JP2005261219A - 多環芳香族炭化水素分解能を有する新菌株およびその利用方法 - Google Patents

多環芳香族炭化水素分解能を有する新菌株およびその利用方法 Download PDF

Info

Publication number
JP2005261219A
JP2005261219A JP2004074383A JP2004074383A JP2005261219A JP 2005261219 A JP2005261219 A JP 2005261219A JP 2004074383 A JP2004074383 A JP 2004074383A JP 2004074383 A JP2004074383 A JP 2004074383A JP 2005261219 A JP2005261219 A JP 2005261219A
Authority
JP
Japan
Prior art keywords
polycyclic aromatic
strain
side chain
aromatic hydrocarbon
alkyl side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004074383A
Other languages
English (en)
Inventor
Makiko Karube
真起子 輕部
Kazuaki Tamatsubo
一晃 珠坪
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004074383A priority Critical patent/JP2005261219A/ja
Publication of JP2005261219A publication Critical patent/JP2005261219A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】 多環芳香族炭化水素の分解能を有する新菌株およびそれを用いた多環芳香族炭化水素の分解方法を提供する。
【手段】 本発明は、多環芳香族炭化水素を分解する能力を有し、配列番号1に記載の塩基配列と97 %以上の相同性を示す16S rRNA遺伝子を有する新菌株を提供し、その代表株はスフィンゴモナス sp. P-2株(受託番号FERM P-19717)である。また、本発明の多環芳香族炭化水素の分解方法は、本発明の新菌株を、多環芳香族炭化水素を含有する試料と接触させる工程を含む。
【選択図】 なし

Description

本発明は、石油構成成分である多環芳香族炭化水素を分解する能力を有する新菌株およびその利用方法に関し、より詳しくは、その新菌株を利用して石油汚染の生じた環境の浄化を促進することができる新種の多環芳香族炭化水素分解細菌およびその利用方法等に関する。
石油は、今日の生活に欠かせないエネルギー源であるが、その一方で広範囲での利用の結果、パイプラインの破損、油槽所、製油所、ガソリンスタンドなどの貯蔵タンクからの漏洩や汚染廃水の排出等が原因で土壌、河川水、地下水などが汚染された例が数多く報告されている。また、海上の輸送船舶などの事故で起こる原油や燃料油等の流出による海洋汚染の報告も多数ある〔非特許文献1〕。
石油汚染環境を浄化する手法の一つとして、微生物を主とした生物の汚染物質分解能を利用して浄化を行うバイオレメディエーションがあり、低コストで修復現場にて浄化を行うことができるという利点をもつため、注目を集めている。バイオレメディエーションには、浄化対象環境中の細菌を活性化し浄化を行うバイオスティミュレーション法と、外部から浄化対象環境中に分解菌を投与し浄化を促すバイオオーグメンテーション法がある。
原油構成成分のうち、多環芳香族炭化水素は芳香環(ベンゼン環)を2つ以上もつ炭化水素群のことで、二環のナフタレン、三環のアントラセン、フェナントレン、四環のピレンなどの成分が挙げられる。原油中の多環芳香族炭化水素の割合は1割程度であるが、これらの中には発ガン性や突然変異誘発性等の毒性をもつ炭化水素が数多く含まれる。また原油中にも含まれるが、ベンゼン環と環状アルカンが融合した形をした芳香族炭化水素は、コールタールや石炭中に多く存在する。このうち、発癌性や毒性をもつフルオレンと、原油中の含硫黄化合物の主成分のひとつであるジベンゾチオフェンは、ベンゼン環のみで構成された炭化水素と比較すると生分解されにくいことも知られている。さらに、原油中に存在する芳香族炭化水素は、アルキル基を側鎖としてもつものが多く、アルキル基をもたない炭化水素の割合は少ない。しかしながら、アルキル基の数が多くなるにつれ、より生分解されにくくなるという報告もある〔非特許文献2〜4〕。
多環芳香族炭化水素を分解する菌は現在までに多く報告されてきた〔非特許文献5〜8〕。しかしながらこれらは、アルキル側鎖をもつ多環芳香族炭化水素の一部の成分を分解するのみで、アルキル側鎖をもつ多環芳香族炭化水素の様々な成分の分解については明らかになっていなかった。近年、海洋性細菌のサイクロクラスティカス属細菌が、アルキル基をもつ多環芳香族炭化水素の様々な成分について分解することが明らかとなった〔非特許文献9〕。しかしながら、サイクロクラスティカス属細菌の生育塩分濃度を調査した研究により、海水あるいは高塩濃度環境(1〜7 wt%)が必要生育条件であることが知られており〔非特許文献10〕、一般的な土壌、地下水、河川水等の環境中で用いるのは難しい。
石油汚染環境を幅広く浄化するためには、様々な環境に適用できる細菌で、なおかつアルキル基をもつ多環芳香族炭化水素を分解する菌を利用することが重要と考えられる。また、石油汚染環境中の多環芳香族炭化水素は、さまざまな成分が混在して存在していることが想定される。そこで、複数のアルキル基をもつ多環芳香族炭化水素を分解する細菌の発見が期待されていた。
日本地盤環境浄化推進協議会監修 : 土壌・地下水汚染の実態とその対策, オーム社出版, p28 , 2000. Harayama, S., Kishira, H., Kasai Y. and Shutsubo K. : Petroleum Biodegradation in Marine Environments, J. Mol. Biotechnol. 1(1) 63-70, 1999. Kropp, K. G., Andersson, J. T. and Fedorak, P. M. : Biotransformations of three dimethyldibenzothiophenes by pure and mixed bacterial cultures. Environ. Sci. Technol. 31, 1547-1554, 1997. Grifoll, M., Selifonov, S. A., Gatlin, C. and Chapman, P. J. : Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl. Environ. Microbiol. 61(10), 3711-3723, 1995. Boldrin, B., Tiehm, A., and Fritzsche, C. : Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacteriumsp. Appl. Environ. Microbiol. 59(6), 1927-1930, 1993. Grifoll, M., Selifonov, S. A. and Chapman, P. J. : Evidence for a novel pathway in degradation of fluorene by Pseudomonassp. strain F274. Appl. Environ. Microbiol. 60(7), 2438-2449, 1994. Casellas, M., Grifoll, M., Bayona, J. M. and Solanas, A. M. : New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Micrbiol. 63(3), 819-826. 1997. van Herwijnen, R., Wattiau, P., Bastiaens, L., Daal, L., Jonker, L., Springael, D., Govers, H. A. J. and Parsons, J. R. : Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and Dibenzothiophene by Sphingomonassp. LB126. Res. Microbiol. 154, 199-206, 2003. Kasai, Y., Kishira, H. and Harayama, S. : Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl. Environ. Microbiol. 68(11), 5625-5633, 2002. Chung, W. K. and King, G. M. : Isolation, Characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from maribe macrofaunal burrow sediments and description of Lutibacterium anuloederans gen., sp. nov., and Cycloclasticus spirillensus sp. nov.
本発明の目的は、多環芳香族炭化水素による汚染がある土壌、河川水、地下水、海洋および海洋沿岸等の浄化処理を促進するために、多環芳香族炭化水素(特にナフタレン、ジベンゾチオフェン、フェナントレン、フルオレン)の分解能を有する新菌株およびそれを用いた多環芳香族炭化水素の分解方法等を提供することにある。
本発明者等は、上記の課題を解決するために鋭意研究を行った結果、土壌中から多環芳香族炭化水素を高効率で資化して生育・増殖することができる新菌株を発見し、これを用いることによって多環芳香族炭化水素による汚染がある土壌、河川水、地下水、海洋および海洋沿岸等を浄化できることを見出し、本発明を完成するに至った。
すなわち、本発明は、多環芳香族炭化水素を分解する能力を有し、配列番号1に記載の塩基配列と97 %以上の相同性を示す16S rRNA遺伝子を有する新菌株を提供する。
また本発明の新菌株には、アルキル側鎖を有しないナフタレン、低級アルキル側鎖を有するナフタレン、アルキル側鎖を有しないジベンゾチオフェン、低級アルキル側鎖を有するジベンゾチオフェン、アルキル側鎖を有しないフェナントレン、低級アルキル側鎖を有するフェナントレン、アルキル側鎖を有しないフルオレン、および低級アルキル側鎖を有するフルオレンよりなる群から選択される少なくとも1つの多環芳香族炭化水素を分解する能力を有し、特に、炭素数の和が1〜3のアルキル側鎖を有するナフタレン、炭素数1のアルキル側鎖を有するジベンゾチオフェン、炭素数1のアルキル側鎖を有するフェナントレン、および炭素数1のアルキル側鎖を有するフルオレンよりなる群から選択される少なくとも1つの多環芳香族炭化水素を優先的に分解する能力を有するものが含まれる。
本発明の新菌株は、代表的には、スフィンゴモナス sp. P-2株(受託番号FERM P-19717)である。
また、本発明は、上記いずれかの新菌株を、多環芳香族炭化水素を含有する試料と接触させる工程を含む、多環芳香族炭化水素の分解方法をも提供する。
本発明は、所望の多環芳香族炭化水素分解能を有するスフィンゴモナス属の新菌株を提供する。本発明の新菌株及びこれを利用する分解方法によれば、多環芳香族炭化水素を含む汚染環境を効果的に浄化処理することが可能となる。
(1)本発明の新菌株の単離法
本発明の新菌株は、以下のようにして単離することができる。
採取された石油汚染土壌に、フェナントレン、無機栄養塩類等を加え、適切な条件下で培養する。培養後、試験土壌中の菌相解析を行うとともにフェナントレンを含む無機塩培地を用いて菌の単離を行う。ここで、フェナントレン分解能が高い試験土壌中において優占化が確認された細菌を単離し、各単離菌について石油分解特性の評価を行う。この評価は、単離菌を使用し、230〜280 ℃で熱処理し軽質分を除去した原油(以下「W.oil」という)の分解実験を行い、ガスクロマトグラフ/質量分析装置(GC-MS)等により、W.oilに含まれる主要多環芳香族炭化水素の残存量を調査することにより行うことができる。
また本願において、本発明の新菌株の16S rRNA遺伝子の塩基配列が開示されている(配列番号1)。したがって最も簡易には、当業者であれば、この配列情報を基に本発明の新菌株の16S rRNA遺伝子を標的とするプローブやプライマーとしてポリヌクレオチドを合成し、石油汚染土壌中に目的の菌が存在するかを検出し、それを単離することもできる。特にその16S rRNA遺伝子をPCR法により特異的に増幅し、そのコピー数を定量することもできる。さらに、保存性の高いrRNA領域を増幅して得られる核酸混合物をDGGE法(変性剤濃度勾配ゲル電気泳動法)により分離し、分離した核酸の配列を決定すると共に濃度を測定することにより、当該試料中の菌相構造(同一試料中に存在する同種ないし近縁の微生物群における各種微生物の存在比を示す)を知ることもできる。なお、本明細書において「16S rRNA遺伝子を標的とする検出」に言及する場合、これには、16S rRNA遺伝子のプローブを用いた検出のほか、16S rRNA遺伝子を鋳型としたPCRなど、当該遺伝子の存在を知るためのあらゆる検出法が含まれる。
(2)本発明の新菌株
多環芳香族炭化水素分解能
後述の実施例で示されるように、多環芳香族炭化水素を分解する能力を有し、スフィンゴモナス(Sphingomonas)属に属する公知の種に含まれない新菌株が発見された。その新菌株は、スフィンゴモナス sp. P-2株と命名され、平成16年3月10日に独立行政法人産業技術総合研究所特許生物寄託センターに寄託され、受託番号FERM P-19717が与えられているので、この機関より入手することができる。
本発明の新菌株は、多環芳香族炭化水素成分のうち、概して、ナフタレン、ジベンゾチオフェン、フェナントレン、および/またはフルオレンを有効に分解する特性を有し、特に、アルキル側鎖炭素数を有しない前記成分だけでなく、炭素数が数個の低級アルキル側鎖を有する前記成分を有効に分解する特性を有する。とりわけ、スフィンゴモナス sp. P-2株は、炭素数の和が1〜3のアルキル側鎖を有するナフタレン、炭素数1のアルキル側鎖を1個有するジベンゾチオフェン、炭素数1のアルキル側鎖を1個有するフェナントレン、および炭素数1のアルキル側鎖を1個有するフルオレンに対して高い分解能を有することが確認されている。
なお、炭素数の和が1〜3のアルキル側鎖を有するとは、メチル基、エチル基またはプロピル基のいずれか1個を有する場合のほか、メチル基とエチル基を各々1個有する場合やメチル基を3個有する場合等も含まれる。
菌学的性質
本発明の新菌株の形態学的性質および生理学的性質は以下の通りである。
上記の菌学的性質に基づいて、本発明の菌株は、”Bergey’s Manual Systematic Bacteriology” Vol.1 (1984)と”Bergey’s Manual of Determinative Bacteriology” 9th. Ed. (1994)を参照することにより、スフィンゴモナス sp.であることが確認された。
系統学的位置づけ
本発明の新菌株を代表するスフィンゴモナス sp. P-2株について、16S rRNA遺伝子の塩基配列の約1,500塩基が決定された(配列番号1)。この塩基配列をBLAST検索(Altschul, S.F. et al., Basic local alignment search tool. J. Mol. Biol. 215, 403-410)を利用した遺伝子データベース上の既知遺伝子と比較し、CLUSTAL W (Thompson,J.D., Higgins,D.G. and Gibson,T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acid. Res. 22. 4673-4680)による近縁種との相同性解析を行うと、下記のように他種の配列が見つかった。
スフィンゴモナス sp. strain N1 (AY496444)の16S rRNA遺伝子の配列は、配列番号1の塩基配列の全長と96.4 %の相同性を示す。しかしながら、この細菌は多環芳香族炭化水素を分解する菌であるかどうかは不明である。
また、スフィンゴモナス sp. MBIC3020(AB025279)の16S rRNA遺伝子の配列は、配列番号1の塩基配列の全長と95.0 %の相同性を示す。この細菌は多環芳香族炭化水素のジベンゾチオフェンを分解する細菌である。
上記のように、本発明の新菌株の16S rRNA遺伝子塩基配列の全長について97 %以上の相同性をもち、且つ多環芳香族炭化水素を分解する細菌株についての報告はない。一般的に、比較対照の細菌が持つ16S rRNA遺伝子の塩基配列との相同性が99 %以上であれば同じ種に属し、99 %未満であれば新種である可能性が高いとされる。従って、上記相同性解析の結果から、上記菌株は、スフィンゴモナス属に属する既知の種に含まれない新種の菌株であると考えられた。かくして、本発明の菌株は、多環芳香族炭化水素を分解する能力を有し、且つ配列番号1に記載の塩基配列と97 %以上の相同性を持つ16S rRNA遺伝子を有する新菌株であると定義づけられた。
(3)本発明の新菌株を用いた分解処理
本発明の新菌株を用いた多環芳香族炭化水素を含有する環境の浄化処理は、典型的には培養した本菌株を修復対象環境に添加することにより行われる。これは、本菌株を含む培養液または培養物またはその乾燥菌体を環境中に添加することでよい。
修復対象環境の温度は20℃〜30℃、pHが6.5〜7.5の範囲内にあることが望ましい。さらに、修復環境中には微生物の生育に必要な窒素源およびリン源が適度に存在することが望ましいが、必要であればそれらを添加してもよい。
本菌株を増殖する方法には、当該技術分野において知られている通常の培養法が挙げられる。炭素源としては、原油、W.oil、ナフタレン、ジベンゾチオフェン、フェナントレン、フルオレンのような石油系炭化水素を含むことが望ましい。また修復環境中の濃度で10〜10,000 mg / Lになるように添加することが望ましい。
本菌株を用いた浄化処理を行うために、本菌株を含む土壌、コンポスト、土壌改良剤などを環境中に添加してもよい。この際、本菌株の増殖を促進させるために、水と増殖を補助する無機栄養塩類(窒素源、リン源など)、ビタミン類、炭素源等を同時に添加して好気条件下で培養することが好ましい。上記培養における温度条件は、スフィンゴモナス sp. P-2株の生育温度の範囲、好ましくはその最適生育温度、例えば20℃〜30℃、好ましくは28℃に設定するとよい。培地のpHは、6.5〜7.5の範囲に設定するとよい。培養時間は、栄養源の量や種類により異なるが、通常1日、好ましくは2〜3日である。添加すべき本菌株の量は、処理対象の環境に含まれる多環芳香族炭化水素の量や投入する環境の施工状況などに応じて任意に定めることができるが、典型的には、処理環境内の最終濃度で106〜109 cells / g-soil あるいは106〜109 cells / mL程度である。
上記のように本菌株を添加する必要があるのは、処理環境中に本菌株が存在しない場合である。したがって、本菌株が元来存在している環境では、本菌株を人為的に添加せずに、そのような土着の本菌株を利用し、ここで好ましくは上記のように本菌株が優占化し得る条件を与えることにより、そこに含まれる多環芳香族炭化水素を分解処理することができる。土着の本菌株の存在については、本菌株に特有な遺伝子、特に本願に開示された16S rRNA遺伝子を標的にしたPCR法等を用いて確認することができる。そのような土着の本菌株が元来存在する環境としては、土壌、河川水、地下水、海洋および海洋沿岸等を例示することができる。
本発明の実施例を以下に示すが、本発明の範囲はこれに限定されない。
〔実施例1〕スフィンゴモナス sp. P-2株の単離
石油汚染土壌 (2 g)をガラス製遠沈管に入れ、C0-フェナントレン、アンモニア性窒素(35 mg-N/L)、リン酸ナトリウム(10 mg-P/L)、滅菌水(10 mL)を加えて28 ℃で連続振とう培養した。2週間経過後、試験土壌中の菌相解析を行うとともにC0-フェナントレンを含む無機塩培地(2 mg/ml)を用いて菌の単離を行った。表2に無機塩培地の組成を示す。菌相解析の結果、2週間の集積培養実験でフェナントレン分解能が高い試験土壌中において優占化が確認された細菌を発見し、これを単離してスフィンゴモナス sp. P-2と命名した。
〔実施例2〕主要多環芳香族炭化水素についての分解能力の評価
実施例1で単離したスフィンゴモナス sp. P-2株の石油分解特性を評価するため、下記の通り、W.oilを用いた石油分解実験を行い、ガスクロマトグラフ/質量分析装置(GC-MS)によりW.oilに含まれる主要多環芳香族炭化水素の分解能を調査した。
多環芳香族炭化水素を含むW.oil 5 mgと、表2に示す組成の無機塩培地5 mLを15mL容量のガラス製試験管に入れ、そこにC0-フェナントレンを含む無機塩培地(2 mg/ml)で生育させたスフィンゴモナス sp. P-2株を一白金耳添加し、2週間28 ℃で振とう培養して分解実験を行った。また分解実験期間中の石油成分の揮発分を考慮するため、菌を添加しない対照系の実験も同時に行った。2週間の培養後、培養液中の全油をクロロホルムにより抽出し、ガスクロマトグラフ/質量分析装置(SHIMADZU, QP-5000) を使用し、全イオン検出法により抽出油中の多環芳香族炭化水素を定量した。
なお、各多環芳香族炭化水素のアルキル側鎖の炭素数は、各成分名の前にC0〜C7等の符号で示す(例えば、アルキル側鎖を有しないナフタレンはC0-ナフタレンと表す)。本実験では、C0〜C4-ナフタレン、C0〜C4-ジベンゾチオフェン、C0〜C7-フェナントレン、およびC0〜C2-フルオレンを定量した。
表3に分析条件を示し、表4に定量結果を示す。
定量結果には、添加したW.oilの初期濃度を100 %としたときの残存率(%)と、分解性(%)を示した。表4に示されるように、C0-ナフタレン、C0-フェナントレン、C0-フルオレンは100 %分解され、炭素数がC1〜C3-ナフタレンは90 %以上、C0-ジベンゾチオフェンは92 %以上、C1-ジベンゾチオフェンは87 %以上、C1-フェナントレンは96 %以上、C1-フルオレンは90 %以上分解された。
以上の結果から、スフィンゴモナス sp. P-2株は、多環芳香族炭化水素成分のうちC0-ナフタレン、C0-ジベンゾチオフェン、C0-フェナントレン、C0-フルオレンの各成分と、側鎖炭素数が少ない成分(C1〜C3-ナフタレン、C1-ジベンゾチオフェン、C1-フェナントレン、C1-フルオレン)を優先的に分解する特性を有することがわかった。
[実施例3〕模擬石油汚染土の浄化実験
スフィンゴモナス sp. P-2株を模擬汚染土に添加するバイオオーグメンテーション実験を行い、スフィンゴモナス sp. P-2株が多環芳香族炭化水素の分解に寄与するかどうかを調査した。模擬汚染土は石油汚染がなく滅菌していない珪砂を、2.6 mg/ g-soilとなるようにW.oilを混合し作製した。これを3 g取り50 mL容量のガラス製遠沈管に入れ、そこに滅菌水10 mL、無機栄養塩類(35 mg-N/L, 10 mg-P/L)、スフィンゴモナス sp. P-2株を108cells/g-soilとなるようにそれぞれ添加して2週間28 ℃下で振とう培養(120 rpm)を行った。また、スフィンゴモナス sp. P-2株を添加せずに、珪砂に存在する細菌の石油分解も調査した。
2週間後、培養液中の全油をクロロホルムにより抽出し、ガスクロマトグラフ/質量分析装置(SHIMADZU, QP-5000)を使用し、全イオン検出法により抽出油中の多環芳香族炭化水素のC0〜C4-ナフタレン、C0〜C4-ジベンゾチオフェン、C0〜C7-フェナントレン、C0〜C2-フルオレンを定量した。
また、各実験系から核酸試料を抽出し、真性細菌の16S rRNA遺伝子を標的にしたPCR法により増幅を行い、増幅した遺伝子混合物をDGGE法(変性剤濃度勾配ゲル電気泳動法)により分離し、分離した微生物遺伝子の塩基配列を決定し濃度を測定することにより、実験開始時と終了時の試料中の細菌相変化を半定量した。
図1は、各系による多環芳香族炭化水素成分の分解を示す。「珪砂+P-2(Day14)」は、模擬汚染珪砂土にスフィンゴモナス sp. P-2株を添加した系による石油分解、「珪砂(Day14)」は、スフィンゴモナス sp. P-2株を添加しない珪砂中に存在する細菌のみによる石油分解、「コントロール」は分解実験期間中の石油成分の揮発分を考慮するため、菌と珪砂のいずれも添加しない石油の分解の結果を示す。またこの結果は、添加したW.oilの初期濃度を100 %としたときの残存率(%)で示されている。図1の結果によると、珪砂のみの系では、多環芳香族炭化水素の成分はほとんど分解されず、スフィンゴモナス sp. P-2株を添加した系では、C0〜C3-ナフタレン、C0〜C1-ジベンゾチオフェン、C0〜C1-フェナントレン、C0〜C1-フルオレンを少なくとも91 %以上分解された。
図2は、各系の実験開始時と実験終了時の菌相構造をPCR法とDGGE法により解析した結果を示す。この結果、珪砂(レーン1〜3)中では認められなかったバンドに対応する細菌が、実験開始時と実験終了時のスフィンゴモナス sp. P-2株を添加した系(レーン4及び5)でバンドAとして検出された。
スフィンゴモナス sp. P-2株の存在を示すバンドAの強度(細菌の存在量)は、実験開始時(レーン4)と実験終了時(レーン5)とでほとんど変わらなかった。この結果から、バンドAに相当するスフィンゴモナス sp. P-2株が実験終了時には優占化して存在していると考えられた。さらに、バンドAに含まれる核酸の塩基配列を解析したところ、スフィンゴモナス sp. P-2株の塩基配列と完全に一致したため、バンドAは添加したスフィンゴモナス sp. P-2株の核酸であることが確かめられた。
以上の結果から、模擬石油汚染土にスフィンゴモナス sp. P-2株を添加したことにより、多環芳香族炭化水素の分解が促進されたことが分かった。よって、多環芳香族炭化水素による汚染がある環境中にスフィンゴモナス sp. P-2株を添加することは有効であるとの確証が得られた。
〔実施例4〕石油汚染土壌の浄化実験
スフィンゴモナス sp. P-2株を石油汚染土壌に添加するバイオオーグメンテーション実験を行い、スフィンゴモナス sp. P-2株が多環芳香族炭化水素の分解に寄与するかどうかを調査した。実験に用いた石油汚染土壌は主に灯油による汚染があった砂質土壌を用いた。
石油汚染土壌3 gと滅菌水10 mL、無機栄養塩類(35 mg-N/L, 10 mg-P/L)を50 mL容量のガラス製遠沈管に入れ、pH 7.0に調整した後、Sorensenリン酸バッファー pH 7.0(100 mM)を添加した。そこにスフィンゴモナス sp. P-2株を108 cells/g-soilとなるように添加して2週間28 ℃下で振とう培養(120 rpm)を行った。またスフィンゴモナス sp. P-2株を添加せずに、石油汚染土壌に存在する細菌の石油分解も調査した。
また実施例3と同様に、2週間後、培養液中の全油をクロロホルムにより抽出し、ガスクロマトグラフ/ 質量分析計(SHIMADZU, QP-5000)を使用し、全イオン検出法により抽出油中の多環芳香族炭化水素のC0〜C4-ナフタレン、C0〜C4-ジベンゾチオフェン、C0〜C7-フェナントレン、C0〜C2-フルオレンを定量した。
また、真性細菌の16S rRNA遺伝子を標的にしたPCR法による遺伝子の増幅を行い、増幅した遺伝子混合物をDGGE法(変性剤濃度勾配ゲル電気泳動法)により分離し、分離した微生物遺伝子の塩基配列を決定し濃度を測定することにより、各系で実験開始時と終了時での細菌相の変化を半定量した。
図3は、各系による多環芳香族炭化水素成分の分解を示す。「土壌+P-2(Day14)」は石油汚染土壌にスフィンゴモナス sp. P-2株を添加した系による分解結果、「土壌(Day14)」は、スフィンゴモナス sp. P-2株を添加しない石油汚染土壌中に存在する細菌のみによる石油分解、「コントロール」は分解実験期間中の石油成分の揮発分を考慮するため、菌と土壌のいずれも添加しない石油の分解の結果を示す。また結果は、添加したW.oilの初期濃度を100 %としたときの残存率(%)で示されている。図3の結果によると、土壌のみの系では、C0〜C4-ジベンゾチオフェン、C1〜C7-フェナントレンで多少分解が見られたが、その他の成分は分解されなかった。スフィンゴモナス sp. P-2株を添加した系では、C1〜C3-ナフタレンを少なくとも90 %、C0〜C1-ジベンゾチオフェンを少なくとも95 %、C0-フェナントレンを少なくとも70 %、C1-フェナントレンを少なくとも90 %と、C0〜C1-フルオレンを少なくとも90 %分解した。
図4は、各系の実験開始時と実験終了時の土壌中の菌相構造をPCR法とDGGE法により解析した結果を示す。その結果、土壌(レーン1〜3)中では認められなかったバンドに対応する細菌が、実験開始時と実験終了時(レーン4及び5)のスフィンゴモナス sp. P-2株を添加した系でバンドBとして検出された。
スフィンゴモナス sp. P-2株の存在を示すバンドBの強度(細菌の存在量)は、実験開始時と実験終了時とで変わらなかった。また実験開始時に検出されたその他のバンドが実験終了時にはほとんど見えず、バンドBに対応するスフィンゴモナス sp. P-2株が実験終了時には優占化して存在していると考えられた。さらに、バンドBに含まれる核酸の塩基配列を解析したところ、スフィンゴモナス sp. P-2株の塩基配列と完全に一致したため、バンドBは添加したスフィンゴモナス sp. P-2株の核酸であることが確かめられた。
以上の結果から、石油汚染土壌にスフィンゴモナス sp. P-2株を添加したことにより、多環芳香族炭化水素の分解が促進されたことが分かった。よって、多環芳香族炭化水素による汚染がある環境中にスフィンゴモナス sp. P-2株を添加することが有効であるとの確証が得られた。
図1は、実施例3の各実験系に関し、模擬石油汚染土中の多環芳香族炭化水素成分の残存率を示す。 図2は、実施例3の各実験系における菌相構造についてのPCR法およびDGGE法による解析結果を示す。 図3は、実施例4の各実験系に関し、石油汚染土壌中の多環芳香族炭化水素成分の残存率を示す。 図4は、実施例4の各実験系における菌相構造についてのPCR法およびDGGE法による解析結果を示す。

Claims (5)

  1. 多環芳香族炭化水素を分解する能力を有し、配列番号1に記載の塩基配列と97 %以上の相同性を示す16S rRNA遺伝子を有する新菌株。
  2. アルキル側鎖を有しないナフタレン、低級アルキル側鎖を有するナフタレン、アルキル側鎖を有しないジベンゾチオフェン、低級アルキル側鎖を有するジベンゾチオフェン、アルキル側鎖を有しないフェナントレン、低級アルキル側鎖を有するフェナントレン、アルキル側鎖を有しないフルオレン、および低級アルキル側鎖を有するフルオレンよりなる群から選択される少なくとも1つの多環芳香族炭化水素を分解する能力を有する、請求項1に記載の新菌株。
  3. 炭素数の和が1〜3のアルキル側鎖を有するナフタレン、炭素数1のアルキル側鎖を有するジベンゾチオフェン、炭素数1のアルキル側鎖を有するフェナントレン、および炭素数1のアルキル側鎖を有するフルオレンよりなる群から選択される少なくとも1つの多環芳香族炭化水素を優先的に分解する能力を有する、請求項1又は2に記載の新菌株。
  4. スフィンゴモナス sp. P-2株(受託番号FERM P-19717)である、請求項1〜3のいずれか1項に記載の新菌株。
  5. 請求項1〜4のいずれか1項に記載の新菌株を、多環芳香族炭化水素を含有する試料と接触させる工程を含む、多環芳香族炭化水素の分解方法。
JP2004074383A 2004-03-16 2004-03-16 多環芳香族炭化水素分解能を有する新菌株およびその利用方法 Pending JP2005261219A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074383A JP2005261219A (ja) 2004-03-16 2004-03-16 多環芳香族炭化水素分解能を有する新菌株およびその利用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074383A JP2005261219A (ja) 2004-03-16 2004-03-16 多環芳香族炭化水素分解能を有する新菌株およびその利用方法

Publications (1)

Publication Number Publication Date
JP2005261219A true JP2005261219A (ja) 2005-09-29

Family

ID=35086382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074383A Pending JP2005261219A (ja) 2004-03-16 2004-03-16 多環芳香族炭化水素分解能を有する新菌株およびその利用方法

Country Status (1)

Country Link
JP (1) JP2005261219A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063431A (ja) * 2012-11-01 2013-04-11 Shibaura Institute Of Technology 環境汚染物質分解能を有する海水由来菌及びその単離方法、及び環境汚染物質分解方法
JP2013532967A (ja) * 2011-02-15 2013-08-22 イファ ユニバーシティ−インダストリー コラボレーション ファウンデーション 新規なスフィンゴモナス属微生物及びそれを用いたメタン又は悪臭誘発化合物の分解方法
CN105199988A (zh) * 2015-09-29 2015-12-30 南京农业大学 一株具有菲降解功能的根表成膜细菌rs2及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532967A (ja) * 2011-02-15 2013-08-22 イファ ユニバーシティ−インダストリー コラボレーション ファウンデーション 新規なスフィンゴモナス属微生物及びそれを用いたメタン又は悪臭誘発化合物の分解方法
JP2013063431A (ja) * 2012-11-01 2013-04-11 Shibaura Institute Of Technology 環境汚染物質分解能を有する海水由来菌及びその単離方法、及び環境汚染物質分解方法
CN105199988A (zh) * 2015-09-29 2015-12-30 南京农业大学 一株具有菲降解功能的根表成膜细菌rs2及其应用

Similar Documents

Publication Publication Date Title
Lee et al. Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea
Guarino et al. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation–Assistited Landfarming) for a petroleum hydrocarbons contaminated soil
Al-Mailem et al. Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts
Kumar et al. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment
Ganesh et al. Diesel degradation and biosurfactant production by Gram-positive isolates
Cupples The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation
Wang et al. Microbial community structure and co-occurrence are essential for methanogenesis and its contribution to phenanthrene degradation in paddy soil
Dai et al. Bioremediation of heavy oil contaminated intertidal zones by immobilized bacterial consortium
Shao et al. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers
Sun et al. Isolation, identification, and characterization of diesel‐oil‐degrading bacterial strains indigenous to Changqing oil field, China
Mikolasch et al. From oil spills to barley growth–oil‐degrading soil bacteria and their promoting effects
Hocinat et al. Aerobic degradation of BTEX compounds by Streptomyces species isolated from activated sludge and agricultural soils
CN109161499A (zh) 一种产表面活性剂细菌及其在煤/石油化工废水中原位削减多环芳烃的应用
Ishaya et al. Degradation of used engine oil by alcaligenes sp. strain isolated from oil contaminated site: isolation, identification, and optimization of the growth parameters
Chen et al. Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian, China
Ichor et al. Biodegradation of total petroleum hydrocarbon by a consortium of Cyanobacteria isolated from crude oil polluted brackish waters of bodo creeks in Ogoniland, Rivers State
Irshaid et al. Screening and characterization of aerobic xylene-degrading bacteria from gasoline contaminated soil sites around gas stations in Northern Jordan
Baruah et al. Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes
Alonso-Gutiérrez et al. Alcanivorax strain detected among the cultured bacterial community from sediments affected by the ‘Prestige’oil spill
Muhammed et al. Biodegradation of Anthracene and Phenanthrene by (BUK_BTEG1) Isolated from Petrochemical Contaminated Soil
KR101554155B1 (ko) 유류를 분해하는 알카니보락스 신균주 및 이를 이용한 생물정화방법
JP2005261219A (ja) 多環芳香族炭化水素分解能を有する新菌株およびその利用方法
Samarghandi et al. Bioremediation of actual soil samples with high levels of crude oil using a bacterial consortium isolated from two polluted sites: investigation of the survival of the bacteria
KR101471508B1 (ko) 다환방향족 탄화수소 분해 활성을 가지는 알테로모나스 속 sn2
Hassanshahian et al. Degradation of naphthalene by bacterial isolates from the Gol Gohar Mine, Iran