JP2005232580A - Split sputtering target - Google Patents

Split sputtering target Download PDF

Info

Publication number
JP2005232580A
JP2005232580A JP2004081455A JP2004081455A JP2005232580A JP 2005232580 A JP2005232580 A JP 2005232580A JP 2004081455 A JP2004081455 A JP 2004081455A JP 2004081455 A JP2004081455 A JP 2004081455A JP 2005232580 A JP2005232580 A JP 2005232580A
Authority
JP
Japan
Prior art keywords
sputtering target
split
target
sputtering
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081455A
Other languages
Japanese (ja)
Inventor
Minoru Kojima
穣 小島
Kenji Sakai
健二 坂井
Kazuo Arai
一男 新井
Tamotsu Hasegawa
保 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYOSHIMA SEISAKUSHO KK
Toshima Manufacturing Co Ltd
Original Assignee
TOYOSHIMA SEISAKUSHO KK
Toshima Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYOSHIMA SEISAKUSHO KK, Toshima Manufacturing Co Ltd filed Critical TOYOSHIMA SEISAKUSHO KK
Priority to JP2004081455A priority Critical patent/JP2005232580A/en
Publication of JP2005232580A publication Critical patent/JP2005232580A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering target of a large size which has low manufacturing cost and permits high-speed sputtering. <P>SOLUTION: The large-sized sputtering target is produced by joining together a plurality of the targets by using metallic foil containing part or whole of component elements of the targets or cooling plates, or metallic foil of the material of which the dielectric constant, magnetic permeability, and thermal conductivity are the same as or similar to those of the targets or the cooling plates. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は薄膜形成用の分割スパッタリングターゲットに関する。The present invention relates to a split sputtering target for forming a thin film.

スパッタリング法とは真空中でArイオンを原子レベルでスパッタリングターゲットに衝突させ、その結果として剥ぎ取られたターゲットの構成元素を対向する基板に堆積させる方法で、そのエネルギーは直流または交流電場であり、交直両方の電場の場合もある。  Sputtering is a method in which Ar ions collide with a sputtering target at an atomic level in a vacuum, and the constituent elements of the target thus peeled are deposited on the opposing substrate, the energy of which is a direct current or alternating electric field, In some cases, both AC and AC electric fields are used.

スパッタリングターゲットを成膜に使用する場合、ターゲットの昇温を防ぐため、冷却する必要がある。冷却方法には直接冷却法と間接冷却法があるが、生産用では直接冷却法が主体であり、直接冷却法では、ターゲットの種類や投入高周波電力、バイアス電圧などによって選択される半田、導電性或いは非導電性樹脂等を用いて冷却板に接合されたスパッタリングターゲットが使用される。  When a sputtering target is used for film formation, it is necessary to cool the target in order to prevent the temperature of the target from rising. There are direct cooling methods and indirect cooling methods for cooling, but the direct cooling method is mainly used for production. In the direct cooling method, the solder selected by the target type, input high frequency power, bias voltage, etc. Or the sputtering target joined to the cooling plate using nonelectroconductive resin etc. is used.

スパッタ装置の大型化が進む昨今、スパッタリングターゲットは大型化は製造コストの上昇を招き、大型のスパッタリングターゲットの製造がデバイス販売コストを押し上げる結果となる。このような場合、小型のスパッタリングターゲットを製造し、これをタイルのように連結して大型のスパッタリングターゲットとし、これを冷却板に接合するという方法が効果的であり、一般に行われている。  With the recent increase in the size of sputtering devices, the increase in the size of sputtering targets leads to an increase in manufacturing costs, and the production of large sputtering targets results in an increase in device sales costs. In such a case, a method of manufacturing a small sputtering target, connecting it like a tile to make a large sputtering target, and bonding it to a cooling plate is effective and generally performed.

しかしながら、この方法はターゲットとターゲットのつなぎ目から、ターゲットと冷却板との接合に使用した半田等の接合材がスパッタ面の方向に浸透乃至は毛細管現象で上っていくため、スパッタリングの際にArイオンの衝突によって接合材がはぎ取られ、成膜される基板に堆積することから、膜の不純物の原因となってしまう。  However, in this method, since the joining material such as solder used for joining the target and the cooling plate penetrates in the direction of the sputtering surface or capillarity from the joint between the target and the target, Ar is used during sputtering. Since the bonding material is peeled off by the collision of ions and is deposited on the substrate on which the film is formed, it causes impurities in the film.

そこで従来は特許2939751号等に示されるように、耐熱樹脂テープを使用したり、分割の接合面に角度を設けることによって、半田等の接合材が分割スパッタリングターゲットのつなぎ目部分の隙間を上って行くことを阻止していた。  Therefore, conventionally, as shown in Japanese Patent No. 2,939,751, etc., by using a heat-resistant resin tape or by providing an angle on the divided joint surface, the bonding material such as solder goes up the gap at the joint portion of the divided sputtering target. I was blocked from going.

また、分割ターゲットには、スパッタリング装置の構造上の理由等から、顧客が隙間を設けて接合を要求する場合がある。この場合においても隙間から半田や樹脂が或いは半田等の盛り上がりを阻止するポリイミドやテフロン等の樹脂テープが露出してしまい、成膜された基板は予定された機能を発揮できない場合がある。この問題を防止するためには、冷却板の露出部分にある、樹脂テープとその下の半田成分を機械的に削除していた。  Further, the split target may require bonding by a customer with a gap provided for reasons of the structure of the sputtering apparatus. Even in this case, the resin or the resin tape such as polyimide or Teflon that prevents the solder or the resin from rising from the gap is exposed, and the formed substrate may not exhibit the intended function. In order to prevent this problem, the resin tape and the solder component therebelow in the exposed portion of the cooling plate have been mechanically deleted.

発明が解決しようとする課題Problems to be solved by the invention

ポリイミド等の樹脂テープを使用することである程度は当初の目的を達成していたが、次のような大きな欠点があった。すなわち、ポリイミドやテフロンなどの樹脂テープは熱伝導が悪いので、樹脂テープを使用している部分のターゲットの冷却効率が低下するため、部分的な温度上昇が起こることによって、冷却板との接合の為の半田が溶け出したり、ターゲットの割れや欠けを引き起こしたり、酸化物ターゲットの場合は酸素を放出しやすくなって部分的に誘電率が低下して電場集中が起きることから異常放電が発生する。その結果、投入スパッタリング電力が制限されることになる。  Although the original purpose was achieved to some extent by using a resin tape such as polyimide, there were the following major drawbacks. In other words, since resin tapes such as polyimide and Teflon have poor thermal conductivity, the cooling efficiency of the target of the part where the resin tape is used is reduced, so that a partial temperature rise occurs, and the bonding with the cooling plate Solder melts out, causes cracking or chipping of the target, and in the case of an oxide target, oxygen is easily released, and the dielectric constant lowers partially and electric field concentration occurs, causing abnormal discharge. . As a result, the input sputtering power is limited.

また、分割スパッタリングターゲットと冷却板との接合に半田を使用した場合は、樹脂テープと半田の濡れ性が悪く、特にテフロンの使用は半田をはじく性質から上記特性を助長する傾向となり、分割スパッタリングターゲットと冷却板の密着性が著しく低下する。特に、分割スパッタリングターゲット間に隙間を故意に設ける場合、非常な製造上の困難も発生した。  In addition, when solder is used for joining the split sputtering target and the cooling plate, the wettability of the resin tape and the solder is poor, and in particular, the use of Teflon tends to promote the above characteristics due to the property of repelling the solder. And the adhesion of the cooling plate is significantly reduced. In particular, when a gap is intentionally provided between the split sputtering targets, great manufacturing difficulties have also occurred.

課題を解決するための手段Means for solving the problem

本発明の分割スパッタリングターゲットはつなぎ目に適切な金属箔を用いることを特徴としており、スパッタリング中に蒸発しやすい樹脂等が隙間等にはなく、或いは粘着樹脂が僅かに残留した場合でも、金属箔の熱伝導性の良好さから、樹脂の蒸発を最小限阻止でき、かく異常放電も発生しにくく、その結果、スパッタ時の投入電力を向上することができた。また誘電率等の物理常数を同一或いは近似とすることで、スパッタリングターゲットの消費が均一に行えることがわかった。  The split sputtering target of the present invention is characterized by using an appropriate metal foil at the joint, and there is no resin or the like that easily evaporates during sputtering in the gap, or even if a slight amount of adhesive resin remains, Due to the good thermal conductivity, it was possible to prevent the resin from evaporating to a minimum, thus preventing abnormal discharge, and as a result, the input power during sputtering could be improved. It was also found that the sputtering target can be consumed uniformly by making the physical constants such as the dielectric constant the same or approximate.

使用できる金属箔としては、ターゲットもしくは冷却板の組成元素の一部または全部を含む材質ものが挙げられる。たとえば酸化チタンのターゲットに対してチタン箔、銅冷却板に対して銅箔、などである。またターゲットもしくは冷却板と誘電率、透磁率、熱伝導率の同一または近似の材質のものも使用できる。近似の材質とは、たとえば99.99%純度のチタンターゲットに対して98%純度のチタン箔なども含まれる。  Examples of the metal foil that can be used include a material that includes part or all of the composition elements of the target or the cooling plate. For example, a titanium foil for a titanium oxide target, a copper foil for a copper cooling plate, and the like. A material having the same or similar dielectric constant, magnetic permeability and thermal conductivity as the target or cooling plate can also be used. The approximate material includes, for example, a 98% pure titanium foil with respect to a 99.99% pure titanium target.

図1は本発明の分割スパッタリングターゲットのつなぎ目部分の断面図である。いずれも分割スパッタリングターゲットのつなぎ目部分をスパッタ面の反対側から金属箔を貼り付けて被覆した後、冷却板に接合したものである。このことで冷却板接合用の半田や樹脂が露出したり、つなぎ目部分の間隙を上ったりしない。  FIG. 1 is a cross-sectional view of a joint portion of the split sputtering target of the present invention. In either case, the joint portion of the split sputtering target is coated with a metal foil from the opposite side of the sputtering surface and then bonded to the cooling plate. As a result, solder and resin for cooling plate bonding are not exposed and the gap at the joint portion is not raised.

また、図2は分割スパッタリングターゲットの間隙を意識的にあけた場合のつなぎ目部分の断面図である。金属でない箔でつないだ場合に必要な隙間の樹脂や半田の除去が不要となり特に有効であることがわかった。  FIG. 2 is a cross-sectional view of the joint portion when the gap between the split sputtering targets is intentionally opened. It has been found that removal of the resin and solder in the gaps necessary when connecting with a non-metal foil is unnecessary and is particularly effective.

以下、本発明を実施例を用いて具体的に説明するが、実施例によって本発明の範囲が限定されるものではない。  EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, the scope of the present invention is not limited by an Example.

幅127mm、長さ508mm、厚さ6mmのチタン板2枚をチタン箔を用いて結合部分を被覆しポリイミド系粘着材を用いて繋ぎ合わせた。これを超音波を利用したインジウム半田を使用して、冷却板に接合した。  Two titanium plates having a width of 127 mm, a length of 508 mm, and a thickness of 6 mm were covered with a titanium foil and bonded to each other using a polyimide adhesive. This was joined to the cooling plate using indium solder utilizing ultrasonic waves.

このようにして作製した分割スパッタリングターゲットをDCマグネトロンスパッタリング装置に取り付け、ガラス基板上へチタン膜を印加電圧500Vで成膜したところ、180nm/minの成膜速度でチタン膜が作製できた。  The divided sputtering target thus produced was attached to a DC magnetron sputtering apparatus, and a titanium film was formed on a glass substrate at an applied voltage of 500 V. As a result, a titanium film could be produced at a deposition rate of 180 nm / min.

比較例1Comparative Example 1

チタン箔の代わりにポリイミドシートを用いた以外は実施例1と同じ分割スパッタリングターゲットを作製してスパッタリング装置に取り付け、ガラス基板上へのチタン膜の成膜を実施例1と同じ条件で試みた。その結果、成膜開始後5分で異常放電が発生したため、成膜を中止してスパッタリングターゲットを取り出したところ、つなぎ目部分付近のインジウム半田が溶けだし、ターゲットと冷却板との間に空間が生じていた。  Except for using a polyimide sheet in place of the titanium foil, the same split sputtering target as in Example 1 was prepared and attached to a sputtering apparatus, and a titanium film was formed on a glass substrate under the same conditions as in Example 1. As a result, abnormal discharge occurred 5 minutes after the start of film formation. When the film formation was stopped and the sputtering target was taken out, the indium solder near the joint portion melted, and a space was created between the target and the cooling plate. It was.

幅127mm、長さ254mm、厚さ6mmの3枚の酸化チタンの板からなる分割スパッタリングターゲットをチタン箔を用いて結合部分を被覆しアクリル系粘着材で繋ぎ合わせた。これを150℃にて温度硬化型シリコン樹脂で冷却板に接合したところ、樹脂は2箇所の結合部には入り込まず、良好に冷却板と分割ターゲットの接合ができた。分割スパッタリングターゲットの分割部分はチタン箔で覆われているので冷却板との接合の為のシリコン樹脂の影響は皆無となった。  A split sputtering target composed of three titanium oxide plates having a width of 127 mm, a length of 254 mm, and a thickness of 6 mm was covered with a titanium foil and bonded together with an acrylic adhesive. When this was joined to the cooling plate with a thermosetting silicone resin at 150 ° C., the resin did not enter the two joints, and the cooling plate and the split target could be joined well. Since the divided part of the divided sputtering target is covered with titanium foil, the influence of the silicon resin for joining with the cooling plate is completely eliminated.

この分割スパッタリングターゲットをRFスパッタリング装置に取り付け、ガラス基板上への酸化チタン膜の成膜を印加電圧500Vで10分間試みたところ膜厚300nmの均一な酸化チタン膜が作製できた。成膜後取り出した分割スパッタリングターゲットのつなぎ目部分には変化は見られなかった。  This split sputtering target was attached to an RF sputtering apparatus, and when a titanium oxide film was formed on a glass substrate for 10 minutes at an applied voltage of 500 V, a uniform titanium oxide film having a thickness of 300 nm could be produced. No change was observed in the joint portion of the split sputtering target taken out after film formation.

比較例2Comparative Example 2

チタン箔の代わりにテフロンシートを用いた以外は実施例2と同様に分割スパッタリングターゲットの作製を試みたが、テフロンシートとターゲットの接着強度が弱く、冷却板との接着強度も不十分であった。  Except for using a Teflon sheet instead of a titanium foil, an attempt was made to produce a split sputtering target in the same manner as in Example 2. However, the adhesive strength between the Teflon sheet and the target was weak, and the adhesive strength between the cooling plate was insufficient. .

この分割スパッタリングターゲットをRFスパッタリング装置に取り付け、ガラス基板上への印加電圧500Vで10分間酸化チタン膜の成膜を試みたところ、膜厚340nmの酸化チタン膜が作製できた。成膜後取り出した分割スパッタリングターゲットのつなぎ目部分を観察すると、ターゲットにいくつかの微細なクラックが見られた。  When this divided sputtering target was attached to an RF sputtering apparatus and an attempt was made to form a titanium oxide film for 10 minutes at an applied voltage of 500 V on a glass substrate, a titanium oxide film having a thickness of 340 nm could be produced. When the joint portion of the split sputtering target taken out after film formation was observed, some fine cracks were found in the target.

厚さ0.02mmの銅箔を幅10mm長さ150mmの短冊状に細長く切った。真空中で耐熱性のあるシリコン系硬化剤(耐熱温度200℃)を、10mm幅に対して両端から4mmずつ帯状に塗布した。これを用いて分割スパッタリングターゲット(シリコン製)90mm幅、長さ約150mmを3枚を3mmの隙間を空けて結合し硬化させた。繋ぎ合わせた分割シリコンスパッタリングターゲットを無酸素銅の冷却板にインジウム半田で接合し固化させた。分割シリコンスパッタリングターゲットの3mm幅のつなぎ目部分は、インジウム半田のスパッタ面への滲入はなく僅かに冷却板と同質の銅箔が目視観測された。  A copper foil having a thickness of 0.02 mm was cut into a strip having a width of 10 mm and a length of 150 mm. A heat-resistant silicon-based curing agent (heat-resistant temperature: 200 ° C.) was applied in a strip shape of 4 mm from both ends to a width of 10 mm. Using this, three split sputtering targets (made of silicon) of 90 mm width and length of about 150 mm were bonded and cured with a 3 mm gap. The joined split silicon sputtering target was bonded to an oxygen free copper cooling plate with indium solder and solidified. At the joint portion of the split silicon sputtering target having a width of 3 mm, infiltration of the indium solder into the sputter surface was not observed, and a copper foil having the same quality as that of the cooling plate was visually observed.

この分割スパッタリングターゲットをDCマグネトロンスパッタリング装置に取り付け、シリコン基板上へのシリコン膜の成膜を試みた。印加電圧500Vで5分間成膜したところ膜厚600nmのシリコン膜が作製できた。  This split sputtering target was attached to a DC magnetron sputtering apparatus and an attempt was made to form a silicon film on a silicon substrate. When a film was formed at an applied voltage of 500 V for 5 minutes, a silicon film with a thickness of 600 nm was produced.

比較例3Comparative Example 3

銅箔の代わりにポリイミドシートを使用した以外は実施例3と同様に分割スパッタリングターゲットを作製したところ、つなぎ目部分にポリイミドシートが目視確認された。  A split sputtering target was prepared in the same manner as in Example 3 except that a polyimide sheet was used instead of the copper foil, and the polyimide sheet was visually confirmed at the joint.

この分割スパッタリングターゲットをスパッタリング装置に取り付け、シリコン基板上へのシリコン膜の成膜を試みた。印加電圧500Vで成膜したところ成膜開始後2分で異常放電が発生したため、成膜を中止してスパッタリングターゲットを取り出したところ、つなぎ目部分付近のターゲットに欠けが生じているのが目視確認された。  This split sputtering target was attached to a sputtering apparatus, and an attempt was made to form a silicon film on a silicon substrate. When a film was formed at an applied voltage of 500 V, abnormal discharge occurred 2 minutes after the start of film formation. When the film formation was stopped and the sputtering target was taken out, it was visually confirmed that the target near the joint was missing. It was.

発明の効果The invention's effect

本発明によって分割スパッタリングターゲットができる限り同質の金属箔をその繋ぎ目部分に使用することで、クリーンなスパッタリングが実現した。使用方法の工夫によって、アルミ箔、銅箔、チタン箔などが自由に使用できることが判明した。その接着強度も冷却能力も金属箔の使用で強化され、マグネトロンスパッタリング法においてもまったく磁場を乱すことがない方法であることが判明した。これによりスパッタリングターゲットへの印加電圧を高めることが出来ることから、高速なスパッタリングに寄与し、経済効率が向上することで、環境への廃棄物が減少する一助にもつながる。  According to the present invention, clean sputtering was realized by using a metal foil of the same quality as possible in the split sputtering target at the joint portion. It has been found that aluminum foil, copper foil, titanium foil, etc. can be used freely depending on the method of use. The adhesive strength and cooling capacity were enhanced by the use of metal foil, and it was found that the magnetron sputtering method does not disturb the magnetic field at all. As a result, the voltage applied to the sputtering target can be increased, which contributes to high-speed sputtering and improves the economic efficiency, thereby helping to reduce waste to the environment.

金属箔を熱硬化型樹脂にてターゲットを接合した後に接合材で冷却板と接合して作製した分割スパッタリングターゲットのつなぎ目部分の断面を示した図である。It is the figure which showed the cross section of the joint part of the division | segmentation sputtering target produced by joining a metal foil with a thermosetting resin, and then joining with a cooling plate with a joining material. つなぎ目に故意に隙間が空けられた分割スパッタリングターゲットのつなぎ目部分の断面を示した図である。It is the figure which showed the cross section of the joint part of the division | segmentation sputtering target by which the clearance gap was intentionally opened at the joint.

符号の説明Explanation of symbols

1 スパッタリングターゲット
2 接合材
3 熱硬化型樹脂
4 金属箔
5 冷却板
DESCRIPTION OF SYMBOLS 1 Sputtering target 2 Joining material 3 Thermosetting resin 4 Metal foil 5 Cooling plate

Claims (5)

セラミック或いは金属およびその混合体で構成されるスパッタリングターゲットを2枚以上繋ぎ合わせて作製する分割スパッタリングターゲットにおいて、2枚以上のスパッタリングターゲットの繋ぎ目を冷却板に接合する面から金属シートにより被覆し高温半田もしくは耐熱樹脂により接合して繋ぎ合わせることで一体化させた形状をもつことを特徴とする分割スパッタリングターゲット。In a split sputtering target prepared by joining two or more sputtering targets composed of ceramic or metal and a mixture thereof, a high temperature is obtained by covering the joint of two or more sputtering targets with a metal sheet from the surface joining the cooling plate. A split sputtering target characterized by having an integrated shape by joining and joining with solder or heat-resistant resin. 請求項1記載の金属シートとして、スパッタリングターゲットもしくは接合する冷却板の成分の一部または全部と同じ材質のものを用いることを特徴とする分割スパッタリングターゲット。2. The divided sputtering target according to claim 1, wherein the metal sheet is made of the same material as part or all of the components of the sputtering target or the cooling plate to be joined. 請求項1記載の金属シートとして、スパッタリングターゲットもしくは半田接合する冷却板と近似のまたは同様な誘電率、透磁率、熱伝導率を有した材質のものを用いることを特徴とする分割スパッタリングターゲット2. The split sputtering target characterized in that the metal sheet according to claim 1 is made of a material having a dielectric constant, magnetic permeability, and thermal conductivity that is similar to or similar to a sputtering target or a cooling plate to be soldered. 請求項2および3記載の分割スパッタリングターゲットにおいて、個々のターゲットのつなぎ目の間隔を故意に空けた形状を特徴とする分割スパッタリングターゲットThe split sputtering target according to claim 2 or 3, characterized in that the gap between the individual target joints is intentionally spaced. 請求項1から4記載の分割スパッタリングターゲットを半田もしくは耐熱樹脂を用いて冷却板に接合された形状をもつことを特徴とする分割スパッタリングターゲットThe split sputtering target according to claim 1, wherein the split sputtering target has a shape joined to a cooling plate using solder or a heat-resistant resin.
JP2004081455A 2004-02-23 2004-02-23 Split sputtering target Pending JP2005232580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081455A JP2005232580A (en) 2004-02-23 2004-02-23 Split sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081455A JP2005232580A (en) 2004-02-23 2004-02-23 Split sputtering target

Publications (1)

Publication Number Publication Date
JP2005232580A true JP2005232580A (en) 2005-09-02

Family

ID=35015834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081455A Pending JP2005232580A (en) 2004-02-23 2004-02-23 Split sputtering target

Country Status (1)

Country Link
JP (1) JP2005232580A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084657A (en) * 2007-10-02 2009-04-23 Mitsubishi Materials Corp Sputtering target and target assembly
KR101191817B1 (en) 2010-11-08 2012-10-16 미쓰이 긴조꾸 고교 가부시키가이샤 Divided sputtering target and method for producing same
JP2015004116A (en) * 2013-06-24 2015-01-08 株式会社アルバック Target assembly and manufacturing method of the same
US9095932B2 (en) 2006-12-13 2015-08-04 H.C. Starck Inc. Methods of joining metallic protective layers
US9783882B2 (en) 2007-05-04 2017-10-10 H.C. Starck Inc. Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
US10615011B2 (en) * 2011-06-30 2020-04-07 View, Inc. Sputter target and sputtering methods
WO2021157112A1 (en) * 2020-02-06 2021-08-12 三井金属鉱業株式会社 Sputtering target
CN113490763A (en) * 2019-06-10 2021-10-08 株式会社爱发科 Sputtering target and method for producing sputtering target
CN113544308A (en) * 2019-06-10 2021-10-22 株式会社爱发科 Sputtering target and method for producing sputtering target
KR20220039648A (en) 2019-08-08 2022-03-29 미쓰이금속광업주식회사 split sputtering target
KR20220093100A (en) 2019-11-01 2022-07-05 미쓰이금속광업주식회사 Gap placement member

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9095932B2 (en) 2006-12-13 2015-08-04 H.C. Starck Inc. Methods of joining metallic protective layers
US9783882B2 (en) 2007-05-04 2017-10-10 H.C. Starck Inc. Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
JP2009084657A (en) * 2007-10-02 2009-04-23 Mitsubishi Materials Corp Sputtering target and target assembly
KR101191817B1 (en) 2010-11-08 2012-10-16 미쓰이 긴조꾸 고교 가부시키가이샤 Divided sputtering target and method for producing same
US10615011B2 (en) * 2011-06-30 2020-04-07 View, Inc. Sputter target and sputtering methods
JP2015004116A (en) * 2013-06-24 2015-01-08 株式会社アルバック Target assembly and manufacturing method of the same
CN113544308B (en) * 2019-06-10 2022-07-12 株式会社爱发科 Sputtering target and method for producing sputtering target
CN113490763A (en) * 2019-06-10 2021-10-08 株式会社爱发科 Sputtering target and method for producing sputtering target
CN113544308A (en) * 2019-06-10 2021-10-22 株式会社爱发科 Sputtering target and method for producing sputtering target
KR20220039648A (en) 2019-08-08 2022-03-29 미쓰이금속광업주식회사 split sputtering target
KR20220093100A (en) 2019-11-01 2022-07-05 미쓰이금속광업주식회사 Gap placement member
WO2021157112A1 (en) * 2020-02-06 2021-08-12 三井金属鉱業株式会社 Sputtering target
KR20220139301A (en) 2020-02-06 2022-10-14 미쓰이금속광업주식회사 sputtering target
JP7426418B2 (en) 2020-02-06 2024-02-01 三井金属鉱業株式会社 sputtering target

Similar Documents

Publication Publication Date Title
US5653856A (en) Methods of bonding targets to backing plate members using gallium based solder pastes and target/backing plate assemblies bonded thereby
US5593082A (en) Methods of bonding targets to backing plate members using solder pastes and target/backing plate assemblies bonded thereby
US5522535A (en) Methods and structural combinations providing for backing plate reuse in sputter target/backing plate assemblies
EP0428458B1 (en) Multilayer material containing soft graphite, said material being mechanically, electrically and thermally reinforced by a metal and method of producing it
KR100515906B1 (en) Sputtering target producing few particles
JP2005232580A (en) Split sputtering target
US6287437B1 (en) Recessed bonding of target for RF diode sputtering
JP5228245B2 (en) Sputtering target
JP2010100930A (en) Cylindrical sputtering target, and method for manufacturing the same
KR101338714B1 (en) Target and backing plate assembly
KR100867756B1 (en) Method for manufacturing substrate of ceramics pcb using high rate and high density magnetron sputtering way
JPH11200028A (en) Sputtering target and its production
KR102302468B1 (en) Split sputtering target and manufacturing method thereof
CN112063986A (en) Target binding method
KR20170117970A (en) Sputtering target-backing plate assembly
TWI460076B (en) A substrate manufacturing method and a structure for simplifying the process
GB2053763A (en) Soldering a non-solderable sputtering target to a metallic support
JPS62256498A (en) Composite metal thin belt with excellent electromagnetic shielding effect
JP2004270019A (en) Division-type sputtering target
JP2004083985A (en) Sputtering target and method for manufacturing the same
JPH02209476A (en) Sputtering method
JP2002004038A (en) Sputtering target with less particle generation
JP4152506B2 (en) Sputtering target assembly
JPS6018749B2 (en) Target for sputtering
JPH08218166A (en) Method for joining target for sputtering