JP2005281780A - Heat-treated article, and heat treatment method for it - Google Patents

Heat-treated article, and heat treatment method for it Download PDF

Info

Publication number
JP2005281780A
JP2005281780A JP2004097822A JP2004097822A JP2005281780A JP 2005281780 A JP2005281780 A JP 2005281780A JP 2004097822 A JP2004097822 A JP 2004097822A JP 2004097822 A JP2004097822 A JP 2004097822A JP 2005281780 A JP2005281780 A JP 2005281780A
Authority
JP
Japan
Prior art keywords
temperature
heat
steel
hydrogen
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004097822A
Other languages
Japanese (ja)
Inventor
Keizo Hori
恵造 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004097822A priority Critical patent/JP2005281780A/en
Publication of JP2005281780A publication Critical patent/JP2005281780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carburized or carbonitrided component having no flake defect by minimizing a martensite area rate, by keeping the component at a constant temperature in such a temperature range as to surely control the structure to ferrite plus pearlite, for a comparatively short time. <P>SOLUTION: This heat treatment method comprises: carburizing or carbonitriding a component; then, when cooling it, keeping it constant at such a temperature T[°C] as to satisfy T=(620-640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5, and for such a period of time t[hr] as to satisfy t≥0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn-2.9), wherein Cr, Mo, Ni and Mn represent a content ratio (wt.%) of respective elements in each alloy steel; and quench-hardening it. The heat-treated article has thus formed metallographic structure. The heat-treated article is made of an alloy steel having a composition comprising, by wt.%, 0.18-0.50% C, 0.30-3.50% Ni, 0.30-1.00% Cr, 0.20-0.50% Mo and 0.20-1.50% Mn. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば自動車、鉄道車両、農業機械、建設機械及び鉄鋼機械等に使用される高い疲労強度が要求される機械部品であって、特に軸受、歯車、シャフト等に使用される浸炭或いは浸炭窒化処理が施される合金鋼の熱処理品およびその熱処理方法に関する。   The present invention is a machine part requiring high fatigue strength, such as used in automobiles, railway vehicles, agricultural machines, construction machines, steel machines, etc., and in particular carburizing or carburizing used in bearings, gears, shafts, etc. The present invention relates to a heat-treated product of alloy steel subjected to nitriding treatment and a heat treatment method thereof.

耐摩耗性、疲労強度、または靭性等が要求される機械部品には、機能性の向上を図るため、Cr、Mn、Ni、Mo等の合金元素が多量に添加された合金鋼が一般的に使用される。これらの合金元素は焼入れ性を高め、焼入れ時に不完全焼入れ組織の形成を防止する作用も担っている。また、軸受や歯車等、特に高い耐摩耗性や疲労強度が要求される機械部品には、合金鋼に浸炭或いは浸炭窒化の表面硬化処理が施される。   For mechanical parts that require wear resistance, fatigue strength, toughness, etc., in order to improve functionality, alloy steels with a large amount of alloy elements such as Cr, Mn, Ni, and Mo are generally used. used. These alloy elements have an effect of improving hardenability and preventing formation of an incompletely hardened structure during quenching. Further, machine parts that require particularly high wear resistance and fatigue strength, such as bearings and gears, are subjected to carburizing or carbonitriding surface hardening treatment on alloy steel.

Cr、Mn、Ni、Mo等の合金元素が多量に添加された合金鋼に長時間浸炭或いは浸炭窒化処理を施した部品に於いては、水素に起因する割れ、すなわち白点性欠陥の発生防止が重要である。白点性欠陥は、毛割れ状の内部欠陥が熱処理後の冷却時や室温放置時に生じるもので、破面の断面を観察すると白点が認められる。   Prevents the occurrence of cracks caused by hydrogen, that is, white spot defects, in parts that have been carburized or carbonitrided for a long time on alloy steel to which a large amount of alloy elements such as Cr, Mn, Ni, and Mo have been added. is important. A white spot defect is an internal defect in the form of a crack, which occurs upon cooling after heat treatment or when left at room temperature, and white spots are observed when the cross section of the fracture surface is observed.

白点性欠陥を防止する方法が、特許文献1に開示されている。その特徴は、浸炭或いは浸炭窒化後にA1変態点〜Ms点の温度範囲で恒温保持を施すことによって、金属組織をフェライト+パーライトにし、マルテンサイト量を低減させることである。
特開平10−168515号公報
A method for preventing white spot defects is disclosed in Patent Document 1. Its feature is that the metal structure is made ferrite + pearlite and the amount of martensite is reduced by performing constant temperature holding in the temperature range from the A1 transformation point to the Ms point after carburizing or carbonitriding.
JP-A-10-168515

しかしながら、上記合金元素を多量に含有した鋼種においては、等温変態図(TTT図)が二重S曲線となり(図1参照)、A1〜TPBで恒温保持すればフェライト+パーライト組織となるが、TPB〜Ms点で恒温保持すればベイナイト組織となる。つまり、特許文献1で開示された温度範囲であるA1変態点〜Ms点で恒温保持を施したとしても、温度によっては必ずしもフェライト+パーライト組織にはならないという問題点がある。
また、特許文献1で示された恒温保持時間は非常に長いため、稼働時間の長時間化による納期の長期化やコストアップなど、工業的に不都合な点が多かった。
However, in the steel types containing a large amount of the above alloy elements, the isothermal transformation diagram (TTT diagram) becomes a double S curve (see FIG. 1), and if it is held at A1 to TPB at a constant temperature, it becomes a ferrite + pearlite structure. A bainite structure is obtained if the temperature is kept constant at the ~ Ms point. That is, there is a problem that even if a constant temperature is maintained at the A1 transformation point to the Ms point, which is the temperature range disclosed in Patent Document 1, depending on the temperature, the ferrite + pearlite structure is not necessarily obtained.
Moreover, since the constant temperature holding time shown in Patent Document 1 is very long, there are many industrial inconveniences such as longer delivery time and cost increase due to longer operating time.

本発明は、確実にフェライト+パーライト組織とすることのできる温度範囲で、比較的短時間な恒温保持によってマルテンサイト面積率を限りなくゼロとし、白点性欠陥を皆無にした浸炭或いは浸炭窒化部品を提供することを目的とする。   The present invention is a carburized or carbonitrided part in which the martensite area ratio is zero as much as possible by maintaining the temperature at a relatively short time in a temperature range in which a ferrite + pearlite structure can be reliably obtained, and no white spot defects are present. The purpose is to provide.

本発明は、下記の通りである。
1)C:0.18〜0.50重量%、Ni:0.30〜3.50重量%、Cr:0.30〜1.00重量%、Mo:0.20〜0.50重量%、Mn:0.20〜1.50重量%の合金元素を含有する鋼において、
浸炭或いは浸炭窒化処理後の冷却時に、
T=(620〜640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5となる温度T[℃]で、
t≧0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn−2.9)となる時間t[hr]、
恒温保持する熱処理を施し、焼入れ硬化してなる金属組織を有することを特徴とする熱処理品。
上記式中、Cr、Mo、Ni、Mnは、それぞれの含有率(重量%)の数値を表す。
The present invention is as follows.
1) C: 0.18 to 0.50 wt%, Ni: 0.30 to 3.50 wt%, Cr: 0.30 to 1.00 wt%, Mo: 0.20 to 0.50 wt%, In steel containing Mn: 0.20 to 1.50% by weight of alloy elements,
During cooling after carburizing or carbonitriding,
T = (620 to 640) + (2.0Cr + 0.3Mo + 0.5Ni + 0.1Mn) × 5
a time t [hr] at which t ≧ 0.8 + exp (4.0Cr + 1.7Mo + 0.5Ni + 0.1Mn-2.9);
A heat-treated product characterized by having a metal structure formed by quenching and hardening by performing a heat treatment for holding at constant temperature.
In the above formula, Cr, Mo, Ni, and Mn represent numerical values of the respective contents (% by weight).

2)浸炭或いは浸炭窒化処理後に恒温保持した後、直ちに昇温して焼入れを施すことを特徴とする(1)に記載の熱処理品。   2) The heat-treated product as set forth in (1), wherein the product is kept at a constant temperature after carburizing or carbonitriding, and then immediately heated and quenched.

3)C:0.18〜0.50重量%、Ni:0.30〜3.50重量%、Cr:0.30〜1.00重量%、Mo:0.20〜0.50重量%、Mn:0.20〜1.50重量%の合金元素を含有する鋼の浸炭或いは浸炭窒化処理後の冷却時に、
T=(620〜640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5となる温度T[℃]で、
t≧0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn−2.9)となる時間t[hr]、
恒温保持することを特徴とする鋼の熱処理方法。
上記式中、Cr、Mo、Ni、Mnは、それぞれの含有率(重量%)の数値を表す。
3) C: 0.18 to 0.50 wt%, Ni: 0.30 to 3.50 wt%, Cr: 0.30 to 1.00 wt%, Mo: 0.20 to 0.50 wt%, Mn: at the time of cooling after carburizing or carbonitriding of steel containing 0.20 to 1.50% by weight of alloy elements,
T = (620 to 640) + (2.0Cr + 0.3Mo + 0.5Ni + 0.1Mn) × 5
a time t [hr] at which t ≧ 0.8 + exp (4.0Cr + 1.7Mo + 0.5Ni + 0.1Mn-2.9);
A method for heat treatment of steel, characterized by maintaining a constant temperature.
In the above formula, Cr, Mo, Ni, and Mn represent numerical values of the respective contents (% by weight).

本発明の熱処理品およびその熱処理方法によれば、浸炭或いは浸炭窒化による表面硬化法を適用して製造される熱処理品において、短時間の処理で従来問題となっていた白点性欠陥の発生を確実に防止することができ、しかも、組織を改善して靭性を高めることができるので、機械部品の寿命延長を図ることができる。   According to the heat-treated product and the heat-treatment method of the present invention, in the heat-treated product manufactured by applying the surface hardening method by carburizing or carbonitriding, the occurrence of white spot defects, which has been a problem in the past, has occurred in a short time. This can be surely prevented, and the toughness can be improved by improving the structure, so that the life of the machine part can be extended.

長時間の浸炭品は水素が多量に侵入してしまい白点性欠陥の発生の危険性が高まる。水素は侵入型元素であり、拡散が非常に速く、熱処理後の冷却中にもある程度排出されるが、冷却速度が極度に速いと水素の排出が間に合わず、高濃度の水素が鋼中に残存してしまう。
白点性欠陥の発生は、鋼中への水素の侵入が主要因であるが、鋼中に高濃度の水素がチャージされても白点性欠陥が必ずしも発生するのではなく、鋼中にある量以上の水素がチャージされ、かつ外的な応力の付加、例えばマルテンサイト変態のような内部応力が付加されなければ発生しない。
Long-term carburized products have a large amount of hydrogen intruding, increasing the risk of white spot defects. Hydrogen is an interstitial element that diffuses very quickly and is discharged to some extent during cooling after heat treatment. However, if the cooling rate is extremely high, hydrogen cannot be discharged in time, and high-concentration hydrogen remains in the steel. Resulting in.
The occurrence of white spot defects is mainly due to the penetration of hydrogen into the steel. However, white spot defects do not necessarily occur even when high concentration hydrogen is charged in the steel, but in the steel. It does not occur unless an amount of hydrogen is charged and external stress is applied, for example, internal stress such as martensitic transformation is not applied.

白点性欠陥は組織に依存し、フェライト+パーライト組織中にマルテンサイトが混在する場合に最も割れの感受性が高まる。(増補版、鉄鋼と合金元素(上)日本学術振興会 製鋼第19委員会編、誠文堂新光社 第452頁参照)。特に合金元素の偏析により帯状に未変態のオーステナイト(残留オーステナイト)が存在すると、このオーステナイトが水素拡散の障壁となり、外部への水素の排出が阻害され、水素がトラップされ易くなるのに加え、周囲から変態中に排出された水素がオーステナイト中に濃縮されてしまう。冷却によりこのオーステナイトはマルテンサイト変態を生じるが、マルテンサイト中では水素が外にパージされにくいため水素の拡散が遅く、更に変態応力の作用も相まって、白点性欠陥に対する感受性が高くなってしまう。   The white spot defect depends on the structure, and when martensite is mixed in the ferrite + pearlite structure, the susceptibility to cracking is most enhanced. (Refer to the supplementary edition, steel and alloy elements (above), Japan Society for the Promotion of Science, 19th Committee, edited by Seikodo Shinkosha, p. 452). In particular, the presence of untransformed austenite (residual austenite) due to segregation of alloying elements makes this austenite a barrier to hydrogen diffusion, hindering the discharge of hydrogen to the outside and facilitating the trapping of hydrogen. The hydrogen discharged during the transformation is concentrated in the austenite. This austenite undergoes martensitic transformation by cooling, but hydrogen is difficult to be purged to the outside in martensite, so that the diffusion of hydrogen is slow, and combined with the action of transformation stress, the sensitivity to white spot defects becomes high.

したがって、浸炭及び浸炭窒化処理した部品における白点性欠陥の防止には、浸炭或いは浸炭窒化時に鋼中に侵入した水素を室温に冷却する前に外部に排出すればよい。
白点性欠陥が生じる危険性が高まる鋼中水素濃度は4ppm以上(増補版、鉄鋼と合金元素(上)日本学術振興会 製鋼第19委員会編、誠文堂新光社 第448頁参照)であることから、水素量は4ppm以下にする必要があり、安全性を見越して2ppm以下(更に好ましくは1ppm以下)とする。
Therefore, in order to prevent white spot defects in carburized and carbonitrided parts, hydrogen that has entered the steel during carburizing or carbonitriding may be discharged to the outside before cooling to room temperature.
The hydrogen concentration in steel, which increases the risk of white spot defects, is 4 ppm or more (see supplementary edition, steel and alloying elements (above), Japan Society for the Promotion of Science, 19th Committee of Steel Making, Sebundo Shinkosha, page 448) Therefore, the amount of hydrogen needs to be 4 ppm or less, and is 2 ppm or less (more preferably 1 ppm or less) in anticipation of safety.

更に、白点性欠陥の防止には、マルテンサイトをなくして変態応力を除去する必要がある。また、見方を変えると、マルテンサイトをなくすことは水素のトラップサイトをなくすこと、つまり鋼中の水素量が減少することを意味する。   Furthermore, in order to prevent white spot defects, it is necessary to eliminate the transformation stress by eliminating martensite. In other words, eliminating martensite means eliminating hydrogen trap sites, that is, reducing the amount of hydrogen in the steel.

次に、図を参照してさらに詳述する。図2に鋼中の水素の溶解度と温度との関係を示す。図2から明らかなように、オーステナイト温度域で水素の溶解度は5ppm以上と高いが、フェライト(非浸炭部)温度域では3.5ppm以下と大幅に溶解度が減少している。すなわち、浸炭或いは浸炭窒化後にオーステナイト温度域に恒温保持するよりフェライト温度域に保持する方が鋼中にチャージされた水素を短時間で排出できることを意味する。   Next, further details will be described with reference to the drawings. FIG. 2 shows the relationship between the solubility of hydrogen in steel and the temperature. As is clear from FIG. 2, the solubility of hydrogen is high at 5 ppm or more in the austenite temperature range, but the solubility is significantly reduced to 3.5 ppm or less in the ferrite (non-carburized part) temperature range. That is, maintaining the temperature in the ferrite temperature range after the carburization or carbonitriding at a constant temperature means that the hydrogen charged in the steel can be discharged in a shorter time.

図3に温度と鋼中の水素の透過量(透過速度に相当)の関係を示す。図3から明らかなように、A1変態点以下の温度での透過速度は浸炭温度であるA1変態点以上の温度よりも大きい。これは、水素の拡散の速さが鋼の組織に依存しており、オーステナイト組織中よりもフェライト+パーライト組織中の方が拡散が速く、A1変態点以下で保持することにより鋼中にチャージされた水素を効率よく排出できることを意味する。   FIG. 3 shows the relationship between the temperature and the permeation amount of hydrogen in steel (corresponding to the permeation rate). As apparent from FIG. 3, the permeation rate at a temperature below the A1 transformation point is higher than the temperature above the A1 transformation point, which is the carburizing temperature. This is because the diffusion speed of hydrogen depends on the structure of the steel, the diffusion is faster in the ferrite + pearlite structure than in the austenite structure, and is charged in the steel by holding it below the A1 transformation point. This means that hydrogen can be discharged efficiently.

なお、浸炭後、恒温保持せずに放冷した際に、バンド状のマルテンサイトが形成される鋼においては、このマルテンサイトが水素の拡散を阻害し、水素がトラップされやすく水素濃度が高くなるのに加え、マルテンサイト変態による内部応力によって、白点性欠陥の生じる危険が最も高い。このような鋼では、浸炭又は浸炭窒化後に恒温保持する熱処理を施すと、水素のトラップされる部位であるマルテンサイトが減って水素濃度を低下させることができ、応力の発生も防止できるので、白点性欠陥をいずれも防止するのに特に適している。   In addition, in steel in which band-shaped martensite is formed when it is allowed to cool without being kept at a constant temperature after carburizing, this martensite inhibits hydrogen diffusion, and hydrogen concentration is likely to be trapped. In addition, the highest risk of white spot defects due to internal stress due to martensitic transformation. In such steel, when heat treatment is performed to keep the temperature constant after carburizing or carbonitriding, martensite, which is a site where hydrogen is trapped, can be reduced, the hydrogen concentration can be reduced, and stress can be prevented from being generated. It is particularly suitable for preventing any point defects.

図1に、等温変態図(TTT図)を模式的に示す。TTT図とは過冷オーステナイトを任意の温度で恒温保持したときの組織変化を示したものである。合金鋼のTTT図には2種類あって、(a)一対のノーズ(鼻)とベイ(湾)を有するもの(一段変態型)と、(b)2対のノーズとベイを有するもの(二段変態型)である。(a)は、ノーズより高い温度ではパーライト変態を、ノーズより低い温度ではベイナイト変態を起こす。(b)は、比較的高い温度帯にあるノーズとベイはパーライト変態によるもので、もう一方のノーズとベイはベイナイト変態を示すものである。   FIG. 1 schematically shows an isothermal transformation diagram (TTT diagram). The TTT diagram shows the structural change when supercooled austenite is held at a constant temperature. There are two types of alloy steel TTT diagrams: (a) one having a pair of noses (nose) and bays (one-stage transformation type), and (b) one having two pairs of noses and bays (two Stage transformation). (A) causes pearlite transformation at a temperature higher than the nose and bainite transformation at a temperature lower than the nose. In (b), the nose and bay in a relatively high temperature zone are due to pearlite transformation, and the other nose and bay exhibit bainite transformation.

TTT図の形状が(a)と(b)に分かれる基準は、鋼に含まれる合金元素の種類による。すなわち、(b)は、Cr、Mo、V、W、Ti、Nb、Bが含有されている鋼について示される。なお、これらの合金元素は加熱オーステナイトに固溶している必要があり、オーステナイト化温度が低い場合には、合金元素はあまり固溶せずに炭化物または炭窒化物として遊離しているため、TTT図に及ぼす影響が無くなる(熱処理技術便覧、(社)日本熱処理技術協会編、日刊工業新聞社)。   The standard for dividing the shape of the TTT diagram into (a) and (b) depends on the type of alloy element contained in the steel. That is, (b) is shown for steel containing Cr, Mo, V, W, Ti, Nb, B. Note that these alloy elements need to be dissolved in heated austenite. When the austenitizing temperature is low, the alloy elements are not so much dissolved and are released as carbides or carbonitrides. No effect on the figure (handbook of heat treatment technology, edited by Japan Heat Treatment Technology Association, Nikkan Kogyo Shimbun).

つまり、本発明によれば、上記炭化物および炭窒化物生成元素を含む鋼において、A3(浸炭温度)又はAcm(浸炭窒化温度)以上の温度でオーステナイト化した後に、直ちにA1〜TPBで恒温保持することによってフェライト+パーライト組織にし、恒温保持中に鋼中水素を外部に排出させるとともに、水素トラップサイトであるマルテンサイト体積率を限りなくゼロにすることで、白点性欠陥を無くすことができる。   That is, according to the present invention, the steel containing the carbide and carbonitride-forming element is austenitized at a temperature equal to or higher than A3 (carburizing temperature) or Acm (carbonitriding temperature), and immediately maintained at A1 to TPB. Thus, a ferrite + pearlite structure is formed, and hydrogen in steel is discharged to the outside while maintaining a constant temperature, and the martensite volume ratio, which is a hydrogen trap site, is made zero as much as possible, thereby eliminating white spot defects.

かかる目的を達成するために、上記1)に係る熱処理品は、浸炭或いは浸炭窒化処理後の冷却時に、T=(620〜640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5となる温度T[℃]で、t≧0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn−2.9)となる時間t[hr]、恒温保持する熱処理を施し、焼入れ硬化してなる金属組織を有することを特徴とする。上記式中、Cr、Mo、Ni、Mnは、それぞれの合金鋼中の含有率(重量%)の数値を表す。
この場合、熱処理品は、その成分が重量%で、C:0.18〜0.50%、Ni:0.30〜3.50%、Cr:0.30〜1.00%、Mo:0.20〜0.50%、Mn:0.20〜1.50%を含有する合金鋼である。
In order to achieve such an object, the heat-treated product according to the above 1) becomes T = (620 to 640) + (2.0Cr + 0.3Mo + 0.5Ni + 0.1Mn) × 5 upon cooling after carburizing or carbonitriding. At a temperature T [° C.], a time t [hr] at which t ≧ 0.8 + exp (4.0Cr + 1.7Mo + 0.5Ni + 0.1Mn-2.9) is applied, and a metal structure formed by quenching and hardening is subjected to heat treatment for holding at a constant temperature. It is characterized by having. In the above formula, Cr, Mo, Ni, and Mn represent numerical values of the content (% by weight) in each alloy steel.
In this case, the heat-treated product has a weight percentage of C: 0.18 to 0.50%, Ni: 0.30 to 3.50%, Cr: 0.30 to 1.00%, Mo: 0 Alloy steel containing 20 to 0.50% and Mn: 0.20 to 1.50%.

また、浸炭または浸炭窒化後、恒温保持した熱処理品のマルテンサイトの面積率が0.1%以下、水素濃度が2ppm以下が好ましく、更に好ましくは熱処理品のマルテンサイトの面積率が0%、水素濃度が1ppm以下がよい。   Also, after carburizing or carbonitriding, the martensite area ratio of the heat-treated product maintained at a constant temperature is preferably 0.1% or less and the hydrogen concentration is preferably 2 ppm or less, more preferably the martensite area ratio of the heat-treated product is 0%, hydrogen The concentration is preferably 1 ppm or less.

以下、本発明を図を参照して説明する。
先ず、好適な熱処理条件範囲について述べる。
The present invention will be described below with reference to the drawings.
First, a preferred heat treatment condition range will be described.

[浸炭或いは浸炭窒化後の恒温保持温度]
白点性欠陥の防止の点から恒温保持温度を検討した。図3に示した温度と水素の透過量(透過速度)との関係から、水素の透過速度はA1変態点直下が最も大きな値をとっており、水素排出の効率からみると恒温保持温度はA1変態点直下が最も適している。保持温度が600℃以下になると、浸炭温度である900〜950℃よりも水素の拡散速度が遅くなって水素の排出が有効に行われないので、最低600℃以上で保持することが望ましい。
[Constant temperature holding temperature after carburizing or carbonitriding]
The constant temperature holding temperature was examined from the viewpoint of preventing white spot defects. From the relationship between the temperature shown in FIG. 3 and the hydrogen permeation amount (permeation rate), the hydrogen permeation rate takes the largest value immediately below the A1 transformation point. From the viewpoint of the efficiency of hydrogen discharge, the constant temperature holding temperature is A1. Directly below the transformation point is most suitable. When the holding temperature is 600 ° C. or lower, the diffusion rate of hydrogen is slower than the carburizing temperature of 900 to 950 ° C. and hydrogen is not discharged effectively.

一方、図1のTTT図に示した温度と保持時間との関係から見ると、図中にハッチングで示してある、パーライト変態を起こすことのできる温度域(TPB〜A1)かつPf線を通過できる時間領域において、パーライト組織が得られる。中でも、最も短時間にパーライト組織を得ることができるのは、ノーズ温度(TPP)においてであり、ノーズ温度よりも高くなればなるほど、あるいは低くなればなるほど、必要な保持時間は伸びていく。   On the other hand, when viewed from the relationship between the temperature and the holding time shown in the TTT diagram of FIG. 1, the temperature range (TPB to A1) in which pearlite transformation can occur, which is indicated by hatching in the figure, can pass through the Pf line. A pearlite structure is obtained in the time domain. In particular, the pearlite structure can be obtained in the shortest time at the nose temperature (TPP), and the required holding time increases as the temperature becomes higher or lower than the nose temperature.

以上のことから、白点性欠陥を防止する際の恒温保持温度としては、TPB〜A1変態点が好ましく、さらにはノーズ温度TPPが最も良い。上記合金元素を含有した鋼においては、(620〜640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5の範囲となる温度で保持することが望ましい。   From the above, the constant temperature holding temperature for preventing white spot defects is preferably the TPB to A1 transformation point, and the nose temperature TPP is the best. In the steel containing the above alloy elements, it is desirable to hold at a temperature in the range of (620 to 640) + (2.0Cr + 0.3Mo + 0.5Ni + 0.1Mn) × 5.

[恒温保持時間]
鋼の恒温変態が完了する時間は、通常、合金元素の添加により遅くなる。ここで、本発明者等は恒温変態特性に影響する添加元素として、パーライト変態を遅らせるCr、Mo、Ni、Mnの4元素に注目して調査をした結果、変態の遅延の程度はCr>Mo>Ni>Mnとなっており、これら元素の含有量をパラメータとした計算式により、上記恒温保持温度範囲で恒温保持した際の変態完了時間を決定できることを実験的に見出し、下記(1)式に示す。
t[hr]≧0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn−2.9) (1)
[Constant temperature retention time]
The time for completing the isothermal transformation of steel is usually delayed by the addition of alloying elements. Here, as a result of investigations by paying attention to four elements of Cr, Mo, Ni, and Mn that delay pearlite transformation as additive elements affecting the isothermal transformation characteristics, the present inventors have found that the degree of transformation delay is Cr> Mo. >Ni> Mn It is experimentally found that the transformation completion time when the temperature is maintained in the constant temperature holding temperature range can be determined by a calculation formula using the contents of these elements as parameters, and the following formula (1) Shown in
t [hr] ≧ 0.8 + exp (4.0Cr + 1.7Mo + 0.5Ni + 0.1Mn-2.9) (1)

前式より、Cr、Mo、Ni、Mn含有率から最低限必要な最低恒温保持時間を決定することができる。また、(1)式で決定された最低恒温保持時間t(Hr)を満たす熱処理を施せば、二次焼入れの場合に結晶粒が微細化しない材料を用いた機械部品であっても微細化ができ、機械的性質の向上、例えば転がり軸受に用いた場合には転がり軸受寿命を長寿命とすることができる。   From the previous formula, the minimum required constant temperature holding time can be determined from the Cr, Mo, Ni, and Mn contents. In addition, if heat treatment that satisfies the minimum constant temperature holding time t (Hr) determined by the equation (1) is performed, even a mechanical part using a material in which crystal grains are not refined in the case of secondary quenching can be refined. It is possible to improve mechanical properties, for example, when used for a rolling bearing, the life of the rolling bearing can be extended.

[冷却方法、冷却速度]
浸炭或いは浸炭窒化温度から恒温保持温度への冷却時に冷却速度が遅すぎると、基地であるオーステナイトから炭素が吐き出され、セメンタイトがオーステナイト粒界に沿って網目状に析出し、網目状炭化物近傍のオーステナイト中の炭素濃度が減少する。この状態でA1変態点以下に温度が低下すると、共析変態によりオーステナイトからパーライトが生じるが、炭化物の核が存在しているために層状に炭化物は析出せずに、網目状炭化物の粗大化が優先的に進行してしまい、網目状炭化物近傍は炭素濃度が減少しているため、フェライトとなる。この状態から二次焼入れ処理でオーステナイト温度域に再加熱を行っても、網目状炭化物の一部は基地中に再溶解するものの、網目状炭化物近傍のオーステナイト中の炭素濃度は低いため十分な球状化セメンタイトの析出は起こらず、球状化セメンタイトの欠乏領域が形成され硬さが低下する。これを防止するには、粒界初析セメンタイト析出を抑制するように最低2〜3℃/min以上の速度で、所定の恒温保持温度まで冷却を行うとよい。
[Cooling method, cooling rate]
If the cooling rate is too slow during cooling from the carburizing or carbonitriding temperature to the constant temperature holding temperature, carbon is spouted from the austenite base, and cementite precipitates in a network form along the austenite grain boundary, and austenite in the vicinity of the network carbide. The carbon concentration in it decreases. When the temperature falls below the A1 transformation point in this state, pearlite is generated from austenite by eutectoid transformation, but the carbides do not precipitate in the layer because of the carbide nuclei, and the network carbides become coarse. It progresses preferentially, and since the carbon concentration is reduced in the vicinity of the mesh-like carbide, it becomes ferrite. Even if reheating is performed to the austenite temperature range by secondary quenching treatment from this state, a part of the reticulated carbide is re-dissolved in the matrix, but because the carbon concentration in the austenite near the reticulated carbide is low, it is sufficiently spherical. Precipitation of cementitized cementite does not occur, and a deficient region of spheroidized cementite is formed, resulting in a decrease in hardness. In order to prevent this, it is preferable to cool to a predetermined constant temperature holding temperature at a rate of at least 2 to 3 ° C./min or more so as to suppress grain boundary pro-eutectoid cementite precipitation.

生産性を考慮した場合、20℃/min程度の冷却速度で速やかに冷却することが好ましい。したがって、冷却速度は2〜20℃/min、好ましくは10〜20℃/minで冷却するのがよい。   In consideration of productivity, it is preferable to quickly cool at a cooling rate of about 20 ° C./min. Therefore, the cooling rate is 2 to 20 ° C./min, preferably 10 to 20 ° C./min.

また、恒温保持の段階に入る前に所定の恒温保持温度より低下して、芯部(非浸炭部)のMs点以下にまで低下した場合は、マルテンサイトが形成され、且つ、多量の水素が残存した状態であるため、放冷割れと白点性欠陥のいずれもが生じる危険が高まる。したがって、浸炭或いは浸炭窒化後の恒温保持を施す前に、芯部のMs点以下に温度が低下するのは避けなければならない。なお、恒温保持後、室温への冷却時の冷却速度は既に恒温保持によりパーライト変態が完了しているので任意の冷却速度で冷却できる。   In addition, when the temperature falls below a predetermined constant temperature holding temperature before entering the constant temperature holding stage and falls below the Ms point of the core (non-carburized part), martensite is formed and a large amount of hydrogen is generated. Since it is in the remaining state, there is an increased risk that both cool-down cracks and white spot defects will occur. Therefore, it is necessary to avoid a temperature drop below the Ms point of the core before performing the constant temperature maintenance after carburizing or carbonitriding. In addition, since the pearlite transformation has already been completed by holding the constant temperature after the constant temperature holding, the cooling rate at the time of cooling to room temperature can be cooled at an arbitrary cooling rate.

次に、鋼の化学成分の限定範囲について述べる。なお、%は重量%とする。
C:0.18%未満になると、浸炭又は浸炭窒化処理時間が長くなり、熱処理生産性が悪化する一方、0.50%を超えると、靭性が大きく低下するので、Cの含有量は0.18%〜0.50%とする。
Next, the limited range of the chemical composition of steel will be described. In addition,% is weight%.
C: When the content is less than 0.18%, the carburization or carbonitriding time is increased and the heat treatment productivity is deteriorated. On the other hand, when the content exceeds 0.50%, the toughness is greatly reduced. 18% to 0.50%.

Cr:Crは焼入れ性を向上させ、基地を固溶強化する他、浸炭或いは浸炭窒化により表面層に炭化物、窒化物及び炭窒化物を析出させ、機械的性質の向上、例えば転がり軸受では転動疲労寿命の向上に役に立つので、Cr含有量の下限値は0.30%とする。0.30%以下ではその添加効果が少ない。また、多量に添加すると、表面にCr酸化物が形成され、浸炭或いは浸炭窒化時に炭素や窒素が表面から侵入するのを阻害し、熱処理生産性を低下させるので、Crの含有量は0.30〜1.00%とする。   Cr: Cr improves hardenability and solid-solution strengthens the base, and carbide, nitride and carbonitride are deposited on the surface layer by carburizing or carbonitriding to improve mechanical properties, for example rolling in rolling bearings Since it is useful for improving the fatigue life, the lower limit of the Cr content is set to 0.30%. If it is 0.30% or less, the effect of addition is small. Further, when added in a large amount, Cr oxide is formed on the surface, which inhibits the intrusion of carbon and nitrogen from the surface during carburizing or carbonitriding and lowers the heat treatment productivity, so the Cr content is 0.30. -1.00%.

Mn:Mnは焼入れ性を向上させると共に残留オーステナイト(異物混入下での転がり寿命に有効)の生成元素であるため、含有量を0.20%以上とする。但し、Mnは素材のフェライトを強化する元素であり、含有量が多すぎると冷間加工性が著しく低下するので、Mnの含有量は0.20〜1.50%とし、0.40〜0.70%とすることが好ましい。   Mn: Since Mn is an element that improves hardenability and forms retained austenite (effective for rolling life in the presence of foreign matter), the content is set to 0.20% or more. However, Mn is an element that reinforces the ferrite of the material, and if the content is too large, the cold workability is remarkably lowered, so the Mn content is 0.20 to 1.50%, and 0.40 to 0 70% is preferable.

Ni:Niは鋼の焼入れ性を向上させ、靭性を高める。その効果は0.30%以上の添加で顕著になる。しかし、含有量が3.50%を超えてもその効果は向上せず、過剰な添加はコストが高くなるので、Niの含有量は0.30〜3.50%とし、1.50〜2.50%とすることが好ましい。   Ni: Ni improves the hardenability of steel and increases toughness. The effect becomes remarkable when 0.30% or more is added. However, even if the content exceeds 3.50%, the effect is not improved, and excessive addition increases the cost. Therefore, the Ni content is set to 0.30 to 3.50%, and 1.50 to 2%. .50% is preferable.

Mo:Moは鋼の焼入れ性及び焼戻し軟化抵抗性を増大させ、浸炭窒化により表面層に炭化物、窒化物及び炭窒化物を析出して、材料の硬さを向上する。また、パーライト変態を遅らせ、TTT図において変態域を2段に分ける効果がある。その効果は0.20%以上の含有量で顕著となる。しかしながら、Ar’変態の遅れは含有量が0.50%までが最も遅滞作用が強く、これを超えてもTTT図はあまり変化しなくなるので、Moの含有量は0.20〜0.50%とし、0.20〜0.40%とすることが好ましい。   Mo: Mo increases the hardenability and temper softening resistance of steel, and precipitates carbides, nitrides, and carbonitrides on the surface layer by carbonitriding to improve the hardness of the material. Further, there is an effect of delaying the pearlite transformation and dividing the transformation region into two stages in the TTT diagram. The effect becomes significant when the content is 0.20% or more. However, the delay of Ar ′ transformation is strongest until the content is up to 0.50%, and since the TTT diagram does not change much beyond this, the Mo content is 0.20 to 0.50%. And preferably 0.20 to 0.40%.

以下、実施例により、本発明を説明する。
(実施例及び比較例)
表1に示す組成の鋼種1〜6を材料とするNU240相当リング材各200個について次のA〜Eの条件で熱処理を行った。表2に熱処理条件を示す。
Hereinafter, the present invention will be described by way of examples.
(Examples and Comparative Examples)
Heat treatment was performed under the following conditions A to E for 200 NU240-equivalent ring materials made of steel types 1 to 6 having the compositions shown in Table 1. Table 2 shows the heat treatment conditions.

Figure 2005281780
Figure 2005281780

Figure 2005281780
Figure 2005281780

[熱処理A]
950±10℃で20時間、RXガス+エンリッチガスの雰囲気で浸炭を行なった後、炉内において窒素ガス雰囲気中で550℃まで炉冷した後、炉外において室温にまで空冷し、再度炉内で840±10℃に加熱し、焼入れを行ない、さらに、180±10℃で2時間の焼戻しを行なう。
[Heat Treatment A]
Carburizing in an atmosphere of RX gas + enriched gas for 20 hours at 950 ± 10 ° C., then furnace cooling to 550 ° C. in a nitrogen gas atmosphere in the furnace, air cooling to room temperature outside the furnace, and again in the furnace Is heated to 840 ± 10 ° C. and quenched, and further tempered at 180 ± 10 ° C. for 2 hours.

[熱処理B]
950±10℃で20時間、RXガス+エンリッチガスの雰囲気で浸炭を行なった後、窒素ガス雰囲気中において640±10℃で10hr恒温保持し、室温まで空冷した後、再度炉内で840±10℃に加熱し、焼入れを行ない、次いで、180±10℃で2時間の焼戻しを行なう。
[Heat treatment B]
Carburizing was performed at 950 ± 10 ° C. for 20 hours in an RX gas + enriched gas atmosphere, then kept at 640 ± 10 ° C. for 10 hours in a nitrogen gas atmosphere, air-cooled to room temperature, and then again 840 ± 10 in the furnace. It is heated to 0 ° C. and quenched, and then tempered at 180 ± 10 ° C. for 2 hours.

[熱処理C]
950±10℃で20時間、RXガス+エンリッチガスの雰囲気で浸炭を行なった後、窒素ガス雰囲気中において640±10℃で2hr恒温保持し、室温まで空冷した後、再度炉内で840±10℃に加熱し、焼入れを行ない、次いで、180±10℃で2時間の焼戻しを行なう。
[Heat treatment C]
Carburizing was performed at 950 ± 10 ° C. for 20 hours in an RX gas + enriched gas atmosphere, kept at 640 ± 10 ° C. for 2 hours in a nitrogen gas atmosphere, air-cooled to room temperature, and then again 840 ± 10 in the furnace. It is heated to 0 ° C. and quenched, and then tempered at 180 ± 10 ° C. for 2 hours.

[熱処理D]
950±10℃で20時間、RXガス+エンリッチガスの雰囲気で浸炭を行なった後、窒素ガス雰囲気中において640±10℃で10hr恒温保持し、再度840±10℃に加熱し、焼入れを行ない、次いで、180±10℃で2時間の焼戻しを行なう。
[Heat treatment D]
After carburizing in an atmosphere of RX gas + enriched gas for 20 hours at 950 ± 10 ° C., holding at 640 ± 10 ° C. for 10 hours in a nitrogen gas atmosphere, heating to 840 ± 10 ° C. again, quenching is performed, Next, tempering is performed at 180 ± 10 ° C. for 2 hours.

[熱処理E]
950±10℃で20時間、RXガス+エンリッチガス+アンモニアガス7%の雰囲気で浸炭窒化を行なった後、窒素ガス雰囲気中において640±10℃で10hr恒温保持し、室温まで空冷した後、再度炉内で840±10℃に加熱し、焼入れを行ない、次いで、180±10℃で2時間の焼戻しを行なう。
ここで、熱処理A及びCは比較例であり、熱処理B、D及びEは実施例である。
[Heat Treatment E]
After carbonitriding in an atmosphere of RX gas + enrich gas + ammonia gas 7% at 950 ± 10 ° C. for 20 hours, kept constant at 640 ± 10 ° C. for 10 hours in a nitrogen gas atmosphere, air cooled to room temperature, and again It is heated to 840 ± 10 ° C. in a furnace, quenched, and then tempered at 180 ± 10 ° C. for 2 hours.
Here, heat treatments A and C are comparative examples, and heat treatments B, D, and E are examples.

A〜Eの熱処理を行なったリング材について、後述する方法にて鋼中の水素濃度を測定すると共に、組織観察よりマルテンサイト面積率を調査した。組織観察は、恒温保持を終えて焼入れをする前のものについても行なった。また、疲労試験により疲労強度を調査した。疲労強度試験機は、図4に示すように、リング材(試験片)1を回転可能に狭持する荷重ロール2及び駆動ロール3と、リング材1の外周部を支持するサポートロール4とを備える。疲労試験は、駆動ロール3の回転数をN=1000rpmで行い、1×106回を疲労限とした。各種測定の結果をまとめて表3に示す。 About the ring material which heat-processed AE, while measuring the hydrogen concentration in steel by the method mentioned later, the martensite area ratio was investigated from structure | tissue observation. Microscopic observation was also performed on the sample before quenching after completion of constant temperature holding. In addition, fatigue strength was investigated by a fatigue test. As shown in FIG. 4, the fatigue strength tester includes a load roll 2 and a drive roll 3 that rotatably hold a ring material (test piece) 1, and a support roll 4 that supports the outer periphery of the ring material 1. Prepare. In the fatigue test, the rotational speed of the drive roll 3 was N = 1000 rpm, and 1 × 10 6 times was set as the fatigue limit. Table 3 summarizes the results of various measurements.

Figure 2005281780
Figure 2005281780

鋼中の水素濃度測定方法を説明する。B〜Eの恒温保持を終えたリング材(φ30×10mm)を100個作製し、その内50個は直ちにドライアイスを入れたジュワー瓶に入れて保存した。これらの試験片は表面研磨後、脱脂、冷風乾燥してから水素測定を行ない、該測定はジュワー瓶から試験片を取り出してから1時間以内で開始した。残りの50個の試験片については中心軸線を含む断面を切り出し、光学顕微鏡を用いた組織観察によりマルテンサイト面積率を調査した(全断面積に対するマルテンサイトの占める面積の比を求めた。)。   A method for measuring the hydrogen concentration in steel will be described. 100 ring materials (φ30 × 10 mm) having been maintained at B to E were prepared, and 50 of them were immediately stored in a dewar bottle containing dry ice. These test pieces were surface-polished, degreased and dried with cold air before hydrogen measurement was performed, and the measurement was started within 1 hour after the test pieces were taken out from the dewar. For the remaining 50 test pieces, a cross-section including the central axis was cut out, and the martensite area ratio was examined by structure observation using an optical microscope (the ratio of the area occupied by martensite to the total cross-sectional area was determined).

水素の測定は真空加熱法により行った。測定条件を以下に示す。
加熱炉:赤外線イメージ炉
加熱温度:室温〜700℃
昇温速度:10℃/min
Hydrogen was measured by a vacuum heating method. The measurement conditions are shown below.
Heating furnace: Infrared image furnace Heating temperature: Room temperature to 700 ° C
Temperature increase rate: 10 ° C / min

表3の結果を、熱処理条件ごとに説明する。
表3において、マルテンサイト面積率とは、恒温変態終了後の金属組織全体に対するマルテンサイトの占める割合を示している。
The results of Table 3 will be described for each heat treatment condition.
In Table 3, the martensite area ratio indicates the ratio of martensite to the entire metal structure after completion of the isothermal transformation.

熱処理A(比較例)では、恒温保持の工程がないため、水素の排出が十分に行われず、且つ、浸炭後の放冷により組織全体がマルテンサイトとなっており、白点性欠陥と放冷割れの両方が生じる危険性が極めて高くなっている。また、恒温保持を施していないので、二次焼入れ時にマルテンサイト組織は微細化しないため疲労強度はいずれの鋼種も低い。   In heat treatment A (comparative example), there is no constant temperature holding process, so hydrogen is not sufficiently discharged, and the entire structure is martensite by cooling after carburization, and white spot defects and cooling The risk of both cracking is extremely high. In addition, since no constant temperature is maintained, the martensite structure is not refined during the secondary quenching, so that the fatigue strength is low for all steel types.

熱処理B(実施例)では、いずれも上述した(1)式から求めた最低恒温保持時間が1.3〜9.3[hr]の範囲で実際の恒温保持時間の10時間を下回っているので、いずれの鋼種1〜6も水素濃度が1ppm以下と少なく、また、マルテンサイト面積率が0%となっており、白点性欠陥の発生の可能性は皆無である。しかも、二次焼入れ時のマルテンサイト組織微細化の効果により高い疲労強度を示している。   In the heat treatment B (Example), since the minimum constant temperature holding time obtained from the above-described equation (1) is in the range of 1.3 to 9.3 [hr], the actual constant temperature holding time is less than 10 hours. In any of the steel types 1 to 6, the hydrogen concentration is as low as 1 ppm or less, the martensite area ratio is 0%, and there is no possibility of occurrence of white spot defects. In addition, high fatigue strength is shown by the effect of refining the martensite structure during secondary quenching.

熱処理C(比較例)は、(1)式から算出される最低恒温保持時間が4.2〜9.3[hr]の範囲で、実際の恒温保持時間の2時間よりも大きい値となるため、2時間の保持時間では高温変態が完了しておらず、したがってマルテンサイトが多量に形成され、しかも、水素濃度が高い値を示しているため、白点性欠陥が発生する危険性が高い。また、疲労強度が低いが、これは高温変態が完了していないため、二次焼入れ処理でのマルテンサイト組織の微細化が十分に進行しなかったためである。   In the heat treatment C (comparative example), the minimum isothermal holding time calculated from the formula (1) is in the range of 4.2 to 9.3 [hr], and is larger than the actual isothermal holding time of 2 hours. In the holding time of 2 hours, the high-temperature transformation is not completed, so a large amount of martensite is formed, and the hydrogen concentration shows a high value, so that there is a high risk of white spot defects. Further, although the fatigue strength is low, this is because the high-temperature transformation has not been completed, and the refinement of the martensite structure in the secondary quenching process has not sufficiently progressed.

熱処理D(実施例)は、上述した熱処理Bと同じ理由により、どちらの鋼種も水素濃度のレベルが低く、また、マルテンサイト面積率が0%となっており、白点性欠陥の発生の可能性は皆無である。   In the heat treatment D (Example), both steel types have a low hydrogen concentration level and the martensite area ratio is 0% for the same reason as the heat treatment B described above, and white spot defects can occur. There is no sex.

熱処理E(実施例)は、上述した熱処理条件Bと同様の理由で、浸炭窒化処理の場合でもいずれの鋼種にも割れの発生は認められず、高い疲労強度を示している。浸炭処理のみならず浸炭窒化処理においても本発明に係る熱処理方法は割れの防止、組織の改善に極めて有効である。   In the heat treatment E (Example), for the same reason as the heat treatment condition B described above, no cracking was observed in any of the steel types even in the case of carbonitriding treatment, indicating high fatigue strength. The heat treatment method according to the present invention is extremely effective in preventing cracking and improving the structure not only in carburizing but also in carbonitriding.

等温変態図(TTT図)の模式図である。It is a schematic diagram of an isothermal transformation diagram (TTT diagram). 鋼中の水素溶解度と温度との関係を示す図面である。It is drawing which shows the relationship between the hydrogen solubility in steel, and temperature. 温度と鋼中水素の透過量の関係を示す図面である。It is drawing which shows the relationship between temperature and the permeation | transmission amount of hydrogen in steel. 疲労試験機の概要を示す図面である。It is drawing which shows the outline | summary of a fatigue testing machine.

符号の説明Explanation of symbols

1 試験片
2 荷重ロール
3 駆動ロール
4 サポートロール
1 Test piece 2 Load roll 3 Drive roll 4 Support roll

Claims (3)

C:0.18〜0.50重量%、Ni:0.30〜3.50重量%、Cr:0.30〜1.00重量%、Mo:0.20〜0.50重量%、Mn:0.20〜1.50重量%の合金元素を含有する鋼において、
浸炭或いは浸炭窒化処理後の冷却時に、
T=(620〜640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5となる温度T[℃]で、
t≧0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn−2.9)となる時間t[hr]、
恒温保持する熱処理を施し、焼入れ硬化してなる金属組織を有することを特徴とする熱処理品。
上記式中、Cr、Mo、Ni、Mnは、それぞれの含有率(重量%)の数値を表す。
C: 0.18 to 0.50 wt%, Ni: 0.30 to 3.50 wt%, Cr: 0.30 to 1.00 wt%, Mo: 0.20 to 0.50 wt%, Mn: In steels containing 0.20 to 1.50% by weight of alloying elements,
During cooling after carburizing or carbonitriding,
T = (620 to 640) + (2.0Cr + 0.3Mo + 0.5Ni + 0.1Mn) × 5
a time t [hr] at which t ≧ 0.8 + exp (4.0Cr + 1.7Mo + 0.5Ni + 0.1Mn-2.9);
A heat-treated product characterized by having a metal structure formed by quenching and hardening by performing a heat treatment for holding at a constant temperature.
In the above formula, Cr, Mo, Ni, and Mn represent numerical values of the respective contents (% by weight).
浸炭或いは浸炭窒化処理後に恒温保持した後、直ちに昇温して焼入れを施すことを特徴とする請求項1に記載の熱処理品。   The heat-treated product according to claim 1, wherein after the carburizing or carbonitriding treatment, the temperature is maintained, and then the temperature is immediately raised and quenching is performed. C:0.18〜0.50重量%、Ni:0.30〜3.50重量%、Cr:0.30〜1.00重量%、Mo:0.20〜0.50重量%、Mn:0.20〜1.50重量%の合金元素を含有する鋼の浸炭或いは浸炭窒化処理後の冷却時に、
T=(620〜640)+(2.0Cr+0.3Mo+0.5Ni+0.1Mn)×5となる温度T[℃]で、
t≧0.8+exp(4.0Cr+1.7Mo+0.5Ni+0.1Mn−2.9)となる時間t[hr]、
恒温保持することを特徴とする鋼の熱処理方法。
上記式中、Cr、Mo、Ni、Mnは、それぞれの含有率(重量%)の数値を表す。
C: 0.18 to 0.50 wt%, Ni: 0.30 to 3.50 wt%, Cr: 0.30 to 1.00 wt%, Mo: 0.20 to 0.50 wt%, Mn: During cooling after carburizing or carbonitriding of steel containing 0.20 to 1.50% by weight of alloy elements,
T = (620 to 640) + (2.0Cr + 0.3Mo + 0.5Ni + 0.1Mn) × 5
a time t [hr] at which t ≧ 0.8 + exp (4.0Cr + 1.7Mo + 0.5Ni + 0.1Mn-2.9);
A method for heat treatment of steel, characterized by maintaining a constant temperature.
In the above formula, Cr, Mo, Ni, and Mn represent numerical values of the respective contents (% by weight).
JP2004097822A 2004-03-30 2004-03-30 Heat-treated article, and heat treatment method for it Pending JP2005281780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097822A JP2005281780A (en) 2004-03-30 2004-03-30 Heat-treated article, and heat treatment method for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097822A JP2005281780A (en) 2004-03-30 2004-03-30 Heat-treated article, and heat treatment method for it

Publications (1)

Publication Number Publication Date
JP2005281780A true JP2005281780A (en) 2005-10-13

Family

ID=35180497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097822A Pending JP2005281780A (en) 2004-03-30 2004-03-30 Heat-treated article, and heat treatment method for it

Country Status (1)

Country Link
JP (1) JP2005281780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101735A (en) * 2013-11-21 2015-06-04 大同特殊鋼株式会社 Carburized component
JP2021509147A (en) * 2017-12-26 2021-03-18 ポスコPosco Ultra-high-strength hot-rolled steel sheets, steel pipes, members, and their manufacturing methods
CN116555671A (en) * 2022-06-28 2023-08-08 天津重型装备工程研究有限公司 Special alloy steel energy storage flywheel for generator set and power grid and heat treatment method thereof
JP7532846B2 (en) 2020-03-30 2024-08-14 株式会社アイシン Manufacturing method of steel parts

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101735A (en) * 2013-11-21 2015-06-04 大同特殊鋼株式会社 Carburized component
JP2021509147A (en) * 2017-12-26 2021-03-18 ポスコPosco Ultra-high-strength hot-rolled steel sheets, steel pipes, members, and their manufacturing methods
JP7186229B2 (en) 2017-12-26 2022-12-08 ポスコ Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing method thereof
US11939639B2 (en) 2017-12-26 2024-03-26 Posco Co., Ltd Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing methods therefor
JP7532846B2 (en) 2020-03-30 2024-08-14 株式会社アイシン Manufacturing method of steel parts
CN116555671A (en) * 2022-06-28 2023-08-08 天津重型装备工程研究有限公司 Special alloy steel energy storage flywheel for generator set and power grid and heat treatment method thereof
CN116555671B (en) * 2022-06-28 2023-12-12 天津重型装备工程研究有限公司 Special alloy steel energy storage flywheel for generator set and power grid and heat treatment method thereof

Similar Documents

Publication Publication Date Title
EP2546381B1 (en) Carburized steel member and method for producing same
US8308873B2 (en) Method of processing steel and steel article
US9845519B2 (en) Boron-added high strength steel for bolt and high strength bolt having excellent delayed fracture resistance
US9593389B2 (en) Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
US20130037182A1 (en) Mechanical part made of steel having high properties and process for manufacturing same
US6383317B1 (en) Process for the manufacture of a component for bearings and its products
JPWO2014104113A1 (en) Carburizing steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
US20170335440A1 (en) Fatigue-resistant bearing steel
JP2008088478A (en) Steel component for bearing having excellent fatigue property
WO2019198539A1 (en) Machine component and method for producing same
JP2016003395A (en) Steel for surface treatment machine component having excellent properties, component of the steel and manufacturing method therefor
EP3348662B1 (en) Near-eutectic bearing steel
JP5754077B2 (en) Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP4123545B2 (en) Heat treated product
CN101994120A (en) Rolling bearing heat treatment process method
JP2005048270A (en) Method of producing surface hardened component, and surface hardened component
CN108866442B (en) Heat treatment method for ultra-high carbon steel and product
JP2005281780A (en) Heat-treated article, and heat treatment method for it
JP2008088484A (en) Steel component for bearing having excellent fatigue property, and its production method
KR100940724B1 (en) Manufacturing method of high carbon steel wire rod for bearing steel, heat treatment method of high carbon steel bearing and high carbon steel bearing
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
JP2004137605A (en) Heat treatment method of steel, and steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A02 Decision of refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A02