凍用室外熱交換器35と膨張弁36との間には、冷凍用室外熱交換器35を通過した冷媒を一時的に貯留する冷凍用レシーバ63が設けられている。
これら冷蔵用、冷凍用レシーバ62,63内には、蓄熱体64が収納されている。本実施形態では、蓄熱体64は、内部に蓄熱材が充填された球状のカプセルとされており、冷蔵用、冷蔵用レシーバ62,63のそれぞれの内部に複数収納されている。
In the air conditioning / refrigeration / refrigeration facility 61 according to the present embodiment, as shown in FIG. 5, the refrigeration outdoor heat is provided between the refrigeration outdoor heat exchanger 25 and the expansion valve 26 in the refrigerant circuit 22 of the refrigeration apparatus 3. A refrigeration receiver 62 for temporarily storing the refrigerant that has passed through the exchanger 25 is provided.
In the refrigerant circuit 32 of the refrigeration apparatus 4, a refrigeration receiver 63 is provided between the refrigeration outdoor heat exchanger 35 and the expansion valve 36 to temporarily store the refrigerant that has passed through the refrigeration outdoor heat exchanger 35. It has been.
A heat storage body 64 is accommodated in the refrigeration and freezing receivers 62 and 63. In the present embodiment, the heat storage body 64 is a spherical capsule filled with a heat storage material, and a plurality of the heat storage bodies 64 are housed inside the refrigeration receivers 62 and 63 for refrigeration.

空気調和装置2の冷媒回路12において、暖房用膨張弁16bと冷房用膨張弁16aとの間には、空調用室外熱交換器15を通過した冷媒の一部を圧縮機14に供給する第一バイパス流路66と第二バイパス流路67とが設けられている。   In the refrigerant circuit 12 of the air conditioner 2, a first portion of the refrigerant that has passed through the air conditioning outdoor heat exchanger 15 is supplied to the compressor 14 between the heating expansion valve 16 b and the cooling expansion valve 16 a. A bypass channel 66 and a second bypass channel 67 are provided.

第一バイパス流路66には、冷蔵側過冷却膨張弁68が設けられており、冷蔵側過冷却膨張弁68よりも下流側の領域の一部は、冷蔵用レシーバ62内に挿通されている。
第一バイパス流路66は、冷蔵用レシーバ62において冷媒が貯留される範囲内に挿通されていて、常に冷媒と接触させられている。すなわち、第一バイパス流路66において冷蔵用レシーバ62に挿通される領域は、第一バイパス流路66内を流通する冷媒と冷蔵用レシーバ62内の冷媒及び蓄熱体64との間で熱交換を行う第一熱交換部69を構成している。
The first bypass passage 66 is provided with a refrigeration side supercooling expansion valve 68, and a part of the region downstream of the refrigeration side supercooling expansion valve 68 is inserted into the refrigeration receiver 62. .
The first bypass passage 66 is inserted into a range where the refrigerant is stored in the refrigeration receiver 62 and is always in contact with the refrigerant. In other words, the region of the first bypass channel 66 that is inserted into the refrigeration receiver 62 exchanges heat between the refrigerant flowing in the first bypass channel 66 and the refrigerant and the heat storage body 64 in the refrigeration receiver 62. The 1st heat exchange part 69 to perform is comprised.

また、第二バイパス流路67には、冷凍側過冷却膨張弁71が設けられており、冷凍側過冷却膨張弁71よりも下流側の領域の一部は、冷凍用レシーバ63内に挿通されている。
第二バイパス流路67は、冷凍用レシーバ63において冷媒が貯留される範囲内に挿通されていて、常に冷媒と接触させられている。すなわち、第二バイパス流路67において冷凍用レシーバ63に挿通される領域は、第二バイパス流路67内を流通する冷媒と冷凍用レシーバ63内の冷媒及び蓄熱体64との間で熱交換を行う第一熱交換部72を構成している。
The second bypass passage 67 is provided with a refrigeration side subcooling expansion valve 71, and a part of the region downstream of the refrigeration side subcooling expansion valve 71 is inserted into the refrigeration receiver 63. ing.
The second bypass channel 67 is inserted into a range where the refrigerant is stored in the refrigeration receiver 63 and is always in contact with the refrigerant. That is, in the second bypass channel 67, the region that is inserted into the refrigeration receiver 63 exchanges heat between the refrigerant flowing in the second bypass channel 67, the refrigerant in the refrigeration receiver 63, and the heat storage body 64. The 1st heat exchange part 72 to perform is comprised.

また、これら第一、第二バイパス流路66,67の第一熱交換部69,72はそれぞれ蛇行させられていて、冷媒及び蓄熱体64との接触面積が十分に確保されている。これにより、第一、第二バイパス流路66,67内を流通する冷媒と冷蔵用、冷凍用レシーバ62,63内の冷媒及び蓄熱体64との間での熱交換が効率よく行われるようになっている。   Further, the first heat exchanging portions 69 and 72 of the first and second bypass flow paths 66 and 67 are respectively meandered, and a sufficient contact area with the refrigerant and the heat storage body 64 is ensured. Thereby, heat exchange is efficiently performed between the refrigerant flowing through the first and second bypass flow paths 66 and 67, the refrigerant in the refrigeration / refrigeration receivers 62 and 63, and the heat storage body 64. It has become.

上記のように、本実施形態にかかる空調・冷蔵・冷凍設備61では、空気調和装置2の冷媒回路12の第一、第二バイパス流路66,67において、冷蔵用、冷凍用レシーバ62,63に挿通される領域が第一熱交換部69,72を構成している。
このため、この空調、冷蔵・冷凍設備61では、冷蔵装置3の冷媒回路22及び冷凍装置4の冷媒回路32の冷媒の冷却のための熱交換器を新たに設ける必要がないので、製造コスト及び設置スペースを低減することができる。
As described above, in the air conditioning / refrigeration / refrigeration facility 61 according to the present embodiment, the refrigeration and refrigeration receivers 62 and 63 are provided in the first and second bypass passages 66 and 67 of the refrigerant circuit 12 of the air conditioner 2. The area | region inserted by comprises the 1st heat exchange part 69,72.
For this reason, in this air conditioning and refrigeration / refrigeration facility 61, it is not necessary to newly provide a heat exchanger for cooling the refrigerant in the refrigerant circuit 22 of the refrigeration apparatus 3 and the refrigerant circuit 32 of the refrigeration apparatus 4. Installation space can be reduced.

[第三実施形態]
次に、本発明の第三実施形態について、図6を用いて説明する。
本実施形態にかかる空調・冷蔵・冷凍設備81は、第一実施形態にかかる空調・冷蔵・冷凍設備1において、空気調和装置2の冷媒回路12、冷蔵装置3の冷媒回路22、及び冷凍装置4の冷媒回路32のそれぞれについて一部構成を変更したことを主たる特徴とするものである。
以下、第一実施形態で示した空調・冷蔵・冷凍設備1と同一または同様の構成については同じ符号を用いて示し、詳細な説明を省略する。
[Third embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG.
The air conditioning / refrigeration / refrigeration facility 81 according to the present embodiment is the same as the air conditioning / refrigeration / refrigeration facility 1 according to the first embodiment, except that the refrigerant circuit 12 of the air conditioner 2, the refrigerant circuit 22 of the refrigerator 3, and the refrigeration device 4. This is mainly characterized in that a part of the configuration of each of the refrigerant circuits 32 is changed.
Hereinafter, the same or similar configurations as those of the air conditioning / refrigeration / refrigeration facility 1 shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態にかかる空調・冷蔵・冷凍設備81は、図6に示すように、空気調和装置2の室内空調ユニット11が複数台並列にして設けられた構成とされている。すなわち、空気調和装置2の冷媒回路12には、複数の室内熱交換器13が並列に設けられている。
また、冷媒回路12には、空調用室外熱交換器15から室内熱交換器13に送り込まれる冷媒を制御する弁装置82が、各室内熱交換器13ごとに設けられている。
この弁装置82は、室内熱交換器13への冷媒の供給のON/OFFを行うストップバルブと、前記冷房用膨張弁16aとを有している。
As shown in FIG. 6, the air conditioning / refrigeration / refrigeration facility 81 according to the present embodiment has a configuration in which a plurality of indoor air conditioning units 11 of the air conditioner 2 are provided in parallel. In other words, the refrigerant circuit 12 of the air conditioner 2 is provided with a plurality of indoor heat exchangers 13 in parallel.
The refrigerant circuit 12 is provided with a valve device 82 for controlling the refrigerant sent from the outdoor heat exchanger 15 for air conditioning to the indoor heat exchanger 13 for each indoor heat exchanger 13.
The valve device 82 includes a stop valve for turning on / off the supply of the refrigerant to the indoor heat exchanger 13 and the cooling expansion valve 16a.

一方、この空調・冷蔵・冷凍設備81は、冷蔵ショーケース21が複数台並列にして設けられた構成とされている。すなわち、冷蔵装置3の冷媒回路22には、複数の室内熱交換器23が並列に設けられている。
また、冷媒回路22には、冷蔵用室外熱交換器25から室内熱交換器23に送り込まれる冷媒を制御する弁装置83が、各室内熱交換器23ごとに設けられている。
この弁装置83は、室内熱交換器23への冷媒の供給のON/OFFを行うストップバルブと、前記膨張弁26とを有している。
On the other hand, the air-conditioning / refrigeration / refrigeration equipment 81 has a configuration in which a plurality of refrigerated showcases 21 are provided in parallel. In other words, the refrigerant circuit 22 of the refrigeration apparatus 3 is provided with a plurality of indoor heat exchangers 23 in parallel.
The refrigerant circuit 22 is provided with a valve device 83 for controlling the refrigerant sent from the refrigeration outdoor heat exchanger 25 to the indoor heat exchanger 23 for each indoor heat exchanger 23.
The valve device 83 includes a stop valve that turns ON / OFF the supply of the refrigerant to the indoor heat exchanger 23 and the expansion valve 26.

さらに、冷媒回路22には、冷蔵用室外熱交換器25を通過した冷媒の一部を圧縮機24に供給する冷蔵側バイパス流路86が設けられている。冷蔵側バイパス流路86には、過冷却用膨張弁87と、第一熱交換部88とが、上流側からこの順番で設けられている。本実施形態では、冷蔵側バイパス流路86は、冷媒回路22において冷蔵用室外熱交換器25と弁装置83との間に位置する部分から、アキュームレータ28の上流側に位置する部分とを接続する構成とされている。   Further, the refrigerant circuit 22 is provided with a refrigeration-side bypass passage 86 that supplies a part of the refrigerant that has passed through the refrigeration outdoor heat exchanger 25 to the compressor 24. The refrigerating-side bypass passage 86 is provided with a supercooling expansion valve 87 and a first heat exchanging portion 88 in this order from the upstream side. In the present embodiment, the refrigeration side bypass flow path 86 connects a portion located between the refrigeration outdoor heat exchanger 25 and the valve device 83 in the refrigerant circuit 22 to a portion located upstream of the accumulator 28. It is configured.

冷蔵側バイパス流路86の第一熱交換部88は、蓄熱容器56内に挿通されていて、冷蔵側バイパス流路86内を流通する冷媒と蓄熱容器56内の蓄熱体との間で熱交換が行われるようになっている。ここで、冷蔵側バイパス流路86の第一熱交換部88は、内部を流通する冷媒と蓄熱容器56の蓄熱体との間での熱交換が効率よく行われるように、蓄熱体との接触面積が十分に確保されている。   The first heat exchange part 88 of the refrigeration side bypass flow path 86 is inserted into the heat storage container 56, and exchanges heat between the refrigerant flowing in the refrigeration side bypass flow path 86 and the heat storage body in the heat storage container 56. Is to be done. Here, the first heat exchanging portion 88 of the refrigeration-side bypass passage 86 is in contact with the heat storage body so that heat exchange between the refrigerant circulating inside and the heat storage body of the heat storage container 56 is efficiently performed. The area is sufficiently secured.

また、この空調・冷蔵・冷凍設備81は、冷媒回路12の室内熱交換器13の下流側における冷媒の圧力を測定する空調側圧力測定装置91と、冷媒回路22の室内熱交換器23の下流側における冷媒の圧力を測定する冷蔵側圧力測定装置92とを有している。
さらに、この空調・冷蔵・冷凍設備81は、これら空調側、冷蔵側圧力測定装置91,92のそれぞれの測定値に基づいて過冷却用膨張弁52、87の動作を制御する制御装置93を有している。
制御装置93は、空調側圧力測定装置91の測定値が基準値以下となった場合に、過冷却用膨張弁52を開いてバイパス流路51への冷媒の流通を許容するものである。
また、制御装置93は、冷蔵側圧力測定装置92の測定値が基準値以下となった場合に、過冷却用膨張弁87を開いて冷蔵側バイパス流路86への冷媒の流通を許容するものである。
The air conditioning / refrigeration / refrigeration facility 81 includes an air conditioning side pressure measuring device 91 that measures the pressure of the refrigerant on the downstream side of the indoor heat exchanger 13 of the refrigerant circuit 12 and a downstream of the indoor heat exchanger 23 of the refrigerant circuit 22. And a refrigeration side pressure measuring device 92 for measuring the pressure of the refrigerant on the side.
Further, the air conditioning / refrigeration / refrigeration equipment 81 has a control device 93 that controls the operation of the supercooling expansion valves 52 and 87 based on the measured values of the air conditioning side and refrigeration side pressure measuring devices 91 and 92, respectively. doing.
The control device 93 opens the supercooling expansion valve 52 and allows the refrigerant to flow to the bypass flow path 51 when the measured value of the air-conditioning side pressure measuring device 91 is equal to or less than the reference value.
Further, the control device 93 opens the supercooling expansion valve 87 and allows the refrigerant to flow to the refrigeration side bypass passage 86 when the measured value of the refrigeration side pressure measuring device 92 becomes a reference value or less. It is.

ここで、各室内空調ユニット11の弁装置82及び各冷蔵ショーケース21の弁装置83は、それぞれ対応する室内空調ユニット11、冷蔵ショーケース21の室内雰囲気や庫内雰囲気が目標温度に達した場合や室内熱交換器の霜取り運転を行う場合など、室内熱交換器による熱交換を停止させたい条件となった場合に、室内熱交換器への冷媒の供給を停止または低減させる機構が設けられている。
すなわち、この空調・冷蔵・冷凍設備81では、動作している室内空調ユニット11、冷蔵ショーケース21の数が変動する構成とされている。
Here, the valve device 82 of each indoor air-conditioning unit 11 and the valve device 83 of each refrigerated showcase 21 correspond to the corresponding indoor air-conditioning unit 11 and refrigerated showcase 21 when the indoor atmosphere or the interior atmosphere reaches the target temperature. There is a mechanism to stop or reduce the supply of refrigerant to the indoor heat exchanger when it is necessary to stop the heat exchange by the indoor heat exchanger, such as when defrosting the indoor heat exchanger. Yes.
In other words, the air conditioning / refrigeration / refrigeration facility 81 is configured such that the number of operating indoor air conditioning units 11 and refrigerated showcases 21 varies.

ここで、冷蔵装置3のいずれかの室内熱交換器23への冷媒の供給が停止または急激に低減させられると、各室内熱交換器23の上流側では冷媒圧力が急激に上昇し、各室内熱交換器23の下流側では冷媒圧力が急激に低下する。   Here, when the supply of the refrigerant to any one of the indoor heat exchangers 23 of the refrigeration apparatus 3 is stopped or rapidly reduced, the refrigerant pressure rapidly increases on the upstream side of each indoor heat exchanger 23, On the downstream side of the heat exchanger 23, the refrigerant pressure rapidly decreases.

この空調・冷蔵・冷凍設備81では、このように室内熱交換器23の下流側の冷媒圧力が、予め定められた基準値以下となった場合には、制御装置93によって過冷却用膨張弁87が開かれるようになっている。
すなわち、室内熱交換器23への冷媒の供給が停止または急激に低減させられた場合には、室内熱交換器23の上流側の冷媒が冷蔵側バイパス流路86を通じて室内熱交換器23の下流側へ逃がされるので、圧縮機24による冷媒の送出量を低下させなくても、冷媒回路22内の冷媒圧力の異常上昇及び異常低下が防止されて、冷媒回路22を構成する各部材が保護される。
In this air conditioning / refrigeration / refrigeration facility 81, when the refrigerant pressure on the downstream side of the indoor heat exchanger 23 becomes equal to or lower than a predetermined reference value, the controller 93 controls the supercooling expansion valve 87. Has been opened.
That is, when the supply of the refrigerant to the indoor heat exchanger 23 is stopped or rapidly reduced, the refrigerant on the upstream side of the indoor heat exchanger 23 passes downstream of the indoor heat exchanger 23 through the refrigeration bypass channel 86. Therefore, the refrigerant pressure in the refrigerant circuit 22 can be prevented from abnormally rising and falling, and the members constituting the refrigerant circuit 22 can be protected without reducing the amount of refrigerant delivered by the compressor 24. The

また、このように冷蔵側バイパス流路86への冷媒の流通を許容することで、冷蔵側バイパス流路86内を流通する冷媒は、過冷却用膨張弁87によって減圧・膨張されて低温低圧の冷媒とされる。この低温低圧の冷媒は、第一熱交換部88内に送り込まれて蓄熱容器56内の蓄熱体と熱交換されるので、冷蔵装置3の余剰の冷熱が蓄熱体に蓄熱されて、冷凍装置4の冷媒の冷却が行われる。   In addition, by allowing the refrigerant to flow into the refrigeration side bypass flow path 86 in this way, the refrigerant flowing through the refrigeration side bypass flow path 86 is decompressed and expanded by the supercooling expansion valve 87, and has a low temperature and low pressure. Refrigerant. The low-temperature and low-pressure refrigerant is sent into the first heat exchanging portion 88 and is heat-exchanged with the heat storage body in the heat storage container 56, so that the excess cold heat of the refrigeration apparatus 3 is stored in the heat storage body, and the refrigeration apparatus 4 The refrigerant is cooled.

また、この空調・冷蔵・冷凍設備81において、空気調和装置2の冷房運転時に、空気調和装置2のいずれかの室内熱交換器13への冷媒の供給が停止または急激に低減させられると、室内熱交換器13の上流側では冷媒圧力が急激に上昇し、各室内熱交換器13の下流側では冷媒圧力が急激に低下する。
この空調・冷蔵・冷凍設備81では、このように室内熱交換器13の下流側の冷媒圧力が、予め定められた基準値以下となった場合には、制御装置93によって過冷却用膨張弁52が開かれるようになっている。
Further, in the air conditioning / refrigeration / refrigeration facility 81, when the supply of the refrigerant to one of the indoor heat exchangers 13 of the air conditioner 2 is stopped or rapidly reduced during the cooling operation of the air conditioner 2, The refrigerant pressure rapidly increases on the upstream side of the heat exchanger 13, and the refrigerant pressure rapidly decreases on the downstream side of each indoor heat exchanger 13.
In the air conditioning / refrigeration / refrigeration facility 81, when the refrigerant pressure on the downstream side of the indoor heat exchanger 13 becomes equal to or lower than a predetermined reference value, the supercooling expansion valve 52 is controlled by the control device 93. Has been opened.

すなわち、室内熱交換器13への冷媒の供給が停止または急激に低減させられた場合には、室内熱交換器13の上流側の冷媒がバイパス流路51を通じて室内熱交換器13の下流側へ逃がされるので、圧縮機14による冷媒の送出量を低下させなくても、冷媒回路12内の冷媒圧力の異常上昇及び異常低下が防止されて、冷媒回路12を構成する各部材が保護される。   That is, when the supply of the refrigerant to the indoor heat exchanger 13 is stopped or rapidly reduced, the refrigerant on the upstream side of the indoor heat exchanger 13 passes to the downstream side of the indoor heat exchanger 13 through the bypass channel 51. Since the air is released, the refrigerant pressure in the refrigerant circuit 12 is prevented from abnormally rising and falling without reducing the amount of refrigerant delivered by the compressor 14, and each member constituting the refrigerant circuit 12 is protected.

このように、この空調・冷蔵・冷凍設備81では、圧縮機の運転の制御によって冷媒回路内の圧力を制御する方法よりも簡略な制御で、冷媒回路の各構成部材の保護を効果的に行うことができ、また圧縮機の効率の良い運転点で、運転を継続することができる。   Thus, in this air conditioning / refrigeration / refrigeration facility 81, each component of the refrigerant circuit is effectively protected by a simpler control than the method of controlling the pressure in the refrigerant circuit by controlling the operation of the compressor. In addition, the operation can be continued at an efficient operation point of the compressor.

ここで、本実施形態では、空調側圧力測定装置91、冷蔵側圧力測定装置92は、室内熱交換器の下流側に設けた例を示したが、これに限られることなく、空調側圧力測定装置91、冷蔵側圧力測定装置92は、室内熱交換器の上流側に設けていてもよい。
この場合には、制御装置93は、室内熱交換器の上流側の冷媒圧力が、予め定められた基準値以上となった場合に過冷却用膨張弁52,87を開く構成とされる。
Here, in this embodiment, although the air-conditioning side pressure measuring device 91 and the refrigeration side pressure measuring device 92 showed the example provided in the downstream of the indoor heat exchanger, it is not restricted to this, The air-conditioning side pressure measurement The apparatus 91 and the refrigeration side pressure measuring apparatus 92 may be provided on the upstream side of the indoor heat exchanger.
In this case, the control device 93 is configured to open the supercooling expansion valves 52 and 87 when the refrigerant pressure on the upstream side of the indoor heat exchanger becomes equal to or higher than a predetermined reference value.

本発明の第一実施形態にかかる複合型冷凍サイクル装置の適用例である空調・冷蔵・冷凍設備を示す斜視図である。It is a perspective view which shows the air-conditioning / refrigeration / refrigeration equipment which is an example of application of the combined refrigeration cycle apparatus according to the first embodiment of the present invention. 本発明の第一実施形態にかかる空調・冷蔵・冷凍設備の冷媒回路の構成を示す図である。It is a figure which shows the structure of the refrigerant circuit of the air conditioning / refrigeration / refrigeration equipment concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる空調・冷蔵・冷凍設備の冷凍サイクルを示すモリエル線図である。It is a Mollier diagram which shows the refrigerating cycle of the air-conditioning / refrigeration / refrigeration equipment concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる空調・冷蔵・冷凍設備の冷媒回路の他の構成例を示す図である。It is a figure which shows the other structural example of the refrigerant circuit of the air conditioning / refrigeration / refrigeration equipment concerning 1st embodiment of this invention. 本発明の第二実施形態にかかる空調・冷蔵・冷凍設備の冷媒回路の構成を示す図である。It is a figure which shows the structure of the refrigerant circuit of the air conditioning / refrigeration / refrigeration equipment concerning 2nd embodiment of this invention. 本発明の第三実施形態にかかる空調・冷蔵・冷凍設備の冷媒回路の構成を示す図である。It is a figure which shows the structure of the refrigerant circuit of the air conditioning / refrigeration / refrigeration equipment concerning 3rd embodiment of this invention.

符号の説明Explanation of symbols

1,61,81 空調・冷蔵・冷凍設備(複合型冷凍サイクル設備)
12 冷媒回路(第一冷媒回路)
13,23,33 室内熱交換器
14 圧縮機
15 空調用室外熱交換器(第一室外熱交換器)
16 膨張弁
16b 暖房用膨張弁(切換装置)
22,32 冷媒回路(第二冷媒回路)
25 冷蔵用室外熱交換器(第二室外熱交換器)
35 冷凍用室外熱交換器(第二室外熱交換器)
51 バイパス流路
52 過冷却用膨張弁
53,69,72 第一熱交換部
57 第二熱交換部
62 冷蔵用レシーバ
63 冷凍用レシーバ
64 蓄熱体
66 第一バイパス流路
67 第二バイパス流路
68 冷蔵側過冷却膨張弁
71 冷凍側過冷却膨張弁
86 冷蔵側バイパス流路
91,92 空調側、冷蔵側圧力測定装置
93 制御装置
1,61,81 Air conditioning, refrigeration, refrigeration equipment (combined refrigeration cycle equipment)
12 Refrigerant circuit (first refrigerant circuit)
13, 23, 33 Indoor heat exchanger 14 Compressor 15 Outdoor heat exchanger for air conditioning (first outdoor heat exchanger)
16 Expansion valve 16b Expansion valve for heating (switching device)
22, 32 Refrigerant circuit (second refrigerant circuit)
25 Outdoor heat exchanger for refrigeration (second outdoor heat exchanger)
35 Refrigeration outdoor heat exchanger (second outdoor heat exchanger)
51 Bypass Channel 52 Supercooling Expansion Valves 53, 69, 72 First Heat Exchanger 57 Second Heat Exchanger 62 Refrigerating Receiver 63 Refrigerating Receiver 64 Heat Storage Body 66 First Bypass Channel 67 Second Bypass Channel 68 Refrigeration side supercooling expansion valve 71 Refrigeration side supercooling expansion valve 86 Refrigeration side bypass passages 91, 92 Air conditioning side, refrigeration side pressure measuring device 93 Control device

Claims (9)

複数の独立した冷媒回路を有する複合型冷凍サイクル設備であって、
圧縮機と第一室外熱交換器と膨張弁と室内熱交換器とがこの順番で配置された第一冷媒回路と、冷凍サイクル形成時に凝縮器として作用する第二室外熱交換器を有する第二冷媒回路とを、それぞれ少なくとも一つずつ有しており、
前記第一冷媒回路には、冷凍サイクル形成時に前記第一室外熱交換器を通過した冷媒の一部を前記圧縮機に供給するバイパス流路が設けられており、
該バイパス流路には、過冷却用膨張弁と、前記バイパス流路内を流通する冷媒と前記第二冷媒回路の前記第二室外熱交換器を通過した冷媒との間で熱交換を行う第一熱交換部とが、上流側からこの順番で設けられていることを特徴とする複合型冷凍サイクル設備。
A combined refrigeration cycle facility having a plurality of independent refrigerant circuits,
A second refrigerant heat circuit in which a compressor, a first outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are arranged in this order, and a second outdoor heat exchanger that acts as a condenser when forming a refrigeration cycle. Each having at least one refrigerant circuit,
The first refrigerant circuit is provided with a bypass flow path for supplying a part of the refrigerant that has passed through the first outdoor heat exchanger to the compressor during refrigeration cycle formation,
In the bypass channel, heat is exchanged between the supercooling expansion valve, the refrigerant flowing through the bypass channel, and the refrigerant passing through the second outdoor heat exchanger of the second refrigerant circuit. A combined refrigeration cycle facility, wherein one heat exchanging section is provided in this order from the upstream side.
前記第一冷媒回路の前記室内熱交換器の上流側と下流側とのうちの少なくともいずれか一方における冷媒の圧力を測定する圧力測定装置と、
該圧力測定装置の測定値に基づいて前記過冷却用膨張弁の開度を制御する制御装置が設けられており、
該制御装置は、前記室内熱交換器の上流側の冷媒圧力が第一基準値以上となった場合、もしくは前記室内熱交換器の下流側の冷媒圧力が第二基準値以下となった場合に、前記過冷却用膨張弁の開度を大きくする構成とされていることを特徴とする請求項1記載の複合型冷凍サイクル設備。
A pressure measuring device that measures the pressure of the refrigerant in at least one of the upstream side and the downstream side of the indoor heat exchanger of the first refrigerant circuit;
A control device is provided for controlling the opening degree of the supercooling expansion valve based on the measured value of the pressure measuring device;
When the refrigerant pressure on the upstream side of the indoor heat exchanger becomes equal to or higher than the first reference value, or the refrigerant pressure on the downstream side of the indoor heat exchanger becomes equal to or lower than the second reference value. 2. The combined refrigeration cycle equipment according to claim 1, wherein the opening degree of the expansion valve for supercooling is increased.
前記第二冷媒回路は、前記第二室外熱交換器を通過した冷媒を一時貯留するレシーバを有しており、
前記第一冷媒回路の前記バイパス流路は、一部が前記レシーバ内の冷媒貯留範囲内に挿通されていて、該挿通部分が前記第一熱交換部とされていることを特徴とする請求項1または2に記載の複合型空気調和設備。
The second refrigerant circuit has a receiver that temporarily stores the refrigerant that has passed through the second outdoor heat exchanger,
The bypass flow path of the first refrigerant circuit is partially inserted into a refrigerant storage range in the receiver, and the insertion portion is the first heat exchange part. The combined air conditioning equipment according to 1 or 2.
前記第一熱交換部内に供給される前記冷媒との間で熱交換が行われる蓄熱体を有していることを特徴とする請求項1から3のいずれかに記載の複合型冷凍サイクル設備。   The combined refrigeration cycle facility according to any one of claims 1 to 3, further comprising a heat storage body that exchanges heat with the refrigerant supplied into the first heat exchange section. 前記第一冷媒回路は、冷凍サイクル形成時に前記室内熱交換器に供給される冷媒と前記第一冷媒回路の前記バイパス流路内を流通する冷媒との間で熱交換を行う第二熱交換部を有していることを特徴とする請求項1から4のいずれかに記載の複合型冷凍サイクル設備。   The first refrigerant circuit is configured to exchange heat between the refrigerant supplied to the indoor heat exchanger when the refrigeration cycle is formed and the refrigerant flowing through the bypass flow path of the first refrigerant circuit. The combined refrigeration cycle equipment according to any one of claims 1 to 4, characterized by comprising: 前記第一冷媒回路は、暖房サイクル形成時に前記室内熱交換器を通過した冷媒のうちの少なくとも一部の流通方向を、前記第一室外熱交換器から前記バイパス流路に切り替える切換装置を有していることを特徴とする請求項1から5のいずれかに記載の複合型冷凍サイクル設備。   The first refrigerant circuit has a switching device that switches the flow direction of at least a part of the refrigerant that has passed through the indoor heat exchanger when the heating cycle is formed, from the first outdoor heat exchanger to the bypass flow path. The combined refrigeration cycle facility according to any one of claims 1 to 5, wherein 圧縮機と第一室外熱交換器と膨張弁と室内熱交換器とがこの順番で配置された第一冷媒回路と、冷凍サイクル形成時に凝縮器として作用する第二室外熱交換器を有する第二冷媒回路とを、それぞれ少なくとも一つずつ有する複合型冷凍サイクル設備の運転方法であって、
前記第一及び第二冷媒回路がそれぞれ冷凍サイクルを形成している状態では、前記第一室外熱交換器を通過した冷媒の一部を減圧・膨張させて低温低圧の冷媒とするとともに、該低温の冷媒と前記第二冷媒回路の前記第二室外熱交換器を通過した冷媒との間で熱交換を行うことを特徴とする複合型冷凍サイクル設備の運転方法。
A second refrigerant heat circuit in which a compressor, a first outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are arranged in this order, and a second outdoor heat exchanger that acts as a condenser when forming a refrigeration cycle. A method for operating a combined refrigeration cycle facility having at least one refrigerant circuit,
In a state where the first and second refrigerant circuits each form a refrigeration cycle, a part of the refrigerant that has passed through the first outdoor heat exchanger is decompressed and expanded to form a low-temperature and low-pressure refrigerant, A method for operating a combined refrigeration cycle facility, wherein heat exchange is performed between the first refrigerant and the refrigerant that has passed through the second outdoor heat exchanger of the second refrigerant circuit.
前記第一冷媒回路の負荷が大きい場合、または、前記第一冷媒回路の負荷が小さく、前記第二冷媒回路の負荷も小さくて該第二冷媒回路の冷媒のさらなる冷却が不要である場合には、前記第一冷媒回路の冷媒と前記第二冷媒回路の冷媒との間での熱交換を停止または低減させることを特徴とする請求項7記載の複合型冷凍サイクル設備の運転方法。   When the load of the first refrigerant circuit is large, or when the load of the first refrigerant circuit is small and the load of the second refrigerant circuit is small, and further cooling of the refrigerant of the second refrigerant circuit is unnecessary The operation method of the combined refrigeration cycle equipment according to claim 7, wherein heat exchange between the refrigerant in the first refrigerant circuit and the refrigerant in the second refrigerant circuit is stopped or reduced. 前記第一冷媒回路の冷凍サイクル形成時に、該第一冷媒回路の前記室内熱交換器の上流側と下流側とのうちの少なくともいずれか一方における冷媒の圧力を測定し、
前記室内熱交換器の上流側の冷媒圧力が第一基準値以上となった場合、もしくは前記室内熱交換器の下流側の冷媒圧力が第二基準値以下となった場合に、前記第一室外熱交換器を通過した冷媒の一部を前記圧縮機に供給することを特徴とする請求項7または8に記載の複合型冷凍サイクル設備の運転方法。
During the refrigeration cycle formation of the first refrigerant circuit, measure the pressure of the refrigerant in at least one of the upstream side and the downstream side of the indoor heat exchanger of the first refrigerant circuit,
When the refrigerant pressure on the upstream side of the indoor heat exchanger becomes equal to or higher than the first reference value, or when the refrigerant pressure on the downstream side of the indoor heat exchanger becomes equal to or lower than the second reference value, The operation method of the combined refrigeration cycle facility according to claim 7 or 8, wherein a part of the refrigerant that has passed through the heat exchanger is supplied to the compressor.
JP2004092867A 2004-03-26 2004-03-26 Combination type refrigeration cycle equipment and its operating method Withdrawn JP2005282869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092867A JP2005282869A (en) 2004-03-26 2004-03-26 Combination type refrigeration cycle equipment and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092867A JP2005282869A (en) 2004-03-26 2004-03-26 Combination type refrigeration cycle equipment and its operating method

Publications (1)

Publication Number Publication Date
JP2005282869A true JP2005282869A (en) 2005-10-13

Family

ID=35181470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092867A Withdrawn JP2005282869A (en) 2004-03-26 2004-03-26 Combination type refrigeration cycle equipment and its operating method

Country Status (1)

Country Link
JP (1) JP2005282869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085539A (en) * 2007-10-01 2009-04-23 Toshiba Corp Refrigerator
WO2013151005A1 (en) * 2012-04-04 2013-10-10 東芝キヤリア株式会社 Composite dual refrigeration cycle device
KR20140059008A (en) * 2012-11-07 2014-05-15 엘지전자 주식회사 A combined refrigerating and air conditioning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085539A (en) * 2007-10-01 2009-04-23 Toshiba Corp Refrigerator
WO2013151005A1 (en) * 2012-04-04 2013-10-10 東芝キヤリア株式会社 Composite dual refrigeration cycle device
CN104204693A (en) * 2012-04-04 2014-12-10 东芝开利株式会社 Composite dual refrigeration cycle device
JPWO2013151005A1 (en) * 2012-04-04 2015-12-17 東芝キヤリア株式会社 Combined dual refrigeration cycle equipment
KR20140059008A (en) * 2012-11-07 2014-05-15 엘지전자 주식회사 A combined refrigerating and air conditioning system
KR102014457B1 (en) * 2012-11-07 2019-10-21 엘지전자 주식회사 A combined refrigerating and air conditioning system

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
JP2010276230A (en) Refrigerating device
JP2005233559A (en) Air conditioning/refrigerating/freezing equipment and its operation method
JP3085296B2 (en) Refrigeration equipment
JP2005221194A (en) Air conditioning, refrigerating and freezing facility
JP3882056B2 (en) Refrigeration air conditioner
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JP4624223B2 (en) Refrigeration system
JP2004333092A (en) Freezer/refrigerator
JP4123257B2 (en) Refrigeration equipment
JP4169638B2 (en) Refrigeration system
JP2004170001A (en) Refrigerating system
JP2005282869A (en) Combination type refrigeration cycle equipment and its operating method
JP3998035B2 (en) Refrigeration equipment
JP2007100987A (en) Refrigerating system
JP2005241090A (en) Combination type air conditioning equipment and its operating method
JP4108003B2 (en) Refrigeration system
JP4104519B2 (en) Refrigeration system
JP3858918B2 (en) Refrigeration equipment
JP4660334B2 (en) Refrigeration system
JP2005282867A (en) Combination type refrigeration cycle equipment and its operating method
JP2005049064A (en) Air-conditioning refrigeration unit
WO2017006723A1 (en) Refrigeration device
JP2001124424A (en) Heat storage type refrigerating and air-conditioning device
KR20180126296A (en) Air conditioning system for refrigerating and freezing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605