JP2005239885A - Cooling liquid - Google Patents

Cooling liquid Download PDF

Info

Publication number
JP2005239885A
JP2005239885A JP2004051836A JP2004051836A JP2005239885A JP 2005239885 A JP2005239885 A JP 2005239885A JP 2004051836 A JP2004051836 A JP 2004051836A JP 2004051836 A JP2004051836 A JP 2004051836A JP 2005239885 A JP2005239885 A JP 2005239885A
Authority
JP
Japan
Prior art keywords
cooling liquid
freezing point
protein
antifreeze protein
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051836A
Other languages
Japanese (ja)
Inventor
Mikito Nishii
幹人 西井
Hiroyuki Arai
博之 新井
Naoya Ichimura
直也 市村
Atsushi Sakai
敦 阪井
Takakiyo Tada
孝清 多田
Mitsuru Kondo
満 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004051836A priority Critical patent/JP2005239885A/en
Publication of JP2005239885A publication Critical patent/JP2005239885A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling liquid not requiring a large-sized apparatus on use, having small influence on human bodies and environment when used and when discarded and causing little contamination to the apparatus. <P>SOLUTION: This cooling liquid comprises water and an antifreezing protein and has a freezing point lower than that of water. Since heat conductivity of the cooling liquid containing water and the antifreezing protein is higher than that of a cooling liquid containing glycols, or the like, a heat exchanger used when the cooling liquid containing water and the antifreezing protein is used as a cooling liquid for engines can be down-sized and reduction of size of whole apparatus and reduction of cost required for apparatus are made possible. Since COD (chemical oxygen demand) value of the cooling liquid containing water and the antifreezing protein is smaller than that of the cooling liquid containing glycol, or the like, influence on the environment when discarded is small. Further, the antifreezing protein has no toxicity to human bodies. Since freezing point of water is lowered not by salts, or the like, but by the antifreezing protein, contamination of the apparatus is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関等の種々の装置を冷却するための冷却液に関する。   The present invention relates to a coolant for cooling various devices such as an internal combustion engine.

内燃機関等の種々の装置を冷却するための冷却液としては従来より種々のものが知られている。このうち、自動車のエンジンを冷却するための冷却液としては、水と凝固点降下剤(融点降下剤)としてのアルコール類やグリコール類等とを含むものが一般に用いられている。冷却液に含まれるアルコール類やグリコール類等によって冷却液の凝固点は水よりも低くなるため、冬季における冷却液の凍結が防止される(例えば、特許文献1)。   Conventionally, various coolants are known for cooling various devices such as an internal combustion engine. Among these, as a coolant for cooling an automobile engine, one containing water and alcohols or glycols as a freezing point depressant (melting point depressant) is generally used. Since the freezing point of the cooling liquid is lower than that of water due to alcohols and glycols contained in the cooling liquid, freezing of the cooling liquid in winter is prevented (for example, Patent Document 1).

凝固点降下剤としてのアルコール類やグリコール類としては、エチレングリコールやプロピレングリコールを選択することが一般的であるが、エチレングリコールやプロピレングリコールは熱伝導率が水よりも低いため、エンジンを充分に冷却するためには冷却液を多量に用いる必要がある。さらに、エンジンを冷却することで一旦上昇した冷却液の温度は下がり難いため、この冷却液の温度を再度低下させるため、大型のラジエータ等の熱交換機を設ける必要がある。これらのことから、凝固点降下剤としてエチレングリコールやプロピレングリコール等を用いる場合には装置全体が大型化するとともに装置に要するコストが高くなる問題があった。   As alcohols and glycols as freezing point depressants, it is common to select ethylene glycol or propylene glycol, but ethylene glycol and propylene glycol have a lower thermal conductivity than water, so the engine can be cooled sufficiently. In order to do so, it is necessary to use a large amount of coolant. Furthermore, since the temperature of the coolant once raised by cooling the engine is difficult to decrease, it is necessary to provide a heat exchanger such as a large radiator in order to reduce the temperature of the coolant again. For these reasons, when ethylene glycol, propylene glycol, or the like is used as the freezing point depressant, there is a problem that the entire apparatus becomes large and the cost required for the apparatus increases.

また、エチレングリコールやプロピレングリコールはCOD(化学的酸素要求量)が大きいため、廃棄時の環境負荷が大きい。したがって、エチレングリコールやプロピレングリコールを含む冷却液を廃棄する際には、回収して焼却処理することが一般的であり、廃棄処理に要するコストが高くなるとともに廃棄処理が煩雑である問題があった。   Moreover, since ethylene glycol and propylene glycol have a large COD (chemical oxygen demand), the environmental load at the time of disposal is large. Therefore, when the cooling liquid containing ethylene glycol or propylene glycol is discarded, it is generally recovered and incinerated, and there is a problem that the cost required for the disposal process becomes high and the disposal process is complicated. .

さらに、冷却や冷凍のための冷却装置用の冷却液としては、一般にブラインと呼ばれる塩化カルシウムや食塩等の塩類の水溶液が用いられるが、塩類が多量に添加されていることから質量や粘度が増加して装置にかかる負担が大きくなる問題があった。また、このような塩類の水溶液からなる冷却液を用いる場合には、塩類の析出や装置が酸化されること等で、装置が汚染される場合がある。この場合、装置の汚染が進行すると、熱交換機等に詰まりが生じるため、多量の防食添加剤を添加する必要があり、コストが高くなるとともに質量や粘度が増加して装置への負担がさらに大きくなる問題もあった。これらのことから、装置の汚染が少なく装置への負担が小さい冷却液の開発が求められている事情もあった。
特開平7−70558号公報
Furthermore, as a cooling liquid for a cooling device for cooling or freezing, an aqueous solution of a salt such as calcium chloride or salt commonly used as a brine is used, but the mass and viscosity increase because a large amount of the salt is added. As a result, there is a problem that the burden on the apparatus becomes large. In addition, when a cooling liquid composed of such an aqueous salt solution is used, the apparatus may be contaminated by precipitation of salts or oxidation of the apparatus. In this case, if the contamination of the apparatus progresses, the heat exchanger or the like is clogged, so it is necessary to add a large amount of anticorrosive additive, which increases the cost and increases the mass and viscosity, further increasing the burden on the apparatus. There was also a problem. For these reasons, there has been a demand for the development of a cooling liquid that is less contaminated and less burdened on the apparatus.
JP-A-7-70558

使用時に大型の装置を必要とせず、使用時および廃棄時に人体や環境に及ぼす影響が小さく、かつ、装置の汚染や装置への負担が少ない冷却液を提供することを目的とする。   It is an object of the present invention to provide a coolant that does not require a large-scale device during use, has a small influence on the human body and the environment during use and disposal, and is less contaminated and burdened on the device.

前記課題を解決する本発明の冷却液は、水と不凍タンパク質とを含み水よりも凝固点が降下していることを特徴とする。   The cooling liquid of the present invention that solves the above-mentioned problems includes water and antifreeze protein, and has a freezing point lower than that of water.

上記不凍タンパク質は、配列番号1で表されるアミノ酸配列からなることが好ましい。   The antifreeze protein preferably consists of the amino acid sequence represented by SEQ ID NO: 1.

上記不凍タンパク質は、配列番号2で表されるアミノ酸配列からなることが好ましい。   The antifreeze protein preferably consists of the amino acid sequence represented by SEQ ID NO: 2.

上記不凍タンパク質は冷却液全量に対して0.01重量%以上含まれることが好ましい。   The antifreeze protein is preferably contained in an amount of 0.01% by weight or more based on the total amount of the coolant.

不凍タンパク質は、水の凝固点を降下させる作用を持つタンパク質であり、所謂AFP(Antifreeze protein)やAFGP(Antifreeze glycoprotein)と呼ばれる魚や昆虫、植物、細菌等から発見されたものがよく知られている。   Antifreeze protein is a protein having the action of lowering the freezing point of water, and what is known from fish, insects, plants, bacteria, etc., so-called AFP (Antifreeze protein) or AFGP (Antifreeze glycoprotein) is well known. .

不凍タンパク質によって水の凝固点が降下する機構は未だ明らかではないが、氷結晶の表面に不凍タンパク質が接触することで氷結晶の成長が抑制されるため、水の凝固点が降下すると考えられている。   The mechanism by which antifreeze protein lowers the freezing point of water is not yet clear, but it is thought that the freezing point of water drops because the growth of ice crystals is suppressed by the contact of antifreeze proteins with the surface of ice crystals. Yes.

本発明の冷却液は、この不凍タンパク質と水とを含むものであり、不凍タンパク質によって水の凝固点が降下する。したがって、本発明の冷却液を例えば自動車のエンジンを冷却するための冷却液として用いる場合にも、冬季における冷却液の凍結が防止される。   The cooling liquid of the present invention contains this antifreeze protein and water, and the freezing point of water is lowered by the antifreeze protein. Accordingly, even when the coolant of the present invention is used as a coolant for cooling an automobile engine, for example, the coolant is prevented from freezing in winter.

また、本発明の冷却液はエチレングリコールやプロピレングリコール等を含まないことから、エチレングリコールやプロピレングリコールの熱伝導率の低さに由来する装置の大型化や装置に要するコストの増大はない。   Further, since the cooling liquid of the present invention does not contain ethylene glycol, propylene glycol, or the like, there is no increase in the size of the apparatus or increase in the cost required for the apparatus due to the low thermal conductivity of ethylene glycol or propylene glycol.

そして、この不凍タンパク質は少量で水の凝固点を充分に降下させるため、COD値は非常に低く環境に及ぼす影響が小さいため、廃棄時に回収して焼却する必要がない。   And since this antifreeze protein reduces the freezing point of water sufficiently with a small amount, the COD value is very low and the influence on the environment is small, so there is no need to collect and incinerate at the time of disposal.

さらに、本発明の冷却液によると、塩類ではなく不凍タンパク質によって水の凝固点を降下させるため、従来のブライン等のように塩類の析出や錆の発生等による装置の汚染や質量や粘度の増加による装置への負担がない。   Furthermore, according to the cooling liquid of the present invention, since the freezing point of water is lowered by antifreeze protein instead of salts, the contamination of the apparatus and the increase in mass and viscosity due to precipitation of rust and the occurrence of rust like conventional brine etc. There is no burden on the equipment.

本発明に係る冷却液は、水と不凍タンパク質とを含む。不凍タンパク質としては、水の凝固点を降下させるタンパク質を用いることができる。   The coolant according to the present invention contains water and antifreeze protein. As the antifreeze protein, a protein that lowers the freezing point of water can be used.

不凍タンパク質はαヘリックス構造やβヘリックス構造等のヘリックス構造を持つことが知られており、不凍タンパク質はこれらヘリカル構造をもつことで、優れた凝固点降下作用が発揮されると考えられている。また、αヘリックス構造はアミノ酸3.6残基毎に1回転する螺旋構造であるが、このようなαヘリックス構造を持つ不凍タンパク質のうち、図1に示すように、10アミノ酸毎にスレオニン1が出現して、αヘリックス構造のヘリックス軸(らせん軸)2に対して全てのスレオニン1が同一方向に配意されるものは、特に凝固点降下作用が大きいことが知られている。   Antifreeze proteins are known to have a helix structure such as an α-helix structure or a β-helix structure, and antifreeze proteins are thought to exhibit excellent freezing point lowering effects by having these helical structures. . The α helix structure is a helical structure that rotates once for every 3.6 amino acid residues. Among antifreeze proteins having such an α helix structure, as shown in FIG. 1, threonine 1 is present every 10 amino acids. And the threonine 1 arranged in the same direction with respect to the helix axis (helical axis) 2 of the α helix structure is known to have a particularly large freezing point lowering effect.

不凍タンパク質としては、例えば、上述したAFPやAFGPとして一般に知られている、魚や昆虫等から抽出あるいは精製したものを用いることもできるし、合成した不凍タンパク質を用いることもできる。また、これら不凍タンパク質をコードする遺伝子を細菌等に導入することで細菌等に生成させた不凍タンパク質を用いることもできる。さらには、これら不凍タンパク質中の活性部位を抽出したペプチドを不凍タンパク質として用いることもできるし、これら不凍タンパク質の前駆体や、これら不凍タンパク質を適宜修飾することで耐熱性や構造安定性等の種々の性質を向上させた誘導体等を用いることもできる。   As the antifreeze protein, for example, a protein extracted or purified from fish or insect, which is generally known as the above-mentioned AFP or AFGP, can be used, or a synthesized antifreeze protein can also be used. Moreover, the antifreeze protein produced | generated by bacteria etc. can also be used by introduce | transducing the gene which codes these antifreeze proteins into bacteria etc. Furthermore, peptides extracted from active sites in these antifreeze proteins can be used as antifreeze proteins, and the precursors of these antifreeze proteins and these antifreeze proteins can be modified appropriately to improve heat resistance and structural stability. It is also possible to use derivatives having improved various properties such as properties.

また、その他、不凍タンパク質の立体構造を安定化させるための緩衝液や、微生物の繁殖を防止するための抗菌剤等を本発明の冷却液にさらに加えることもできる。緩衝液としては、pH4.0〜12.0程度の一般的な緩衝液を用いることができ、例えば、Goodの緩衝液、リン酸緩衝液、クエン酸緩衝液等が好ましく用いられる。また、抗菌剤としてはアジ化ナトリウム等が好ましく用いられる。   In addition, a buffer solution for stabilizing the three-dimensional structure of the antifreeze protein, an antibacterial agent for preventing the growth of microorganisms, and the like can be further added to the cooling liquid of the present invention. As the buffer solution, a general buffer solution having a pH of about 4.0 to 12.0 can be used. For example, Good's buffer solution, phosphate buffer solution, citrate buffer solution and the like are preferably used. Moreover, sodium azide etc. are preferably used as an antibacterial agent.

以下、本発明の冷却液を例を挙げて説明する。 Hereinafter, the cooling liquid of the present invention will be described by way of examples.

(1.不凍タンパク質のアミノ酸配列の選択)
昆虫であるチャイロコメノゴミムシダマシ(yellow mealworm)の幼虫由来のAFPのうち、配列番号3〜12で表されるアミノ酸配列が、水の凝固点を降下させる活性部位であると考えられている(Liou YC,et al(1999)Biochemistry(35):11415−24.A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor.)。配列番号3〜12に示される各アミノ酸配列の共通する部分を抽出し、抽出されたアミノ酸配列部分をアミノ酸配列の順序に従って並べることで、配列番号1で表されるアミノ酸配列を得た。詳しくは、配列番号3のおよび4のアミノ酸配列では28番目〜31番目と49番目〜74番目の部分を、配列番号5〜8および10〜11のアミノ酸配列では28番目〜62番目の部分を、配列番号9のアミノ酸配列では28番目〜46番目と71番目〜86番目の部分を、配列番号12のアミノ酸配列では21番目〜55番目の部分を比較し、出現頻度の高いアミノ酸を選択して配列番号1のアミノ酸配列を得た。また、N末端がアミドされたタンパク質がαヘリックス構造をとることが知られていることから、配列番号1のアミノ酸配列のN末端にはアスパラギン酸を導入した。
(1. Selection of amino acid sequence of antifreeze protein)
Among the AFPs derived from the insect larvae of the yellow mealworm, the amino acid sequence represented by SEQ ID NOs: 3 to 12 is considered to be an active site that lowers the freezing point of water (Liou YC). , Et al (1999) Biochemistry (35): 11415-24. A complex family of high heterogeneous and antibacterial antifreeze. The common part of each amino acid sequence shown by sequence number 3-12 was extracted, and the amino acid sequence represented by sequence number 1 was obtained by arranging the extracted amino acid sequence part according to the order of the amino acid sequence. Specifically, in the amino acid sequences of SEQ ID NOs: 3 and 4, the 28th to 31st and 49th to 74th portions are represented; in the amino acid sequences of SEQ ID NOs: 5-8 and 10-11, the 28th to 62nd portions are represented; In the amino acid sequence of SEQ ID NO: 9, the 28th to 46th and 71st to 86th portions are compared, and in the amino acid sequence of SEQ ID NO: 12, the 21st to 55th portions are compared, and an amino acid having a high appearance frequency is selected and sequenced The amino acid sequence of number 1 was obtained. In addition, since it is known that a protein with an N-terminal amide having an α-helical structure, aspartic acid was introduced into the N-terminal of the amino acid sequence of SEQ ID NO: 1.

以下、この配列番号1で表されるアミノ酸配列からなる不凍タンパク質を、第1の不凍タンパク質と呼ぶ。   Hereinafter, the antifreeze protein consisting of the amino acid sequence represented by SEQ ID NO: 1 is referred to as a first antifreeze protein.

また、魚であるカレイ(winter flouder)由来のAFPのうち、配列番号2で表されるアミノ酸配列が、水の凝固点を降下させる活性部位であると考えられている(Zang,W.et al(1998)J.Biol.Chem.273,34806−34812)。以下、この配列番号2で表されるアミノ酸配列からなる不凍タンパク質を、第2の不凍タンパク質と呼ぶ。   In addition, the amino acid sequence represented by SEQ ID NO: 2 is considered to be an active site that lowers the freezing point of water among the AFP derived from the fish flounder (Zang, W. et al ( 1998) J. Biol. Chem. 273, 34806-34812). Hereinafter, the antifreeze protein consisting of the amino acid sequence represented by SEQ ID NO: 2 is referred to as a second antifreeze protein.

(2.不凍タンパク質の合成)
ペプチド合成装置を用い、以下に説明するFmoc法による固相合成法に従って、第1の不凍タンパク質および第2の不凍タンパク質の合成をおこなった。なお、ペプチド合成機としてはAutomated peptide synthesizer(PeptronIII−R24,Peptron,Daejeon,Korea)を用いた。また、合成反応開始時に用いるアミノ酸としては、カルボキシル基を介して樹脂に結合されているとともに、アミノ基がFmoc(9−fluorenylmethyloxycabonyl)保護基で保護されているもの(Fmoc−amino acids and resins:Advanced ChemTech, Louisville,USA)を用いた。なお、以下特に説明がない場合にはアミノ酸のアミノ基とカルボキシル基以外の官能基もまた保護基で保護されているものとする。
(2. Synthesis of antifreeze protein)
Using a peptide synthesizer, the first antifreeze protein and the second antifreeze protein were synthesized according to the solid phase synthesis method by the Fmoc method described below. As a peptide synthesizer, an automated peptide synthesizer (Peptron III-R24, Peptron, Dajeon, Korea) was used. In addition, as an amino acid used at the start of the synthesis reaction, an amino group which is bonded to a resin via a carboxyl group and whose amino group is protected with a Fmoc (9-fluorenylcarbonyl) protecting group (Fmoc-amino acids and resins: Advanced) ChemTech, Louisville, USA). Unless otherwise specified, functional groups other than amino groups and carboxyl groups of amino acids are also protected with protecting groups.

(1)カルボキシル基を介して樹脂に結合されているとともにアミノ基がFmoc保護基で保護されているアミノ酸のFmoc保護基を取り除き、アミノ基を遊離させた。   (1) The Fmoc protecting group of the amino acid which was bonded to the resin via the carboxyl group and the amino group was protected with the Fmoc protecting group was removed to liberate the amino group.

(2)遊離したアミノ基に、Fmoc保護基でアミノ基を保護したアミノ酸のカルボキシル基を脱水縮合させることにより、アミノ酸同士をペプチド結合させた。   (2) The amino acid was peptide-bonded to the free amino group by dehydration condensation of the carboxyl group of the amino acid whose amino group was protected with the Fmoc protecting group.

(2)生成したペプチドからFmoc保護基を除去した。   (2) The Fmoc protecting group was removed from the resulting peptide.

(3)遊離したアミノ基にFmoc保護基でアミノ基を保護した別のアミノ酸のカルボキシル基を脱水縮合させた。   (3) The carboxyl group of another amino acid whose amino group was protected with an Fmoc protecting group was dehydrated and condensed with the free amino group.

(4)(2)〜(3)を繰り返してカルボキシル末端(C末端)側からアミノ末端(N末端)側にアミノ酸を1つずつ結合させてペプチド鎖を伸長させた。   (4) The peptide chain was extended by repeating (2) to (3) by attaching amino acids one by one from the carboxyl terminal (C terminal) side to the amino terminal (N terminal) side.

(5)伸長したペプチド鎖から全ての保護基を除去した。この(1)〜(5)の操作で、目的ペプチドおよび不純物を含むペプチド混合物を得た。   (5) All protecting groups were removed from the extended peptide chain. By the operations (1) to (5), a peptide mixture containing the target peptide and impurities was obtained.

(6)(5)で得られたペプチド混合物を逆相クロマトグラフィー(Waters 2690 Separations Module,Waters,Milford,USA,Waters C18RPカラム)にかけトリフルオロ酢酸を含む溶媒で溶出して精製し、不純物を取り除いた。そののちに、凍結乾燥(または減圧乾燥)により乾燥し結晶化した。   (6) The peptide mixture obtained in (5) was subjected to reverse phase chromatography (Waters 2690 Separations Module, Waters, Milford, USA, Waters C18RP column) and purified by elution with a solvent containing trifluoroacetic acid to remove impurities. It was. After that, it was dried by lyophilization (or reduced pressure drying) and crystallized.

(1)〜(6)の操作により、目的とするペプチドが得られ、第1の不凍タンパク質および第2の不凍タンパク質が合成された。なお、(1)〜(4)の操作に順次結合させたアミノ酸の種類は、配列番号1または配列番号2のアミノ酸配列にしたがったものである。   The target peptide was obtained by the operations (1) to (6), and the first antifreeze protein and the second antifreeze protein were synthesized. In addition, the kind of amino acid sequentially combined in the operations (1) to (4) is according to the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

(3.凝固点測定試験)
上述した(2.不凍タンパク質の合成)で合成された第1の不凍タンパク質を水に溶解させて、第1の不凍タンパク質を0.01重量%含む実施例1の冷却液、第1の不凍タンパク質を0.05重量%含む実施例2の冷却液、および、第1の不凍タンパク質を0.1重量%で含む実施例3の冷却液を調製した。
(3. Freezing point measurement test)
The first antifreeze protein synthesized in the above (2. Synthesis of antifreeze protein) is dissolved in water, and the coolant of Example 1 containing 0.01 wt% of the first antifreeze protein, the first A cooling liquid of Example 2 containing 0.05% by weight of the antifreeze protein and a cooling liquid of Example 3 containing 0.1% by weight of the first antifreeze protein were prepared.

また、同様に第2の不凍タンパク質を0.01重量%含む実施例4の冷却液と、第2の不凍タンパク質を0.05重量%含む実施例5の冷却液とを調製した。得られた各実施例の冷却液のうち各々20mgずつをとり、DSC3100S(Material Analysis and Characterization社製)を用いた示差走査熱量測定法によって凝固点を測定した。   Similarly, the coolant of Example 4 containing 0.01% by weight of the second antifreeze protein and the coolant of Example 5 containing 0.05% by weight of the second antifreeze protein were prepared. 20 mg of each of the obtained cooling liquids of each example was taken, and the freezing point was measured by a differential scanning calorimetry method using DSC3100S (manufactured by Material Analysis and Charactorization).

本凝固点測定試験で測定された実施例1〜5の冷却液の凝固点を表すグラフを図2に示す。図2中横軸は各冷却液中に含まれる不凍タンパク質濃度(重量%)を示し、縦軸は水の凝固点から各冷却液の凝固点を引いた値(凝固点降下度)を示す。   The graph showing the freezing point of the cooling fluid of Examples 1-5 measured by this freezing point measurement test is shown in FIG. In FIG. 2, the horizontal axis indicates the concentration of antifreeze protein (% by weight) contained in each cooling liquid, and the vertical axis indicates the value obtained by subtracting the freezing point of each cooling liquid from the freezing point of water (freezing point depression degree).

図2に示されるように、不凍タンパク質水溶液である本発明の冷却液は、凝固点降下度が正の値となり、水よりも凝固点が降下している。このため、本発明の冷却液は自動車のエンジン用の冷却液等に好ましく用いられることがわかる。   As shown in FIG. 2, the cooling liquid of the present invention, which is an antifreeze protein aqueous solution, has a positive freezing point depression value, and the freezing point is lower than that of water. For this reason, it turns out that the cooling fluid of this invention is preferably used for the cooling fluid for motor vehicle engines, etc.

また、参考までに、チャイロコメノゴミムシダマシの幼虫由来のAFP水溶液の凝固点を表すグラフを図3に示す。このグラフは、Timothy,S.B.らの論文(Timothy,S.B. et al(1986)J.Biol.Chem.261,6890−6897)によるものである。   For reference, FIG. 3 shows a graph showing the freezing point of an AFP aqueous solution derived from the larvae of the white rice beetle. This graph is shown in Timothy, S .; B. (Timothy, SB et al (1986) J. Biol. Chem. 261, 6890-6897).

図3に示されるグラフによると、0.01重量%のAFP水溶液の凝固点降下度は1.2℃である。これに対して、図2に示されるグラフによると、0.01重量%の第1の不凍タンパク質を含む実施例1の不凍液の凝固点降下度は4.5℃であり、図3に示されるAFP水溶液よりも凝固点が大きく降下していることが判る。このことは、第1の不凍タンパク質がAFPから活性部位のみを抽出したものであることに起因している。すなわち、同重量である場合には、活性部位のみからなる第1の不凍タンパク質は、活性部位以外の部分を含むAFPに比べてより多くの活性部位を持つ。このため、第1の不凍タンパク質水溶液は通常のAFP水溶液よりも凝固点降下度が大きくなると考えられる。   According to the graph shown in FIG. 3, the freezing point depression degree of the 0.01 wt% AFP aqueous solution is 1.2 ° C. On the other hand, according to the graph shown in FIG. 2, the freezing point depression degree of the antifreeze solution of Example 1 containing 0.01% by weight of the first antifreeze protein is 4.5 ° C., which is shown in FIG. It can be seen that the freezing point is significantly lower than that of the AFP aqueous solution. This is due to the fact that the first antifreeze protein is obtained by extracting only the active site from AFP. That is, in the case of the same weight, the first antifreeze protein consisting only of the active site has more active sites than AFP including a portion other than the active site. For this reason, it is considered that the first antifreeze protein aqueous solution has a higher freezing point depression degree than the normal AFP aqueous solution.

なお、本発明の冷却液には、例えば配列番号1や配列番号2のアミノ酸配列のみからなる不凍タンパク質だけでなく、配列番号1や配列番号2のアミノ酸配列に、1若しくは数個のアミノ酸が欠失、置換および/または付加されたアミノ酸配列からなるものを用いることもできる。この場合にも、活性部位、すなわち配列番号1や配列番号2のアミノ酸配列の部分が、その他の部分に対して多く含まれる程、凝固点降下度が大きくなる。   In the cooling liquid of the present invention, for example, not only the antifreeze protein consisting only of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2, but also one or several amino acids are included in the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2. Those consisting of amino acid sequences deleted, substituted and / or added can also be used. In this case as well, the more the active site, that is, the portion of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2 is contained relative to the other portion, the greater the degree of freezing point depression.

(4.熱伝導率測定試験)
エチレングリコールを50重量%含む比較例1の冷却液を調製した。この比較例1の冷却液および水の冷却液の熱伝導率を非定常熱線法により測定した。
(4. Thermal conductivity measurement test)
A cooling liquid of Comparative Example 1 containing 50% by weight of ethylene glycol was prepared. The thermal conductivity of the coolant of Comparative Example 1 and the coolant of water was measured by the unsteady hot wire method.

本熱伝導率測定試験で測定された水および比較例1の冷却液の20℃〜80℃における熱伝導率を表すグラフを図4に示す。図4中横軸は温度を示し、縦軸は熱伝導率を示す。   The graph showing the heat conductivity in 20 to 80 degreeC of the water measured by this heat conductivity measurement test and the cooling fluid of the comparative example 1 is shown in FIG. In FIG. 4, the horizontal axis indicates temperature, and the vertical axis indicates thermal conductivity.

図4に示されるように、従来の冷却液である比較例1の冷却液に比べて水は大きな熱伝導率を示した。なお、本発明の冷却液である各実施例の冷却液は、水に微量のタンパク質を溶解あるいは分散させたものであるため、熱伝導率は水とほぼ同じである。   As shown in FIG. 4, water showed a larger thermal conductivity than the cooling liquid of Comparative Example 1 which is a conventional cooling liquid. In addition, since the cooling liquid of each Example which is a cooling liquid of this invention melt | dissolves or disperses a trace amount protein in water, thermal conductivity is substantially the same as water.

したがって、発明の冷却液を自動車のエンジン用冷却液として用いる場合には、小さな流量で充分にエンジンを冷却することができるため、冷却液を循環させるポンプに加わる負荷が低減される。また、本発明の冷却液は熱伝導率が大きいことから、エンジンを冷却することで一旦上昇した冷却液の温度は容易に低下する。このため、冷却液を冷却する熱交換機は小型なもので足り、装置全体の小型化と装置に要するコストの低減が可能となる。   Therefore, when the coolant of the invention is used as a coolant for an engine of an automobile, the engine can be sufficiently cooled with a small flow rate, and the load applied to the pump for circulating the coolant is reduced. Further, since the coolant of the present invention has a large thermal conductivity, the temperature of the coolant once raised by cooling the engine is easily lowered. Therefore, a small heat exchanger for cooling the coolant is sufficient, and the entire apparatus can be downsized and the cost required for the apparatus can be reduced.

(5.COD試験)
エチレングリコールを10重量%含む比較例2の冷却液、エチレングリコールを12重量%含む比較例3の冷却液、エチレングリコールを16重量%含む比較例4の冷却液、エチレングリコールを20重量%含む比較例5の冷却液、エチレングリコールを22重量%含む比較例6の冷却液、および実施例1〜5の冷却液の理論CODを算出した。
(5. COD test)
Comparative Example 2 containing 10% by weight of ethylene glycol, Cooling liquid of Comparative Example 3 containing 12% by weight of ethylene glycol, Cooling liquid of Comparative Example 4 containing 16% by weight of ethylene glycol, Comparison containing 20% by weight of ethylene glycol The theoretical COD was calculated for the coolant of Example 5, the coolant of Comparative Example 6 containing 22% by weight of ethylene glycol, and the coolants of Examples 1-5.

算出方法は、新訂明解環境分析技術手法(日本環境測定分析協会編、しらかば出版)に記載の方法に準じた。第1のタンパク質は化1式に示す反応にしたがって酸化され、第2のタンパク質は化2式に示す反応にしたがって酸化される。このため、107ppmの第1タンパク質(分子量3024)を完全に酸化するには19.7×105ppmの酸素が、107ppmの第2のタンパク質(分子量3813)を完全に酸化するには17×105ppmの酸素が必要になると考えられる。なお、107ppmの比較例2の冷却液を完全に酸化させるには12.5×104ppmの酸素が、107ppmの比較例3の冷却液を完全に酸化させるには15.0×104ppmの酸素が、107ppmの比較例4の冷却液を完全に酸化させるには20.0×104ppmの酸素が、107ppmの比較例5の冷却液を完全に酸化させるには25.6×104ppmの酸素が、107ppmの比較例6の冷却液を完全に酸化させるには28.16×104ppmの酸素が必要になると考えられる。 The calculation method was based on the method described in the New Revised Environmental Analysis Technology Method (Edited by Japan Environmental Measurement Analysis Association, Shirakaba Publishing). The first protein is oxidized according to the reaction shown in Chemical Formula 1, and the second protein is oxidized according to the reaction shown in Chemical Formula 2. Therefore, to fully oxidize 10 7 ppm of the first protein (molecular weight 3024), 19.7 × 10 5 ppm of oxygen completely oxidizes the 10 7 ppm of the second protein (molecular weight 3813). Is considered to require 17 × 10 5 ppm of oxygen. In order to completely oxidize the coolant of Comparative Example 2 at 10 7 ppm, 12.5 × 10 4 ppm of oxygen is required to completely oxidize the coolant of Comparative Example 3 at 10 7 ppm. × 10 4 ppm of oxygen completely oxidizes the coolant of Comparative Example 4 with 10 7 ppm 20.0 × 10 4 ppm of oxygen completely oxidizes the coolant of Comparative Example 5 with 10 7 ppm oxygen 25.6 × 10 4 ppm in to is considered to be a necessary oxygen 28.16 × 10 4 ppm is to completely oxidize the coolant of Comparative example 6 10 7 ppm.

Figure 2005239885
Figure 2005239885

Figure 2005239885
Figure 2005239885

算出された各実施例および比較例の冷却液の理論COD値を表すグラフを図5に示す。図5中縦軸は各冷却液の理論COD値を示し、横軸は各実施例および比較例の冷却液の凝固点降下度を示す。   FIG. 5 shows a graph representing the calculated theoretical COD values of the coolants of the examples and comparative examples. In FIG. 5, the vertical axis represents the theoretical COD value of each coolant, and the horizontal axis represents the freezing point depression degree of the coolants of the examples and comparative examples.

図5に示されるように、実施例の冷却液は、同じ凝固点降下度となる比較例の冷却液よりも理論COD値が著しく小さくなっている。これは、不凍タンパク質は少量でも優れた凝固点降下作用を発揮することから、冷却液中に添加する不凍タンパク質の量は少なくて済むためと考えられる。   As shown in FIG. 5, the theoretical COD value of the cooling liquid of the example is significantly smaller than that of the cooling liquid of the comparative example having the same freezing point depression degree. This is presumably because the amount of antifreeze protein added to the cooling liquid is small because the antifreeze protein exhibits an excellent freezing point lowering effect even in a small amount.

実施例3、実施例5、および比較例2〜6の冷却液の凝固点降下度、理論COD値および熱伝導率を表1に示す。   Table 1 shows the freezing point depression degree, theoretical COD value, and thermal conductivity of the coolants of Example 3, Example 5, and Comparative Examples 2-6.

Figure 2005239885
Figure 2005239885

表1に示すように、実施例3および実施例5の冷却液は比較例5および比較例6の冷却液と同程度の凝固点降下度を示すものであるが、比較例5および比較例6の冷却液よりも高い熱伝導率と、比較例5および比較例6の冷却液よりも著しく小さいCODとを示す。この結果からも、本発明の冷却液がグリコール類等が配合されている従来の冷却液よりも優れた冷却液であることが判る。   As shown in Table 1, the coolants of Example 3 and Example 5 exhibit the same degree of freezing point depression as the coolants of Comparative Example 5 and Comparative Example 6. It shows a higher thermal conductivity than the coolant and a COD that is significantly smaller than the coolants of Comparative Examples 5 and 6. Also from this result, it can be seen that the coolant of the present invention is superior to conventional coolants in which glycols and the like are blended.

(6.熱安定性試験)
(2.不凍タンパク質の合成)で合成された第2の不凍タンパク質を水に溶解させて、第2の不凍タンパク質を0.35重量%を含む実施例6の冷却液を調製した。この実施例6の冷却液を恒温槽に入れ、90℃で1時間、3時間、6時間熱処理した。
(6. Thermal stability test)
The second antifreeze protein synthesized in (2. Synthesis of antifreeze protein) was dissolved in water to prepare a cooling liquid of Example 6 containing 0.35% by weight of the second antifreeze protein. The coolant of Example 6 was placed in a thermostatic bath and heat-treated at 90 ° C. for 1 hour, 3 hours, and 6 hours.

各時間熱処理した実施例6の冷却液の凝固点を、(3.凝固点測定試験)と同じ方法で測定した。また、熱処理していない実施例6の冷却液の凝固点を同様に測定した。各時間熱処理した冷却液の凝固点と、熱処理していない冷却液の凝固点とから、熱処理後の冷却液の残存活性を算出した。残存活性は以下の式で算出した。   The freezing point of the coolant of Example 6 heat-treated for each time was measured by the same method as (3. Freezing point measurement test). Moreover, the freezing point of the cooling liquid of Example 6 which was not heat-processed was measured similarly. The residual activity of the cooling liquid after the heat treatment was calculated from the freezing point of the cooling liquid heat-treated for each time and the freezing point of the non-heat-treated cooling liquid. The residual activity was calculated by the following formula.

残存活性(%)=熱処理した冷却液の凝固点/熱処理していない冷却液の凝固点×100
本凝固点測定試験で測定された実施例6の冷却液の残存活性を表すグラフを図6に示す。図6中横軸は各冷却液に熱処理を施した時間を示し、縦軸は冷却液の残存活性(%)を示す。
Residual activity (%) = freezing point of heat-treated cooling liquid / freezing point of non-heat-treated cooling liquid x 100
A graph showing the remaining activity of the coolant of Example 6 measured in the freezing point measurement test is shown in FIG. In FIG. 6, the horizontal axis indicates the time during which each coolant is subjected to heat treatment, and the vertical axis indicates the remaining activity (%) of the coolant.

図6に示されるように、第2の不凍タンパク質を含む実施例6の冷却液は、90℃で6時間熱処理したにも関わらず熱処理前の80%の凝固点降下活性を維持した。通常、タンパク質は60℃程度で立体構造が変化するため高温に曝されると機能を発揮しないが、本発明の不凍タンパク質は熱安定性に優れ、自動車のエンジン用冷却液等の恒温に曝される冷却液として好ましく用いられることがわかる。   As shown in FIG. 6, the coolant of Example 6 containing the second antifreeze protein maintained 80% freezing point depressing activity before the heat treatment despite being heat treated at 90 ° C. for 6 hours. In general, proteins have a three-dimensional structure that changes at about 60 ° C, so that they do not function when exposed to high temperatures. However, the antifreeze protein of the present invention has excellent thermal stability and is exposed to constant temperatures such as automotive engine coolants. It can be seen that it is preferably used as a cooling liquid.

(7.シュミレーションによるpH安定性試験)
上述したように、不凍タンパク質のうちヘリカル構造が凝固点降下作用を発揮する部分だと考えられているため、ヘリカル構造を多く持つ不凍タンパク質は、より優れた凝固点降下作用を発揮すると考えられる。
(7. pH stability test by simulation)
As described above, since it is considered that the helical structure of the antifreeze protein is a part that exhibits the freezing point depressing action, it is considered that the antifreeze protein having a lot of helical structure exhibits a more excellent freezing point lowering action.

一方、タンパク質に含まれるヘリカル構造の量はpHによって左右される。すなわち、タンパク質が曝されるpHによってタンパク質の3次構造は変化するため、タンパク質に含まれるヘリカル構造の量はpHによって変化する。そこで、配列番号1の不凍タンパク質および配列番号2の不凍タンパク質について、種々のpHに曝した場合のαヘリックスの量をシュミレーションした。シュミレーションは、ペプチドのαヘリックス構造予測ソフトであるAgadir(Http://www.embl-heidelberg.de/cgi/agadir-wrapper.pl)を用いておこなった。このソフトを用い、配列番号1および配列番号2の不凍タンパク質のアミノ酸配列を入力して、278K(4.85℃)、イオン強度0の条件でpH1〜14の場合におけるαヘリックス含有率(%)を求めた。なお、αヘリックス含有率はペプチド中の全アミノ酸のうちヘリックス構造をとるアミノ酸の割合とした。   On the other hand, the amount of helical structure contained in a protein depends on pH. That is, since the tertiary structure of the protein changes depending on the pH to which the protein is exposed, the amount of the helical structure contained in the protein changes depending on the pH. Therefore, the amount of α-helix when the antifreeze protein of SEQ ID NO: 1 and the antifreeze protein of SEQ ID NO: 2 were exposed to various pHs was simulated. The simulation was performed using Agadir (http://www.embl-heidelberg.de/cgi/agadir-wrapper.pl), which is a peptide α-helix structure prediction software. Using this software, the amino acid sequences of the antifreeze proteins of SEQ ID NO: 1 and SEQ ID NO: 2 were input, and the α helix content (%) in the case of pH 1-14 under conditions of 278 K (4.85 ° C.) and ionic strength 0 ) The α-helix content was defined as the proportion of amino acids having a helix structure among all amino acids in the peptide.

シュミレーションにより得られたpHとαヘリックス含有率との関係を図7に示す。なお、図7中縦軸はαヘリックス含有率(%)を示し、横軸はpHを示す。   FIG. 7 shows the relationship between pH obtained by simulation and α-helix content. In addition, the vertical axis | shaft in FIG. 7 shows alpha helix content rate (%), and a horizontal axis shows pH.

図7に示すように、配列番号1の不凍タンパク質はpH8〜11の範囲でαヘリックス含有率が高くなり、pH9.8付近でαヘリックス含有率が最も高くなると推定される。また、配列番号2の不凍タンパク質は、pH7〜14の範囲でαヘリックス含有率が高くなり、pH8.2付近でαヘリックス含有率が最も高くなると推定される。したがって、配列番号1の不凍タンパク質はpH8〜11付近でより優れた凝固点降下作用を示し、配列番号2の不凍タンパク質はpH7〜14付近でより優れた凝固点降下作用を示すと考えられる。   As shown in FIG. 7, it is estimated that the antifreeze protein of SEQ ID NO: 1 has a high α helix content in the range of pH 8 to 11, and the highest α helix content in the vicinity of pH 9.8. In addition, it is estimated that the antifreeze protein of SEQ ID NO: 2 has a high α helix content in the range of pH 7 to 14, and the highest α helix content in the vicinity of pH 8.2. Therefore, it is considered that the antifreeze protein of SEQ ID NO: 1 shows a better freezing point depressing action near pH 8-11, and the antifreeze protein of SEQ ID NO: 2 shows a better freezing point lowering action near pH 7-14.

ここで、上述した(3.凝固点測定試験)で凝固点を測定した各実施例の不凍液は、pH3.1〜3.2程度と酸性であった。これは、不凍タンパク質の合成後に逆相クロマトグラフィーにより不凍タンパク質を精製する際に、溶媒としてトリフルオロ酢酸を用いたためと考えられる。このトリフルオロ酢酸は、精製後に不凍タンパク質を凍結乾燥あるいは減圧乾燥する際に大部分が揮発するが、一部は残存するために、不凍液のpHが低くなっていると考えられる。したがって、各実施例の不凍液のpHを配列番号1の不凍タンパク質については8〜11程度に、配列番号2の不凍タンパク質については7〜14程度に調整すれば、(3.凝固点測定試験)で得られた結果よりも、より凝固点が降下するものと考えられる。   Here, the antifreeze liquid of each Example which measured the freezing point by the above-mentioned (3. Freezing point measurement test) was acidic at about pH 3.1-3.2. This is probably because trifluoroacetic acid was used as a solvent when the antifreeze protein was purified by reverse phase chromatography after the synthesis of the antifreeze protein. Most of the trifluoroacetic acid is volatilized when the antifreeze protein is freeze-dried or dried under reduced pressure after purification, but a part of it remains, so the pH of the antifreeze solution is considered to be low. Therefore, if the pH of the antifreeze solution of each Example is adjusted to about 8 to 11 for the antifreeze protein of SEQ ID NO: 1 and about 7 to 14 for the antifreeze protein of SEQ ID NO: 2, (3. Freezing point measurement test) It is considered that the freezing point is lowered more than the result obtained in the above.

一般的な不凍タンパク質のαヘリックス構造を模式的に表す図である。It is a figure which represents typically the alpha helix structure of general antifreeze protein. 凝固点測定試験で測定された実施例1〜5の冷却液の凝固点を表すグラフである。It is a graph showing the freezing point of the cooling fluid of Examples 1-5 measured by the freezing point measurement test. チャイロコメノゴミムシダマシの幼虫由来のAFP水溶液の凝固点を表すグラフである。It is a graph showing the freezing point of the AFP aqueous solution derived from the larvae of the white rice leafworm. 熱伝導率測定試験で測定された水および比較例1の冷却液の20℃〜80℃における熱伝導率を表すグラフである。It is a graph showing the heat conductivity in 20 to 80 degreeC of the water measured by the heat conductivity measurement test, and the cooling fluid of the comparative example 1. FIG. COD試験で算出された各実施例および比較例の冷却液の理論COD値を表すグラフである。It is a graph showing the theoretical COD value of the cooling fluid of each Example and comparative example calculated by the COD test. 凝固点測定試験で測定された実施例6の冷却液の残存活性を表すグラフである。It is a graph showing the residual activity of the cooling fluid of Example 6 measured by the freezing point measurement test. シュミレーションにより得られたpHとαヘリックス含有率との関係を表すグラフである。It is a graph showing the relationship between pH obtained by simulation, and alpha helix content rate.

Claims (4)

水と不凍タンパク質とを含み水よりも凝固点が降下していることを特徴とする冷却液。   A cooling liquid comprising water and antifreeze protein and having a freezing point lower than that of water. 前記不凍タンパク質は、配列番号1で表されるアミノ酸配列からなる請求項1に記載の冷却液。   The coolant according to claim 1, wherein the antifreeze protein has an amino acid sequence represented by SEQ ID NO: 1. 前記不凍タンパク質は、配列番号2で表されるアミノ酸配列からなる請求項1に記載の冷却液。   The coolant according to claim 1, wherein the antifreeze protein has an amino acid sequence represented by SEQ ID NO: 2. 前記不凍タンパク質は冷却液全量に対して0.01重量%以上含まれる請求項2または請求項3に記載の冷却液。   The coolant according to claim 2 or 3, wherein the antifreeze protein is contained in an amount of 0.01 wt% or more based on the total amount of the coolant.
JP2004051836A 2004-02-26 2004-02-26 Cooling liquid Pending JP2005239885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051836A JP2005239885A (en) 2004-02-26 2004-02-26 Cooling liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051836A JP2005239885A (en) 2004-02-26 2004-02-26 Cooling liquid

Publications (1)

Publication Number Publication Date
JP2005239885A true JP2005239885A (en) 2005-09-08

Family

ID=35021952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051836A Pending JP2005239885A (en) 2004-02-26 2004-02-26 Cooling liquid

Country Status (1)

Country Link
JP (1) JP2005239885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157983A (en) * 2014-02-24 2015-09-03 スリーボンドファインケミカル株式会社 Anti-rust agent composition
EP3351556A4 (en) * 2015-09-18 2019-04-24 Hiroshima University Protein tag that binds to substances having a crystal structure, and uses thereof
WO2020174070A1 (en) * 2019-02-27 2020-09-03 Cyca Oncosolutions Limited Cell membrane penetrating conjugates for gene editing
US11583589B2 (en) 2017-08-23 2023-02-21 Cygenica Limited Cell membrane penetrating conjugates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157983A (en) * 2014-02-24 2015-09-03 スリーボンドファインケミカル株式会社 Anti-rust agent composition
EP3351556A4 (en) * 2015-09-18 2019-04-24 Hiroshima University Protein tag that binds to substances having a crystal structure, and uses thereof
US11583589B2 (en) 2017-08-23 2023-02-21 Cygenica Limited Cell membrane penetrating conjugates
WO2020174070A1 (en) * 2019-02-27 2020-09-03 Cyca Oncosolutions Limited Cell membrane penetrating conjugates for gene editing

Similar Documents

Publication Publication Date Title
Davies et al. Biochemistry of fish antifreeze proteins
Silvanovich et al. Nucleotide sequence analysis of three cDNAs coding for Poa p IX isoallergens of Kentucky bluegrass pollen.
Haymet et al. Valine substituted winter flounderantifreeze': preservation of ice growth hysteresis
Wagner et al. A high-mobility-group protein and its cDNAs from Drosophila melanogaster
Azad Intermolecular base-paired interaction between complementary sequences present near the 3′ ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits
Hsiao et al. An antifreeze glycopeptide gene from the antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number.
JPWO2007105731A1 (en) Protein with ice nucleation activity
Liu et al. A novel C1q-domain-containing (C1qDC) protein from Mytilus coruscus with the transcriptional analysis against marine pathogens and heavy metals
CA2741823A1 (en) Leukolectins and uses thereof
Wang et al. Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem
Sivakumar et al. In silico characterization of antifreeze proteins using computational tools and servers
JP2005239885A (en) Cooling liquid
SMITH et al. Sequence polymorphisms of the Der p 3 house dust mite allergen
Li et al. Molecular cloning, characterization and expression analysis of a novel wap65-1 gene from Plecoglossus altivelis
Gauthier et al. Hyperactive antifreeze protein in flounder species: the sole freeze protectant in American plaice
Chang et al. Structure–function studies on Taiwan cobra long neurotoxin homolog
Tom et al. Molecular characterization of metallothionein-cDNA of Sparus aurata used for detecting heavy metal pollution along the Mediterranean coast of Israel
Eiken et al. A zebrafish homeobox-containing gene with embryonic transcription
Gupta et al. The single-copy gene encoding high-mobility-group protein HMG-I/Y from pea contains a single intron and is expressed in all organs
Kasai et al. Molecular and thyroid hormone binding properties of lamprey transthyretins: the role of an N-terminal histidine-rich segment in hormone binding with high affinity
Huang et al. Thermostability of tropomyosins from the fast skeletal muscles of tropical fish species
Carr et al. NMR and molecular dynamics studies of the mKr2 ‘zinc finger’
Idakieva et al. Rapana thomasiana hemocyanin (RtH): dissociation and reassociation behavior of two isoforms, RtH1 and RtH2
Chang et al. cDNA sequence analysis of a novel neurotoxin homolog from Taiwan banded krait
Jung et al. Biochemical and molecular characterization of an antifungal protein from Tenebrio molitor larvae