JP2005281430A - Coating composition and plastic lens - Google Patents

Coating composition and plastic lens Download PDF

Info

Publication number
JP2005281430A
JP2005281430A JP2004095639A JP2004095639A JP2005281430A JP 2005281430 A JP2005281430 A JP 2005281430A JP 2004095639 A JP2004095639 A JP 2004095639A JP 2004095639 A JP2004095639 A JP 2004095639A JP 2005281430 A JP2005281430 A JP 2005281430A
Authority
JP
Japan
Prior art keywords
coating composition
film
oxide
coating
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004095639A
Other languages
Japanese (ja)
Other versions
JP2005281430A5 (en
JP4586391B2 (en
Inventor
Shuji Naito
修二 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004095639A priority Critical patent/JP4586391B2/en
Publication of JP2005281430A publication Critical patent/JP2005281430A/en
Publication of JP2005281430A5 publication Critical patent/JP2005281430A5/ja
Application granted granted Critical
Publication of JP4586391B2 publication Critical patent/JP4586391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating composition having both of the good transparency, optical properties and endurance as a coated film and the good adhesiveness and endurance between a reflection-preventing film composed of an inorganic material and the coated film and capable of forming a coated film which is stable to outdoor daylight such as sunlight. <P>SOLUTION: The coating composition comprises specific complex oxide fine particles and an organosilicon composition having one or more polymerizable reactive groups as main components, and the coating composition is doped by a compound containing an Fe atom and/or a compound containing a vanadium atom. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラスチックレンズ表面に、基材と同程度の屈折率を有し、耐摩耗性、耐薬品性、耐温水性、耐熱性、耐候性等の耐久性に優れた透明被膜を提供する。また、その被膜上に無機物質からなる反射防止膜を設けることを可能としたことを特徴とするコーティング用組成物に関するものである。   The present invention provides a transparent film having a refractive index comparable to that of a base material on the surface of a plastic lens and excellent in durability such as wear resistance, chemical resistance, hot water resistance, heat resistance, and weather resistance. . The present invention also relates to a coating composition characterized in that an antireflection film made of an inorganic substance can be provided on the film.

合成樹脂製レンズ、特にジエチレングリコールビスアリルカーボネート樹脂レンズ(CR−39)は、ガラスレンズに比べて、安全性、易加工性、ファッション性等に優れており、さらに近年、ハードコート技術、反射防止技術の開発により、急速に普及してきた。   Synthetic resin lenses, especially diethylene glycol bisallyl carbonate resin lenses (CR-39), are superior to glass lenses in terms of safety, ease of processing, fashionability, etc., and more recently, hard coat technology and antireflection technology. With the development of, has been rapidly spread.

ハードコート組成物としては、シリコン系ハードコート被膜をプラスチックレンズ表面に設ける方法が一般的に行われている。例えば、特許文献1、特許文献2にAl(III)中心金属原子とするアセチルアセトネ−トを用いるハードコート組成物が開示されている。   As a hard coat composition, a method of providing a silicon hard coat film on the surface of a plastic lens is generally performed. For example, Patent Document 1 and Patent Document 2 disclose hard coat compositions using acetylacetonate having an Al (III) central metal atom.

また、特許文献3には、アミン化合物、多価カルボン酸、数々のアセチルアセトン金属塩化合物、フェノール化合物、三フッ化ホウ素含有化合物等を添加するハードコート組成物が開示されている。   Patent Document 3 discloses a hard coat composition to which an amine compound, a polyvalent carboxylic acid, a number of acetylacetone metal salt compounds, a phenol compound, a boron trifluoride-containing compound, and the like are added.

また、特許文献4には、過塩素酸アンモニウムを用いるハードコート組成物が、特許文献5には、過塩素酸マグネシウムを用いるハードコート組成物が開示されている。   Patent Document 4 discloses a hard coat composition using ammonium perchlorate, and Patent Document 5 discloses a hard coat composition using magnesium perchlorate.

また、屈折率が1.52以上の高屈折率樹脂レンズに同様の方法を適用した場合には、樹脂レンズとコーティング膜の屈折率差による干渉縞が発生し、外観不良の原因となる。この問題を解決するために、特許文献6、特許文献7のようにシリコン系コーティング組成物に使われている二酸化ケイ素微粒子のコロイド状分散体を、高屈折率を有するAl、Ti、Zr、Sn、Sbの無機酸化物微粒子のコロイド状分散体に置き換えるといったコーティング技術が開示されている。また、特許文献8では、二酸化チタンと二酸化セリウムの複合系ゾルの製造方法が開示されており、特許文献9ではTiとCeの複合無機酸化物微粒子、特許文献10ではTi、CeおよびSiの複合無機酸化物を有機ケイ素化合物で処理した微粒子をコーティング組成物に用いる技術が開示されている。また、特許文献11では、チタンおよびスズの酸化物の核粒子で、珪素酸化物とジルコニウムおよび/またはアルミニウムの酸化物との複合酸化物で被覆層を形成した複合酸化物微粒子をコーティング組成物に用いる技術が開示されている。   In addition, when the same method is applied to a high refractive index resin lens having a refractive index of 1.52 or more, interference fringes are generated due to a difference in refractive index between the resin lens and the coating film, which causes poor appearance. In order to solve this problem, a colloidal dispersion of silicon dioxide fine particles used in silicon-based coating compositions as in Patent Document 6 and Patent Document 7 is made of Al, Ti, Zr, Sn having a high refractive index. , Coating techniques such as replacement with a colloidal dispersion of Sb inorganic oxide fine particles are disclosed. Patent Document 8 discloses a method for producing a composite sol of titanium dioxide and cerium dioxide, Patent Document 9 discloses composite inorganic oxide fine particles of Ti and Ce, and Patent Document 10 discloses a composite of Ti, Ce, and Si. A technique using fine particles obtained by treating an inorganic oxide with an organosilicon compound for a coating composition is disclosed. Further, in Patent Document 11, composite oxide fine particles in which a coating layer is formed of a composite oxide of silicon oxide and zirconium and / or aluminum oxide with core particles of titanium and tin oxide are used as a coating composition. The technique used is disclosed.

特公昭60−11727号公報Japanese Patent Publication No. 60-11727 特公昭60−30350号公報Japanese Patent Publication No. 60-30350 特公昭61−33868号公報Japanese Patent Publication No.61-33868 特公昭62−9266号公報Japanese Patent Publication No.62-9266 特公平4−59601号公報Japanese Examined Patent Publication No. 4-59601 特公昭61−54331号公報Japanese Patent Publication No. 61-54331 特公昭63−37142号公報Japanese Patent Publication No. 63-37142 特開平1−301517号公報JP-A-1-301517 特開平2−264902号公報JP-A-2-264902 特開平3−68901号公報Japanese Patent Laid-Open No. 3-68901 特開2000−204301号公報JP 2000-204301 A

特許文献1〜10に開示されているコーティング技術による塗膜性能と比較して、特許文献11に開示されているコーティング技術による塗膜性能は、品質バランスに優れており、且つ耐候性が飛躍的に向上する。しかしながら、太陽光などの光を受けて発色して、青色を呈する欠点があった。特に反射防止膜を前記塗膜表面に配した場合に発色した色が残存することにより、視認性を阻害する、また染色レンズにおいては色調が変化するといった不具合が生じていた。   Compared with the coating film performance by the coating technology disclosed in Patent Documents 1 to 10, the coating film performance by the coating technology disclosed in Patent Document 11 is excellent in quality balance and has a remarkable weather resistance. To improve. However, there has been a drawback in that it develops color by receiving light such as sunlight and exhibits a blue color. In particular, when an antireflection film is disposed on the surface of the coating film, a color that has developed color remains, thereby impairing visibility and causing a problem that the color tone changes in a dyed lens.

本発明者らは、前記問題点を解決するため鋭意検討を行った結果、核粒子がチタンおよびスズの酸化物からなり、かつルチル型構造をとる複合固溶体酸化物からなり、被覆層として珪素酸化物とジルコニウムおよび/またはアルミニウムの酸化物からなる複合酸化物微粒子および重合可能な反応基を有するシラン化合物を主成分とするコーティング組成物中に、Fe原子を含む化合物および/またはバナジウム原子を含む化合物をドーピングすることにより、耐久性、耐擦傷性等の塗膜性能に優れ、且つ太陽光などの光に対しても発色することなく安定なハードコート被膜を形成できることを見出し、前記課題を解決するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the core particles are composed of oxides of titanium and tin, and are composed of a complex solid solution oxide having a rutile structure, and silicon oxide is used as a coating layer. Compound containing Fe atom and / or vanadium atom in coating composition mainly composed of composite oxide fine particles composed of oxide of zirconium and / or aluminum and silane compound having polymerizable reactive group It has been found that a stable hard coat film can be formed without doping with light such as sunlight, and has excellent coating film performance such as durability and scratch resistance by doping. It came to.

すなわち、第1の発明では少なくとも下記成分(A)および(B)を主成分とし、且つ下記成分(C)がドーピングされていることを特徴とするコーティング用組成物を提供する。   That is, the first invention provides a coating composition characterized in that at least the following components (A) and (B) are the main components and the following component (C) is doped.

(A)核粒子がチタンおよびスズの酸化物で構成され、且つルチル型構造をとる固溶体酸化物からなり、被覆層として珪素酸化物とジルコニウムおよび/またはアルミニウムの酸化物からなる複合酸化物微粒子。 (A) Composite oxide fine particles composed of a solid solution oxide in which the core particles are composed of an oxide of titanium and tin and have a rutile structure, and which is composed of a silicon oxide and an oxide of zirconium and / or aluminum as a coating layer.

(B)下記一般式で表される有機ケイ素化合物。(式中、R1は重合可能な反応基を有する有機基、R2は炭素数1〜6の炭化水素基である。Xは加水分解性基であり、nは0または1である。) (B) An organosilicon compound represented by the following general formula. (In the formula, R 1 is an organic group having a polymerizable reactive group, R 2 is a hydrocarbon group having 1 to 6 carbon atoms, X is a hydrolyzable group, and n is 0 or 1.)

Figure 2005281430
Figure 2005281430

(C)分子中に少なくともFe原子を含む化合物および/または分子中に少なくともバナジウム原子を含む化合物。 (C) A compound containing at least an Fe atom in the molecule and / or a compound containing at least a vanadium atom in the molecule.

第1の発明によれば、ハードコート被膜の太陽光などの光を受けて発色する性質を抑制することが可能である。   According to the first invention, it is possible to suppress the property of the hard coat film that develops color upon receiving light such as sunlight.

第2の発明では、前記(C)成分としてFe(III)アセチルアセトネ−トおよび/またはバナジウム(IV)オキシアセチルアセトネートおよび/またはバナジウム(III)アセチルアセトネートを用いることを提供する。   The second invention provides the use of Fe (III) acetylacetonate and / or vanadium (IV) oxyacetylacetonate and / or vanadium (III) acetylacetonate as the component (C).

第2の発明によれば、第1の発明の効果に加え、コーティング用組成物中での安定した分散性が得られ、且つコーティング用組成物中で安定した特性を得ることが可能である。また、安全性が高いため取り扱いやすい。   According to the second invention, in addition to the effects of the first invention, stable dispersibility in the coating composition can be obtained, and stable characteristics can be obtained in the coating composition. In addition, it is easy to handle because of its high safety.

第3の発明では、前記(C)成分が(A)成分に対して重量比で(C)/(A)=0.002〜0.06の範囲に有るコーティング用組成物を提供する。   In 3rd invention, the said (C) component provides the composition for coating which exists in the range of (C) / (A) = 0.002-0.06 by weight ratio with respect to (A) component.

第3の発明によれば、青色変色が起こる事無く、外観上の品質を維持することができ、尚且つ各種耐久性を得ることが可能である。   According to the third invention, the appearance quality can be maintained without causing blue discoloration, and various durability can be obtained.

第4の発明では、前記コーティング用組成物から形成されたハードコート被膜を屈折率が1.60以上のプラスチックレンズ表面に有し、前記ハードコート被膜表面に無機物質からなる反射防止膜を積層したことを特徴とするプラスチックレンズを提供する。   In a fourth invention, the hard coat film formed from the coating composition is provided on the surface of a plastic lens having a refractive index of 1.60 or more, and an antireflection film made of an inorganic substance is laminated on the hard coat film surface. A plastic lens is provided.

第4の発明によれば、基材であるプラスチックレンズとの密着性と無機物質から成る反射防止膜との十分な密着性を得ることが可能である。   According to the fourth invention, it is possible to obtain sufficient adhesion between the plastic lens as the base material and sufficient anti-reflection film made of an inorganic substance.

本発明に使用する(A)成分は、核粒子がチタンおよびスズの酸化物からなり、かつルチル型構造をとる複合固溶体酸化物からなり、被覆層として珪素酸化物とジルコニウムおよび/またはアルミニウムの酸化物からなる複合酸化物微粒子である。   The component (A) used in the present invention is composed of a composite solid solution oxide in which the core particles are composed of titanium and tin oxides and has a rutile structure, and a silicon oxide and zirconium and / or aluminum are oxidized as a coating layer. This is a composite oxide fine particle made of a material.

具体例としては、粒径が1〜100ミリミクロンであり、SnO2およびTiO2の無機酸化物がSiO2およびZrO2の無機酸化物よって被覆されている複合酸化物微粒子が、分散媒たとえば水、アルコール系もしくはその他の有機溶媒にコロイド状に分散させたものである。 As a specific example, a composite oxide fine particle having a particle diameter of 1 to 100 millimicrons and in which an inorganic oxide of SnO 2 and TiO 2 is coated with an inorganic oxide of SiO 2 and ZrO 2 is used as a dispersion medium such as water. , Colloidally dispersed in an alcohol or other organic solvent.

さらにコーティング液中での分散安定性を高めるためにこれらの微粒子表面を有機ケイ素化合物またはアミン系化合物で処理したものを使用することも可能である。この際用いられる有機ケイ素化合物としては、単官能性シラン、あるいは二官能性シラン、三官能性シラン、四官能性シラン等がある。処理に際しては加水分解性基を未処理で行ってもあるいは加水分解して行ってもよい。   Further, in order to enhance the dispersion stability in the coating liquid, it is also possible to use those obtained by treating the surface of these fine particles with an organosilicon compound or an amine compound. Examples of the organosilicon compound used in this case include monofunctional silane, bifunctional silane, trifunctional silane, and tetrafunctional silane. In the treatment, the hydrolyzable group may be untreated or hydrolyzed.

また処理後は、加水分解性基が微粒子の−OH基と反応した状態が好ましいが、一部残存した状態でも安定性には何ら問題がない。またアミン系化合物としてはアンモニウムまたはエチルアミン、トリエチルアミン、イソプロピルアミン、n−プロピルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミンがある。   In addition, after the treatment, it is preferable that the hydrolyzable group reacts with the —OH group of the fine particles, but there is no problem in stability even if a part of the hydrolyzable group remains. Amine compounds include ammonium or alkylamines such as ethylamine, triethylamine, isopropylamine and n-propylamine, aralkylamines such as benzylamine, alicyclic amines such as piperidine, alkanolamines such as monoethanolamine and triethanolamine. There is.

これら有機ケイ素化合物とアミン化合物の添加量は微粒子の重量に対して1から15%程度の範囲内で加える必要がある。いずれも粒子径は約1〜300mμが好適であり、本発明のコーティング組成物への適用種及び使用量は目的とする被膜性能により決定されるものであるが、使用量は固形分の10〜70重量%であることが望ましい。すなわち、10重量%未満では、無機蒸着膜との密着性が不充分となるか、もしくは、塗膜の耐擦傷性が不充分となる。また70重量%を越えると、塗膜にクラックが生じる。
次に(B)成分において、R1は重合可能な反応基を有する有機基であり、ビニル基、アリル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、シアノ基、イソシアノ基、アミノ基等の重合可能な反応基を有するシラン化合物であり、R2は炭素数1〜6の炭化水素基であるが、その具体的例としては、メチル基、エチル基、ブチル基、ビニル基、フェニル基等が挙げられる。
It is necessary to add these organosilicon compounds and amine compounds within a range of about 1 to 15% with respect to the weight of the fine particles. In any case, the particle size is preferably about 1 to 300 mμ, and the type and amount used for the coating composition of the present invention are determined by the target film performance. 70% by weight is desirable. That is, if it is less than 10% by weight, the adhesion to the inorganic vapor-deposited film is insufficient, or the scratch resistance of the coating film is insufficient. On the other hand, if it exceeds 70% by weight, cracks occur in the coating film.
Next, in component (B), R 1 is an organic group having a polymerizable reactive group, such as vinyl group, allyl group, acrylic group, methacryl group, epoxy group, mercapto group, cyano group, isocyano group, amino group, etc. And R 2 is a hydrocarbon group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a vinyl group, and a phenyl group. Etc.

またXは加水分解可能な官能基でありその具体的なものとして、メトキシ基、エトキシ基、メトキシエトキシ基等のアルコキシ基、クロロ基、ブロモ基等のハロゲン基、アシルオキシ基等が挙げられる。このシラン化合物の具体例として、ビニルトリアルコキシシラン、ビニルトリクロロシラン、ビニルトリ(β−メトキシ−エトキシ)シラン、アリルトリアルコキシシラン、アクリルオキシプロピルトリアルコキシシラン、メタクリルオキシプロピルトリアルコキシシラン、メタクリルオキシプロピルジアルコキシメチルシラン、γ−グリシドオキシプロピルトリアルコキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリアルコキシシラン、メルカプトプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジアルコキシシラン等があり、単独で用いても、2種以上を混合して用いてもよい。   X is a hydrolyzable functional group, and specific examples thereof include alkoxy groups such as methoxy group, ethoxy group, and methoxyethoxy group, halogen groups such as chloro group and bromo group, and acyloxy groups. Specific examples of this silane compound include vinyltrialkoxysilane, vinyltrichlorosilane, vinyltri (β-methoxy-ethoxy) silane, allyltrialkoxysilane, acryloxypropyltrialkoxysilane, methacryloxypropyltrialkoxysilane, methacryloxypropyldisilane. Alkoxymethylsilane, γ-glycidoxypropyltrialkoxysilane, β- (3,4-epoxycyclohexyl) -ethyltrialkoxysilane, mercaptopropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, N-β (aminoethyl) ) -Γ-aminopropylmethyl dialkoxysilane, etc., which may be used alone or in admixture of two or more.

この(B)成分の使用量は、全組成物の20〜60重量%であることが望ましい。すなわち、20重量%未満であると、無機蒸着膜との密着性が不充分となりやすい。また60重量%を越えると、硬化被膜にクラックを生じさせる原因となり好ましくない。   The amount of component (B) used is desirably 20 to 60% by weight of the total composition. That is, if it is less than 20% by weight, the adhesion to the inorganic vapor deposition film tends to be insufficient. On the other hand, if it exceeds 60% by weight, it causes a crack in the cured film, which is not preferable.

続いて(C)成分のFe原子を含む化合物および/またはバナジウム原子を含む化合物は、二酸化鉄、三酸化鉄、塩化鉄、Fe(III)アセチルアセトネ−ト、酸化バナジウム、バナジウム(IV)オキシアセチルアセトネート、バナジウム(III)アセチルアセトネート等公知の化合物を使用することができる。   Subsequently, the compound (C) containing a Fe atom and / or a compound containing a vanadium atom includes iron dioxide, iron trioxide, iron chloride, Fe (III) acetylacetonate, vanadium oxide, vanadium (IV) oxy. Known compounds such as acetylacetonate and vanadium (III) acetylacetonate can be used.

このうち、コーティング用組成物中およびハードコート被膜中での安定性、ドーピング量に対する効果、取り扱い性等の点からFe(III)アセチルアセトネ−ト、バナジウム(IV)オキシアセチルアセトネート、バナジウム(III)アセチルアセトネートが好ましい。尚、前記アセチルアセトネ−ト化合部は単独で前記成分(A)の太陽光などの外光に対して安定化させる効果と同時に、硬化触媒としてシラノール基およびエポキシ基の硬化を促進させる働きを併せ持ち、透明性および耐久性のすぐれた硬化被膜形成することができる。一方、光安定化剤として前記アセチルアセトネ−ト化合物を、硬化触媒として別の化合物を使用する形態も可能である。   Among these, Fe (III) acetylacetonate, vanadium (IV) oxyacetylacetonate, vanadium (in terms of stability in coating composition and hard coat film, effect on doping amount, handleability, etc. III) Acetylacetonate is preferred. The acetylacetonate compound part alone has the effect of stabilizing the component (A) against external light such as sunlight, and at the same time, promotes the curing of silanol groups and epoxy groups as a curing catalyst. In addition, a cured film having excellent transparency and durability can be formed. On the other hand, a form using the acetylacetonate compound as a light stabilizer and another compound as a curing catalyst is also possible.

硬化触媒としては、n−ブチルアミン、トリエチルアミン、グアニジン等のアミン類、グリシン等のアミノ酸類、アルミニウムアセチルアセトネート、コバルトアセチルアセトネート等の金属アセチルアセトネート類、酢酸ナトリウム、ナフテン酸亜鉛、オクチル酸亜鉛、オクチル酸スズ等の有機酸の金属塩類、過塩素酸、過塩素酸アンモニウム、過塩素酸マグネシウム等の過塩素酸類およびその塩、塩酸、リン酸、硝酸等の酸類、SnCl2、AlCl3、TiCl4、ZnCl2、SbCl3等のルイス酸である金属塩化物等が挙げられ、単独で用いても、2種以上を併用してもよい。 Curing catalysts include amines such as n-butylamine, triethylamine and guanidine, amino acids such as glycine, metal acetylacetonates such as aluminum acetylacetonate and cobalt acetylacetonate, sodium acetate, zinc naphthenate, zinc octylate , Metal salts of organic acids such as tin octylate, perchloric acids such as perchloric acid, ammonium perchlorate, magnesium perchlorate and salts thereof, acids such as hydrochloric acid, phosphoric acid, nitric acid, SnCl 2 , AlCl 3 , Examples thereof include metal chlorides which are Lewis acids such as TiCl 4 , ZnCl 2 and SbCl 3 , and may be used alone or in combination of two or more.

本発明では、多官能性エポキシ化合物を添加することも有用である。多官能性エポキシ化合物とは、塗料、接着剤、注型用などに広く実用されているもので、例えば過酸化法で合成されるポリオレフィン系エポキシ樹脂、シクロペンタジエンオキシドやシクロヘキセンオキシドあるいはヘキサヒドロフタル酸とエピクロルヒドリンから得られるポリグリシジルエステルなどの脂環式エポキシ樹脂、ビスフェノールAやカテコール、レゾシノールなどの多価フェノールあるいは(ポリ)エチレングリコール、(ポリ)プロピレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジグリセロール、ソルビトールなどの多価アルコールとエピクロルヒドリンから得られるポリグリシジルエーテル、エポキシ化植物油、ノボラック型フェノール樹脂とエピクロルヒドリンから得られるエポキシノボラック、フェノールフタレインとエピクロルヒドリンから得られるエポキシ樹脂、グリシジルメタクリレートとメチルメタクリレートアクリル系モノマーあるいはスチレンなどの共重合体、更には上記エポキシ化合物とモノカルボン酸含有(メタ)アクリル酸とのグリシジル基開環反応により得られるエポキシアクリレートなどが挙げられる。   In the present invention, it is also useful to add a polyfunctional epoxy compound. Polyfunctional epoxy compounds are widely used for paints, adhesives, casting, etc. For example, polyolefin epoxy resins synthesized by peroxidation method, cyclopentadiene oxide, cyclohexene oxide or hexahydrophthalic acid And alicyclic epoxy resin such as polyglycidyl ester obtained from epichlorohydrin, polyphenols such as bisphenol A, catechol, and resorcinol, or (poly) ethylene glycol, (poly) propylene glycol, neopentyl glycol, glycerin, trimethylolpropane, Polyglycidyl ether, epoxidized vegetable oil, novolak type phenolic resin and epichlorohid obtained from polyhydric alcohols such as pentaerythritol, diglycerol, sorbitol and epichlorohydrin Epoxy novolac obtained from phosphorus, epoxy resin obtained from phenolphthalein and epichlorohydrin, glycidyl methacrylate and methyl methacrylate acrylic monomer or copolymer such as styrene, and the above epoxy compound and monocarboxylic acid-containing (meth) acrylic acid And epoxy acrylate obtained by the ring opening reaction of glycidyl group.

多官能性エポキシ化合物の具体例としては、1,6−ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ノナエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、テトラプロピレングリコールジグリシジルエーテル、ノナプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ネオペンチルグリコールヒドロキシヒバリン酸エステルのジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ジグリセロールジグリシジルエーテル、ジグリセロールトリグリシジルエーテル、ジグリセロールテトラグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ジペンタエリスリトールテトラグリシジルエーテル、ソルビトールテトラグリシジルエーテル、トリス(2−ヒドロキシエチル)イソシアヌレートのジグリシジルエーテル、トリス(2−ヒドロキシエチル)イソシアヌレートのトリグリシジルエーテル、等の脂肪族エポキシ化合物、イソホロンジオールジグリシジルエーテル、ビス−2,2−ヒドロキシシクロヘキシルプロパンジグリシジルエーテル等の脂環族エポキシ化合物、レゾルシンジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、オルトフタル酸ジグリシジルエステル、フェノールノボラックポリグリシジルエーテル、クレゾールノボラックポリグリシジルエーテル等の芳香族エポキシ化合物等が挙げられる。   Specific examples of the polyfunctional epoxy compound include 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, and nonaethylene glycol diester. Glycidyl ether, propylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, tetrapropylene glycol diglycidyl ether, nonapropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, neopentyl glycol hydroxyhyvalic acid Diglycidyl ether of ester, trimethylolpropa Diglycidyl ether, trimethylolpropane triglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, diglycerol diglycidyl ether, diglycerol triglycidyl ether, diglycerol tetraglycidyl ether, pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether , Pentaerythritol tetraglycidyl ether, dipentaerythritol tetraglycidyl ether, sorbitol tetraglycidyl ether, triglycidyl ether of tris (2-hydroxyethyl) isocyanurate, triglycidyl ether of tris (2-hydroxyethyl) isocyanurate, etc. Group epoxy compounds, isophoronediol diglycy Alicyclic epoxy compounds such as ether, bis-2,2-hydroxycyclohexylpropane diglycidyl ether, resorcin diglycidyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, orthophthalic acid diglycidyl ester And aromatic epoxy compounds such as phenol novolac polyglycidyl ether and cresol novolac polyglycidyl ether.

多官能性エポキシ化合物は、染色成分の役割と同時に耐水性・耐温水性の向上として用いる。そこで、上記した中でも、1,6−ヘキサンジオールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリス(2−ヒドロキシエチル)イソシアヌレートのトリグリシジルエーテル等の脂肪族エポキシ化合物が特に好ましい。   The polyfunctional epoxy compound is used to improve water resistance / warm water resistance simultaneously with the role of the dye component. Therefore, among the above, 1,6-hexanediol diglycidyl ether, diethylene glycol diglycidyl ether, trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, tris (2-hydroxy) Aliphatic epoxy compounds such as triglycidyl ether of ethyl) isocyanurate are particularly preferred.

また、屈折率の調整が必要な場合等において、一般式がSi(OR)4で表される四官能シラン化合物および/または、SiO2微粒子が水、アルコール系もしくはその他の有機溶媒にコロイド状に分散したものを添加することも有用である。四官能シラン化合物の具体例として、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラアセトキシシラン、テトラアリロキシシラン、テトラキス(2−メトキシエトキシ)シラン、テトラキス(2−エチルブトキシ)シラン、テトラキス(2−エチルヘキシロキシ)シラン等があげられる。これらは単独で用いても、2種以上を混合して用いてもよい。また、これらは無溶媒下またはアルコール等の有機溶剤中で、酸の存在下で加水分解して使用する方が好ましい。 In addition, when the refractive index needs to be adjusted, the tetrafunctional silane compound represented by the general formula Si (OR) 4 and / or the SiO 2 fine particles are colloidally formed in water, alcohol-based or other organic solvents. It is also useful to add a dispersed one. Specific examples of tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetraacetoxysilane, tetraallyloxysilane, tetrakis (2-methoxyethoxy) Examples thereof include silane, tetrakis (2-ethylbutoxy) silane, tetrakis (2-ethylhexyloxy) silane and the like. These may be used alone or in combination of two or more. These are preferably used after being hydrolyzed in the presence of an acid in the absence of a solvent or in an organic solvent such as alcohol.

このようにして得られるコーティング用組成物は、必要に応じ、溶剤に希釈して用いることができる。溶剤としては、アルコール類、エステル類、ケトン類、エーテル類、芳香族類等の溶剤が用いられる。   The coating composition thus obtained can be diluted with a solvent and used as necessary. As the solvent, solvents such as alcohols, esters, ketones, ethers and aromatics are used.

尚、本発明のコーティング組成物は上記成分の他に必要に応じて、界面活性剤、帯電防止剤、紫外線吸収剤、酸化防止剤、分散染料・油溶染料・蛍光染料・顔料、フォトクロミック化合物、ヒンダードアミン系、ヒンダードフェノール系等の耐光耐熱安定剤等を添加しコーティング液の塗布性および硬化後の被膜性能を改良することもできる。   In addition to the above components, the coating composition of the present invention is optionally provided with a surfactant, an antistatic agent, an ultraviolet absorber, an antioxidant, a disperse dye / oil-soluble dye / fluorescent dye / pigment, a photochromic compound, Light-resistant heat-resistant stabilizers such as hindered amines and hindered phenols can be added to improve the coating properties of the coating liquid and the coating performance after curing.

さらに、本発明のコーティング組成物の塗布にあたっては、基材レンズと被膜の密着性を向上させる目的で、基材表面をあらかじめアルカリ処理、酸処理、界面活性剤処理、無機あるいは有機物の微粒子による研磨処理、プライマー処理またはプラズマ処理を行うことが効果的である。   Further, in applying the coating composition of the present invention, the surface of the substrate is previously treated with alkali, acid, surfactant, and polishing with inorganic or organic fine particles for the purpose of improving the adhesion between the substrate lens and the coating. It is effective to perform treatment, primer treatment or plasma treatment.

また、塗布・硬化方法としては、ディッピング法、スピン法、スプレー法、ロールコート法、フローコート法等によりコーティング液を塗布した後、40〜200℃の温度で数時間加熱乾燥することにより、被膜を形成することができる。尚、硬化被膜の膜厚としては、0.05〜30μであることが好ましい。すなわち、0.05μ未満では、基本となる性能が出ず、30μを越えると、表面の平滑性が損なわれ、光学的歪が発生する為好ましくない。   As a coating / curing method, a coating solution is applied by dipping method, spin method, spray method, roll coating method, flow coating method, etc., and then heated and dried at a temperature of 40 to 200 ° C. for several hours to form a coating film. Can be formed. In addition, as a film thickness of a cured film, it is preferable that it is 0.05-30 micrometers. That is, if it is less than 0.05 μm, the basic performance does not appear, and if it exceeds 30 μm, the surface smoothness is impaired and optical distortion occurs, which is not preferable.

このようにして得られたコート被膜の表面上に、無機物質からなる反射防止膜を形成する。被膜化方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。真空蒸着法においては、蒸着中にイオンビームを同時に照射するイオンビームアシスト法を用いてもよい。また、膜構成としては、単層反射防止膜もしくは多層反射防止膜のどちらを用いてもかまわないが、反射率を極力抑えるため多層反射防止膜を用いることが好ましい。   An antireflection film made of an inorganic substance is formed on the surface of the coating film thus obtained. Examples of the film forming method include a vacuum deposition method, an ion plating method, and a sputtering method. In the vacuum vapor deposition method, an ion beam assist method in which an ion beam is simultaneously irradiated during vapor deposition may be used. As the film configuration, either a single-layer antireflection film or a multilayer antireflection film may be used, but a multilayer antireflection film is preferably used in order to suppress the reflectance as much as possible.

使用される無機物の具体例としては、SiO2、SiO、ZrO2、TiO2、TiO、Ti23、Ti25、Al23、Ta25、CeO2 、MgO、Y23、SnO2、MgF2、WO3等が挙げられる。これらの無機物は単独で用いるかもしくは2種以上の混合物を用いる。
また、反射防止膜を形成する際には、ハードコート膜の表面処理を行うことが望ましい。この表面処理の具体的例としては、酸処理,アルカリ処理,紫外線照射処理,アルゴンもしくは酸素雰囲気中での高周波放電によるプラズマ処理,アルゴンや酸素もしくは窒素などのイオンビーム照射処理などが挙げられる。
Specific examples of the inorganic substance to be used, SiO 2, SiO, ZrO 2 , TiO 2, TiO, Ti 2 O 3, Ti 2 O 5, Al 2 O 3, Ta 2 O 5, CeO 2, MgO, Y 2 O 3 , SnO 2 , MgF 2 , WO 3 and the like can be mentioned. These inorganic substances are used alone or in a mixture of two or more.
Further, when forming the antireflection film, it is desirable to perform a surface treatment of the hard coat film. Specific examples of the surface treatment include acid treatment, alkali treatment, ultraviolet irradiation treatment, plasma treatment by high frequency discharge in an argon or oxygen atmosphere, and ion beam irradiation treatment of argon, oxygen or nitrogen.

本発明により、屈折率1.60以上の合成樹脂製レンズと同程度の屈折率を有し、基材表面に塗布、硬化させることにより得られた塗膜が、耐擦傷性・耐候性・耐水性・耐熱性等の耐久性および透明性に優れ、同時に無機物からなる反射防止膜との密着性、各種耐久性を同時に得ることができる。特に外光などの光に対する着色を抑え、安定性を飛躍的に向上させることができる。   According to the present invention, the coating film obtained by applying and curing on the surface of a substrate has a refractive index comparable to that of a synthetic resin lens having a refractive index of 1.60 or more, and has a scratch resistance, a weather resistance, and a water resistance. It is excellent in durability such as heat resistance and heat resistance and transparency, and at the same time, adhesion to an antireflection film made of an inorganic material and various durability can be obtained at the same time. In particular, coloring against light such as outside light can be suppressed, and the stability can be dramatically improved.

〔実施例1〕
(1)コーティング用組成物の調整
2−n−ブトキシエタノール1000.3g、γ−グリシドキシプロピルトリメトキシシラン1553.7gを混合した。この混合液に0.1N塩酸水溶液427.0gを攪拌しながら滴下し、さらに2時間攪拌後一昼夜熟成させた。次いでメタノール分散二酸化チタン−二酸化スズ−二酸化ケイ素−酸化ジルコニウム複合酸化物微粒子ゾル(触媒化成工業(株)製、固形分濃度20重量%)6981.6gを混合した後、Fe(III)アセチルアセトネート29.4g、シリコン系界面活性剤(日本ユニカー(株)製、商品名「L−7604」)3.0gを添加し4時間攪拌後一昼夜熟成させてコーティング用組成物とした。
[Example 1]
(1) Preparation of coating composition 1000.3 g of 2-n-butoxyethanol and 1553.7 g of γ-glycidoxypropyltrimethoxysilane were mixed. To this mixture, 427.0 g of a 0.1N hydrochloric acid aqueous solution was added dropwise with stirring, and the mixture was further stirred for 2 hours and then aged overnight. Next, 6981.6 g of methanol-dispersed titanium dioxide-tin dioxide-silicon dioxide-zirconium oxide composite oxide fine particle sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., solid content concentration: 20 wt%) was mixed, and then Fe (III) acetylacetonate. 29.4 g and 3.0 g of a silicon-based surfactant (trade name “L-7604” manufactured by Nihon Unicar Co., Ltd.) were added, and the mixture was stirred for 4 hours and then aged overnight to obtain a coating composition.

(2)塗布および硬化
前記コーティング用組成物を用い、予めアルカリ処理を施した屈折率1.67のプラスチック眼鏡レンズ(セイコーエプソン(株)製、セイコースーパーソブリンレンズ生地)に浸漬法にて引き上げ速度250mm/分で塗布した。塗布後70℃で40分間風乾した後、120℃で120分間焼成を行った。このようにして得られた硬化被膜の膜厚は1.9ミクロンであった。
(2) Application and curing Using the coating composition, a pulling speed by a dipping method on a plastic spectacle lens having a refractive index of 1.67 (Seiko Epson Co., Ltd., Seiko Super Sovereign lens fabric) that has been subjected to alkali treatment in advance. Application was at 250 mm / min. After the coating, it was air-dried at 70 ° C. for 40 minutes and then baked at 120 ° C. for 120 minutes. The cured coating thus obtained had a thickness of 1.9 microns.

(3)反射防止薄膜の形成
前記方法で得られたレンズをプラズマ処理(アルゴンプラズマ400W×60秒)を行った後、基板から大気に向かって順に、SiO2、ZrO2、SiO2、ZrO2、SiO2の5層で構成される多層反射防止膜を真空蒸着機((株)シンクロン製;CES−21)にて形成した。各層の光学的膜厚は、最初のSiO2層、次のZrO2とSiO2の等価膜層および次のZrO2層、最上層のSiO2層について、設計波長λを520nmとしてそれぞれλ/4となる様に形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。
得られたレンズを下記試験方法に従って評価し、その結果を表1に示した。
(3) Formation of antireflection thin film The lens obtained by the above method was subjected to plasma treatment (argon plasma 400 W × 60 seconds), and then in order from the substrate toward the atmosphere, SiO 2 , ZrO 2 , SiO 2 , ZrO 2 A multilayer antireflection film composed of 5 layers of SiO 2 was formed by a vacuum vapor deposition machine (manufactured by Shincron; CES-21). The optical film thickness of each layer is λ / 4 for the first SiO 2 layer, the next ZrO 2 and SiO 2 equivalent film layer, the next ZrO 2 layer, and the uppermost SiO 2 layer with a design wavelength λ of 520 nm. It was formed to become. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%.
The obtained lenses were evaluated according to the following test methods, and the results are shown in Table 1.

(4)試験および評価結果
得られたレンズを下記試験方法によって塗膜性能の評価を行い、評価結果を表1に示す。
(4) Test and Evaluation Results The obtained lens was evaluated for coating film performance by the following test method, and the evaluation results are shown in Table 1.

(a)耐擦傷性:ボンスター#0000スチールウール(日本スチールウール(株)製)で1kgの荷重をかけた状態で10往復表面を摩擦し、1cm×3cmの範囲内に傷ついた程度を目視で次の段階に分けて評価した。
A:全く傷がつかない。
B:1〜10本の傷がつく。
C:10〜100本の傷がつく。
D:無数の傷がついているが、平滑な表面が残っている。
E:表面についた傷のため、平滑な表面が残っていない。
(A) Scratch resistance: The surface of 10 reciprocating surfaces rubbed with a bonster # 0000 steel wool (manufactured by Nippon Steel Wool Co., Ltd.) under a load of 1 kg was visually observed to the extent that it was damaged within a range of 1 cm × 3 cm. The evaluation was divided into the following stages.
A: Not scratched at all.
B: 10 to 10 scratches.
C: 10 to 100 scratches are attached.
D: There are countless scratches, but a smooth surface remains.
E: A smooth surface does not remain because of scratches on the surface.

(b)耐酸/耐洗剤性:0.1N塩酸及び1%ママレモン(ライオン(株)製)水溶液
に12時間浸漬し、表面状態に変化のないものを良とした。
(B) Acid resistance / detergent resistance: The sample was immersed in an aqueous solution of 0.1N hydrochloric acid and 1% Mama lemon (manufactured by Lion Corporation) for 12 hours, and the surface state was not changed.

(c)初期密着性:基材とハードコート膜およびハードコート膜とマルチコート膜との密着性は、JIS K5400 8.5.1〜2碁盤目法・碁盤目テープ法に準じてクロスカットテープ試験によって行った。即ち、カッターナイフを用い基材表面に1mm間隔に切れ目を入れ、1平方mmのマス目を100個形成させる。次に、その上へセロファン粘着テープ(ニチバン(株)製 商品名「セロテープ」)を強く押し付けた後、表面から90度方向へ急に引っ張り剥離した後コート被膜の残存マス目数を以下の通り分類した。
A:被膜剥がれなし(残存マス目数100)
B:ほとんど剥がれなし(残存マス目数99.9〜95)
C:やや剥がれ有り(残存マス目数94.9〜80)
D:剥がれ有り(残存マス目数79.9〜30)
E:ほぼ全面剥がれ(残存マス目数29.9〜0)
(C) Initial adhesion: Adhesion between the base material and the hard coat film and between the hard coat film and the multi-coat film is a cross-cut tape according to JIS K5400 8.5.1-2 cross cut method / cross cut tape method Performed by testing. That is, using a cutter knife, the substrate surface is cut at intervals of 1 mm to form 100 squares of 1 mm square. Next, after strongly pressing cellophane adhesive tape (trade name “Cellotape” manufactured by Nichiban Co., Ltd.) onto it, it was pulled and peeled off 90 degrees from the surface. Classified.
A: No film peeling (remaining cell number 100)
B: Almost no peeling (remaining grid number 99.9 to 95)
C: Some peeling (remaining cell number 94.9-80)
D: Peeled (remaining cell number: 79.9-30)
E: Peeling of almost entire surface (remaining cell number: 29.9 to 0)

(d)耐候性:カーボンアークによるサンシャインウェザーメーターに300時間暴露した後、前記(c)に記載のクロスカットテープ試験を行い、コート被膜の残存マス目数を耐久性指標とした。 (D) Weather resistance: After being exposed to a sunshine weather meter with carbon arc for 300 hours, the cross-cut tape test described in (c) was performed, and the number of remaining squares of the coat film was used as a durability index.

(e)耐湿性:温度60℃、相対湿度98%に保たれた恒温恒湿槽中に10日間放置した後、前記(c)記載のクロスカットテープ試験を行い、コート被膜の残存マス目数を耐久性指標とした。 (E) Moisture resistance: after standing for 10 days in a constant temperature and humidity chamber maintained at a temperature of 60 ° C. and a relative humidity of 98%, the cross-cut tape test described in the above (c) is performed, and the remaining squares of the coating film Was used as a durability index.

(f)耐温水性:温度80℃に保たれた温浴中に1時間浸漬した後、前記(c)記載のクロスカットテープ試験を行い、コート被膜の残存マス目数を耐久性指標とした。 (F) Hot water resistance: After being immersed in a warm bath maintained at a temperature of 80 ° C. for 1 hour, the cross-cut tape test described in the above (c) was performed, and the residual cell number of the coat film was used as a durability index.

(g)発色性:温度25℃に保たれた恒温槽中において、人工太陽灯下に20時間放置した後、下記の通り分類した。
A:変化なし
B:若干発色が認められるが、使用上問題なし
C:発色が認められ、視認性を阻害する
〔実施例2〕
(G) Color developability: In a thermostatic chamber maintained at a temperature of 25 ° C., it was allowed to stand under an artificial sun lamp for 20 hours and then classified as follows.
A: No change B: Some color development is observed, but there is no problem in use. C: Color development is observed and visibility is impaired [Example 2]

実施例1において、Fe(III)アセチルアセトネートの代わりにバナジウム(IV)オキシアセチルアセトネート7.4gを用いた以外は実施例1と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔実施例3〕
In Example 1, a hard coat film and an antireflection film were formed in the same manner as in Example 1 except that 7.4 g of vanadium (IV) oxyacetylacetonate was used instead of Fe (III) acetylacetonate. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.
Example 3

実施例1において、Fe(III)アセチルアセトネートを単独で用いる代わりにFe(III)アセチルアセトネート22.1gおよびバナジウム(III)アセチルアセトネート6.8gを併用した以外は実施例1と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔実施例4〕
In Example 1, instead of using Fe (III) acetylacetonate alone, 22.1 g of Fe (III) acetylacetonate and 6.8 g of vanadium (III) acetylacetonate were used in the same manner as in Example 1. A hard coat film and an antireflection film were formed. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.
Example 4

プロピレングリコールモノメチルエーテル1243.4gおよびメタノール分散二酸化チタン−二酸化スズ−二酸化ケイ素−酸化ジルコニウム複合微粒子ゾル(触媒化成工業(株)製、固形分濃度20重量%)6860.0gを混合した後、γ−グリシドキシプロピルトリメトキシシラン1249.1gを混合した。この混合液に0.1N塩酸水溶液343.3gを攪拌しながら滴下を行い4時間攪拌後、EX−313(長瀬化成工業(株)製、商品名EX−313)239.9gを添加して2時間攪拌後一昼夜熟成させた。この液にFe(III)アセチルアセトネート25.6gおよびアルミニウムアセチルアセトネート7.8g、シリコン系界面活性剤(日本ユニカー(株)製、商品名「L−7604」)2.2gおよびフェノール系酸化防止剤(川口化学工業(株)製、商品名「アンテージクリスタル」)18.0gを添加し4時間攪拌後一昼夜熟成させてコーティング用組成物とした。前記コーティング用組成物を用いてハードコート被膜を形成し、ついで実施例1と同様に反射防止膜を設けたところ、得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔比較例1〕
After mixing 1243.4 g of propylene glycol monomethyl ether and 6860.0 g of methanol-dispersed titanium dioxide-tin dioxide-silicon dioxide-zirconium oxide composite fine particle sol (manufactured by Catalyst Chemical Industry Co., Ltd., solid content concentration 20 wt%), γ- 1249.1 g of glycidoxypropyltrimethoxysilane was mixed. To this mixed solution, 343.3 g of 0.1N hydrochloric acid aqueous solution was added dropwise with stirring, and after stirring for 4 hours, 239.9 g of EX-313 (trade name EX-313, manufactured by Nagase Kasei Kogyo Co., Ltd.) was added and 2 After stirring for a period of time, the mixture was aged overnight. In this solution, 25.6 g of Fe (III) acetylacetonate and 7.8 g of aluminum acetylacetonate, 2.2 g of silicon surfactant (manufactured by Nihon Unicar Co., Ltd., trade name “L-7604”) and phenolic oxidation 18.0 g of an inhibitor (manufactured by Kawaguchi Chemical Industry Co., Ltd., trade name “ANTAGE CRYSTAL”) was added, stirred for 4 hours, and then aged overnight to obtain a coating composition. When a hard coat film was formed using the coating composition and then an antireflection film was provided in the same manner as in Example 1, the reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98. %Met. Table 1 shows the evaluation results of the coating film performance.
[Comparative Example 1]

実施例1において、Fe(III)アセチルアセトネートの代わりにアルミニウムアセチルアセトネート20.3gを用いた以外は実施例1と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔比較例2〕
In Example 1, a hard coat film and an antireflection film were formed in the same manner as in Example 1 except that 20.3 g of aluminum acetylacetonate was used instead of Fe (III) acetylacetonate. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.
[Comparative Example 2]

実施例1において、Fe(III)アセチルアセトネートを4.4gとした以外は実施例1と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔比較例3〕
In Example 1, a hard coat film and an antireflection film were formed in the same manner as in Example 1 except that 4.4 g of Fe (III) acetylacetonate was used. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.
[Comparative Example 3]

実施例1において、Fe(III)アセチルアセトネートを100.0gとした以外は実施例1と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔比較例4〕
In Example 1, a hard coat film and an antireflection film were formed in the same manner as in Example 1 except that 100.0 g of Fe (III) acetylacetonate was used. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.
[Comparative Example 4]

実施例1において、メタノール分散二酸化チタン−二酸化スズ−二酸化ケイ素−酸化ジルコニウム複合微粒子ゾル(触媒化成工業(株)製、固形分濃度20重量%)の代わりにメタノール分散二酸化チタン−酸化ジルコニウム−二酸化ケイ素複合微粒子ゾル(触媒化成工業(株)製、商品名1120Z S・7−G、固形分濃度20wt%)を用いた以外は実施例1と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。
〔比較例5〕
In Example 1, instead of methanol-dispersed titanium dioxide-tin dioxide-silicon dioxide-zirconium oxide composite fine particle sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., solid content concentration 20% by weight), methanol-dispersed titanium dioxide-zirconium oxide-silicon dioxide A hard coat film and an antireflection film were formed in the same manner as in Example 1 except that composite fine particle sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., trade name: 1120Z S · 7-G, solid content concentration: 20 wt%) was used. The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.
[Comparative Example 5]

実施例4において、Fe(III)アセチルアセトネートおよびアルミニウムアセチルアセトネートを併用する代わりにアルミニウムアセチルアセトネート23.5gを用いた以外は実施例2と同様にハードコート被膜および反射防止膜を形成した。得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は98%であった。また塗膜性能の評価結果を表1に示す。   In Example 4, a hard coat film and an antireflection film were formed in the same manner as in Example 2 except that 23.5 g of aluminum acetylacetonate was used instead of using both Fe (III) acetylacetonate and aluminum acetylacetonate. . The reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%. Table 1 shows the evaluation results of the coating film performance.

Figure 2005281430
Figure 2005281430

光学特性、耐擦傷性および耐久性に優れ、無機物からなる反射防止膜との密着性を兼ね備えたプラスチック材料は、眼鏡レンズ、カメラレンズ、光ビーム集光レンズや光拡散用レンズとして民生用或いは産業用に広く応用することができる。更に本発明による効果は、ウォッチガラスやディスプレイ用カバーガラス等の透明ガラスやカバーガラス等の光学用途の透明プラスチック全般に応用利用が可能であり、得られる効果は多大である。

Plastic materials with excellent optical properties, scratch resistance and durability, and adhesion to inorganic anti-reflective coatings are used for consumer or industrial purposes as spectacle lenses, camera lenses, light beam condensing lenses and light diffusion lenses. Can be widely applied for use. Furthermore, the effects of the present invention can be applied and applied to all transparent plastics for optical applications such as transparent glass such as watch glass and cover glass for displays, and cover glass, and the obtained effect is great.

Claims (4)

少なくとも下記成分(A)および(B)を主成分とし、且つ下記成分(C)がドーピングされていることを特徴とするコーティング用組成物。
(A)核粒子がチタンおよびスズの酸化物で構成され、且つルチル型構造をとる固溶体酸化物からなり、被覆層として珪素酸化物とジルコニウムおよび/またはアルミニウムの酸化物からなる複合酸化物微粒子。
(B)下記一般式で表される有機ケイ素化合物。(式中、R1は重合可能な反応基を有する有機基、R2は炭素数1〜6の炭化水素基である。Xは加水分解性基であり、nは0または1である。)
Figure 2005281430
(C)分子中に少なくともFe原子を含む化合物および/または分子中に少なくともバナジウム原子を含む化合物。
A coating composition comprising at least the following components (A) and (B) as main components, and being doped with the following component (C):
(A) Composite oxide fine particles composed of a solid solution oxide in which the core particles are composed of an oxide of titanium and tin and have a rutile structure, and which is composed of a silicon oxide and an oxide of zirconium and / or aluminum as a coating layer.
(B) An organosilicon compound represented by the following general formula. (In the formula, R 1 is an organic group having a polymerizable reactive group, R 2 is a hydrocarbon group having 1 to 6 carbon atoms, X is a hydrolyzable group, and n is 0 or 1.)
Figure 2005281430
(C) A compound containing at least an Fe atom in the molecule and / or a compound containing at least a vanadium atom in the molecule.
前記(C)成分がFe(III)アセチルアセトネ−トおよび/またはバナジウム(IV)オキシアセチルアセトネートおよび/またはバナジウム(III)アセチルアセトネートであることを特徴とする請求項1記載のコーティング用組成物。   2. The coating composition according to claim 1, wherein the component (C) is Fe (III) acetylacetonate and / or vanadium (IV) oxyacetylacetonate and / or vanadium (III) acetylacetonate. Composition. 前記(C)成分が(A)成分に対して重量比で(C)/(A)=0.004〜0.06であることを特徴とする請求項1または2のいずれか一項に記載のコーティング用組成物。   The said (C) component is (C) / (A) = 0.004-0.06 by weight ratio with respect to (A) component, Either of Claim 1 or 2 characterized by the above-mentioned. Coating composition. 請求項1〜3のいずれかに記載のコーティング用組成物から形成されたハードコート被膜を屈折率が1.60以上のプラスチックレンズ表面に有し、前記ハードコート被膜表面に無機物質からなる反射防止膜を積層したことを特徴とするプラスチックレンズ。
An antireflection film comprising a hard coat film formed from the coating composition according to claim 1 on the surface of a plastic lens having a refractive index of 1.60 or more, and the hard coat film surface comprising an inorganic substance. A plastic lens characterized by laminating films.
JP2004095639A 2004-03-29 2004-03-29 Coating composition and plastic lens Expired - Fee Related JP4586391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095639A JP4586391B2 (en) 2004-03-29 2004-03-29 Coating composition and plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095639A JP4586391B2 (en) 2004-03-29 2004-03-29 Coating composition and plastic lens

Publications (3)

Publication Number Publication Date
JP2005281430A true JP2005281430A (en) 2005-10-13
JP2005281430A5 JP2005281430A5 (en) 2006-09-28
JP4586391B2 JP4586391B2 (en) 2010-11-24

Family

ID=35180183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095639A Expired - Fee Related JP4586391B2 (en) 2004-03-29 2004-03-29 Coating composition and plastic lens

Country Status (1)

Country Link
JP (1) JP4586391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046357A1 (en) * 2005-10-18 2007-04-26 Catalysts & Chemicals Industries Co., Ltd. Composition for use in the formation of hardcoat layer and optical lens
WO2014119736A1 (en) * 2013-01-31 2014-08-07 ホーヤ レンズ マニュファクチャリング フィリピン インク Coating composition, and method for producing optical article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311402A (en) * 1995-03-01 1996-11-26 Seiko Epson Corp Composition for coating and multilayer material
JPH10324846A (en) * 1997-05-26 1998-12-08 Seiko Epson Corp Composition for use in coating, laminated product and lens for eyeglass
JPH11116843A (en) * 1997-10-14 1999-04-27 Seiko Epson Corp Coating composition and composite structure
JP2000063754A (en) * 1998-08-20 2000-02-29 Nissan Chem Ind Ltd Coating composition and optical material
JP2000204301A (en) * 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd Coating solution for forming covered film and lens made of synthetic resin
JP2000281970A (en) * 1999-03-29 2000-10-10 Asahi Optical Co Ltd Weather-resistant hard coat composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311402A (en) * 1995-03-01 1996-11-26 Seiko Epson Corp Composition for coating and multilayer material
JPH10324846A (en) * 1997-05-26 1998-12-08 Seiko Epson Corp Composition for use in coating, laminated product and lens for eyeglass
JPH11116843A (en) * 1997-10-14 1999-04-27 Seiko Epson Corp Coating composition and composite structure
JP2000063754A (en) * 1998-08-20 2000-02-29 Nissan Chem Ind Ltd Coating composition and optical material
JP2000204301A (en) * 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd Coating solution for forming covered film and lens made of synthetic resin
JP2000281970A (en) * 1999-03-29 2000-10-10 Asahi Optical Co Ltd Weather-resistant hard coat composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046357A1 (en) * 2005-10-18 2007-04-26 Catalysts & Chemicals Industries Co., Ltd. Composition for use in the formation of hardcoat layer and optical lens
US7978409B2 (en) 2005-10-18 2011-07-12 Jgc Catalysts And Chemicals Ltd. Hard coat layer-forming composition and optical lens
JP5127458B2 (en) * 2005-10-18 2013-01-23 日揮触媒化成株式会社 Hard coat layer forming composition and optical lens
KR101302540B1 (en) * 2005-10-18 2013-09-02 니끼 쇼꾸바이 카세이 가부시키가이샤 Composition for use in the formation of hardcoat layer and opitical lens
WO2014119736A1 (en) * 2013-01-31 2014-08-07 ホーヤ レンズ マニュファクチャリング フィリピン インク Coating composition, and method for producing optical article
JPWO2014119736A1 (en) * 2013-01-31 2017-01-26 イーエイチエス レンズ フィリピン インク Coating composition and method for producing optical article

Also Published As

Publication number Publication date
JP4586391B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP3840664B2 (en) Coating composition
WO2010134464A1 (en) Coating composition and optical article
JPH11310755A (en) Coating composition and laminate
US10301485B2 (en) Coating composition and optical article having a coat layer made of the coating composition
JP4745324B2 (en) Plastic lens
JP3852100B2 (en) Coating composition and laminate thereof
JPH08295846A (en) Coating composition and laminate
JP3837865B2 (en) Coating composition and optical article
JPH08311408A (en) Coating composition, and its production and laminate
JP3812685B2 (en) Coating composition and laminate
JPH10292135A (en) Coating composition, its production, and laminate using the same
JP2000266905A (en) Plastic color lens and manufacture thereof
JPH08311240A (en) Coating composition and laminate
JPH10324846A (en) Composition for use in coating, laminated product and lens for eyeglass
JP4586391B2 (en) Coating composition and plastic lens
JPH11119001A (en) Plastic lens
JPH08311401A (en) Composition for coating and manufacture and multilayer material thereof
JP2006089749A (en) Coating composition
JP2006171163A (en) Manufacturing method of lens
JP2007233219A (en) Primer composition and plastic lens
JPH11131021A (en) Composition for coating and its laminate
JP2003292896A (en) Coating composition and laminate
JP2006057106A (en) Coating composition, method for producing the same and laminate
JP3220906B2 (en) Composition for coating
JP2000284235A (en) Plastic lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees