JP2005235792A - Substrate treatment method - Google Patents

Substrate treatment method Download PDF

Info

Publication number
JP2005235792A
JP2005235792A JP2002051746A JP2002051746A JP2005235792A JP 2005235792 A JP2005235792 A JP 2005235792A JP 2002051746 A JP2002051746 A JP 2002051746A JP 2002051746 A JP2002051746 A JP 2002051746A JP 2005235792 A JP2005235792 A JP 2005235792A
Authority
JP
Japan
Prior art keywords
oxide film
film
substrate
silicon
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002051746A
Other languages
Japanese (ja)
Inventor
Masaru Sasaki
勝 佐々木
Takuya Sugawara
卓也 菅原
Seiji Matsuyama
征嗣 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002051746A priority Critical patent/JP2005235792A/en
Priority to TW092104310A priority patent/TWI290744B/en
Priority to PCT/JP2003/002272 priority patent/WO2003073492A1/en
Priority to AU2003211806A priority patent/AU2003211806A1/en
Publication of JP2005235792A publication Critical patent/JP2005235792A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To terminate a dangling bond formed near an interface region between an oxynitride film and a silicon substrate, and to restore a flat band characteristic when an oxide film is radically nitrided and converted into the oxynitride film. <P>SOLUTION: Microwave radical oxidation treatment is performed by following a process for radically nitriding the oxide film by a microwave, and converting it into the oxynitride film. Atom-like oxygen is supplied to the oxynitride film, and a dangling bond is terminated near the interface region of the silicon substrate and the oxynitride film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は一般に基板処理技術に係り、特に基板上に誘電体膜を形成する基板処理方法に関する。
【0002】
微細化技術の進展により、今日では0.1μmを切るゲート長の超微細化半導体装置の製造が可能になりつつある。
【0003】
かかる超微細化半導体装置において、ゲート長の短縮に伴って半導体装置の動作速度を向上させようとすると、ゲート絶縁膜の厚さをスケーリング則に従って減少させる必要がある。例えばゲート絶縁膜として従来の熱酸化膜を使った場合、ゲート絶縁膜の厚さを従来の1.7nm以下に減少させる必要がある。しかし、酸化膜の厚さをこのように減少させると、トンネル効果により酸化膜を通って流れるゲートリーク電流が増大してしまう。
【0004】
このため、従来より、ゲート絶縁膜として従来のシリコン酸化膜の代わりにTa25あるいはZrO2などの高誘電体膜を使うことが検討されている。しかし、これらの高誘電体膜は半導体技術において従来から使われてきているシリコン酸化膜とは性質が大きく異なっており、これらの高誘電体膜をゲート絶縁膜として使うためには、解決しなければならない課題が数多く残っている。
【0005】
これに対し、シリコン窒化膜は従来の半導体プロセスで使われてきた材料であり、しかもシリコン酸化膜の2倍の比誘電率を有するため、次世代の高速半導体装置のゲート絶縁膜として有望な材料である。
【0006】
【従来の技術】
従来より、シリコン窒化膜は層間絶縁膜上にプラズマCVD法により形成されるのが一般的であった。しかし、このようなCVD窒化膜は一般にリーク電流が大きく、ゲート絶縁膜としては不適当であった。このため、従来より窒化膜をゲート電極に使う試みはなされていない。
【0007】
これに対し、最近ではマイクロ波励起されたArあるいはKrのような希ガスプラズマ中に窒素あるいは窒素と水素、あるいはNH3ガスのような窒素を含んだガスを導入し、NラジカルあるいはNHラジカルを発生させ、シリコン酸化膜表面を窒化処理により酸窒化膜に変換する技術が提案されている。このようにして形成された窒化膜は、熱酸化膜に匹敵する、あるいはそれを凌ぐリーク電流特性を有し、次世代高速半導体装置のゲート絶縁膜として有望であると考えられている。また、シリコン基板表面をかかるマイクロ波プラズマにより直接に窒化する技術も提案されている。
【0008】
【発明が解決しようとする課題】
ところで、このようにシリコン基板上に形成されたシリコン酸化膜表面をマイクロ波励起された窒化水素ラジカルNH*あるいは窒素ラジカルN*により改質する場合、初めはシリコン酸化膜表面がシリコン窒化膜に変換されるのに伴い、膜全体の換算膜厚が減少し、またリーク電流値も、同じ換算膜厚のシリコン酸化膜に比べて減少するが、ある時点を越えると逆に膜全体の換算膜厚が増加するターンアラウンドと呼ばれる現象が発生する。
【0009】
このようなターンアラウンド現象が発生すると、MOSトランジスタのフラットバンド電圧、従ってしきい値電圧が変化してしまい、所望のトランジスタ特性は得られない。
【0010】
そこで、本発明は上記の課題を解決した、新規で有用な基板処理方法を提供することを概括的課題とする。
【0011】
本発明のより具体的な課題は、シリコン基板表面に、あるいはシリコン基板上の酸化膜表面にプラズマ窒化処理により酸窒化膜を形成する際に、ターンアラウンド後に生じる電気特性の劣化を回復することのできる基板処理方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は上記の課題を、
請求項1に記載したように、
シリコン基板上の酸化膜表面を、窒素ラジカルを供給することにより窒化し、酸窒化膜を形成する工程と、
前記酸窒化膜を形成する工程の後、前記酸窒化膜表面に酸素ラジカルを供給する工程とよりなることを特徴とする基板処理方法により、または
請求項2に記載したように、
前記窒素ラジカルは、不活性ガスと窒素ガスの混合ガス中にプラズマを励起することにより形成されることを特徴とする請求項1記載の基板処理方法により、または
請求項3に記載したように、
前記プラズマはマイクロ波により励起されることを特徴とする請求項2記載の基板処理方法により、または
請求項4に記載したように、
前記水素ラジカルは、不活性ガスと酸素ガスの混合ガス中にプラズマを励起することにより形成されることを特徴とする請求項2または3記載の基板処理方法により、または
請求項5に記載したように、
前記酸窒化膜形成工程の後、前記プラズマの励起はいったん中断され、前記酸素ラジカルは、不活性ガスと酸素ガスの混合ガス中にマイクロ波プラズマを再び励起することにより形成されることを特徴とする請求項2記載の基板処理方法により、または
請求項6に記載したように、
前記酸化膜は、前記シリコン基板表面上の自然酸化膜であることを特徴とする請求項1〜5のうち、いずれか一項記載の基板処理方法により、または
請求項7に記載したように、
前記酸化膜は、前記シリコン基板表面に形成された化学酸化膜であることを特徴とする請求項1〜5のうち、いずれか一項記載の基板処理方法により、解決する。
[作用]
本発明によれば、酸化膜を窒素ラジカルにより窒化処理した結果、先に説明したターンアラウンド現象が生じSi基板表面と酸窒化膜との間の界面が劣化した場合でも、酸素ラジカル処理を行うことにより、フラットバンド電圧等の電気特性が回復する。これは、酸素ラジカルがシリコン基板/酸窒化膜界面にまで到達し、シリコン基板と酸窒化膜との界面領域のダングリングボンド等の欠陥を終端することによるものと考えられる。このような酸素ラジカル処理により、形成された酸窒化膜には増膜が生じるが、窒化処理当初の酸化膜としてシリコン基板表面に存在する自然酸化膜あるいは化学酸化膜を使うことにより、形成された酸窒化膜の膜厚を最小限に止めることが可能である。
【0013】
【発明の実施の形態】
[第1実施例]
図1は、本発明で使われるプラズマ基板処理装置10の概略的構成を示す。
【0014】
図1を参照するに、プラズマ基板処理装置10は被処理基板Wを保持する基板保持台12が形成された処理容器11を有し、処理容器11は排気ポート11Aにおいて排気される。
【0015】
前記処理容器11上には前記基板保持台12上の被処理基板Wに対応して開口部が形成されており、前記開口部は、石英等の低損失セラミックよりなるカバープレート13により塞がれている。
【0016】
前記カバープレート13はマイクロ波窓を形成し、前記カバープレート13の外側には、ラジアルラインスロットアンテナあるいはホーンアンテナ等のマイクロ波アンテナ15が形成されている。
【0017】
動作時には、前記処理容器11内部の処理空間は前記排気ポート11Aを介して排気することにより所定の処理圧に設定され、前記シャワープレート14からArやKr等の不活性ガスと共に酸化ガスや窒化ガスが導入される。
【0018】
さらに前記アンテナ15から周波数が数GHzのマイクロ波を導入することにより、前記処理容器11中において被処理基板Wの表面に高密度マイクロ波プラズマを励起する。プラズマをマイクロ波により励起することにより、図1の基板処理装置ではプラズマの電子温度が低く、被処理基板Wや処理容器11内壁の損傷が回避できる。また、形成されたラジカルは被処理基板Wの表面に沿って径方向に流れ、速やかに排気されるため、ラジカルの再結合が抑制され、効率的で非常に一様な基板処理が、550°C以下の低温において可能になる。
【0019】
図2(A)〜(C)は、図1の基板処理装置10を使った本発明の第1実施例による基板処理プロセスを示す。
【0020】
図2(A)を参照するに、シリコン基板21を前記被処理基板Wとして前記基板処理装置10の処理容器11中に導入し、ガスリングからKrあるいはAr,あるいはHeと酸素の混合ガスを導入し、これをマイクロ波プラズマ励起することにより原子状酸素O*を形成する。かかる原子状酸素O*により前記シリコン基板21の表面を処理することにより、図2(B)に示すように、シリコン基板21の表面にシリコン酸化膜22を形成する。このようにして形成されたシリコン酸化膜22は、400℃程度の非常に低い基板温度で形成されたにもかかわらず、1000℃以上の高温で形成された熱酸化膜に匹敵するリーク電流特性を有する。あるいは、前記シリコン酸化膜22は熱酸化膜あるいは化学酸化膜あるいは自然酸化膜であってもよい。
【0021】
次に図2(C)の工程において、図1の処理容器11中にArと窒素の混合ガスを供給し、基板温度を400℃に設定してマイクロ波を供給することによりプラズマを励起する。
【0022】
図2(C)の工程では、処理容器11の内圧を7Paに設定し、Arガスを例えば1000SCCMの流量で、また窒素ガスを例えば40SCCMの流量で供給し、さらに2.45GHzのマイクロ波を1500Wの電力で供給する。その際、前記シャワープレート14と被処理基板Wとの間隔は、例えば105mmに設定される。その結果、前記シリコン酸化膜22の表面が窒素ラジカルによる窒化処理を受け、シリコン酸窒化膜22Aに変換される。
【0023】
図2(C)の工程は20秒間以上、例えば40秒間継続され、その結果、前記シリコン窒化膜22Aは成長し、ターンアラウンド点を過ぎるとシリコン窒化膜22Aの下のシリコン酸化膜22中の酸素がシリコン基板21中に侵入を開始する。
【0024】
図3(A)〜(C)は、ターンアラウンド点の前後におけるシリコン酸化膜22およびシリコン窒化膜22Aの様子を概略的に示す。
【0025】
図3(A)〜(C)を参照するに、図3(A)は図2(B)の工程に対応しており、シリコン基板21上にシリコン酸化膜22が形成された状態を示しているが、図3(B)は図2(C)の工程の初期の状態に対応し、前記シリコン酸化膜22の表面が窒化され、薄いシリコン窒化膜22Aが形成されている。
【0026】
これに対し、図3(C)は、ターンアラウンド点を超えた図2(C)の工程の後期の状態に対応し、シリコン窒化膜22Aの成長に伴って、シリコン酸化膜22中の酸素がシリコン基板21中に侵入し、見かけ上、シリコン酸化膜22がシリコン基板21中にシフトしたような状態になっている。図3(B)および3(C)中、Aは当初のシリコン酸化膜22とシリコン基板21との境界面を示す。
【0027】
勿論、図3(C)の状態ではシリコン酸化膜22とシリコン基板21との間には図3(B)のような明確で平坦な境界面は形成されず、多数のシリコンダングリングボンドが形成されていると考えられる。このようなダングリングボンドが存在すると膜の電気的特性は変化し、従ってこのようなMOSトランジスタを形成した場合、トランジスタのしきい値電圧に変化が生じてしまう。
【0028】
そこで、本発明では図2(D)の工程において、図2(A)の工程と同様なArガスと酸素ガスの混合ガスプラズマを形成し、原子状酸素O*を励起する。
【0029】
このようにして励起された原子状酸素O*は、通常の酸素分子O2と異なり、シリコン酸窒化膜22A中を自由に通過することが可能で、容易にシリコン酸窒化膜22Aの下のシリコン酸化膜22、さらにシリコン酸化膜22とシリコン基板との界面近傍に到達し、ダングリングボンドを終端する。その結果、図2(D)のO2ラジカル処理を行った場合、シリコン酸化膜22にターンアラウンド点を超えたプラズマ窒化処理を行って生じた特性の劣化を回復させることが可能になる。
【0030】
図4は、このようにしてシリコン酸化膜に窒化処理およびO2ラジカル処理を行って得られた絶縁膜のリーク電流特性Jgと酸化膜換算膜厚Teqとの関係を示す。
【0031】
図4を参照するに、シリコン酸化膜22は当初(t1=0sec)1.85nmの膜厚を有しているが、前記窒化処理を10秒間行い(t2=10sec)、シリコン窒化膜22Aを形成することで酸化膜換算膜厚Teqが約1.65nmまで減少するのがわかる。またその際のリーク電流値Jgは、厚さが1.65nmのシリコン酸化に対して予期される値の半分程度に減少している。同様に、前記窒化処理を20秒間行った場合(t3=20sec)、シリコン酸化膜22とシリコン窒化膜22Aとを含む絶縁膜全体の酸化膜換算膜厚Teqはさらに減少し、しかもリーク電流Jgはほとんど増大しないことがわかる。一方、前記窒化処理を40秒間継続した場合には(t4=40sec)、酸化膜換算膜厚Teqはさらに減少し、1.5nmに近づくのがわかる。この状態ではシリコン酸化膜22中の酸素がSi基板21中に侵入し始めており、シリコン酸化膜22とシリコン窒化膜22Aの合計の物理膜厚が増大し始める。これに伴い、図4中に破線の矢印で示すように、膜22と22A全体の換算膜厚も増加に転じる。
【0032】
これに対し、フラットバンド電圧と酸化膜換算膜厚Teqとの関係を示す図5を参照するに、図2(C)の窒化処理時間が10秒(t2=10sec)までは、前記シリコン酸窒化膜22A上にポリシリコンゲート電極を形成したMOS構造のフラットバンド電圧は約−0.79Vでほとんど変化しないのに対し、窒化処理時間が20秒(t=20sec)になるとやや変化し、さらに窒化を行い窒化処理時間が40秒(t4=40sec)に達すると、−0.807Vまで急変することがわかる。これは先の図3(C)に示したターンアラウンドの効果であり、シリコン基板21中にシリコン酸化膜22中の酸素が侵入をはじめたことを意味している。
【0033】
図5はまた、前記窒化処理を40秒間行ったターンアラウンド点を超えた試料に対して図2(D)の酸素ラジカル処理を10秒間行った場合のフラットバンド電圧を▲で示す。ただしこの酸素ラジカル処理は、130Paの処理圧力下、基板温度を400℃に設定し、Arガスおよび酸素ガスをそれぞれ2000SCCMおよび200SCCMの流量で供給し、2.45GHzのマイクロ波を2000Wの電力で供給することにより実行している。またシャワープレート14と被処理基板Wの間隔は105mmに設定している。
【0034】
図5を参照するに、ターンアラウンド点を超えた試料に対してこのような酸素ラジカル処理を行うことにより、フラットバンド電圧が、当初の−0.79Vに近い−0.793V程度まで回復するのがわかる。
【0035】
このようにして図2(D)の酸素ラジカル処理を行った酸窒化膜では、図4よりわかるように熱酸化膜換算膜厚が当初の場合よりも多少増大するが、膜中に窒素を導入した効果として、リーク電流の値が当初の酸化膜のものよりも改善されている。
[第2実施例]
図6(A)〜(C)は、本発明の第2実施例による基板処理プロセスを示す。ただし図中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0036】
図6(A)を参照するに、Si基板21の表面には自然酸化膜32が形成されており、図6(B)の工程においてArガスと窒素ガスの混合ガス中にプラズマを励起し、プラズマ励起に伴って形成された窒素ラジカルN*により、前記自然酸化膜32の表面を窒化処理する。その結果、前記自然酸化膜32は酸窒化膜32Aに変換される。
【0037】
本実施例では、さらに図6(C)の工程において処理容器11中にさらに酸素ガスを導入し、励起された原子状酸素O*により、酸窒化膜32Aを処理する。
【0038】
このようにして形成された原子状酸素O*は、酸素分子と異なり、酸窒化膜32A中に容易に侵入でき、Si基板21と酸窒化膜32Aとの界面に到達してSiのダングリングボンドを効果的に終端する。
【0039】
本実施例では、図6(A)の段階でシリコン基板21表面の酸化膜32として非常に薄い自然酸化膜を使うことにより、リーク電流Jgが図7中曲線2で示すように変化し、図6(C)の酸素ラジカル処理を行った終状態(図中▲で示す)における熱酸化膜換算膜厚Eot2が、図4に対応する曲線1の場合の熱酸化膜換算膜厚Eot1よりも実質的に小さくなる。
【0040】
なお、本実施例においては図6(A)の段階での酸化膜32の膜厚が小さいことが肝要で、前記酸化膜32としては自然酸化膜のみならず、化学酸化膜や、膜厚が1nm以下、好ましくは0.8nm以下、さらに好ましくは0.6nm以下の酸化膜であってもよい。
【0041】
以上、本発明を好ましい実施例について説明したが、本発明は上記の課題に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
【0042】
【発明の効果】
本発明によれば、酸化膜の窒化処理に引き続いて形成された酸窒化膜に対して酸素ラジカル処理を行うことにより、酸窒化膜とシリコン基板の界面におけるダングリングボンド等の欠陥を解消することが可能になる。特に、酸窒化膜をターンアラウンドポイントを超えて形成した場合でも、かかる酸素ラジカル処理を行うことにより、かかる窒化膜の使用に伴うMOSトランジスタのフラットバンド電圧およびしきい値電圧の変動が回復される。
【図面の簡単な説明】
【図1】本発明で使われる基板処理装置の構成を示す図である。
【図2】(A)〜(D)は、本発明第1実施例による基板処理工程を示す図である。
【図3】(A)〜(D)は、本発明第1実施例の基板処理工程の一部を拡大して示す概略図である。
【図4】本発明第1実施例の効果を説明する図である。
【図5】本発明第1実施例の効果を説明する図である。
【図6】(A)〜(C)は、本発明の第2実施例による基板処理工程を示す図である。
【図7】本発明第2実施例の効果を説明する図である。
【符号の説明】
10 基板処理装置
11 処理室
12 基板保持台
13 カバープレート
15 アンテナ
21 シリコン基板
22,32 酸化膜
22A,32A 酸窒化膜
[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to a substrate processing technique, and more particularly to a substrate processing method for forming a dielectric film on a substrate.
[0002]
With the progress of miniaturization technology, it is now possible to manufacture ultra-miniaturized semiconductor devices with a gate length of less than 0.1 μm.
[0003]
In such an ultra-miniaturized semiconductor device, if the operation speed of the semiconductor device is to be improved as the gate length is shortened, it is necessary to reduce the thickness of the gate insulating film according to the scaling law. For example, when a conventional thermal oxide film is used as the gate insulating film, it is necessary to reduce the thickness of the gate insulating film to 1.7 nm or less. However, when the thickness of the oxide film is reduced in this way, the gate leakage current flowing through the oxide film increases due to the tunnel effect.
[0004]
For this reason, it has been studied to use a high dielectric film such as Ta 2 O 5 or ZrO 2 instead of the conventional silicon oxide film as the gate insulating film. However, these high dielectric films are very different in nature from the silicon oxide films that have been used in the past in semiconductor technology. In order to use these high dielectric films as gate insulating films, these must be solved. Many issues remain to be solved.
[0005]
In contrast, silicon nitride film is a material that has been used in conventional semiconductor processes, and has a dielectric constant that is twice that of silicon oxide film. Therefore, it is a promising material as a gate insulating film for next-generation high-speed semiconductor devices. It is.
[0006]
[Prior art]
Conventionally, a silicon nitride film has generally been formed on an interlayer insulating film by a plasma CVD method. However, such a CVD nitride film generally has a large leakage current and is not suitable as a gate insulating film. For this reason, no attempt has been made to use a nitride film as a gate electrode.
[0007]
On the other hand, recently, a nitrogen-containing gas such as nitrogen or nitrogen and hydrogen, or NH 3 gas is introduced into a rare gas plasma such as Ar or Kr excited by microwaves, and N radical or NH radical is introduced. A technique has been proposed in which the surface of the silicon oxide film is converted into an oxynitride film by nitriding treatment. The nitride film thus formed has a leakage current characteristic comparable to or surpassing that of a thermal oxide film, and is considered to be promising as a gate insulating film of a next-generation high-speed semiconductor device. A technique for directly nitriding the surface of a silicon substrate with such microwave plasma has also been proposed.
[0008]
[Problems to be solved by the invention]
By the way, when the surface of the silicon oxide film thus formed on the silicon substrate is modified by the microwave-excited hydrogen nitride radical NH * or nitrogen radical N *, the silicon oxide film surface is first converted into a silicon nitride film. As a result, the equivalent film thickness of the entire film decreases, and the leakage current value also decreases compared to the silicon oxide film of the same equivalent film thickness. This causes a phenomenon called turnaround.
[0009]
When such a turnaround phenomenon occurs, the flat band voltage of the MOS transistor, and hence the threshold voltage, changes, and desired transistor characteristics cannot be obtained.
[0010]
Accordingly, it is a general object of the present invention to provide a new and useful substrate processing method that solves the above problems.
[0011]
A more specific problem of the present invention is to recover the deterioration of electrical characteristics that occurs after turnaround when an oxynitride film is formed by plasma nitriding on the silicon substrate surface or on the oxide film surface on the silicon substrate. An object of the present invention is to provide a substrate processing method that can be used.
[0012]
[Means for Solving the Problems]
The present invention solves the above problems.
As described in claim 1,
Nitriding the surface of the oxide film on the silicon substrate by supplying nitrogen radicals to form an oxynitride film;
After the step of forming the oxynitride film, the method includes a step of supplying oxygen radicals to the surface of the oxynitride film, or as described in claim 2,
The nitrogen radical is formed by exciting a plasma in a mixed gas of an inert gas and a nitrogen gas, according to the substrate processing method according to claim 1, or as described in claim 3.
The plasma is excited by a microwave, according to the substrate processing method according to claim 2, or according to claim 4,
The said hydrogen radical is formed by exciting a plasma in the mixed gas of an inert gas and oxygen gas, The substrate processing method of Claim 2 or 3 characterized by the above-mentioned, or Claim 5 In addition,
After the oxynitride film forming step, the excitation of the plasma is temporarily interrupted, and the oxygen radical is formed by exciting the microwave plasma again in a mixed gas of an inert gas and an oxygen gas. According to the substrate processing method of claim 2, or as described in claim 6,
The said oxide film is a natural oxide film on the said silicon substrate surface, According to the substrate processing method as described in any one of Claims 1-5, or as described in Claim 7.
6. The substrate processing method according to claim 1, wherein the oxide film is a chemical oxide film formed on the surface of the silicon substrate.
[Action]
According to the present invention, as a result of nitriding the oxide film with nitrogen radicals, the oxygen radical treatment is performed even when the turnaround phenomenon described above occurs and the interface between the Si substrate surface and the oxynitride film deteriorates. As a result, electrical characteristics such as a flat band voltage are recovered. This is considered to be due to oxygen radicals reaching the silicon substrate / oxynitride film interface and terminating defects such as dangling bonds in the interface region between the silicon substrate and the oxynitride film. Such an oxygen radical treatment causes an increase in the thickness of the formed oxynitride film, but it was formed by using a natural oxide film or a chemical oxide film present on the silicon substrate surface as an oxide film at the beginning of the nitridation process. It is possible to minimize the thickness of the oxynitride film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment]
FIG. 1 shows a schematic configuration of a plasma substrate processing apparatus 10 used in the present invention.
[0014]
Referring to FIG. 1, a plasma substrate processing apparatus 10 includes a processing container 11 in which a substrate holding table 12 that holds a substrate W to be processed is formed, and the processing container 11 is exhausted through an exhaust port 11A.
[0015]
An opening is formed on the processing container 11 corresponding to the substrate W to be processed on the substrate holder 12, and the opening is closed by a cover plate 13 made of a low-loss ceramic such as quartz. ing.
[0016]
The cover plate 13 forms a microwave window, and a microwave antenna 15 such as a radial line slot antenna or a horn antenna is formed outside the cover plate 13.
[0017]
During operation, the processing space inside the processing vessel 11 is set to a predetermined processing pressure by exhausting through the exhaust port 11A, and an oxidizing gas or nitriding gas is supplied from the shower plate 14 together with an inert gas such as Ar or Kr. Is introduced.
[0018]
Further, by introducing a microwave having a frequency of several GHz from the antenna 15, high-density microwave plasma is excited on the surface of the substrate W to be processed in the processing container 11. By exciting the plasma with microwaves, the substrate processing apparatus of FIG. 1 has a low plasma electron temperature, and can avoid damage to the substrate W and the inner wall of the processing chamber 11. Further, the formed radicals flow in the radial direction along the surface of the substrate W to be processed, and are quickly exhausted, so that recombination of radicals is suppressed and efficient and very uniform substrate processing is performed at 550 °. It is possible at low temperatures below C.
[0019]
2A to 2C show a substrate processing process according to the first embodiment of the present invention using the substrate processing apparatus 10 of FIG.
[0020]
Referring to FIG. 2A, the silicon substrate 21 is introduced into the processing container 11 of the substrate processing apparatus 10 as the substrate to be processed W, and Kr or Ar, or a mixed gas of He and oxygen is introduced from the gas ring. Then, this is excited by microwave plasma to form atomic oxygen O *. By treating the surface of the silicon substrate 21 with the atomic oxygen O *, a silicon oxide film 22 is formed on the surface of the silicon substrate 21 as shown in FIG. Although the silicon oxide film 22 formed in this way is formed at a very low substrate temperature of about 400 ° C., it has a leakage current characteristic comparable to that of a thermal oxide film formed at a high temperature of 1000 ° C. or higher. Have. Alternatively, the silicon oxide film 22 may be a thermal oxide film, a chemical oxide film, or a natural oxide film.
[0021]
Next, in the process of FIG. 2C, plasma is excited by supplying a mixed gas of Ar and nitrogen into the processing container 11 of FIG. 1, setting the substrate temperature to 400 ° C., and supplying microwaves.
[0022]
2C, the internal pressure of the processing vessel 11 is set to 7 Pa, Ar gas is supplied at a flow rate of, for example, 1000 SCCM, nitrogen gas is supplied at a flow rate of, for example, 40 SCCM, and a 2.45 GHz microwave is applied to 1500 W. Supply with power. At that time, the distance between the shower plate 14 and the substrate W to be processed is set to 105 mm, for example. As a result, the surface of the silicon oxide film 22 is subjected to nitriding treatment with nitrogen radicals and converted into a silicon oxynitride film 22A.
[0023]
The process of FIG. 2C is continued for 20 seconds or more, for example, 40 seconds. As a result, the silicon nitride film 22A grows, and after the turnaround point, oxygen in the silicon oxide film 22 below the silicon nitride film 22A. Begins to penetrate into the silicon substrate 21.
[0024]
3A to 3C schematically show the states of the silicon oxide film 22 and the silicon nitride film 22A before and after the turnaround point.
[0025]
Referring to FIGS. 3A to 3C, FIG. 3A corresponds to the process of FIG. 2B, and shows a state in which the silicon oxide film 22 is formed on the silicon substrate 21. FIG. However, FIG. 3B corresponds to the initial state of the step of FIG. 2C, and the surface of the silicon oxide film 22 is nitrided to form a thin silicon nitride film 22A.
[0026]
On the other hand, FIG. 3C corresponds to the latter state of the process of FIG. 2C beyond the turnaround point, and the oxygen in the silicon oxide film 22 increases as the silicon nitride film 22A grows. The silicon oxide film 22 enters the silicon substrate 21, and apparently the silicon oxide film 22 is shifted into the silicon substrate 21. 3B and 3C, A indicates the boundary surface between the original silicon oxide film 22 and the silicon substrate 21. FIG.
[0027]
Of course, in the state of FIG. 3C, a clear and flat boundary surface as shown in FIG. 3B is not formed between the silicon oxide film 22 and the silicon substrate 21, and a large number of silicon dangling bonds are formed. It is thought that. When such dangling bonds are present, the electrical characteristics of the film change, so that when such a MOS transistor is formed, the threshold voltage of the transistor changes.
[0028]
Therefore, in the present invention, the mixed gas plasma of Ar gas and oxygen gas similar to the process of FIG. 2A is formed in the process of FIG. 2D to excite atomic oxygen O *.
[0029]
The atomic oxygen O * excited in this way can pass freely through the silicon oxynitride film 22A, unlike normal oxygen molecules O 2, and silicon under the silicon oxynitride film 22A can be easily obtained. The oxide film 22 and the vicinity of the interface between the silicon oxide film 22 and the silicon substrate are reached, and the dangling bonds are terminated. As a result, when the O 2 radical treatment of FIG. 2D is performed, it is possible to recover the deterioration of characteristics caused by performing the plasma nitridation treatment exceeding the turnaround point on the silicon oxide film 22.
[0030]
FIG. 4 shows the relationship between the leakage current characteristic Jg of the insulating film obtained by nitriding and O 2 radical treatment on the silicon oxide film and the equivalent oxide thickness Teq.
[0031]
Referring to FIG. 4, the silicon oxide film 22 initially has a thickness of 1.85 nm (t 1 = 0 sec). However, the nitriding process is performed for 10 seconds (t 2 = 10 sec), and the silicon nitride film 22A It can be seen that the oxide equivalent film thickness Teq is reduced to about 1.65 nm by forming. In addition, the leakage current value Jg at that time is reduced to about half of the value expected for silicon oxidation with a thickness of 1.65 nm. Similarly, when the nitriding process is performed for 20 seconds (t 3 = 20 sec), the equivalent oxide thickness Teq of the entire insulating film including the silicon oxide film 22 and the silicon nitride film 22A is further reduced, and the leakage current Jg It can be seen that there is almost no increase. On the other hand, when the nitriding process is continued for 40 seconds (t 4 = 40 sec), it can be seen that the equivalent oxide thickness Teq further decreases and approaches 1.5 nm. In this state, oxygen in the silicon oxide film 22 starts to enter the Si substrate 21, and the total physical film thickness of the silicon oxide film 22 and the silicon nitride film 22A starts to increase. Along with this, as indicated by broken arrows in FIG. 4, the equivalent film thicknesses of the entire films 22 and 22A also start to increase.
[0032]
On the other hand, referring to FIG. 5 showing the relationship between the flat band voltage and the equivalent oxide thickness Teq, the silicon acid is used until the nitriding time in FIG. 2C is 10 seconds (t 2 = 10 seconds). The flat band voltage of the MOS structure in which the polysilicon gate electrode is formed on the nitride film 22A is about −0.79 V and hardly changes, whereas when the nitriding time is 20 seconds (t 3 = 20 sec), it slightly changes. Further, nitriding is performed, and when the nitriding time reaches 40 seconds (t 4 = 40 sec), it can be seen that it suddenly changes to −0.807V. This is the effect of the turnaround shown in FIG. 3C, and means that oxygen in the silicon oxide film 22 has started to penetrate into the silicon substrate 21.
[0033]
FIG. 5 also shows a flat band voltage when the oxygen radical treatment of FIG. 2D is performed for 10 seconds with respect to the sample exceeding the turnaround point where the nitriding treatment is performed for 40 seconds. However, in this oxygen radical treatment, the substrate temperature is set to 400 ° C. under a treatment pressure of 130 Pa, Ar gas and oxygen gas are supplied at a flow rate of 2000 SCCM and 200 SCCM, respectively, and a 2.45 GHz microwave is supplied at a power of 2000 W. By running. The interval between the shower plate 14 and the substrate W to be processed is set to 105 mm.
[0034]
Referring to FIG. 5, by performing such oxygen radical treatment on the sample that exceeds the turnaround point, the flat band voltage is restored to about −0.793 V, which is close to the initial −0.79 V. I understand.
[0035]
In the oxynitride film subjected to the oxygen radical treatment in FIG. 2D as described above, the thermal oxide film equivalent film thickness is slightly increased as compared with the initial case as shown in FIG. 4, but nitrogen is introduced into the film. As an effect, the leak current value is improved from that of the original oxide film.
[Second Embodiment]
6A to 6C show a substrate processing process according to the second embodiment of the present invention. However, in the figure, the same reference numerals are given to the parts described above, and the description will be omitted.
[0036]
Referring to FIG. 6A, a natural oxide film 32 is formed on the surface of the Si substrate 21, and plasma is excited in a mixed gas of Ar gas and nitrogen gas in the step of FIG. The surface of the natural oxide film 32 is nitrided by nitrogen radicals N * formed by plasma excitation. As a result, the natural oxide film 32 is converted into an oxynitride film 32A.
[0037]
In this embodiment, oxygen gas is further introduced into the processing vessel 11 in the step of FIG. 6C, and the oxynitride film 32A is processed by the excited atomic oxygen O *.
[0038]
Unlike the oxygen molecule, the atomic oxygen O * thus formed can easily penetrate into the oxynitride film 32A, reaches the interface between the Si substrate 21 and the oxynitride film 32A, and dangling bonds of Si Effectively terminates.
[0039]
In this embodiment, by using a very thin natural oxide film as the oxide film 32 on the surface of the silicon substrate 21 at the stage of FIG. 6A, the leakage current Jg changes as shown by the curve 2 in FIG. 6 thermal oxide film equivalent thickness Eot 2 in the final state of performing the oxygen radical treatment of the (C) (in the figure indicated by ▲) is than the thermal oxide film equivalent thickness Eot 1 in the case of curve 1 corresponding to FIG. 4 Is also substantially reduced.
[0040]
In this embodiment, it is important that the thickness of the oxide film 32 is small at the stage of FIG. 6A. The oxide film 32 is not only a natural oxide film but also a chemical oxide film or a film thickness. An oxide film of 1 nm or less, preferably 0.8 nm or less, and more preferably 0.6 nm or less may be used.
[0041]
As mentioned above, although this invention was demonstrated about the preferable Example, this invention is not limited to said subject, A various deformation | transformation and change are possible within the summary described in the claim.
[0042]
【The invention's effect】
According to the present invention, oxygen radical treatment is performed on the oxynitride film formed subsequent to the nitridation treatment of the oxide film, thereby eliminating defects such as dangling bonds at the interface between the oxynitride film and the silicon substrate. Is possible. In particular, even when the oxynitride film is formed beyond the turnaround point, such oxygen radical treatment restores fluctuations in the flat band voltage and threshold voltage of the MOS transistor associated with the use of the nitride film. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a substrate processing apparatus used in the present invention.
FIGS. 2A to 2D are diagrams showing a substrate processing process according to a first embodiment of the present invention.
FIGS. 3A to 3D are schematic views showing a part of the substrate processing process of the first embodiment of the present invention in an enlarged manner. FIGS.
FIG. 4 is a diagram for explaining the effect of the first embodiment of the present invention.
FIG. 5 is a diagram for explaining the effect of the first embodiment of the present invention.
FIGS. 6A to 6C are views showing a substrate processing process according to a second embodiment of the present invention.
FIG. 7 is a diagram illustrating the effect of the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Substrate processing apparatus 11 Processing chamber 12 Substrate holding base 13 Cover plate 15 Antenna 21 Silicon substrate 22, 32 Oxide film 22A, 32A Oxynitride film

Claims (7)

シリコン基板上の酸化膜表面を、窒素ラジカルを供給することにより窒化し、酸窒化膜を形成する工程と、
前記酸窒化膜を形成する工程の後、前記酸窒化膜表面に酸素ラジカルを供給する工程とよりなることを特徴とする基板処理方法。
Nitriding the surface of the oxide film on the silicon substrate by supplying nitrogen radicals to form an oxynitride film;
A substrate processing method comprising: a step of supplying oxygen radicals to the surface of the oxynitride film after the step of forming the oxynitride film.
前記窒素ラジカルは、不活性ガスと窒素ガスの混合ガス中にプラズマを励起することにより形成されることを特徴とする請求項1記載の基板処理方法。  The substrate processing method according to claim 1, wherein the nitrogen radical is formed by exciting plasma in a mixed gas of an inert gas and a nitrogen gas. 前記プラズマはマイクロ波により励起されることを特徴とする請求項2記載の基板処理方法。  The substrate processing method according to claim 2, wherein the plasma is excited by microwaves. 前記酸素ラジカルは、前記不活性ガスと酸素ガスの混合ガス中にプラズマを励起することにより形成されることを特徴とする請求項2または3記載の基板処理方法。  4. The substrate processing method according to claim 2, wherein the oxygen radical is formed by exciting plasma in a mixed gas of the inert gas and oxygen gas. 前記酸窒化膜形成工程の後、前記プラズマの励起はいったん中断され、前記酸素ラジカルは、不活性ガスと酸素ガスの混合ガス中にマイクロ波プラズマを再び励起することにより形成されることを特徴とする請求項2記載の基板処理方法。  After the oxynitride film forming step, the excitation of the plasma is temporarily interrupted, and the oxygen radicals are formed by exciting the microwave plasma again in a mixed gas of an inert gas and an oxygen gas. The substrate processing method according to claim 2. 前記酸化膜は、前記シリコン基板表面上の自然酸化膜であることを特徴とする請求項1〜5のうち、いずれか一項記載の基板処理方法。  The substrate processing method according to claim 1, wherein the oxide film is a natural oxide film on the surface of the silicon substrate. 前記酸化膜は、前記シリコン基板表面に形成された化学酸化膜であることを特徴とする請求項1〜5のうち、いずれか一項記載の基板処理方法。  The substrate processing method according to claim 1, wherein the oxide film is a chemical oxide film formed on the surface of the silicon substrate.
JP2002051746A 2002-02-27 2002-02-27 Substrate treatment method Pending JP2005235792A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002051746A JP2005235792A (en) 2002-02-27 2002-02-27 Substrate treatment method
TW092104310A TWI290744B (en) 2002-02-27 2003-02-27 Method for processing substrate
PCT/JP2003/002272 WO2003073492A1 (en) 2002-02-27 2003-02-27 Method for processing substrate
AU2003211806A AU2003211806A1 (en) 2002-02-27 2003-02-27 Method for processing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051746A JP2005235792A (en) 2002-02-27 2002-02-27 Substrate treatment method

Publications (1)

Publication Number Publication Date
JP2005235792A true JP2005235792A (en) 2005-09-02

Family

ID=27764320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051746A Pending JP2005235792A (en) 2002-02-27 2002-02-27 Substrate treatment method

Country Status (4)

Country Link
JP (1) JP2005235792A (en)
AU (1) AU2003211806A1 (en)
TW (1) TWI290744B (en)
WO (1) WO2003073492A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037094A1 (en) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device with nitride and oxide layers
JP2009545895A (en) * 2006-08-04 2009-12-24 アプライド マテリアルズ インコーポレイテッド Improvement of CMOSSiON gate dielectric performance by formation of double plasma nitride containing rare gas
JP2012079785A (en) * 2010-09-30 2012-04-19 Tokyo Electron Ltd Reforming method of insulation film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402881B2 (en) * 1995-11-24 2003-05-06 株式会社東芝 Method for manufacturing semiconductor device
JP4255563B2 (en) * 1999-04-05 2009-04-15 東京エレクトロン株式会社 Semiconductor manufacturing method and semiconductor manufacturing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037094A1 (en) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device with nitride and oxide layers
JP2007123825A (en) * 2005-09-29 2007-05-17 Toshiba Corp Method of manufacturing semiconductor device
US7772129B2 (en) 2005-09-29 2010-08-10 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device
US8557717B2 (en) 2005-09-29 2013-10-15 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device
JP2009545895A (en) * 2006-08-04 2009-12-24 アプライド マテリアルズ インコーポレイテッド Improvement of CMOSSiON gate dielectric performance by formation of double plasma nitride containing rare gas
JP2012079785A (en) * 2010-09-30 2012-04-19 Tokyo Electron Ltd Reforming method of insulation film
CN102446728A (en) * 2010-09-30 2012-05-09 东京毅力科创株式会社 Method of modifying insulating film

Also Published As

Publication number Publication date
WO2003073492A1 (en) 2003-09-04
TW200308021A (en) 2003-12-16
TWI290744B (en) 2007-12-01
AU2003211806A1 (en) 2003-09-09

Similar Documents

Publication Publication Date Title
US7964514B2 (en) Multiple nitrogen plasma treatments for thin SiON dielectrics
JP4795407B2 (en) Substrate processing method
KR100993124B1 (en) Improved manufacturing method for two-step post nitridation annealing of plasma nitrided gate dielectric
JP4926219B2 (en) Manufacturing method of electronic device material
US20080090425A9 (en) Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
JP4606737B2 (en) Substrate treatment method and electronic device material
KR100645306B1 (en) Method of treating substrate
JP4408653B2 (en) Substrate processing method and semiconductor device manufacturing method
KR100486278B1 (en) Method for fabricating gate oxide with increased device reliability
JP2009545895A (en) Improvement of CMOSSiON gate dielectric performance by formation of double plasma nitride containing rare gas
US20060024864A1 (en) Substrate processing method
JP4048048B2 (en) Substrate processing method
JP2005235792A (en) Substrate treatment method
JP2007201507A (en) Substrate processing device and method of the same
WO2007124197A2 (en) Method for forming silicon oxynitride materials