JP2005259824A - Solid state imaging device and method of forming asymmetric optical waveguide - Google Patents

Solid state imaging device and method of forming asymmetric optical waveguide Download PDF

Info

Publication number
JP2005259824A
JP2005259824A JP2004066293A JP2004066293A JP2005259824A JP 2005259824 A JP2005259824 A JP 2005259824A JP 2004066293 A JP2004066293 A JP 2004066293A JP 2004066293 A JP2004066293 A JP 2004066293A JP 2005259824 A JP2005259824 A JP 2005259824A
Authority
JP
Japan
Prior art keywords
solid
light
microlens
imaging device
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004066293A
Other languages
Japanese (ja)
Other versions
JP4708721B2 (en
JP2005259824A5 (en
Inventor
Akihiko Nagano
明彦 長野
Koichiro Okumura
晃一郎 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004066293A priority Critical patent/JP4708721B2/en
Priority to US11/009,294 priority patent/US7060961B2/en
Publication of JP2005259824A publication Critical patent/JP2005259824A/en
Publication of JP2005259824A5 publication Critical patent/JP2005259824A5/ja
Application granted granted Critical
Publication of JP4708721B2 publication Critical patent/JP4708721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently condense lights incident on an optical waveguide, irrespective of the position of pixels in a solid state imaging device. <P>SOLUTION: The solid state imaging device (30) is composed of a plurality of pixels disposed on an expected image forming plane of a photographing lens. Each pixel has a microlens (31), a light receiver (33) for converting an incident light to an electric signal, and an optical waveguide (37) made of a transparent high-refractive index material disposed between the microlens and the receiver to guide the light from the microlens to the receiver. The optical waveguide has a different shape (37a-37d) suited to the position of each pixel in the imaging device, and the shape meets the condition that the incident light from the microlens makes the total reflection in the optical guide means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、デジタルスチルカメラ等の撮像装置に用いる固体撮像素子及び固体撮像素子で用いられる非対称光導波路の形成方法に関するものである。   The present invention relates to a solid-state imaging device used in an imaging apparatus such as a digital still camera and a method for forming an asymmetric optical waveguide used in the solid-state imaging device.

近年、デジタルスチルカメラ等の撮像装置に用いる固体撮像素子では、画素数を増やして画質を向上させる一方で、チップサイズを小さくすることにより低価格化をはかっている。そのため、固体撮像素子を構成する1画素の大きさは年々小さくなり、それに伴って受光部の面積も小さくなってきている。   In recent years, solid-state imaging devices used in imaging devices such as digital still cameras have improved the image quality by increasing the number of pixels, while reducing the cost by reducing the chip size. For this reason, the size of one pixel constituting the solid-state imaging device is decreasing year by year, and the area of the light receiving unit is also decreasing accordingly.

受光部の面積が小さくなると受光感度が低下してしまうため、光入射面と受光部との間に光導波路を設け、集光特性を高めた受光素子が提案されている(例えば、特許文献1参照)。この受光素子では、受光部の光入射側に高屈折率の材料で構成された対称形状の光導波路を設け、その周囲に低屈折率材料を設けて、その境界面で入射光を全反射させることにより集光特性を向上させている。   When the area of the light receiving portion is reduced, the light receiving sensitivity is lowered. Therefore, a light receiving element in which an optical waveguide is provided between the light incident surface and the light receiving portion to improve the light collecting characteristic has been proposed (for example, Patent Document 1). reference). In this light receiving element, a symmetrical optical waveguide composed of a high refractive index material is provided on the light incident side of the light receiving portion, and a low refractive index material is provided around the optical waveguide to totally reflect incident light at the boundary surface. This improves the light condensing characteristics.

また、固体撮像素子の周辺部で、各受光部上に構成されたマイクロレンズ(オンチップレンズ)の光軸を受光部の光軸から中心方向にずらすことにより、斜めから入射する光を効率的に受光部に集光する構成が提案されている(例えば、特許文献2参照)。   In addition, by shifting the optical axis of the microlens (on-chip lens) formed on each light-receiving unit toward the center from the optical axis of the light-receiving unit at the periphery of the solid-state imaging device, light incident from an oblique direction can be efficiently The structure which concentrates on a light-receiving part is proposed (for example, refer patent document 2).

図8(a)は、上記従来例を組み合わせた場合に考えられる固体撮像素子30の周辺部に配置される画素の断面図で、不図示の撮影レンズから入射する光線の様子を示している。同図において、31は入射光を受光部33に集光するためのマイクロレンズで、受光部33に対して不図示の撮影レンズの光軸側に偏心した位置に配設されている。受光部33の光入射側には高屈折率の材料で構成された光導波路36が形成されており、マイクロレンズ31にて屈折した入射光は光導波路36と低屈折率材料である層間絶縁膜35との境界面で全反射して、受光部33に導かれる。   FIG. 8A is a cross-sectional view of pixels arranged in the peripheral portion of the solid-state imaging device 30 that can be considered when the above-described conventional example is combined, and shows a state of light rays incident from a photographing lens (not shown). In the figure, reference numeral 31 denotes a microlens for condensing incident light on the light receiving unit 33, and is arranged at a position eccentric to the optical axis side of a photographing lens (not shown) with respect to the light receiving unit 33. An optical waveguide 36 made of a material having a high refractive index is formed on the light incident side of the light receiving portion 33, and the incident light refracted by the microlens 31 is the optical waveguide 36 and an interlayer insulating film that is a low refractive index material. The light is totally reflected at the boundary surface with the light 35 and guided to the light receiving unit 33.

特開平5−235313号公報JP-A-5-235313 特開第2600250号Japanese Patent No. 2600250

しかしながら、カメラの大きさをさらに小さくするために撮影レンズを小さくしていくと、固体撮像素子と撮影レンズの射出瞳との距離が短くなり、固体撮像素子に入射する光の角度がさらに大きくなってしまう。このため、図8(b)の光線トレース図に示すように、従来の対称形状の光導波路を有した固体撮像素子では屈折率界面において全反射条件を満足しない光束が発生して効率よく入射光を集光できないという欠点があった。   However, if the photographic lens is made smaller in order to further reduce the size of the camera, the distance between the solid-state image sensor and the exit pupil of the photographic lens is shortened, and the angle of light incident on the solid-state image sensor is further increased. End up. For this reason, as shown in the ray trace diagram of FIG. 8B, in the conventional solid-state imaging device having a symmetrical optical waveguide, a light flux that does not satisfy the total reflection condition is generated at the refractive index interface, and the incident light is efficiently generated. There was a disadvantage that the light could not be condensed.

このように、固体撮像素子に入射する光の角度は固体撮像素子を構成する各画素の位置によって異なるため、同一形状の光導波路を形成すると画素によって感度が異なってしまうという欠点があった。   As described above, since the angle of light incident on the solid-state image sensor differs depending on the position of each pixel constituting the solid-state image sensor, there is a disadvantage that the sensitivity varies depending on the pixels when the optical waveguide having the same shape is formed.

本発明は上記問題点を鑑みてなされたものであり、固体撮像素子における画素の位置に関わらず、光導波路に入射した光を効率よく集光できるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to efficiently collect light incident on an optical waveguide regardless of the position of a pixel in a solid-state imaging device.

上記目的を達成するために、撮影レンズの予定結像面に配置される、複数画素からなる本発明の固体撮像素子は、各画素は、マイクロレンズと、入射光を電気信号に変換する光電変換手段と、透明な高屈折率材料で構成され、前記マイクロレンズと前記光電変換手段との間に配置された、前記マイクロレンズからの光を前記光電変換手段に導光する導光手段とを有し、前記導光手段は、前記固体撮像素子における各画素の位置に応じてそれぞれ異なる形状を有し、該形状が、前記マイクロレンズから入射する光が前記導光手段内で全反射する条件を満たす。   In order to achieve the above object, the solid-state imaging device of the present invention consisting of a plurality of pixels arranged on the planned imaging plane of the photographic lens is composed of a microlens and a photoelectric conversion that converts incident light into an electrical signal. And a light guide means that is made of a transparent high refractive index material and is disposed between the microlens and the photoelectric conversion means and guides light from the microlens to the photoelectric conversion means. The light guide means has a different shape according to the position of each pixel in the solid-state imaging device, and the shape satisfies the condition that light incident from the microlens is totally reflected in the light guide means. Fulfill.

また、別の構成によれば、撮影レンズの予定結像面に配置される、複数画素からなる本発明の固体撮像素子は、各画素は、マイクロレンズと、入射光を電気信号に変換する光電変換手段と、透明な高屈折率材料で構成され、前記マイクロレンズと前記光電変換手段との間に配置された、前記マイクロレンズからの光を前記光電変換手段に集光する集光手段とを有し、前記集光手段は、前記固体撮像素子における各画素の位置に応じてそれぞれ異なる形状を有し、該形状が、前記マイクロレンズから入射する光が前記光電変換手段の領域内にほぼ収まるように集光する形状及び集光力を有する。   According to another configuration, the solid-state imaging device according to the present invention, which is arranged on the planned imaging plane of the photographing lens and includes a plurality of pixels, each pixel includes a microlens and a photoelectric that converts incident light into an electrical signal. A conversion unit, and a condensing unit that is made of a transparent high refractive index material and is disposed between the microlens and the photoelectric conversion unit, and condenses the light from the microlens on the photoelectric conversion unit. And the condensing means has different shapes depending on the position of each pixel in the solid-state imaging device, and the shape allows light incident from the microlens to be substantially within the region of the photoelectric conversion means. Thus, it has a shape to collect light and a light collecting power.

上記構成によれば、固体撮像素子における画素の位置に関わらず、光導波路に入射した光を効率よく集光することが可能になる。   According to the above configuration, it is possible to efficiently collect light incident on the optical waveguide regardless of the position of the pixel in the solid-state imaging device.

以下、添付図面を参照して本発明を実施するための最良の形態を詳細に説明する。ただし、本形態において例示される構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、本発明がそれらの例示に限定されるものではない。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components exemplified in this embodiment should be changed as appropriate according to the configuration of the apparatus to which the present invention is applied and various conditions. However, the present invention is not limited to these examples.

<第1の実施形態>
図1は、本発明の第1の実施形態における固体撮像素子の平面図である。
<First Embodiment>
FIG. 1 is a plan view of a solid-state imaging device according to the first embodiment of the present invention.

図1において、30は固体撮像素子であり、固体撮像素子30の各画素は、不図示の撮影レンズからの光を集光するためのマイクロレンズ31と、入射光をその光量に応じた電気信号に変換する受光部33と、マイクロレンズ31からの光を受光部33に導光する光導波路36とを有している。なお、図1では説明の簡略化のために8×6画素のみを示しているが、実際は数十万〜数百万画素が配列されている。各画素の受光部33は等間隔で配置されているが、マイクロレンズ31は受光部33に対して固体撮像素子30の中心側(不図示の撮影レンズの光軸側)に偏心して配置されている。また光導波路36は四角錐台の形状で、各画素の位置に応じて異なる形状を成している。   In FIG. 1, reference numeral 30 denotes a solid-state image sensor. Each pixel of the solid-state image sensor 30 includes a microlens 31 for condensing light from a photographing lens (not shown), and an electrical signal corresponding to the amount of incident light. And a light guide 36 that guides the light from the microlens 31 to the light receiver 33. In FIG. 1, only 8 × 6 pixels are shown for simplification of explanation, but actually hundreds of thousands to millions of pixels are arranged. Although the light receiving portions 33 of the respective pixels are arranged at equal intervals, the microlens 31 is arranged eccentrically with respect to the light receiving portion 33 toward the center side of the solid-state imaging device 30 (the optical axis side of a photographing lens (not shown)). Yes. The optical waveguide 36 has a quadrangular pyramid shape, and has a different shape depending on the position of each pixel.

図2(a)は、図1においてa、b、cに位置する画素(以下、画素a、b、cと記す。)、また、図2(b)はdに位置する画素(以下、画素dと記す。)の断面をそれぞれ示す図である。なお、各画素の構成を示す参照番号の後のa〜dは、対応する画素a〜dをそれぞれ特定するためのものである。図1から分かるように、画素a、bは固体撮像素子30のほぼ中央部に位置し、画素cは中央部の画素bに隣接し、画素dは固体撮像素子30の端に位置している。   2A is a pixel located at a, b, and c in FIG. 1 (hereinafter referred to as pixels a, b, and c), and FIG. 2B is a pixel that is located at d (hereinafter referred to as a pixel). It is a figure which each shows the cross section of d.). Note that “a” to “d” after the reference number indicating the configuration of each pixel are for specifying the corresponding pixels “a” to “d”, respectively. As can be seen from FIG. 1, the pixels a and b are located substantially at the center of the solid-state image sensor 30, the pixel c is adjacent to the center pixel b, and the pixel d is located at the end of the solid-state image sensor 30. .

図2において、32はSi基板であり、受光部33a〜33dが形成されている。38は配線電極で、屈折率の低いSiO2等で形成された層間絶縁膜35の間に形成されている。また、34は受光部33a〜33dにて発生した光電荷を不図示のフローティングディフュージョン部(FD部)に転送するための転送電極である。また、36a〜36dは屈折率の高い材料であるSiN等で構成された光導波路で、その中心軸は受光部33a〜33dの中心軸とほぼ一致している。光導波路36a〜36dの光入射側は、より多くの光が入射可能なように開口が広くなるように形成されている。また、37a〜37dはカラーフィルタで、さらに平坦化層を介してマイクロレンズ31a〜31dが形成されている。マイクロレンズ31a〜31dは、不図示の撮影レンズから入射する光束を受光部33a〜33dに集光するようにレンズ形状が決められている。 In FIG. 2, 32 is a Si substrate, and light receiving portions 33a to 33d are formed. Reference numeral 38 denotes a wiring electrode, which is formed between interlayer insulating films 35 made of SiO 2 or the like having a low refractive index. Reference numeral 34 denotes a transfer electrode for transferring photoelectric charges generated in the light receiving portions 33a to 33d to a floating diffusion portion (FD portion) (not shown). Reference numerals 36a to 36d denote optical waveguides made of SiN or the like having a high refractive index, and the central axis thereof substantially coincides with the central axes of the light receiving portions 33a to 33d. The light incident sides of the optical waveguides 36a to 36d are formed so that the openings are widened so that more light can enter. Reference numerals 37a to 37d denote color filters, and microlenses 31a to 31d are formed through a planarization layer. The lens shapes of the microlenses 31a to 31d are determined so as to condense light beams incident from a photographing lens (not shown) onto the light receiving portions 33a to 33d.

固体撮像素子30の中央部に位置する画素a、bにおいては、不図示の撮影レンズから入射する光の主光線はほぼ垂直に入射するため、マイクロレンズ31a、31bの光軸41a、41bと光導波路36a、36bの中心軸40a、40bは略一致するように構成されている。また、光導波路36a、36bはその中心軸40a、40bに対して対称な正四角錐台の形状を成している。   In the pixels a and b located at the center of the solid-state image pickup device 30, the principal ray of light incident from a photographing lens (not shown) is incident substantially perpendicularly, so that the optical axes 41a and 41b of the microlenses 31a and 31b and the light beams are guided. The central axes 40a and 40b of the waveguides 36a and 36b are configured to substantially coincide with each other. The optical waveguides 36a and 36b are in the shape of a regular quadrangular pyramid that is symmetric with respect to the central axes 40a and 40b.

一方、固体撮像素子30の中央部に位置していない画素c及びdでは、不図示の撮影レンズから入射する光の主光線は、撮影レンズの射出瞳と画素の位置で決まる所定の角度で入射する。そのため、マイクロレンズ31c及び31dの光軸41c及び41dは光導波路36c及び36dの中心軸40c及び40dに対して画素中央部に偏心するように設定されている。また、光導波路36c及び36dはその中心軸40c及び40dに対して非対称な四角錐台の形状を成している。すなわち、光導波路36c及び36dの中心軸40c及び40dに対して固体撮像素子30の中央部側の傾斜面の角度は一定だが、中心軸40c及び40dに対して固体撮像素子30の周辺部側の傾斜面の角度はその画素の位置に応じて異なるように形成されている。つまり、固体撮像素子30の周辺部にいくにしたがって撮影レンズからの主光線の入射角が深くなるため、光導波路36の傾斜面への入射角が浅くなるように、周辺側に位置する傾斜面の角度はSi基板32に対して垂直に近づくように形成されている。   On the other hand, in the pixels c and d that are not located at the center of the solid-state imaging device 30, the principal ray of light incident from a photographing lens (not shown) is incident at a predetermined angle determined by the exit pupil of the photographing lens and the position of the pixel. To do. Therefore, the optical axes 41c and 41d of the microlenses 31c and 31d are set so as to be eccentric to the center of the pixel with respect to the central axes 40c and 40d of the optical waveguides 36c and 36d. The optical waveguides 36c and 36d are in the form of a truncated pyramid that is asymmetric with respect to the central axes 40c and 40d. That is, the angle of the inclined surface on the central side of the solid-state imaging device 30 with respect to the central axes 40c and 40d of the optical waveguides 36c and 36d is constant, but the peripheral side of the solid-state imaging device 30 with respect to the central axes 40c and 40d. The angle of the inclined surface is formed to be different depending on the position of the pixel. That is, since the incident angle of the principal ray from the photographing lens becomes deeper as it goes to the peripheral portion of the solid-state imaging device 30, the inclined surface positioned on the peripheral side so that the incident angle to the inclined surface of the optical waveguide 36 becomes shallow. These angles are formed so as to approach perpendicular to the Si substrate 32.

なお、上述したように光導波路36c及び36dの周辺部側の傾斜面を垂直に近づけることで光導波路36c及び36dの開口面積は低下するが、上述したようにマイクロレンズ31c及び31dの位置を固体撮像素子30の中心に偏心させることで、マイクロレンズ31a及び31bにより集光された光が光導波路36a及び36bに入射するのと同程度に、マイクロレンズ31c及び31dにより集光された光を光導波路36c及び36dにそれぞれ入射させることが可能である。このように、各画素のマイクロレンズの設置位置は、撮影レンズの射出瞳からの距離や、マイクロレンズの集光力、光導波路の開口までの距離などの条件に基づいて、適宜変更されるものである。   As described above, the opening areas of the optical waveguides 36c and 36d are reduced by bringing the inclined surfaces on the peripheral side of the optical waveguides 36c and 36d close to vertical, but the positions of the microlenses 31c and 31d are solid as described above. By decentering to the center of the image sensor 30, the light collected by the microlenses 31c and 31d is guided to the same extent as the light collected by the microlenses 31a and 31b is incident on the optical waveguides 36a and 36b. The light can enter the waveguides 36c and 36d, respectively. As described above, the installation position of the microlens of each pixel is appropriately changed based on conditions such as the distance from the exit pupil of the photographing lens, the focusing power of the microlens, and the distance to the opening of the optical waveguide. It is.

図3は、不図示の撮影レンズをさらに小型化することによってその射出瞳と固体撮像素子30との距離が短くなった場合に、固体撮像素子30の端の画素dに入射する光束の様子を示す図である。固体撮像素子30に深い角度で入射した光束は、マイクロレンズ31dで屈折して高屈折率材料で構成された光導波路36dに入射する。ここで光導波路36dの周辺部側の傾斜面はSi基板32に対してほぼ垂直になるように形成されているため、傾斜面に入射する光束の角度が浅くなり、全反射条件を満足する。その結果、固体撮像素子30に深い角度で入射した光束も光導波路36dの傾斜面で全反射して効率よく受光部33dに導かれる。   FIG. 3 shows the state of the light beam incident on the pixel d at the end of the solid-state image sensor 30 when the distance between the exit pupil and the solid-state image sensor 30 is shortened by further downsizing a photographing lens (not shown). FIG. The light beam incident on the solid-state imaging device 30 at a deep angle is refracted by the micro lens 31d and enters the optical waveguide 36d made of a high refractive index material. Here, since the inclined surface on the peripheral portion side of the optical waveguide 36d is formed so as to be substantially perpendicular to the Si substrate 32, the angle of the light beam incident on the inclined surface becomes shallow, and the total reflection condition is satisfied. As a result, the light beam incident on the solid-state imaging device 30 at a deep angle is also totally reflected by the inclined surface of the optical waveguide 36d and efficiently guided to the light receiving unit 33d.

固体撮像素子30の位置に応じて異なる非対称形状の光導波路36を形成するためのプロセスを図4のフォトマスク説明図及び図5の光導波路形成プロセス説明図を用いて説明する。   A process for forming the optical waveguide 36 having a different asymmetric shape depending on the position of the solid-state imaging device 30 will be described with reference to the photomask explanatory diagram of FIG. 4 and the optical waveguide formation process explanatory diagram of FIG.

図4は本発明の固体撮像素子30の1画素の光導波路を形成するために用いられるフォトマスクの一例である。本第1の実施形態においては、石英基板等の光透過性支持体11上に、選択的に描画したドットパターン、即ちドット13の密度を段階的に変化させた所望のドットパターンによる遮光膜パターン12を形成してフォトマスク10を構成する。ドット13は一定の形状を有し、本例では同一の正方形に形成される。そして、本第1の実施形態では図中A−A’の方向で見ると、A−C間及び、D−A’間(図4の網掛け部分)が最もドット密度が高く、逆にD−E間にドットは存在しない。また、C−E間は段階的にドット密度が疎になるようにドット13を分布して構成するものである。図4では前記のようなドット密度分布を持たせたが、遮光パターンのドット密度分布は、形成する光導波路に対する画素の固体撮像素子30上の位置に応じて異なるように設計される。   FIG. 4 is an example of a photomask used for forming an optical waveguide of one pixel of the solid-state imaging device 30 of the present invention. In the first embodiment, a dot pattern selectively drawn on a light-transmitting support 11 such as a quartz substrate, that is, a light-shielding film pattern by a desired dot pattern in which the density of dots 13 is changed stepwise. 12 is formed to constitute the photomask 10. The dots 13 have a fixed shape and are formed in the same square in this example. In the first embodiment, when viewed in the direction of AA ′ in the drawing, the dot density is the highest between A and C and between D and A ′ (shaded portion in FIG. 4), and conversely D There is no dot between -E. Further, between the lines CE, the dots 13 are distributed and configured so that the dot density gradually decreases. In FIG. 4, the dot density distribution as described above is provided, but the dot density distribution of the light shielding pattern is designed to be different depending on the position of the pixel on the solid-state imaging device 30 with respect to the optical waveguide to be formed.

次に、フォトマスク10を用いてレジスト膜をパターニングするリソグラフィ工程を利用した光導波路形成方法を図5のプロセス説明図を用いて説明する。   Next, an optical waveguide forming method using a lithography process for patterning a resist film using the photomask 10 will be described with reference to a process explanatory diagram of FIG.

図5(a)に示すように、受光部33が形成されたSi基板32上に配線電極38を含む層間絶縁膜35を形成し、この層間絶縁膜35上にポジ型のレジスト膜(ポジ型の感光性樹脂膜)20を形成する。そして、各画素の対応する領域に所定のドット密度分布を有したフォトマスク10を配置し、このフォトマスク10を介して露光する。この場合、フォトマスク10のA−A’の方向では、前記のように位置によってドット13の密度が変化し露光密度が制御される。   As shown in FIG. 5A, an interlayer insulating film 35 including a wiring electrode 38 is formed on a Si substrate 32 on which a light receiving portion 33 is formed, and a positive resist film (positive type) is formed on the interlayer insulating film 35. The photosensitive resin film) 20 is formed. Then, a photomask 10 having a predetermined dot density distribution is arranged in a corresponding region of each pixel, and exposure is performed through the photomask 10. In this case, in the direction of A-A ′ of the photomask 10, the density of the dots 13 changes depending on the position as described above, and the exposure density is controlled.

さらに現像処理を行うことによって、図5(b)に示すようにレジスト膜20はフォトマスク10の露光密度に対応した非対称な抜きのパターンが形成される。   By further developing the resist film 20, an asymmetric pattern corresponding to the exposure density of the photomask 10 is formed as shown in FIG. 5B.

次に反応性イオンエッチング処理をすることで、図5(c)に示すようにレジスト膜20のパターンが層間絶縁膜35に転写されて、受光部33の直上に非対称な光導波路となる凹部が形成される。   Next, by performing reactive ion etching, the pattern of the resist film 20 is transferred to the interlayer insulating film 35 as shown in FIG. 5C, and a concave portion that becomes an asymmetric optical waveguide is formed immediately above the light receiving portion 33. It is formed.

さらに図5(d)に示すように、層間絶縁膜35に形成された非対称な凹部に高屈折率材料であるSiNを埋め込むことによって光導波路36が形成される。   Further, as shown in FIG. 5D, an optical waveguide 36 is formed by embedding SiN which is a high refractive index material in an asymmetric recess formed in the interlayer insulating film 35.

上記説明したように、本第1の実施形態によれば、光導波路に入射する光が光導波路内で全反射するように、画素の各位置に応じて光導波路の形状を変えることで、固体撮像素子における画素の位置に関わらず、光導波路に入射した光を効率よく受光部に導くことが可能となる。   As described above, according to the first embodiment, the shape of the optical waveguide is changed according to each position of the pixel so that the light incident on the optical waveguide is totally reflected in the optical waveguide. Regardless of the position of the pixel in the image sensor, the light incident on the optical waveguide can be efficiently guided to the light receiving unit.

<変形例>
上記第1の実施形態においては、固体撮像素子30を構成する各画素の光導波路36は固体撮像素子30の周辺部にいくにしたがって固体撮像素子の中心に対して周辺側に位置する傾斜面の角度を垂直に近づけるように変化させるように構成された例を示したが、図6の固体撮像素子の概略断面図に示すような形状にしても、上記第1の実施形態と同様の効果を達成することが可能である。
<Modification>
In the first embodiment, the optical waveguide 36 of each pixel constituting the solid-state image sensor 30 is an inclined surface located on the peripheral side with respect to the center of the solid-state image sensor 30 as it goes to the periphery of the solid-state image sensor 30. Although an example is shown in which the angle is changed so as to approach the vertical, the same effect as in the first embodiment can be obtained even if the shape is as shown in the schematic cross-sectional view of the solid-state imaging device in FIG. It is possible to achieve.

即ち、固体撮像素子の中心に対して周辺側に位置する傾斜面の少なくとも一部がSi基板32に対して垂直な面を含むようにし、傾斜角度が一定の傾斜面と垂直な面の比率を固体撮像素子30の周辺部にいくにしたがって大きくするように構成することによって、固体撮像素子30に深い角度で入射した光束に対しても全反射条件を満足して、効率よく受光部33に導くことを可能としている。   That is, at least a part of the inclined surface located on the peripheral side with respect to the center of the solid-state imaging device includes a surface perpendicular to the Si substrate 32, and the ratio of the inclined surface with a constant inclination angle to the surface perpendicular to the Si substrate 32 is set. By being configured so as to increase toward the periphery of the solid-state image sensor 30, the total reflection condition is satisfied even for a light beam incident on the solid-state image sensor 30 at a deep angle, and the light is efficiently guided to the light receiving unit 33. Making it possible.

更に、上記第1の実施形態で説明した、固体撮像素子の周辺にいくに従って光導波路の周辺部側の傾斜面を垂直に近づける構成に加えて、中心側の傾斜面を傾け、開口面積を広げるようにしても良い。ただし、中心側の傾斜面においても全反射条件を保てる角度にしておく必要がある。   Furthermore, in addition to the configuration described in the first embodiment in which the inclined surface on the peripheral portion side of the optical waveguide is brought closer to the vertical as it goes to the periphery of the solid-state imaging device, the inclined surface on the center side is inclined to widen the opening area. You may do it. However, it is necessary to set the angle to maintain the total reflection condition even on the inclined surface on the center side.

また、上記第1の実施形態では、光導波路の形状を四角錐台としたがこれに限るものではなく、多角錐台や円錐台の形状により構成することも可能である。   Moreover, in the said 1st Embodiment, although the shape of the optical waveguide was made into the square frustum, it is not restricted to this, It is also possible to comprise by the shape of a polygonal frustum or a truncated cone.

<第2の実施形態>
上記第1の実施形態では、光導波路の屈折率界面での全反射を用いて受光部に光を導く例を示したが、図7の固体撮像素子の概略断面図に示すような構成にしても上記第1の実施形態と同様の効果を達成することが可能である。
<Second Embodiment>
In the first embodiment, the example in which light is guided to the light receiving unit using total reflection at the refractive index interface of the optical waveguide is shown. However, the configuration shown in the schematic cross-sectional view of the solid-state imaging device in FIG. It is also possible to achieve the same effect as in the first embodiment.

即ち、配線電極38とカラーフィルタ37との間にレンズ作用を有する光導波路39を設け、固体撮像素子30の周辺部にいくにしたがって光導波路39であるレンズ体の周辺部側の曲率半径が小さくなるように構成することにより、固体撮像素子30に深い角度で入射した光束に対してより強い屈折作用をもたらすことによって入射光を効率よく受光部33に導くことを可能としている。   That is, an optical waveguide 39 having a lens action is provided between the wiring electrode 38 and the color filter 37, and the radius of curvature on the peripheral portion side of the lens body that is the optical waveguide 39 decreases as it goes to the peripheral portion of the solid-state imaging device 30. With this configuration, incident light can be efficiently guided to the light receiving unit 33 by providing a stronger refracting action on a light beam incident on the solid-state imaging device 30 at a deep angle.

本第2の実施形態によれば、第1の実施形態と同様に、固体撮像素子における画素の位置に関わらず、光導波路に入射した光を効率よく受光部に導くことが可能となる。   According to the second embodiment, similarly to the first embodiment, light incident on the optical waveguide can be efficiently guided to the light receiving unit regardless of the position of the pixel in the solid-state imaging device.

本発明の第1の実施形態における固体撮像素子の平面図である。It is a top view of the solid-state image sensing device in a 1st embodiment of the present invention. 図1に示す固体撮像素子の一部画素の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the one part pixel of the solid-state image sensor shown in FIG. 本発明の第1の実施形態における周辺画素の光線トレース図である。It is a ray trace figure of a peripheral pixel in a 1st embodiment of the present invention. 本発明の第1の実施形態における光導波路を形成するために用いられるフォトマスクの一例を示す図である。It is a figure which shows an example of the photomask used in order to form the optical waveguide in the 1st Embodiment of this invention. 本発明の第1の実施形態における光導波路を形成するためのプロセスを説明する概略図である。It is the schematic explaining the process for forming the optical waveguide in the 1st Embodiment of this invention. 図1に示す固体撮像素子の一部画素の別の構成を示す概略断面図である。It is a schematic sectional drawing which shows another structure of the one part pixel of the solid-state image sensor shown in FIG. 本発明の第2の実施形態における固体撮像素子の一部画素の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the one part pixel of the solid-state image sensor in the 2nd Embodiment of this invention. 従来の固体撮像素子の一画素の光線トレース図である。It is a ray trace figure of one pixel of the conventional solid-state image sensor.

符号の説明Explanation of symbols

10 フォトマスク
20 レジスト膜
30 固体撮像素子
31 マイクロレンズ
32 Si基板
33 受光部
34 転送電極
35 層間絶縁膜
36、39 光導波路
37 カラーフィルタ
38 配線電極
DESCRIPTION OF SYMBOLS 10 Photomask 20 Resist film 30 Solid-state image sensor 31 Micro lens 32 Si substrate 33 Light-receiving part 34 Transfer electrode 35 Interlayer insulating film 36, 39 Optical waveguide 37 Color filter 38 Wiring electrode

Claims (8)

撮影レンズの予定結像面に配置される、複数画素からなる固体撮像素子であって、各画素は、
マイクロレンズと、
入射光を電気信号に変換する光電変換手段と、
透明な高屈折率材料で構成され、前記マイクロレンズと前記光電変換手段との間に配置された、前記マイクロレンズからの光を前記光電変換手段に導光する導光手段とを有し、
前記導光手段は、前記固体撮像素子における各画素の位置に応じてそれぞれ異なる形状を有し、該形状が、前記マイクロレンズから入射する光が前記導光手段内で全反射する条件を満たすことを特徴とする固体撮像素子。
A solid-state image sensor composed of a plurality of pixels disposed on a planned imaging plane of a photographing lens, each pixel being
A microlens,
Photoelectric conversion means for converting incident light into an electrical signal;
A light guide means that is made of a transparent high refractive index material and is arranged between the microlens and the photoelectric conversion means, and guides light from the microlens to the photoelectric conversion means;
The light guide means has a different shape depending on the position of each pixel in the solid-state imaging device, and the shape satisfies a condition that light incident from the microlens is totally reflected in the light guide means. A solid-state imaging device characterized by the above.
前記マイクロレンズは、対応する画素の前記固体撮像素子の中央からの位置に応じて、前記光電変換手段の光軸に対して前記固体撮像素子の中心側に偏心して配置され、前記導光手段は、前記マイクロレンズからの光がほぼ全入射する開口を有することを特徴とする請求項1に記載の固体撮像素子。   The microlens is arranged eccentric to the center side of the solid-state image sensor with respect to the optical axis of the photoelectric conversion unit according to the position of the corresponding pixel from the center of the solid-state image sensor, and the light guide unit is The solid-state imaging device according to claim 1, further comprising an opening through which light from the microlens is substantially entirely incident. 前記導光手段は、多角錐台または円錐台の形状を有し、上面が底面よりも広いことを特徴とする請求項1または2に記載の固体撮像素子。   3. The solid-state imaging device according to claim 1, wherein the light guide means has a polygonal frustum shape or a truncated cone shape, and has an upper surface wider than a bottom surface. 前記導光手段は、対応する画素の位置が前記固体撮像素子の中央から離れるに従って、前記固体撮像素子の周辺側に位置する傾斜面の角度がより垂直に近づく形状を有することを特徴とする請求項3に記載の固体撮像素子。   The light guide means has a shape in which an angle of an inclined surface located on the peripheral side of the solid-state image sensor approaches more vertically as the position of the corresponding pixel is away from the center of the solid-state image sensor. Item 6. The solid-state imaging device according to Item 3. 撮影レンズの予定結像面に配置される、複数画素からなる固体撮像素子であって、各画素は、
マイクロレンズと、
入射光を電気信号に変換する光電変換手段と、
透明な高屈折率材料で構成され、前記マイクロレンズと前記光電変換手段との間に配置された、前記マイクロレンズからの光を前記光電変換手段に集光する集光手段とを有し、
前記集光手段は、前記固体撮像素子における各画素の位置に応じてそれぞれ異なる形状を有し、該形状が、前記マイクロレンズから入射する光が前記光電変換手段の領域内にほぼ収まるように集光する形状及び集光力を有することを特徴とする固体撮像素子。
A solid-state image sensor composed of a plurality of pixels disposed on a planned imaging plane of a photographing lens, each pixel being
A microlens,
Photoelectric conversion means for converting incident light into an electrical signal;
Condensing means for condensing the light from the microlens to the photoelectric conversion means, which is composed of a transparent high refractive index material and is disposed between the microlens and the photoelectric conversion means,
The condensing means has a different shape depending on the position of each pixel in the solid-state imaging device, and the shape is collected so that light incident from the microlens is substantially within the region of the photoelectric conversion means. A solid-state imaging device having a shape to shine and a light collecting power.
前記マイクロレンズは、対応する画素の前記固体撮像素子の中央からの位置に応じて、前記光電変換手段の光軸に対して前記固体撮像素子の中心側に偏心して配置され、前記集光手段は、前記マイクロレンズからの光がほぼ全入射する開口を有することを特徴とする請求項5に記載の固体撮像素子。   The microlens is arranged eccentric to the center side of the solid-state image sensor with respect to the optical axis of the photoelectric conversion unit according to the position of the corresponding pixel from the center of the solid-state image sensor, The solid-state image pickup device according to claim 5, further comprising an opening through which almost all light from the microlens enters. 前記集光手段は、対応する画素の位置が前記固体撮像素子の中央から離れるに従って、前記固体撮像素子の周辺側の曲率半径がより小さくなる形状を有することを特徴とする請求項5または6に記載の固体撮像素子。   The condensing means has a shape in which the radius of curvature on the peripheral side of the solid-state image sensor becomes smaller as the position of the corresponding pixel moves away from the center of the solid-state image sensor. The solid-state imaging device described. 配線層を含む層間絶縁膜上にレジストを塗布する工程と、
光透過性支持体にドット密度を段階的に変化させた遮光パターンを形成したフォトマスクを用いて前記レジストを露光して現像する工程と、
前記レジストを非対称形状にパターニングした後、エッチング処理により非対称形状を前記層間絶縁膜に転写する工程と
を有することを特徴とする非対称光導波路の形成方法。
Applying a resist on an interlayer insulating film including a wiring layer;
Exposing and developing the resist using a photomask having a light-shielding pattern in which the dot density is changed stepwise on a light-transmitting support; and
And a step of patterning the resist into an asymmetric shape and then transferring the asymmetric shape to the interlayer insulating film by an etching process.
JP2004066293A 2003-12-12 2004-03-09 Solid-state image sensor Expired - Fee Related JP4708721B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004066293A JP4708721B2 (en) 2004-03-09 2004-03-09 Solid-state image sensor
US11/009,294 US7060961B2 (en) 2003-12-12 2004-12-10 Image sensing element and optical instrument having improved incident light use efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066293A JP4708721B2 (en) 2004-03-09 2004-03-09 Solid-state image sensor

Publications (3)

Publication Number Publication Date
JP2005259824A true JP2005259824A (en) 2005-09-22
JP2005259824A5 JP2005259824A5 (en) 2007-04-26
JP4708721B2 JP4708721B2 (en) 2011-06-22

Family

ID=35085286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066293A Expired - Fee Related JP4708721B2 (en) 2003-12-12 2004-03-09 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP4708721B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311412A (en) * 2007-06-14 2008-12-25 Fujifilm Corp Solid-state imaging element
JP2010087039A (en) * 2008-09-29 2010-04-15 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus
KR100967648B1 (en) * 2007-12-24 2010-07-07 주식회사 동부하이텍 CMOS image sensor and method for manufacturing the same
US8817162B2 (en) 2010-04-12 2014-08-26 Canon Kabushiki Kaisha Solid-state imaging device with optical waveguide and blocking member
WO2019039177A1 (en) * 2017-08-23 2019-02-28 ソニーセミコンダクタソリューションズ株式会社 Image capture element and image capture device
CN109541737A (en) * 2017-09-22 2019-03-29 三星显示有限公司 Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142752A (en) * 1991-11-19 1993-06-11 Sony Corp Photomask and method for patterning resist and formation of micro-condenser lens
JPH1168074A (en) * 1997-08-13 1999-03-09 Sony Corp Solid state image sensor
JP2001196568A (en) * 2000-01-14 2001-07-19 Sony Corp Solid-state image pickup device and method of manufacturing the same, and camera
JP2002118245A (en) * 2000-10-11 2002-04-19 Sharp Corp Solid-state image pick up element and its manufacturing method
JP2002350665A (en) * 2001-05-30 2002-12-04 Fujitsu Ltd Manufacturing method for optical integrated circuit with spatial reflection type structure and optical integrated circuit
JP2003240997A (en) * 2002-02-21 2003-08-27 Fujitsu Ltd Manufacturing method for optical integrated circuit having spatial reflection type structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142752A (en) * 1991-11-19 1993-06-11 Sony Corp Photomask and method for patterning resist and formation of micro-condenser lens
JPH1168074A (en) * 1997-08-13 1999-03-09 Sony Corp Solid state image sensor
JP2001196568A (en) * 2000-01-14 2001-07-19 Sony Corp Solid-state image pickup device and method of manufacturing the same, and camera
JP2002118245A (en) * 2000-10-11 2002-04-19 Sharp Corp Solid-state image pick up element and its manufacturing method
JP2002350665A (en) * 2001-05-30 2002-12-04 Fujitsu Ltd Manufacturing method for optical integrated circuit with spatial reflection type structure and optical integrated circuit
JP2003240997A (en) * 2002-02-21 2003-08-27 Fujitsu Ltd Manufacturing method for optical integrated circuit having spatial reflection type structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311412A (en) * 2007-06-14 2008-12-25 Fujifilm Corp Solid-state imaging element
KR100967648B1 (en) * 2007-12-24 2010-07-07 주식회사 동부하이텍 CMOS image sensor and method for manufacturing the same
JP2010087039A (en) * 2008-09-29 2010-04-15 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US8817162B2 (en) 2010-04-12 2014-08-26 Canon Kabushiki Kaisha Solid-state imaging device with optical waveguide and blocking member
WO2019039177A1 (en) * 2017-08-23 2019-02-28 ソニーセミコンダクタソリューションズ株式会社 Image capture element and image capture device
JPWO2019039177A1 (en) * 2017-08-23 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Image sensor and image sensor
US11330158B2 (en) 2017-08-23 2022-05-10 Sony Semiconductor Solutions Corporation Imaging element and imaging device for image plane phase difference detection
JP7231546B2 (en) 2017-08-23 2023-03-01 ソニーセミコンダクタソリューションズ株式会社 Imaging element and imaging device
JP7536922B2 (en) 2017-08-23 2024-08-20 ソニーセミコンダクタソリューションズ株式会社 Image sensor and image pickup device
CN109541737A (en) * 2017-09-22 2019-03-29 三星显示有限公司 Display device
CN109541737B (en) * 2017-09-22 2022-02-25 三星显示有限公司 Display device

Also Published As

Publication number Publication date
JP4708721B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
AU2005227046B2 (en) Lens array and method for making same
US7060961B2 (en) Image sensing element and optical instrument having improved incident light use efficiency
US8519500B2 (en) Image sensor with correcting lens and fabrication thereof
US7262072B2 (en) CMOS image sensor and method for fabricating the same
JP4882224B2 (en) Method for manufacturing solid-state imaging device
JP2006261247A (en) Solid state imaging device and its fabrication process
JP6035744B2 (en) Solid-state image sensor
KR100640972B1 (en) CMOS Image sensor and Method for fabricating of the same
US9601534B2 (en) Solid state image sensor, method of manufacturing solid state image sensor, and image capturing system
US7884397B2 (en) Solid-state image sensor and method for producing the same
JP6613648B2 (en) Solid-state imaging device and electronic device
JP4708721B2 (en) Solid-state image sensor
JP6311771B2 (en) Solid-state image sensor
US9257469B2 (en) Color imaging device
JP2008016559A (en) Solid-state imaging apparatus
JP2009176857A (en) Solid-state image pickup element and image pickup device using same
JP6801230B2 (en) Solid-state image sensor and electronic equipment
US20120100662A1 (en) Method of manufacturing solid-state image sensor
JP6195369B2 (en) Solid-state imaging device, camera, and manufacturing method of solid-state imaging device
JP2005259824A5 (en)
US20160268323A1 (en) Solid-state imaging device and method for manufacturing the same
JP2005294467A (en) Solid-state imaging device
JP2008193383A (en) Solid imaging apparatus
JP2016224387A (en) Microlens and manufacturing method therefor
JP2011091253A (en) Imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

LAPS Cancellation because of no payment of annual fees