JP2005259206A - Magnetic associative memory and method for reading information therefrom - Google Patents

Magnetic associative memory and method for reading information therefrom Download PDF

Info

Publication number
JP2005259206A
JP2005259206A JP2004066147A JP2004066147A JP2005259206A JP 2005259206 A JP2005259206 A JP 2005259206A JP 2004066147 A JP2004066147 A JP 2004066147A JP 2004066147 A JP2004066147 A JP 2004066147A JP 2005259206 A JP2005259206 A JP 2005259206A
Authority
JP
Japan
Prior art keywords
magnetic layer
memory cell
conductive line
bit
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004066147A
Other languages
Japanese (ja)
Other versions
JP4426876B2 (en
Inventor
Kimihide Matsuyama
公秀 松山
Yukio Nozaki
幸雄 能崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004066147A priority Critical patent/JP4426876B2/en
Publication of JP2005259206A publication Critical patent/JP2005259206A/en
Application granted granted Critical
Publication of JP4426876B2 publication Critical patent/JP4426876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/02Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using magnetic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/04Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements
    • G11C15/046Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements using non-volatile storage elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic associative memory, having nonvolatile characteristics and high integration characteristics and is capable of reading at a high speed. <P>SOLUTION: A storage cell 1 constituted of a pseudo-spin valve membrane cell is arranged at a position corresponding to the point of intersection between a digit conductor 7 and a bit conductor 9 in a conductor matrix. The storage cell 1 has a structure, where soft and hard magnetic layers 3 and 5 face each other via a nonmagnetic layer 4. A plurality of storage cells 1, arranged in a columnar direction, are electrically connected in series by detection conductors 11A to 11C, to constitute a plurality of storage cell columns 13A to 13C. Bit conductors 9A to 9C are used as retrieval data input lines, and the detection conductors 11A to 11C are used as information reading output lines. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気連想メモリ及び磁気連想メモリからの情報読み出し方法に関するものである。   The present invention relates to a magnetic associative memory and a method for reading information from the magnetic associative memory.

不揮発特性と高集積化特性を有する磁気連想メモリは、電力消費に制限がある環境下で動画や音声などの大容量情報に対する高速な認識処理を行う次のような分野への利用が見込まれる。   Magnetic associative memories having nonvolatile characteristics and high integration characteristics are expected to be used in the following fields in which high-speed recognition processing is performed on large-capacity information such as moving images and voices in an environment where power consumption is limited.

・ロボティクス産業における視覚、聴覚等の認識技術分野
・自動車産業で自立型自動運転を実現するために不可欠な画像処理メモリ分野(衝突防止機能)
・ノイズやデータ欠損がある曖昧な画像データを処理する情報処理分野(指紋検出技術)
・携帯カメラ,携帯オーディオ機器,携帯情報端末,ウェアラブルコンピュータ(ユビキタス情報環境技術)等のモバイル分野
従来の連想メモリ(CAM)は、CMOSを多数組合せた複雑な回路構成を有しているため、高集積化が難しい。従来のCMOS,DRAM,SRAMなどの半導体デバイス集積化技術を用いた連想メモリ(CAM)の研究に関しては、非特許文献4乃至6に記載されている。
・ Recognition technology field such as vision and hearing in the robotics industry ・ Image processing memory field (collision prevention function) indispensable to realize autonomous autonomous driving in the automobile industry
・ Information processing field (fingerprint detection technology) that processes vague image data with noise and data loss
-Mobile field such as portable cameras, portable audio devices, portable information terminals, wearable computers (ubiquitous information environment technology), etc. Conventional associative memories (CAM) have a complicated circuit configuration combining many CMOS, It is difficult to integrate. Non-Patent Documents 4 to 6 describe research on content addressable memory (CAM) using conventional semiconductor device integration technologies such as CMOS, DRAM, and SRAM.

また高速動作を目的としたCAMの場合、SRAMに記憶データ群を蓄積するため、電源を切ると情報が消失してしまう。   In the case of a CAM intended for high-speed operation, the stored data group is accumulated in the SRAM, so that information is lost when the power is turned off.

一方、不揮発かつ高集積化が可能な次世代メモリとして磁気抵抗効果を有する磁性体セルを集積した磁性ランダムアクセスメモリ(Magnetic Random Access Memory: MRAM)が注目を集めている。従来のMRAMの技術[MRAMセルを用いた論理演算デバイスに関する研究]に関しては、非特許文献5乃至7に記載されている。
S. Aragaki et al., ”A high−density multiple−valued content−addressable memory based on one transistor cell”, IEICE Trans. Electron., E76−C (1993) 1649.」 T. Yamagita et al., ”A bitline control circuit scheme and redundancy technique for high−density dynamic content addressable memories”, IEICE Trans. Electron., E76−C (1993) 1657. H. Kimura et al., ”Implementation of a DRAM−cell−based multiple−valued logic−in−memory circuit”, IEICE Trans. Electron., E85−C (2002) 1814. K. Tamaru, ”The trend of functional memory development”, IEICE Trans. Electron., E76−C (1993) 1545. W.C. Black, Jr. et al., ”Programmable logic using giant−magnetoresistance and spin−dependent tunneling devices”, J. Appl. Phys. 87 (2000) 6674. R. Richter et al., ”Nonvolatile field programmable spin−logic for reconfigurable computing”, Appl. Phys. Lett. 80 (2002) 1291. A.T. Hanbicki et al., ”Nonvolatile reprogrammable logic elements using hybrid resonant tunneling diode−giant magnetoresistance circuits”, Appl. Phys. Lett. 79 (2001) 1190.
On the other hand, a magnetic random access memory (MRAM) in which magnetic cells having a magnetoresistive effect are integrated is attracting attention as a next generation memory that is nonvolatile and can be highly integrated. Non-Patent Documents 5 to 7 describe conventional MRAM technology [research on logical operation devices using MRAM cells].
S. Aragaki et al. "A high-density multiple-valued content-addressable memory based on one transistor cell", IEICE Trans. Electron. , E76-C (1993) 1649. " T.A. Yamagata et al. "A bitline control circuit scheme and redundancy technique for high-densitive dynamic addressable memories", IEICE Trans. Electron. , E76-C (1993) 1657. H. Kimura et al. "Implementation of a DRAM-cell-based multiple-valued logic-in-memory circuit", IEICE Trans. Electron. , E85-C (2002) 1814. K. Tamaru, “The trend of functional memory development”, IEICE Trans. Electron. , E76-C (1993) 1545. W. C. Black, Jr. et al. , "Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices", J. et al. Appl. Phys. 87 (2000) 6664. R. Richter et al. "Nonvolatile field programmable spin-logic for reconfigurable computing", Appl. Phys. Lett. 80 (2002) 1291. A. T.A. Hanbicki et al. , "Nonvolatile reprogrammable logic elements using hybrid resonant tunneling diode-giant magnetism circuits", Appl. Phys. Lett. 79 (2001) 1190.

従来の磁気連想メモリは、強磁性体の磁化方向を情報担体としているため、記憶情報が不揮発であり実用上無制限の繰り返し書込みが可能である。MRAM記憶セルによりCAMを構成する技術も報告されているが、その機能動作は各記憶セルに対して個別にアクセスする方式であるため、本質的に高速動作が困難であり、導体電流磁界のごく一部しか機能動作に供されていないため、エネルギー利用効率が悪く実用化に際しての大きな障害となっている。   Since the conventional magnetic associative memory uses the magnetization direction of the ferromagnetic material as an information carrier, the stored information is non-volatile, and practically unlimited repetitive writing is possible. Although a technique for configuring a CAM with MRAM memory cells has also been reported, since its functional operation is a method of accessing each memory cell individually, it is inherently difficult to operate at high speed, and the current of a conductor current magnetic field is extremely small. Since only a part is used for functional operation, energy utilization efficiency is poor, which is a major obstacle to practical use.

本発明の目的は、不揮発特性と高集積化特性を有する磁気連想メモリを提供することにある。   An object of the present invention is to provide a magnetic associative memory having non-volatile characteristics and high integration characteristics.

本発明の他の目的は、高速での読み取りが可能な磁気連想メモリ及び該メモリからの読み取り方法を提供することにある。   Another object of the present invention is to provide a magnetic associative memory capable of reading at high speed and a method of reading from the memory.

本発明の磁気連想メモリは、列方向に並ぶ複数のデジット導電線と、行方向に並ぶ複数のビット導電線とが相互に電気的に絶縁された状態でマトリックスを構成するように配置されてなる導電線マトリックスと、導電線マトリックス中のデジット導電線とビット導電線との交点に対応する位置にそれぞれ1個ずつ配置された複数の擬スピンバルブ膜セルとを備えている。なお本願明細書において、列方向及び行方向は、便宜的に定めたものであって、権利範囲の解釈においては、交差する2種類の導電線の一方及び他方と解釈することができる。また導電線マトリックスを構成するデジット導電線と複数のビット導電線とは、必ずしも直交している必要はない。また擬スピンバルブ膜セルは、導電性を有する非磁性層を間に介して対向する磁化反転磁界の小さい少なくとも一層のソフト磁性層と磁化反転磁界が大きい少なくとも一層のハード磁性層とから構成される。ハード磁性層の磁化の向きは、デジット導電線及びビット導電線に電流を流して発生する磁界により決定する。またソフト磁性層の磁化の向きは、ビット導電線に電流を流して発生する磁界によって決定する。なおソフト磁性層は、ビット導電線から加わる磁界によって磁化方向が変わるものであればその構成はいかなる構成であってもよく、複数層によって構成されていてもよい。またハード磁性層は、ビット導電線とデジット導電線とから加わる磁界によって磁化方向が変わるものであれば、その構成は複数層によって構成されてもよい。   The magnetic associative memory according to the present invention is arranged to form a matrix in a state where a plurality of digit conductive lines arranged in the column direction and a plurality of bit conductive lines arranged in the row direction are electrically insulated from each other. A conductive line matrix and a plurality of pseudo spin valve film cells arranged one by one at positions corresponding to the intersections of digit conductive lines and bit conductive lines in the conductive line matrix are provided. In the present specification, the column direction and the row direction are determined for convenience, and can be interpreted as one and the other of the two kinds of intersecting conductive lines in interpreting the scope of rights. Further, the digit conductive lines and the plurality of bit conductive lines constituting the conductive line matrix are not necessarily orthogonal to each other. The pseudo spin valve film cell is composed of at least one soft magnetic layer having a small magnetization reversal magnetic field and at least one hard magnetic layer having a large magnetization reversal magnetic field opposed to each other with a nonmagnetic layer having conductivity therebetween. . The direction of magnetization of the hard magnetic layer is determined by a magnetic field generated by passing a current through the digit conductive line and the bit conductive line. The direction of magnetization of the soft magnetic layer is determined by a magnetic field generated by passing a current through the bit conductive line. The soft magnetic layer may have any configuration as long as the magnetization direction is changed by the magnetic field applied from the bit conductive line, and may be configured by a plurality of layers. The hard magnetic layer may be formed of a plurality of layers as long as the magnetization direction is changed by the magnetic field applied from the bit conductive line and the digit conductive line.

本発明においては、列方向に並ぶ複数の擬スピンバルブ膜セルを、検出用導電線により電気的に直列接続して複数の記憶セル列を構成する。そして複数のビット導電線のそれぞれを検索データ入力線として用い、複数の検出用導電線を情報読み出し用出力線として用いる。   In the present invention, a plurality of pseudo spin-valve film cells arranged in the column direction are electrically connected in series by a detection conductive line to constitute a plurality of memory cell columns. Each of the plurality of bit conductive lines is used as a search data input line, and the plurality of detection conductive lines are used as information readout output lines.

なおソフト磁性層はNiFeから構成することができ、また非磁性層はCuによって構成することができ、さらにハード磁性層はCoFeによって構成することができる。またソフト磁性層をNiFeから構成し、非磁性層をCuによって構成し、ハード磁性層をNiFeによって構成することができる。さらにソフト磁性層をCoFeから構成し、非磁性層をCuによって構成し、ハード磁性層をCoFeによって構成してもよい。   The soft magnetic layer can be made of NiFe, the nonmagnetic layer can be made of Cu, and the hard magnetic layer can be made of CoFe. The soft magnetic layer can be made of NiFe, the nonmagnetic layer can be made of Cu, and the hard magnetic layer can be made of NiFe. Furthermore, the soft magnetic layer may be made of CoFe, the nonmagnetic layer may be made of Cu, and the hard magnetic layer may be made of CoFe.

本発明の磁気連想メモリ内の複数の記憶セル列に記憶された情報を読み出す磁気連想メモリからの情報読み出し方法にあっては、次のようにするのが好ましい。複数のビット導電線の電位を検索データ列に対応した電位として、複数の記憶セル列をそれぞれ構成する複数の擬スピンバルブ膜セルのソフト磁性層に検索データ列を転写する。そして転写後に複数の記憶セル列の検出用導電線の出力部にそれぞれ現れる記憶セル列に含まれる複数の擬スピンバルブ膜セルの磁気抵抗変化に基づく電圧の変化を、検索データ列と記憶セル列のハード磁性層に記憶されているデータ列とのハミング距離として複数の記憶セル列に記憶された情報を読み出す。ハミング距離とは、検索データ列と記憶セル列のハード磁性層に記憶されているデータ列との近似度に相当するものである。例えば、検索データ列と記憶セル列のハード磁性層に記憶されているデータ列とが同じであれば、ハミング距離は0である。検索データ列と記憶セル列のハード磁性層に記憶されているデータ列とを比較したときに1つの擬スピンバルブ膜セルのハード磁性層に記憶されているデータが異なる場合には、ハミング距離はΔRである。なおΔRは1つの擬スピンバルブ膜セルの磁気抵抗変化分である。   In the method for reading information from the magnetic content addressable memory for reading information stored in the plurality of memory cell columns in the magnetic content addressable memory of the present invention, it is preferable to do as follows. Using the potentials of the plurality of bit conductive lines as potentials corresponding to the search data strings, the search data strings are transferred to the soft magnetic layers of the plurality of pseudo spin valve film cells that respectively constitute the plurality of memory cell strings. Then, the voltage change based on the magnetoresistive change of the plurality of pseudo spin valve film cells included in the memory cell columns respectively appearing at the output portions of the detection conductive lines of the plurality of memory cell columns after the transfer is obtained as a search data string and a memory cell string. The information stored in the plurality of storage cell columns is read out as the Hamming distance from the data column stored in the hard magnetic layer. The Hamming distance corresponds to the degree of approximation between the search data string and the data string stored in the hard magnetic layer of the memory cell string. For example, if the search data string and the data string stored in the hard magnetic layer of the memory cell string are the same, the Hamming distance is zero. If the data stored in the hard magnetic layer of one pseudo-spin valve film cell is different when comparing the search data string and the data string stored in the hard magnetic layer of the memory cell string, the Hamming distance is ΔR. ΔR is the amount of change in magnetoresistance of one pseudo spin valve film cell.

本発明によれば、磁気連想メモリの記憶セルとしてMRAMなどの磁気メモリデバイスに用いられる擬スピンバルブ膜セルを利用することにより、連想メモリの不揮発化、大容量化を同時に実現することができる。また、複数の記憶セル列に対して同時に磁界印加できるようにデバイス設計がなされることにより、消費電力を増加させることなく並列演算数(演算速度)を飛躍的に増加させることが可能となる。   According to the present invention, by using a pseudo spin valve film cell used in a magnetic memory device such as an MRAM as a storage cell of a magnetic associative memory, the associative memory can be made non-volatile and have a large capacity at the same time. Further, by designing a device so that a magnetic field can be applied simultaneously to a plurality of memory cell columns, the number of parallel operations (calculation speed) can be dramatically increased without increasing power consumption.

以下図面を参照して本発明の実施の形態の一例を詳細に説明する。図1に示すように、磁気連想メモリの1つの記憶セル1は、磁化反転磁界の小さなソフト磁性層3と比較的大きなハード磁性層5とを導電性を有する非磁性層4で分離した擬スピンバルブ膜セルによって形成されている。図2に示すように、磁気連想メモリは、列方向に並ぶ複数のデジット導電線7と、行方向に並ぶ複数のビット導電線9とが相互に電気的に絶縁された状態でマトリックスを構成するように配置されてなる導電線マトリックス(この例では直交導体線マトリックス)を備えている。そして導電線マトリックス中のデジット導電線7とビット導電線9との交点に対応する位置にそれぞれ1個ずつ擬スピンバルブ膜セルからなる記憶セル1が配置されている。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, one memory cell 1 of a magnetic associative memory has a pseudo spin in which a soft magnetic layer 3 having a small magnetization reversal magnetic field and a relatively large hard magnetic layer 5 are separated by a nonmagnetic layer 4 having conductivity. It is formed by a valve membrane cell. As shown in FIG. 2, the magnetic associative memory forms a matrix in which a plurality of digit conductive lines 7 arranged in the column direction and a plurality of bit conductive lines 9 arranged in the row direction are electrically insulated from each other. In this example, a conductive wire matrix (orthogonal conductor wire matrix) is provided. One memory cell 1 composed of a pseudo spin valve film cell is disposed at a position corresponding to the intersection of the digit conductive line 7 and the bit conductive line 9 in the conductive line matrix.

記憶セル1の電気抵抗(磁気抵抗)は、巨大磁気抵抗効果によりソフト磁性層3とハード磁性層5の磁化の向きが平行な場合に比べて、ソフト磁性層3とハード磁性層5の磁化の向きが反平行な場合には、約十数%増加する。ソフト磁性層3の磁化方向は、ビット導電線9の電流Iwによって発生する磁界のみにより変わる。またハード磁性層5の磁化方向は、ビット導電線9を流れる電流Iwによって発生する磁界と、デジット導電線7を流れる電流Iaによって発生する磁界とを同時に記憶セル1に印加することにより反転できるように記憶セル材料(ソフト磁性層3、非磁性層4及びハード磁性層5の材料)及び電流強度を設計してある。具体的には、ソフト磁性層3をNiFeから構成し、また非磁性層4をCuによって構成し、さらにハード磁性層5はCoFeによって構成することができる。またソフト磁性層3をNiFeから構成し、非磁性層4をCuによって構成し、ハード磁性層5をNiFeによって構成することができる。さらにソフト磁性層3をCoFeから構成し、非磁性層4をCuによって構成し、ハード磁性層5をCoFeによって構成してもよい。このような記憶セル1を図3に示すようにセンス線と呼ばれる検出用導電線(情報読み出し用出力線)11A〜11Cを介して電気的に直列接続して1つの記憶セル列13A〜13Cを構成している(実際には多数の記憶セルがある)。そして複数の記憶セル列を並列に並べて磁気連想メモリを構成する。なおこの磁気連想メモリでは、複数のビット導電線9をそれぞれ検索データ入力線として利用する。   The electric resistance (magnetoresistance) of the memory cell 1 is that of the magnetization of the soft magnetic layer 3 and the hard magnetic layer 5 compared to the case where the magnetization directions of the soft magnetic layer 3 and the hard magnetic layer 5 are parallel due to the giant magnetoresistance effect. When the direction is antiparallel, it increases by about 10%. The magnetization direction of the soft magnetic layer 3 is changed only by the magnetic field generated by the current Iw of the bit conductive line 9. The magnetization direction of the hard magnetic layer 5 can be reversed by simultaneously applying to the memory cell 1 the magnetic field generated by the current Iw flowing through the bit conductive line 9 and the magnetic field generated by the current Ia flowing through the digit conductive line 7. Further, the memory cell material (material of the soft magnetic layer 3, the nonmagnetic layer 4 and the hard magnetic layer 5) and the current intensity are designed. Specifically, the soft magnetic layer 3 can be made of NiFe, the nonmagnetic layer 4 can be made of Cu, and the hard magnetic layer 5 can be made of CoFe. The soft magnetic layer 3 can be made of NiFe, the nonmagnetic layer 4 can be made of Cu, and the hard magnetic layer 5 can be made of NiFe. Furthermore, the soft magnetic layer 3 may be made of CoFe, the nonmagnetic layer 4 may be made of Cu, and the hard magnetic layer 5 may be made of CoFe. Such a memory cell 1 is electrically connected in series via detection conductive lines (information read output lines) 11A to 11C called sense lines as shown in FIG. 3, and one memory cell column 13A to 13C is connected. Configured (in fact, there are a large number of memory cells). A plurality of memory cell columns are arranged in parallel to form a magnetic content addressable memory. In this magnetic associative memory, a plurality of bit conductive lines 9 are respectively used as search data input lines.

この磁気連想メモリでは、各記憶セル1のソフト磁性層3の磁化の向きを検索データの1,0に対応させており、各記憶セル1のハード磁性層5の磁化の向きを記憶データの1,0にそれぞれ対応させている。したがって、記憶データと検索データとが一致する場合は、記憶セル1の磁気抵抗は低抵抗状態となり、記憶データと検索データとが異なる場合には記憶セル1の磁気抵抗は高抵抗状態となる。   In this magnetic associative memory, the magnetization direction of the soft magnetic layer 3 of each storage cell 1 is made to correspond to the search data 1 and 0, and the magnetization direction of the hard magnetic layer 5 of each storage cell 1 is set to 1 of the storage data. , 0 respectively. Therefore, when the storage data and the search data match, the magnetoresistance of the memory cell 1 is in a low resistance state, and when the storage data and the search data are different, the magnetoresistance of the memory cell 1 is in a high resistance state.

このように磁気連想メモリの記憶セルとしてMRAMなどの磁気メモリデバイスに用いられる擬スピンバルブ膜セルを利用することにより、連想メモリの不揮発化、大容量化を同時に実現する。また、導電マトリックスの交点に対応して(具体的には2つの導電線7及び9の交点の直下または直上に)配置した多数の記憶セルに対して同時に磁界を印加できるようにデバイス設計を行うことにより、消費電力を増加させることなく並列演算数を飛躍的に増加させることが可能となる。   As described above, by using the pseudo spin valve film cell used in the magnetic memory device such as the MRAM as the storage cell of the magnetic associative memory, the associative memory can be made non-volatile and have a large capacity at the same time. In addition, a device design is performed so that a magnetic field can be simultaneously applied to a large number of memory cells arranged corresponding to the intersection of the conductive matrix (specifically, directly below or immediately above the intersection of the two conductive lines 7 and 9). As a result, it is possible to dramatically increase the number of parallel operations without increasing the power consumption.

次に、この磁気連想メモリから記憶した情報を読み出す方法について説明する。まず、ビット導電線9及びデジット導電線7にそれぞれ電流を流して電流一致選択方式により、あらかじめ記憶セル1aから1iのハード磁性層5にそれぞれ任意の情報を記憶させる。ここで電流一致選択方式とは、ビット導電線9に流れる電流Iwとデジット導電線7に流れる電流Iaとが一致するときと異なるときとで、ハード磁性層5の磁化方向が変わる磁化方向選択方式を意味する。   Next, a method for reading information stored from the magnetic associative memory will be described. First, arbitrary information is stored in advance in the hard magnetic layer 5 of each of the memory cells 1a to 1i by flowing current through the bit conductive line 9 and the digit conductive line 7, respectively, by a current matching selection method. Here, the current coincidence selection method is a magnetization direction selection method in which the magnetization direction of the hard magnetic layer 5 changes depending on whether the current Iw flowing through the bit conductive line 9 and the current Ia flowing through the digit conductive line 7 coincide with each other. Means.

図3の場合には、記憶セル列13A〜13Cを構成する記憶セル1a〜1c、1d〜1f及び1hのハード磁性層には、それぞれ(1,0,0),(1,0,1),(0,1,1)の3種類の3bitデータが入力されているものとする。データを記憶させたときには、図3に示すようにハード磁性層5の磁化方向とソフト磁性層3の磁化方向とは一致している。すなわちデータを入力した状態では、記憶セル列13Aのソフト磁性層とハード磁性層の磁化方向は、それぞれ(1,1)(0,0)(1,1)の関係にある。また記憶セル列13Bのソフト磁性層とハード磁性層の磁化方向は、それぞれ(1,1)(0,0)(1,1)の関係にある。さらに記憶セル列13Cのソフト磁性層とハード磁性層の磁化方向は、それぞれ(0,0)(1,1)(1,1)の関係にある。   In the case of FIG. 3, the hard magnetic layers of the memory cells 1a to 1c, 1d to 1f, and 1h constituting the memory cell rows 13A to 13C are respectively (1,0,0), (1,0,1). , (0, 1, 1), three types of 3-bit data are input. When data is stored, the magnetization direction of the hard magnetic layer 5 and the magnetization direction of the soft magnetic layer 3 coincide with each other as shown in FIG. That is, in the state where data is input, the magnetization directions of the soft magnetic layer and the hard magnetic layer of the memory cell column 13A have a relationship of (1, 1) (0, 0) (1, 1), respectively. Further, the magnetization directions of the soft magnetic layer and the hard magnetic layer of the memory cell row 13B have a relationship of (1, 1) (0, 0) (1, 1), respectively. Further, the magnetization directions of the soft magnetic layer and the hard magnetic layer of the memory cell array 13C are in a relationship of (0, 0) (1, 1) (1, 1), respectively.

データの検索を行う場合について説明する。例えば、記憶セル列のハード磁性層5に(1,0,1)のデータが記憶されているものを検索する場合には、ビット導電線9A〜9Cに印加する電位を図示の矢印の方向に電流が流れるように定める。すなわち検索したいデータが1の場合にはビット導電線9A及び9Cの電位を+として図示の矢印の方向に電流(この例では+方向の電流と言う)を流し、検索したいデータが0の場合にはビット導電線9Bの電位を−として図示の矢印の方向に電流(この例では−方向の電流と言う)を流す。このようにすると各記憶セルのソフト磁性層3の磁化方向は、電流の向きによって生じる磁界に応じた方向に磁化される。このことを本願明細書においては、転写と言う。ビット導電線9Aを+電位にして電流を流した場合、ビット導電線9Aに対応する記憶セル1a,1d及び1gのうち、転写により記憶セル1gのソフト磁性層だけが磁化方向を反転する。その結果記憶セル1gのソフト磁性層の磁化方向とハード磁性層の磁化方向とが不一致となり、記憶セル1gの磁気抵抗がΔR増大する。またビット導電線9Bに対応する記憶セル1b,1e及び1fのうち、記憶セル1hのソフト磁性層だけが転写により磁化方向を反転する。その結果、記憶セル1gのソフト磁性層の磁化方向とハード磁性層の磁化方向とが不一致となり、記憶セル1gの磁気抵抗がΔR増大する。更にビット導電線9Cに対応する記憶セル1c,1f及び1iのうち、記憶セル1cのソフト磁性層だけが転写により磁化方向を反転する。その結果、記憶セル1cのソフト磁性層の磁化方向とハード磁性層の磁化方向とが不一致となり、記憶セル1cの磁気抵抗がΔR増大する。このような転写動作によりソフト磁性層の磁化方向が反転する記憶セルを含んだ記憶セル列の検出用導電線(情報読み出し用出力線)11A及び11Cの電位または抵抗値は変化する。図4に示すように、この例では、検出用導電線(情報読み出し用出力線)11Aの抵抗値がΔR分増大し、検出用導電線(情報読み出し用出力線)11Cの抵抗値が2ΔR分増大する。このように本実施の形態では、ソフト磁性層とハード磁性層とが不一致ビットになる記憶セルは、高抵抗状態となるので、複数の記憶セルを直列接続した記憶セル列は不一致ビットの数、すなわち後述するハミング距離に比例した大きさの抵抗増加を示す。本実施の形態の磁気連想メモリの特徴は、記憶データが不揮発であるとともに、導体電流磁界の並列印加特性を利用して一対多数のハミング距離演算を同時に行うことができる点にある。   A case where data search is performed will be described. For example, when searching for data in which (1, 0, 1) data is stored in the hard magnetic layer 5 of the memory cell column, the potential applied to the bit conductive lines 9A to 9C is set in the direction of the arrow shown in the figure. Determine that current flows. That is, when the data to be searched is 1, when the potential of the bit conductive lines 9A and 9C is set to +, a current (in this example, the current in the + direction) flows in the direction of the arrow, and when the data to be searched is 0 Indicates that the potential of the bit conductive line 9B is-, and a current (in this example, a current in the-direction) flows in the direction of the arrow shown in the figure. In this way, the magnetization direction of the soft magnetic layer 3 of each memory cell is magnetized in a direction corresponding to the magnetic field generated by the direction of current. This is referred to as transfer in the present specification. When a current is passed with the bit conductive line 9A at a positive potential, only the soft magnetic layer of the storage cell 1g inverts the magnetization direction among the storage cells 1a, 1d, and 1g corresponding to the bit conductive line 9A. As a result, the magnetization direction of the soft magnetic layer of the memory cell 1g and the magnetization direction of the hard magnetic layer do not match, and the magnetoresistance of the memory cell 1g increases by ΔR. Of the memory cells 1b, 1e, and 1f corresponding to the bit conductive line 9B, only the soft magnetic layer of the memory cell 1h reverses the magnetization direction by transfer. As a result, the magnetization direction of the soft magnetic layer of the memory cell 1g and the magnetization direction of the hard magnetic layer do not match, and the magnetoresistance of the memory cell 1g increases by ΔR. Further, among the memory cells 1c, 1f and 1i corresponding to the bit conductive line 9C, only the soft magnetic layer of the memory cell 1c reverses the magnetization direction by transfer. As a result, the magnetization direction of the soft magnetic layer of the memory cell 1c and the magnetization direction of the hard magnetic layer do not match, and the magnetoresistance of the memory cell 1c increases by ΔR. By such a transfer operation, the potentials or resistance values of the detection conductive lines (information read output lines) 11A and 11C of the memory cell array including the memory cells in which the magnetization direction of the soft magnetic layer is reversed are changed. As shown in FIG. 4, in this example, the resistance value of the detection conductive line (information readout output line) 11A increases by ΔR, and the resistance value of the detection conductive line (information readout output line) 11C increases by 2ΔR. Increase. As described above, in the present embodiment, since the memory cell in which the soft magnetic layer and the hard magnetic layer are inconsistent bits is in a high resistance state, the memory cell column in which a plurality of memory cells are connected in series has the number of inconsistent bits, That is, the resistance increase is proportional to the Hamming distance described later. The magnetic associative memory according to the present embodiment is characterized in that the stored data is non-volatile and one-to-many Hamming distance calculations can be performed simultaneously using the parallel application characteristics of the conductor current magnetic field.

本願明細書では、検索前の各記憶セル列の検出用導電線(情報読み出し用出力線)の電圧または抵抗値と、検索後の各記憶セル列の検出用導電線(情報読み出し用出力線)の電圧または抵抗値との相対的な差を、ハミング距離と呼ぶ。このハミング距離が0であれば、検索データと記憶データとが一致していることを意味し、ハミング距離が大きくなるほど、検索データと記憶データとの相違が大ききこと、すなわち類似度が小さくなることを意味する。ハミング距離の利用方法については、公知の利用方法を用いれば、その利用形態は限定されるものではない。   In the present specification, the voltage or resistance value of the detection conductive line (information read output line) of each memory cell column before the search, and the detection conductive line (information read output line) of each memory cell column after the search. The relative difference from the voltage or resistance value is called the Hamming distance. If this hamming distance is 0, it means that the search data and the stored data match, and the greater the hamming distance, the greater the difference between the search data and the stored data, that is, the lower the similarity. Means that. About the usage method of Hamming distance, if the well-known usage method is used, the usage form will not be limited.

具体的に使用可能な擬スピンバルブ膜セル材料は、ソフト磁性層をFe21Co79(3nm〜4nm)で形成し、また非磁化層をCu(4nm〜5nm)として、ハード磁化層をFe27Co73(4nm〜5nm)として形成することができる。そしてデジット導電線,ビット導電線及び検出用導電線はCu(0.4μm〜0.6μm)で形成し、擬スピンバルブ膜セル材料の上に熱処理高分子膜で形成した絶縁層(0.6μm〜0.8μm)を介してビット導電線及びデジット導電線を順次マトリックス状に形成する。このようにして作成した具体的な擬スピンバルブ膜セル材料を用いて形成した磁気連想メモリでは、7〜10mAの電流をビット導電線とデジット導電線に流すことにより、ハード磁性層の記録情報を反映した両極性の電圧出力が得られることが確認された。また転写の際にも7〜10mAの電流を電流をビット導電線に流せばソフト磁性層の磁化方向を反転できることが確認された。 Pseudo-spin valve film cell materials that can be used specifically include a soft magnetic layer formed of Fe 21 Co 79 (3 nm to 4 nm), a non-magnetized layer of Cu (4 nm to 5 nm), and a hard magnetized layer of Fe 27 Co 73 (4 nm to 5 nm) can be formed. The digit conductive line, the bit conductive line, and the detection conductive line are formed of Cu (0.4 μm to 0.6 μm), and an insulating layer (0.6 μm) formed of a heat-treated polymer film on the pseudo-spin valve film cell material. Bit conductive lines and digit conductive lines are sequentially formed in a matrix through (˜0.8 μm). In the magnetic associative memory formed using the specific pseudo spin valve film cell material created in this way, the recording information of the hard magnetic layer is recorded by flowing a current of 7 to 10 mA through the bit conductive line and the digit conductive line. It was confirmed that the reflected bipolar voltage output was obtained. Also, it was confirmed that the magnetization direction of the soft magnetic layer can be reversed by applying a current of 7 to 10 mA to the bit conductive line during the transfer.

画像認識技術やロボティクス技術等の分野では連想記憶機能が渇望されているが、実際の応用の場においては多種多様な認識機能が必要とされ、かつバッテリーによる駆動が想定されているため、連想メモリの大容量・低消費電力化が大きな課題とされている。本発明の磁気連想メモリは、従来の連想メモリには無い不揮発特性と高集積化特性を実現できるメモリである。したがって、記憶保持に電力を必要としないため、必要とするときだけ電源を供給し(ノーマリー・オフ機能)、かつ電源を入れて瞬時に起動させる(インスタント・オン機能)ことが可能となり、大幅な動作消費電力低減効果が期待できる。また、電流磁界の並列印加特性を利用することにより、従来の連想メモリに比べて大幅な並列演算数の向上が見込めることから、大容量データ間の比較・連想を必要とする諸分野への貢献は大きいと考えられる。   In the fields of image recognition technology and robotics technology, the associative memory function is craved, but in the actual application field, a wide variety of recognition functions are required and it is assumed that the battery is driven. High capacity and low power consumption are regarded as major issues. The magnetic associative memory of the present invention is a memory that can realize non-volatile characteristics and high integration characteristics that are not found in conventional associative memories. Therefore, since power is not required for memory retention, it is possible to supply power only when necessary (normally off function) and to turn on the power and start it instantly (instant on function). Expected to reduce operating power consumption. In addition, by using the parallel application characteristics of current magnetic fields, the number of parallel operations can be greatly improved compared to conventional associative memories, contributing to various fields that require comparison and association between large volumes of data. Is considered large.

本実施の形態の磁気連想メモリで用いる擬スピンバルブ膜セルの構成を説明するために用いる斜視図である。It is a perspective view used in order to explain the composition of the pseudo spin valve film cell used in the magnetic associative memory of the present embodiment. 本実施の形態の磁気連想メモリの書き込みに用いる導電性マトリックスと記憶セルとの関係を説明するために用いる斜視図である。It is a perspective view used in order to demonstrate the relationship between the electroconductive matrix used for writing of the magnetic content addressable memory of this Embodiment, and a memory cell. 本実施の形態の磁気連想メモリへの構成を説明するために用いる斜視図である。It is a perspective view used in order to demonstrate the structure to the magnetic content addressable memory of this Embodiment. 本実施の形態の磁気連想メモリからのデータの読み出し方法を説明するために用いる図である。It is a figure used in order to demonstrate the reading method of the data from the magnetic content addressable memory of this Embodiment.

符号の説明Explanation of symbols

1 記憶セル
3 ソフト磁性層
4 非磁性層
5 ハード磁性層
7 デジット導電線
9 ビット導電線
11A〜11C 検出用導電線(情報読み出し用出力線)
DESCRIPTION OF SYMBOLS 1 Memory cell 3 Soft magnetic layer 4 Nonmagnetic layer 5 Hard magnetic layer 7 Digit conductive line 9 Bit conductive line 11A-11C Detection conductive line (information reading output line)

Claims (5)

列方向に並ぶ複数のデジット導電線と、行方向に並ぶ複数のビット導電線とが相互に電気的に絶縁された状態でマトリックスを構成するように配置されてなる導電線マトリックスと、
前記導電線マトリックス中の前記デジット導電線と前記ビット導電線との交点に対応する位置にそれぞれ1個ずつ配置された複数の擬スピンバルブ膜セルとを備え、
前記擬スピンバルブ膜セルが導電性を有する非磁性層を間に介して対向する磁化反転磁界の小さい少なくとも一層のソフト磁性層と前記磁化反転磁界が大きい少なくとも一層のハード磁性層とから構成され、
前記ハード磁性層の磁化の向きを前記デジット導電線及び前記ビット導電線に電流を流して発生する磁界により決定し、
前記ソフト磁性層の磁化の向きを前記ビット導電線に電流を流して発生する磁界によって決定するように構成された磁気連想メモリであって、
前記列方向に並ぶ複数の前記擬スピンバルブ膜セルが検出用導電線により電気的に直列接続されて複数の記憶セル列が構成され、
前記複数のビット導電線のそれぞれが検索データ入力線として用いられ、複数の前記検出用導電線が情報読み出し用出力線として用いられることを特徴とする磁気連想メモリ。
A conductive line matrix in which a plurality of digit conductive lines arranged in the column direction and a plurality of bit conductive lines arranged in the row direction are arranged to form a matrix in a state of being electrically insulated from each other;
A plurality of pseudo spin-valve film cells each disposed at a position corresponding to the intersection of the digit conductive line and the bit conductive line in the conductive line matrix;
The pseudo spin valve film cell is composed of at least one soft magnetic layer having a small magnetization switching magnetic field and at least one hard magnetic layer having a large magnetization switching magnetic field, which are opposed to each other with a nonmagnetic layer having conductivity therebetween,
The direction of magnetization of the hard magnetic layer is determined by a magnetic field generated by passing a current through the digit conductive line and the bit conductive line,
A magnetic content addressable memory configured to determine a magnetization direction of the soft magnetic layer by a magnetic field generated by passing a current through the bit conductive line;
A plurality of pseudo-spin valve film cells arranged in the column direction are electrically connected in series by a conductive wire for detection to constitute a plurality of memory cell columns,
Each of the plurality of bit conductive lines is used as a search data input line, and the plurality of detection conductive lines are used as information read output lines.
前記ソフト磁性層はNiFeから構成され、前記非磁性層はCuによって構成され、前記ハード磁性層はCoFeによって構成されている請求項1に記載の磁気連想メモリ。   The magnetic content addressable memory according to claim 1, wherein the soft magnetic layer is made of NiFe, the nonmagnetic layer is made of Cu, and the hard magnetic layer is made of CoFe. 前記ソフト磁性層はNiFeから構成され、前記非磁性層はCuによって構成され、前記ハード磁性層はNiFeによって構成されている請求項1に記載の磁気連想メモリ。   The magnetic content addressable memory according to claim 1, wherein the soft magnetic layer is made of NiFe, the nonmagnetic layer is made of Cu, and the hard magnetic layer is made of NiFe. 前記ソフト磁性層はCoFeから構成され、前記非磁性層はCuによって構成され、前記ハード磁性層はCoFeによって構成されている請求項1に記載の磁気連想メモリ。   The magnetic content addressable memory according to claim 1, wherein the soft magnetic layer is made of CoFe, the nonmagnetic layer is made of Cu, and the hard magnetic layer is made of CoFe. 前記請求項1乃至4のいずれか1つに記載の磁気連想メモリ内の前記複数の記憶セル列に記憶された情報を読み出す磁気連想メモリからの情報読み出し方法であって、
前記複数のビット導電線の電位を検索データ列に対応した電位として、前記複数の記憶セル列をそれぞれ構成する前記複数の擬スピンバルブ膜セルの前記ソフト磁性層に前記検索データ列を転写し、
前記転写後に前記複数の記憶セル列の前記検出用導電線の出力部にそれぞれ現れる前記記憶セル列に含まれる前記複数の擬スピンバルブ膜セルの磁気抵抗変化に基づく電圧の変化を、前記検索データ列と前記記憶セル列の前記ハード磁性層に記憶されているデータ列とのハミング距離として前記複数の記憶セル列に記憶された情報を読み出すことを特徴とする磁気連想メモリからの情報読み出し方法。
An information reading method from a magnetic content addressable memory for reading information stored in the plurality of memory cell columns in the magnetic content addressable memory according to any one of claims 1 to 4,
The potential of the plurality of bit conductive lines is set to a potential corresponding to a search data string, and the search data string is transferred to the soft magnetic layer of the plurality of pseudo spin valve film cells respectively constituting the plurality of memory cell strings,
A change in voltage based on a change in magnetoresistance of the plurality of pseudo-spin valve film cells included in the memory cell row that respectively appears at the output portion of the detection conductive line of the plurality of memory cell rows after the transfer, and the search data A method of reading information from a magnetic associative memory, wherein information stored in the plurality of memory cell columns is read as a Hamming distance between the column and a data column stored in the hard magnetic layer of the memory cell column.
JP2004066147A 2004-03-09 2004-03-09 Magnetic content addressable memory and method for reading information from magnetic content addressable memory Expired - Fee Related JP4426876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066147A JP4426876B2 (en) 2004-03-09 2004-03-09 Magnetic content addressable memory and method for reading information from magnetic content addressable memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066147A JP4426876B2 (en) 2004-03-09 2004-03-09 Magnetic content addressable memory and method for reading information from magnetic content addressable memory

Publications (2)

Publication Number Publication Date
JP2005259206A true JP2005259206A (en) 2005-09-22
JP4426876B2 JP4426876B2 (en) 2010-03-03

Family

ID=35084777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066147A Expired - Fee Related JP4426876B2 (en) 2004-03-09 2004-03-09 Magnetic content addressable memory and method for reading information from magnetic content addressable memory

Country Status (1)

Country Link
JP (1) JP4426876B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506341A (en) * 2006-10-06 2010-02-25 クロッカス・テクノロジー・ソシエテ・アノニム System and method for providing an associative magnetoresistive random access memory cell
US7714399B2 (en) 2007-02-15 2010-05-11 Kabushiki Kaisha Toshiba Magnetic memory element and magnetic memory apparatus
JP2010113795A (en) * 2008-11-04 2010-05-20 Crocus Technology Sa Ternary content addressable magnetoresistive random access memory cell
JP2016162978A (en) * 2015-03-04 2016-09-05 株式会社東芝 Pattern collation unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506341A (en) * 2006-10-06 2010-02-25 クロッカス・テクノロジー・ソシエテ・アノニム System and method for providing an associative magnetoresistive random access memory cell
US7714399B2 (en) 2007-02-15 2010-05-11 Kabushiki Kaisha Toshiba Magnetic memory element and magnetic memory apparatus
JP2010113795A (en) * 2008-11-04 2010-05-20 Crocus Technology Sa Ternary content addressable magnetoresistive random access memory cell
JP2016162978A (en) * 2015-03-04 2016-09-05 株式会社東芝 Pattern collation unit

Also Published As

Publication number Publication date
JP4426876B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
Joshi Spintronics: A contemporary review of emerging electronics devices
US8289746B2 (en) MRAM diode array and access method
US9324402B2 (en) High density low power GSHE-STT MRAM
US6956257B2 (en) Magnetic memory element and memory device including same
EP2308050B1 (en) Write operation for spin transfer torque magnetoresistive random access memory with reduced bit cell size
KR100885184B1 (en) Memory Devices Having Resistance Property Capable Of Being Independently Controlled By Electric And Magnetic Fields And Methods Of Operating The Same
US7835210B2 (en) Magnetic random access memory and data read method of the same
US8514615B2 (en) Structures and methods for a field-reset spin-torque MRAM
KR100457159B1 (en) Magnetic random access memory
US7173846B2 (en) Magnetic RAM and array architecture using a two transistor, one MTJ cell
CN105917411A (en) Multi-level cell designs for high density low power gshe-stt mram
US9747967B2 (en) Magnetic field-assisted memory operation
CN111986717A (en) SOT-MRAM (spin on demand-random Access memory) without external magnetic field oriented spin reversal and array
US20050226035A1 (en) Multi-cell resistive memory array architecture with select transistor
JP2007087524A (en) Nonvolatile semiconductor memory device
CN1957423A (en) Reversed magnetic tunneling junction for power efficient byte writing of MRAM
Mishra et al. Shared-write-channel-based device for high-density spin-orbit-torque magnetic random-access memory
JPWO2008108109A1 (en) Magnetic memory cell and magnetic random access memory
US20040160251A1 (en) High density magnetic RAM and array architecture using a one transistor, one diode, and one MTJ cell
JP4426876B2 (en) Magnetic content addressable memory and method for reading information from magnetic content addressable memory
US8120946B2 (en) Stacked magnetic devices
US20200027491A1 (en) Memory cell, methods of forming and operating the same
CN114788028A (en) Magnetic random access memory and electronic equipment
WO2022261875A1 (en) Magnetic storage module, operation method therefor, controller, and storage system
EP1484766A1 (en) Magnetic storage unit using ferromagnetic tunnel junction element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees